
VM-Based Real-Time Services for Automotive Control Applications

Alejandro Masrur∗, Sebastian Drössler†, Thomas Pfeuffer∗ and Samarjit Chakraborty∗
∗Institute for Real-Time Computer Systems, TU Munich, Germany

{Alejandro.Masrur, Thomas.Pfeuffer, Samarjit.Chakraborty}@rcs.ei.tum.de
†ReliaTec GmbH, Garching, Germany

s.droessler@reliatec.de

Abstract—Techniques for hardware virtualization have been
successfully used to provide hardware-independent services and
increase isolation between applications in the desktop domain.
However, these characteristics make hardware virtualization also
interesting for other domains like those involving control tasks.
Since these techniques were initially not conceived for this kind
of environments where, in particular, timing constraints must
be guaranteed, it is necessary to analyze their behavior and
investigate the viability of possible solutions based on them. In
this paper, we are concerned with using VMs (Virtual Machines)
to provide real-time services in the context of automotive control
applications. For this purpose, we make use of the Xen hypervisor
to design a real-time control loop on the top of a virtualization
layer. We first analyze a typical Xen configuration and identify
problems that arise when it is used for real-time applications. We
show that the worst-case performance of Xen’s standard SEDF
scheduler (Simple Earliest Deadline First) can be improved by
incorporating some minimal modifications. In addition, in order
to reduce latency and jitter in a real-time control loop, we propose
a new scheduler for the Xen hypervisor that uses the concept
of a real-time VM. Real-time VMs are then scheduled before
any other VM and under a fixed-priority policy. The proposed
VM-based solution is shown to guarantee timing constraints
typically encountered in automotive control applications. We
further illustrate this through an extensive set of experiments.

I. INTRODUCTION

In order to prevent errors from propagating, some form of
isolation between the different tasks or applications if often
required in embedded systems. Of course, standard features
like user/supervisor modes and the MMU (Memory Manage-
ment Unit) allow us to isolate the operating system (OS)
from user applications. However, isolation between multiple
user-level applications—especially those with varying levels
of criticality—is often required.

In such cases, introducing a virtualization layer between
hardware and software turns out to be an effective solution.
Such a virtualization layer abstracts the hardware and is
referred to as a virtual machine monitor or a hypervisor. The
OS and application software now run on one or more so-called
virtual machines (VMs) and not directly on the hardware. The
VM monitor traps all requests directed to shared resources
(like processors and I/O devices) and administers access to
them by scheduling the VMs. This way, a malfunctioning task
can at most affect other tasks on the same VM, but not tasks
on other VMs running in the system.

However, most of the virtualization techniques available
today are directed towards the desktop domain (here we
are referring to system virtualization rather than program

virtualization—as in the Java Virtual Machine—techniques).
As a result, most VM monitors focus on optimizing the
average performance of systems and do not deal with
issues typically encountered in embedded systems such as
timing constraints, output jitter, etc. Hence, analyzing and
appropriately configuring existing VMs in this latter case has
lately attracted a lot of attention.

Our contributions: In this paper we use the Xen hypervisor,
an open-source VM monitor, for providing real-time services
in the context of automotive control applications. Tradition-
ally, different functionalities or applications in the automotive
domain are implemented on different electronic control units
(ECUs). This has led to a large number of ECUs in high-end
cars, which increases cost and leads to wiring complications.
As a result, lately there is an increasing focus on integrating
multiple applications on a single ECU, along with a VM layer
to provide isolation between them. The work we report in this
paper follows this direction, with the aim of supporting a mix
of hard-real-time control applications with non- or soft-real-
time applications on a commodity VM, viz., Xen.

In order to design a real-time control loop upon Xen, we
first analyze its timing behavior. Currently, Xen provides two
schedulers—the credit-based scheduler, which was designed
to fairly share hardware resources, and the SEDF (Simple
Earliest Deadline First) scheduler. In this paper we focus on
the SEDF scheduler since it is based on the well-known EDF
and suits better a hard-real-time application. However, SEDF
differs from EDF, so we discuss these differences later.

