
Constant-Time Admission Control for Partitioned EDF

Alejandro Masrur Samarjit Chakraborty Georg Färber
Institute for Real-Time Computer Systems, TU Munich, Germany

{Alejandro.Masrur, Samarjit.Chakraborty, Georg.Faerber}@rcs.ei.tum.de

Abstract

An admission control test is responsible for deciding
whether a new task may be accepted by a set of running
tasks, such that the already admitted and the new task are
all schedulable. Admission control decisions have to be
taken on-line and, hence, there is a strong interest in de-
veloping efficient algorithms for different setups. In this
paper, we propose a novel constant-time admission control
test for tasks scheduled on identical processors under par-
titioned Earliest Deadline First (EDF), i.e., once tasks have
been assigned to a processor they remain on that proces-
sor. In particular, to model demanding real-time systems,
we consider the case where relative deadlines may be less
than the minimum separation between two consecutive task
activations or jobs. The main advantage of the proposed
test is that the time it takes is independent of the number of
tasks currently admitted in the system. While it is possible
to adapt polynomial-time schedulability tests from the lit-
erature to design a linear or even constant-time admission
control for this setup, the test we propose provides a bet-
ter accuracy/complexity ratio. We evaluate this test through
a set of detailed experiments based on synthetic tasks and
a realistic case study consisting of a real-time multimedia
server.

1. Introduction

In many modern real-time systems such as interactive
game servers, web servers, virtual worlds, and multime-
dia/communication systems, tasks have to be accepted or re-
jected on-line based on whether they can be feasibly sched-
uled or not. As a consequence, such systems require effi-
cient admission control tests with fast and predictable run-
ning times. In particular, the increasing use of multiproces-
sor platforms makes it necessary to develop admission con-
trol algorithms that are able to manage multiple processing
units at the same time.

In this paper, we propose such an admission control test
for real-time tasks scheduled on identical processors under
partitioned Earliest Deadline First (EDF). The Quality of

Service (QoS) constraints associated with many of the ap-
plications mentioned above imply that deadlines be smaller
than task periods or the minimum separation between any
two consecutive jobs. For example, in an interactive appli-
cation like a networked computer game, each game packet
needs to be processed well before the arrival of the next
packet. Here, a task is a new network connection or a user
joining the game, which if accepted results in a sequence of
network packets (jobs). While the case where relative dead-
lines are equal to periods is easier to handle and has been
well studied in the literature, deadlines smaller than periods
lead to additional complication and is still a topic of interest.

In addition to schedulability analysis, an admission con-
trol test for multiprocessors has to deal with the task alloca-
tion problem, which is known to be NP-hard in the strong
sense [12]. Nevertheless, to perform an on-line allocation,
it is possible to adapt one of the known bin-packing heuris-
tics (e.g., First Fit (FF) [13]) to the considered setting. In
our case, we are concerned with partitioned scheduling, i.e.,
tasks that are allocated to a processor stay on that processor
as long as they remain active. As a consequence, we can
use uniprocessor schedulability tests in combination with
the allocation heuristic to determine whether a new task can
be assigned to a given processor.

From here on, let pi denote the minimum separation be-
tween two consecutive jobs and di the relative deadline of
a task Ti. Existing exact schedulability tests for the case
di < pi on uniprocessors, e.g., [6] and [19], have pseudo-
polynomial complexity and are less suitable for admission
control (i.e., on-line testing). The reason for this is that the
running times of pseudo-polynomial schedulability tests de-
pend on the deadlines of tasks, execution times, etc. Hence,
it is complicated to precisely bound them in on-line settings
where tasks come and go.

On the other hand, some polynomial-time sufficient tests
have also been proposed, e.g., the density test [20, 15] and
Devi’s test [11]. Among all known polynomial-time tests
for the case di < pi, the density test has the minimum
complexity. By combining the density test with FF, the ad-
mission decision for a new task on a multiprocessor system
requires constant time O(1)—of course, assuming that the



number of processors is limited. Nevertheless, the resulting
constant-time admission control has a poor accuracy. How
a polynomial-time schedulability analysis is combined with
FF to obtain an O(1) admission control is explained later in
Section 6.