SEDF can be configured so as to satisfy real-time con-
straints, however, a significant amount of pessimism needs
to be introduced resulting in a poor resource utilization. We
show that it is possible to improve the worst-case behavior
of SEDF by appropriately modifying it. Nevertheless, both
SEDF and the modified SEDF presented in this paper suffer
from poor performance when a combination of time-critical
and non-critical VMs are scheduled together. To overcome this
problem, we propose a new scheduler for Xen that further
reduces latency and jitter in a control loop. The proposed
scheduler is based on the notion of a real-time VM. Such
a VM is scheduled separately with a fixed-priority scheme,
which leads to a better worst-case behavior. Since the Xen
hypervisor schedules multiple VMs and isolates them from
one another, we can run safety-/time-critical applications (e.g.,
those related to airbag control and brake system) on the same
hardware with general-purpose applications (e.g., navigation

and multimedia). This allows more design flexibility and sup-
ports merging multiple functionalities onto fewer processors
to reduce the cost and the weight of a vehicle.

The rest of the paper is organized as follows. First, we give
an overview of a regular Xen configuration and discuss the
SEDF scheduler in Section III. In Section IV, we analyze the
use of Xen in the context of real-time applications, for which
the standard SEDF scheduler needs to be configured carefully.
We further propose in Section VI a new scheduler for Xen that
improves the average system utilization and helps reducing
latency and jitter in a control loop. Finally, in Section VII,
we discuss a set of experiments on the basis of our setup and
summarize our contributions in Section VIII.

II. RELATED WORK

Most related work in this area focus on analyzing the perfor-
mance and fairness of VM scheduling policies. For example,
in [1], Gupta et al. discuss performance issues concerning
device accesses in Xen. They further propose techniques
to allocate CPU time taking resource usage into account.
Govindan et al. present mechanisms to take communication
into consideration when scheduling CPU time [2]. In [3],
Cherkasova et al. present a comparison between different
schedulers in Xen, whereas Ongaro et al. study the impact of
jointly scheduling CPU-demanding, bandwidth-intensive and
latency-sensitive applications [4]. In [5], Kim et al. introduce
scheduling techniques to allocate VMs according to their I/O
demand, with the aim of performance improvement. Further,
in [6], Weng et al. analyze problems that arise when concurrent
tasks are scheduled based on VMs. They further propose the
distinction between two types of VM: the concurrent and
the high-throughput VMs. In this paper, we also propose
distinguishing between VMs of two types as discussed later:
real-time and non-real-time VMs.

More recently, Mangharam and Pajic introduced the concept
of an embedded VM for wireless networks [7]. Here, be-
sides providing hardware abstraction, a embedded VM defines
mechanisms for fault tolerance against node and communica-
tion failures in wireless networks. In this paper, we study the
use of VMs and, in particular, of Xen for supporting hard-real-
time applications—a general description of the Xen hypervisor
may be found in [8]. We mainly focus on automotive control
applications, but the techniques presented below can also be
applied to other domains. To the best of our knowledge, there
is no published work on using VMs for scheduling hard-real-
time tasks or safety-critical automotive applications.

III. A TYPICAL XEN CONFIGURATION

In this section, we briefly describe a typical configuration
of Xen. Only one domain, denoted as the host domain or
dom0, has enhanced rights to manage the others domains
called unprivileged domains (domUs)—a VM or virtualized
environment is referred to as domain in the Xen terminology.
From dom0, it is possible to create, pause or stop the domUs
running on Xen. The Xen hypervisor itself does not provide
any drivers for accessing hardware devices. Instead, the OS

waiting

ready

running

blocked

1 2

45

3

Figure 1. Domain states and state transitions in SEDF

running within dom0 has to provide the device drivers, for
example, for network interface cards (NICs) or other I/O
devices. The domUs cannot access the hardware directly but
over dom0, however, a hardware device can be hidden from
dom0 and assigned to a domU. In this case, the domU has to
provide the corresponding device drivers.

In Xen, the domain scheduler is responsible for assigning
CPU time to domains such that every domain gets to run.
For this purpose, Xen uses virtual CPUs (VCPUs) as an
abstraction layer of the physical processor. For every available
physical CPU/core, there can be several associated VCPUs.
Further, several VCPUs can be assigned to the same domain.
However, once a VCPU is allocated to a given domain,
it cannot be allocated to any other domain. Currently Xen
includes two different schedulers: the credit-based and the
SEDF scheduler. The credit-based scheduler was primarily
developed for achieving a fair sharing of resources. On the
other hand, SEDF is more suitable for real-time applications
because of being based on EDF as discussed next.

A. The domain scheduler: SEDF

SEDF offers a series of configuration parameters that allow
tuning it for the application at hand. First, domains need to be
assigned to physical CPUs at configuration time. In addition,
the following parameters can be adjusted independently for
each domain:

• Slice sx
i : This is the maximum amount of CPU time that

may be assigned to a domain upon activation.
• Period px

i : This is the expected minimum separation
between two consecutive activations of a domain.

SEDF then schedules domains in a preemptive manner using
dynamic priorities. At a given release time t′, the priority of
a domain is given by the sum of the current time plus the
domain’s period t′ + px

i : the less the value of t′ + px
i , the

higher the priority of the domain.
Figure 1 illustrates the states and the corresponding state

transitions for domains under SEDF. There are four domain
states and five possible transitions between them. In the ready
state, a domain has been released, but it is not being executed
yet. If a domain is ready, it can only change to the running
state. From the running state, a domain can either go back
to the ready queue, if a higher-priority domain preempts it,
or it can be blocked. A domain passes to the blocked state
whenever it finishes executing or it consumes its whole time

Figure 2. Transition scenarios for a domain with period px
i . Short unblocking occurs in [t′, t′ + px

i]: The virtual event is deferred until the
next configured release time. The preemption case is illustrated in [t′ + p, t′ + 2px

i] and long unblocking in [t′ + 2px
i , t′′ + px

i].

slice sx
i . Domains that are blocked can only change to the

waiting state when their configured period elapses, i.e., when
the current time t is greater than t′ + px

i where t′ denotes
the release time of the domain in blocked state. Finally, a
waiting domain can leave this state and becomes ready when
an incoming event produces a new release.

Figure 2 shows three different transition scenarios under
SEDF. From time t′ to t′ + px

i , a domain is initially in the
waiting state as an external event arrives to the system. This
is translated into a virtual event by Xen releasing the domain
execution with minimum delay. The domain starts executing
and finishes before its time slice expires such that it becomes
blocked. Now, if another external event occurs before the
domain’s configured period elapses (i.e., before t′ + px

i), this
is going to be delayed until t′ + px

i , i.e., the time at which a
new release of the corresponding domain is allowed by SEDF.
We refer to this situation as short unblocking.

The second scenario, from time t′+px
i to t′+2px

i , illustrates
the case where the domain gets preempted by another domain
with higher priority. Finally, the third scenario shows the
situation where a domain activation does not occur at t′+2px

i

but at a later point in time t′′. This latter situation in which
the time between two activations is longer than the configured
period px

i is referred to as long unblocking.
Clearly, in case of a long-unblocking activation, we have

more relaxed conditions than the ones considered in the
configuration of SEDF. On the contrary, short-unblocking
leads to additional delay in reacting to an external event and
should be analyzed in more detail for the purpose of real-time
applications.

IV. OUR SETUP FOR REAL-TIME APPLICATIONS

In our setup, Xen runs on an x86 processor and is connected
via a switched Ethernet network to other processors and
through gateways to sensors and actors. We further hide the
NIC drivers from dom0 and assigned them to a separate
domain called domN. This way, it is possible to improve
the responsiveness of the system to packets arriving from the
communication network.