In [11], Devi showed an interesting accuracy improve-
ment over the density test. However, Devi’s test requires
tasks to be sorted according to non-decreasing relative
deadlines and, hence, has a higher complexity than the
density test. Of course, it is possible to sort tasks on-line,
so that we only need to add tasks to a sorted list as they
arrive. However, if a new task is added to the system,
using Devi’s test also implies retesting all already accepted
tasks with longer deadlines. This results in an admission
control with linear complexity O(n) to test a new task in
the system. As a consequence, the running time of this
algorithm increases considerably as the number of accepted
tasks grows, which is not desirable in many on-line settings.

Our contributions: Recall from above that the density test
combined with FF results in a constant-time admission con-
trol algorithm for partitioned EDF. However, this solution
is too pessimistic, particularly when the number of tasks
grows. In order to increase the accuracy while retaining
constant complexity, we propose a novel schedulability test
to be combined with the FF heuristic. This test is based
on calculating an upper bound on the loading factor pro-
duced on a given processor by the task set composed of all
already running and the newly arriving task. The loading
factor is defined as the maximum execution demand within
a given time interval divided by the length of this interval
[20]. Clearly, if the upper bound on the loading factor does
not exceed 1, the maximum execution demand of all already
running and the new task is always less than the available
time for all possible time intervals. As a consequence, the
new task does not affect the schedulability of the already
running tasks and can be assigned to the processor.

To find an upper bound on the loading factor, it is nec-
essary to compute the maximum execution demand of tasks
for all possible time intervals. However, in this paper, we
present an approximation technique that reduces the com-
plexity of computing the maximum loading factor and al-
lows designing a constant-time admission control test on
its basis. The presented technique consists in partitioning
the time line into non-overlapping intervals. The maximum
execution demand and, thus, the loading factor are approxi-
mated this way by linear segments. Clearly, the approxima-
tion quality depends on the used number of linear segments.
However, using more approximation segments increases the
running time of the algorithm, which then has to be config-
ured to achieve the desired accuracy and running time.

This paper is organized as follows: The next two sec-
tions provide a survey of related work and a description of

the used task model and notation. The principles on which
the proposed test is based will be presented in Section 4.
Section 5 introduces and explains the proposed schedulabil-
ity test, and the admission control algorithm for partitioned
EDF will be discussed in Section 6. Section 7 presents a
detailed comparison between the proposed admission con-
trol algorithm and well-known schedulability tests from the
literature. Finally, some concluding remarks are presented
in Section 8.

2. Related Work

As already stated, the FF heuristic can be combined with
uniprocessor schedulability tests in order to derive admis-
sion control algorithms for partitioned EDF on multiproces-
sors. There are a number of approaches from the literature
that can be used for this purpose, however, not all of them
lead to constant-time admission control tests and we will
have to sacrifice accuracy for the sake of efficiency.

On uniprocessor and for di = pi, Liu and Layland [14]
showed that an exact schedulability test can be performed
in linear time. In this case, if the processor utilization
does not exceed 1, tasks are schedulable under EDF [14]:∑n

i=1
ei

pi
≤ 1, where ei is the worst-case execution time

and n is the number of tasks.
For the considered case di < pi, Baruah et al. [7] showed

that the complexity increases considerably. However, as-
suming the processor utilization to be strictly less than 1,
Baruah et al. [6, 7] proved that if a deadline is missed,
this happens within a maximum time upper bound which
can be computed. This result allows designing a pseudo-
polynomial-time exact schedulability test for di < pi. An-
other such algorithm based on a tighter time upper bound
was presented by Ripoll et al. [19].

All exact schedulability tests for di < pi, including the
one of Albers and Slomka [2], incur pseudo-polynomial
complexity and are normally not eligible for on-line testing.
In order to reach polynomial complexity in testing schedu-
lability for EDF with di < pi, exactness must be sacrificed.
Based on this idea, Liu in [15] and Stankovic et al. in [20]
propose the density test, which consists in replacing pi by
di in the utilization test of Liu and Layland:

∑n
i=1

ei

di
≤ 1.