Neither dom0 nor domN contain application tasks and,
hence, they consume little CPU time (e.g., domN only reacts

to network packets). In our setup, we use standard OSs
that are already available for Xen and provide the necessary
device drivers for accessing the hardware. However, these
are not real-time OSs and we need to make provisions to
ensure correct timing behavior of the system. In particular, the
NIC drivers cannot differentiate between real-time and non-
real-time packets. As a consequence, in order to be able to
guarantee a maximum response time to real-time packets, we
need to make sure that at most k packets need to be processed
at any given point in time. This can be achieved by restricting
the number of communicating domains in the system (real-
time and non-real-time ones) to be at most k—considering that
a domain answers to a packet before the next packet arrives.

We introduce the concept of a real-time domain (domRT)
to denote an unprivileged domain running a real-time task.
A domRT is also based on a standard OS available for Xen,
which also does not have real-time capabilities. For example, it
does not feature any real-time scheduler (such as EDF or fixed-
priorities). However, if we have no more than one real-time
task per domRT, we can still guarantee correct timing behavior.
This is because the real-time task will be scheduled whenever
the corresponding domRT is scheduled by Xen independently
of the scheduler used by the OS in domRT.

A. Tuning SEDF for real-time applications

The slice sx
i is the maximum running time of a domain

within px
i time units, where px

i is the period of the domain.
Hence, as SEDF implements a partitioned EDF scheduling, the
system will be feasible if the sum of the domain utilizations
sx

i

px
i

does not exceed 1 on every available CPU/core [9]:∑l
i=1

sx
i

px
i
≤ 1, where l is the number of domains running on a

given CPU. Clearly, if this does not hold for any CPU in the
system, we cannot guarantee real-time constrains [9]. On the
other hand, if this inequality always holds, we can, however,
neither conclude that all deadlines will be met by the system.
In fact, sx

i and px
i have to be configured taking the application

requirements into account, otherwise, some deadlines may still
be missed.

As mentioned above, because a domRT is based on a non-
real-time OS available for Xen, we can only execute one real-

time task per domRT. Now, all domRTs in the system are
triggered by network packets arriving from sensors. A sensor
sends packets to a domRT periodically with period pi. In order
to guarantee the correct behavior of real-time applications, Xen
has to react to an incoming packet within di time units. That is,
di is the deadline or the maximum acceptable delay measured
between incoming and outgoing packet. Within di, domN has
to process the packet arriving from the sensor, the domRT has
then to compute a new output value and, finally, domN has to
send out the new output value.

Figure 3. Worst-case response time under SEDF

Let us denote by sx
N and px

N the slice and period configured
in SEDF for domN where sx

N ≤ px
N holds. In the same manner,

sx
i and px

i are the slice and period for the i-th domRT and
sx

i ≤ px
i also holds. Figure 3 illustrates the system’s worst-

case response time to an incoming packet directed to the i-th
domRT. In this figure, the packet arrives at time t′ immediately
after domN gets into the blocked state and has to wait until
t′ + px

N —this is known as short unblocking, see Section III.
However, if domN has the lowest priority in [t′+px

N , t′+2px
N),

the packet processing will be delayed until time t′ + 2px
N . At

time t′ + 2px
N , the i-th domRT is activated by the scheduler.

The execution of this domRT can also be delayed up to t′ +
2px

N + px
i by higher-priority domains running on the same

CPU. When the domRT finishes executing, it sends the output
value to domN at time t′+2px

N+px
i . Nevertheless, the outgoing

packet can again be delayed by 2px
N time units because of a

short-unblocking activation of domN is also possible at this
point. As a result, the following inequality must hold in worst
case for the system to meet the deadline di associated with
the incoming packet:

4px
N + px

i ≤ di. (1)

Let us now denote by dmin the minimum di among all
deadlines in the system. Further, px

min is the Xen period of
the domRT reacting to the packet with deadline dmin. If we
consider px

min = px
N in Eq. (1), the period of domN can be

obtained as follows:

px
N ≤ dmin

5
. (2)

This value of px
N satisfying the minimum deadline will also

allow the system to meet longer deadlines. With px
N and di,

we can use Eq. (1) to compute px
i for the different domRTs.

Now, if ei denotes the worst-case execution time of the real-
time task running in the i-th domRT—recall that there is only
one task per domRT, we can set its slice to sx

i = ei.
To find a suitable value for sx

N , we need to consider that
neither the NIC nor its drivers in domN can distinguish

between real-time and non-real-time packets. However, we can
enforce that only a maximum number of k packets need to
be processed at any point in time. As stated before, this can
be done by allocating at most k domains to the system that
receive/send packets over the network. In this case, sx

N can
be chosen as follows: sx

N = k · eN , where eN stands for the
worst-case processing time of a packet.

V. IMPROVING XEN’S WORST-CASE RESPONSE TIME

The so-called short unblocking is a mechanism provided
by SEDF to guarantee a fair scheduling of domains. That
is, a domain can only be activated once within a configured
time period independently of whether it has used its whole
slice or not. In our case, this becomes a disadvantage because
domN gets triggered by network packets. Each time that domN
finishes processing all pending packets, it blocks itself for the
remainder of its current period. Now, if packets arrive while
domN is blocked, they will have to wait until the next possible
activation irrespective of whether domN has used its complete
slice in the current period or not.

This behavior of domN results in a quite pessimistic worst-
case response time. Hence, we propose removing the short-
unblocking activation from SEDF such that domN can utilize
its whole slice sx

N within its period px
N independently of

its current state (waiting or blocked). In what follows, we
denote by SEDF’ this modified version of SEDF where short
unblocking has been eliminated.

For a given maximum number of packets k, domN can now
react to an arriving packet within at maximum px

N time units,
if sx

N = k · eN holds where eN is the worst-case processing
time for a single packet. The worst-case response time to an
incoming packet is now given by 2px

N + px
i . As a result, a

deadline di can be guaranteed if the following holds: 2px
N +

px
i ≤ di. Using this inequality, it is possible to obtain periods

and slices for all domains just proceeding analogously to case
of the standard SEDF.

VI. A SCHEDULER FOR REAL-TIME APPLICATIONS

The main disadvantage of SEDF and also of its modified
version SEDF’ is that they do not distinguish between domRTs
running real-time tasks and domUs running non-critical tasks.
To overcome this problem, we propose a new scheduler for
Xen called PSEDF (Priority-based scheduling plus SEDF).
The main difference to SEDF is that PSEDF allows config-
uring which domains are real-time (domRTs) and which are
not. If a domRT is active, this is executed before any domU.

The domRTs are further scheduled under a preemptive
fixed-priority policy, so priorities need to be assigned to them.
As in the case of SEDF, we configure periods px

i and slices sx
i

for PSEDF as well. The non-real-time domUs will continue
being scheduled as usual under SEDF.

Because domN is the interface between any domRT and the
network, it has to be configured as a real-time domain. Further,
all real-time domains (from the highest- to the lowest-priority
domain), are released by domN. As a consequence, to allow for
preemptive scheduling, domN needs to be assigned the highest

priority among all domRTs running on the same CPU/core as
domN. On the other hand, domN can also be released by non-
real-time packets directed to ordinary domains (domUs) in the
system. After these non-real-time packets are processed, the
corresponding domUs will be released, but they will not be
executed as long as there is an active domRT.

Now, to find proper values of px
i and sx

i for all domRTs
in PSEDF, we can proceed as follows. We first assign the
highest priority to domN. The remaining domRTs are then
given priorities according to the DM (Deadline Monotonic)
scheme and considering the di associated with the packets they
have to react to. The shorter the deadline di, the higher the
priority assigned to the corresponding domRT. This priority
assignment is known to be optimal for the considered case
where deadlines di are less than the periods of packets pi

[10]. Again, if dmin is the minimum deadline among all
di, the corresponding domRT has the second highest priority
after domN. The worst-case response time of this domain is
illustrated in Figure 4. The domain reacting to the packet with
dmin is released after domN finishes executing. In Figure 4, it
is assumed that this domain finishes before the next activation
of domN. However, its outgoing packet has to wait up to the
next period of domN to be sent. This is because domN might
have already used its whole slice in the current period.

Figure 4. Worst-case response time (WCRT) under PSEDF

From Figure 4, the following inequality must hold for the
system to meet dmin: sx

N + px
N ≤ dmin. We can now obtain

px
N = dmin−sx

N , where sx
N is given by k ·eN , i.e., the worst-

case processing time of k packets.
For the remaining domRTs, we set px

i = pi and sx
i = ei,

where pi represents the minimum separation between two
consecutive packets directed to the i-th domRT and ei is the
worst-case response time of the real-time task in this domain.

Now, we can compute the worst-case response times of
the i-th domRT as follows [11], [12]: t(c+1) = sx

i +∑
∀j∈HP (i)

⌈
t(c)

px
j

⌉
sx

j , where HP (i) denotes the subset of tasks
with higher priority than or equal priority to the i-th domRT
(i.e., domN and all domRTs reacting to packets with deadlines
dj such that dj ≤ di according to the DM policy). This
equation can be solved iteratively starting from t(1) = sx

i and
until t(c+1) = t(c) is satisfied for some c ≥ 1. This resulting
value of t(c+1) is the worst-case response time of the i-th
domRT which we denote by rx

i . Now, all deadlines can be
met, if the following condition holds for every i-th domRT in
the system: rx

i ≤ di.

VII. CASE STUDY: ELECTRONIC STABILITY CONTROL

In this section, we consider the Electronic Stability Control
(ESC) application. In principle, ESC improves the steering
capability of a vehicle by minimizing blocking and skidding
on the wheels.

In our setup, the Xen hypervisor (version 3.4) runs on an
Intel Core 2 Duo platform with 2.16 GHz. A Debian Lenny OS
was used for dom0 and domN for the reason that it provides
the device drivers required in these two domains. Both dom0
and domN only need to react to events from the hardware and
do not execute any application task. Further, the mini-os, a
light-weight OS included in the Xen sources, runs in every
domRT. We additionally use Debian Lenny for the non-real-
time domUs which have here no access to the network.

A remote computer was connected to our setup via Eth-
ernet and simulates the sensors generating packets for the
different domRTs. A total number of four domRTs (domRT1
to domRT4) run on the system (i.e., k = 4), each of which
stands for the control of one wheel in ESC. The sensing of
wheels is performed every 2.5ms (i.e., packets arrive with
pi = 2.5ms). The deadline for reacting to incoming packets is
di = 1.5ms for all domRTs. Further, the worst-case execution
time of every domRT is given by ei = 0.06ms whereas the
worst-case processing time of a packet is eN = 0.02ms.

In order to improve the reactiveness of the system, domN
runs on a separate core than the domRTs. Now, to configure
the standard SEDF, we can proceed as in Section IV. First,
we set domN’s slice to sx

N = k · eN = 0.08ms. Its period can
be obtained from Eq. (2), which results in px

N = 0.3ms. The
slice of all domRTs is configured as sx

i = ei = 0.06ms and
their periods are all given by px

i = 0.3ms according to Eq. (1).
Although SEDF’ and PSEDF allow relaxing the configuration
of periods and slices, we use the same values as for SEDF for
the sake of this comparison.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

av
er

ag
e

re
sp

on
se

 ti
m

e
[m

s]

non-real-time CPU load

PSEDF

SEDF’

SEDF

Figure 5. Average response time of domRT1

Figure 5 shows the average response times with respect to
the non-real-time CPU load and for the case of domRT1 (the
other domRTs have similar behavior). This is the processor
utilization produced by non-real-time domains (ordinary do-
mUs) on the different cores. For every measurement (i.e., for

every marker on the curves), 10,000 different packets were sent
over the network to every domRT in the system. On average,
the response times of domRT1 (and of the other domRTs) are
below the 1.5ms deadline required by packets. However, only
the response time under PSEDF remains constant as the non-
real-time load increases. This characteristic of PSEDF results
in a more predictable delay and less jitter for real-time tasks.

Figure 6 and Figure 7 show the different response times
that we measured as the non-real-time CPU load increases.
The vertical lines in these figures illustrate the variability of
the response times for different CPU loads: the longer the
line, the higher the variability. The maximum response times
measured are indicated by dashes on the top of these lines. In
the same manner, dashes at the bottom of the lines stand for
the minimum response times that were measured. A third dash
between the top and bottom ones shows the average response
time on every line.

As shown in Figure 6 for SEDF, some domRT1 packets
miss their deadlines as the non-real-time CPU increases to
70% (i.e., 0.7). Here, the response time of domRT1 reaches
3.5ms. SEDF’ presents a similar behavior to SEDF and is not
shown for lack of space. Under PSEDF domRT1 can always
meet its deadline as shown in Figure 7, where its response
time never exceeds 0.09ms.

VIII. CONCLUDING REMARKS

In this paper we studied the use of virtual machines (VMs)
in the context of real-time applications such as those encoun-
tered in automotive control electronics. Further, we presented
an approach based on the Xen hypervisor and analyzed the
problems that arise when deadlines need to be guaranteed.
We showed that the standard SEDF scheduler of Xen can be
configured such that the different VMs (also called domains)
can meet hard real-time deadlines. However, to ensure correct
timing behavior in the worst case, SEDF incurs too much
pessimism and yields a poor system utilization. In order to
overcome this problem, a modified version of the SEDF sched-
uler (SEDF’) was introduced, which exhibits an improved
worst-case behavior.

Unfortunately, both SEDF and SEDF’ are rather inefficient
when both real-time and non-real-time workload needs to
be scheduled. For this reason, we proposed a new scheduler
called PSEDF (Priority-based scheduling plus SEDF), which
separates real-time domains from non-real-time domains and,
consequently, achieves a much lower delay and jitter. We
illustrated this through a case study consisting of an Electronic
Stability Control (ESC) system.

REFERENCES

[1] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing per-
formance isolation across virtual machines in xen,” in Middleware ’06:
Proceedings of the ACM/IFIP/USENIX 2006 International Conference
on Middleware, 2006, pp. 342–362.

[2] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasub-
ramaniam, “Xen and co.: communication-aware cpu scheduling for
consolidated xen-based hosting platforms,” in VEE ’07: Proceedings
of the 3rd international conference on Virtual execution environments,
2007, pp. 126–136.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

re
sp

on
se

 ti
m

e
[m

s]

non-real-time CPU load

Figure 6. Response time of domRT1 under SEDF

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

re
sp

on
se

 ti
m

e
[m

s]

non-real-time CPU load

Figure 7. Response time of domRT1 under PSEDF

[3] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the three cpu
schedulers in xen,” SIGMETRICS Perform. Eval. Rev., vol. 35, no. 2,
pp. 42–51, 2007.

[4] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling i/o in virtual
machine monitors,” in VEE ’08: Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments, 2008, pp. 1–10.

[5] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, “Task-aware virtual machine
scheduling for i/o performance.” in VEE ’09: Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, 2009, pp. 101–110.

[6] C. Weng, Z. Wang, M. Li, and X. Lu, “The hybrid scheduling framework
for virtual machine systems,” in VEE ’09: Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, 2009, pp. 111–120.

[7] R. Mangharam and M. Pajic, “Embedded virtual machines for robust
wireless control systems,” in ICDCSW ’09: Proceedings of the 2009
29th IEEE International Conference on Distributed Computing Systems
Workshops, 2009, pp. 38–43.

[8] D. Chisnall, The Definitive Guide to the Xen Hypervisor. Prentice Hall,
2007.

[9] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
hard real-time environments,” Journal of the Association for Computing
Machinery, vol. 20, no. 1, pp. 40–61, 1973.

[10] J.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” in Performance Evaluation,
vol. 2, 1982, pp. 237–250.

[11] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior,” in Proceedings
of the Real-Time Systems Symposium, December 1989, pp. 166–171.

[12] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings, “Ap-
plying new scheduling theory to static priority pre-emptive scheduling,”
Software Engineering Journal, vol. 8, no. 5, pp. 284–292, September
1993.