Unfortunately, the accuracy of this test is rather poor.
To overcome the pessimism incurred by the density test,

Devi [11] presented another approach based on sorting tasks
according to their deadlines. However, Devi’s test has a
higher complexity (i.e., O(n log n)) than the density condi-
tion because tasks need to be sorted.

Other polynomial-time tests with better accuracy than
both the density and Devi’s test have been proposed for
di < pi, e.g., [10], [1] and [18]. Nevertheless, they all
incur in a computational complexity of at least O(n log n)
as Devi’s test.



So far we have discussed methods for uniprocessor
schedulability analysis. There are also some contributions
with respect to partitioned EDF on identical processors. For
the case di = pi, López et al. [17, 16] presented a schedu-
lability test based on the concept of utilization bound. The
key idea is that a given set of real-time tasks is schedulable
on an identical multiprocessor system, if the total utilization
does not exceed a certain bound.

More recently, Baruah and Fisher [3, 4, 5] presented and
evaluated a polynomial-time algorithm to allocate tasks to
identical processors considering the case di < pi and parti-
tioned EDF. This algorithm is based on FF and on the first
order approximation of the demand bound function pro-
posed by Albers and Slomka [1]. Albers and Slomka proved
in [2] that this first order approximated demand bound func-
tion is equal to Devi’s condition [11]. Consequently, the
algorithm presented by Baruah and Fisher is equivalent to
combination of FF and Devi’s test discussed previously.
Baruah and Fisher’s algorithm requires tasks to be sorted ac-
cording to non-decreasing deadlines because of being based
on Devi’s test (Albers and Slomka’s first order approxima-
tion). As a consequence, even if we can sort tasks on-line
as they arrive, the algorithm of Baruah and Fisher yields
an admission control test with linear rather than constant
complexity to test a new task in the system. This is be-
cause, when a new task arrives to the system, all already ac-
cepted tasks with longer deadlines must be retested. Thus,
the running time of this algorithm increases considerably
for a large number of admitted tasks, which is normally not
desirable for on-line testing in real-time systems.

In what follows, we introduce a schedulability test,
which combined with FF results in a constant-time admis-
sion control test for identical processors. In contrast to the
solution based on the density condition, the proposed test
shows a much better accuracy as illustrated later.

3. Task Model and Notation

As we are concerned with the admission control prob-
lem, our task set is dynamic in the sense that tasks may
arrive and leave from time to time. At a given time instant
t, when a new task Tnew arrives, T denotes the set of all
tasks currently in the system plus Tnew. In other words, T
represents the state of the task system at the time instant at
which Tnew’s schedulability has to be tested. Throughout
this paper, tasks are considered to be sporadic, independent
and to run fully preemptively under partitioned EDF and
on identical processors. We will use later Tl to denote any
arbitrary subset of l tasks from T.

Each task Ti in T is characterized by its relative dead-
line di, its worst-case execution time ei and by its minimum
inter-release time pi, i.e., the minimum distance between
two consecutive activations/jobs of Ti. Consequently, the

ratio ui = ei

pi
is Ti’s maximum task utilization. As men-

tioned, relative deadlines di are assumed to be less than or
equal to the respective minimum inter-release times pi for
all tasks.

As long as a task Ti is active in the system, it generates
a potentially infinite succession of jobs. All jobs of Ti have
the same worst-case execution time and relative deadline.
Additionally, each job has its own release time and absolute
deadline, i.e., the job’s release time plus the relative dead-
line.

We denote Tl’s demand bound function [6] by hl(t):

hl(t) =
∑

∀Ti∈Tl

(⌊
t− di

pi

⌋
+ 1

)
· ei.

The demand bound function hl(t) assumes the worst-
case situation, namely, that jobs of all tasks in Tl are re-
leased together. Without loss of generality, the simultane-
ous release of jobs of all tasks in Tl is assumed to happen
at time t = 0.

Tl’s loading factor [20] is given by the ratio of its max-
imum execution demand in a given time interval divided by
the length of this interval, and is denoted in this paper for
t > 0 by:

ρl(t) =
hl(t)

t
.

We denote by ρ̂l = maxt>0

(
ρl(t)

)
an upper bound on

ρl(t) and use ρ̂l(tx) = maxtx≤t<tx+1

(
ρl(t)

)
to designate

Tl’s maximum loading factor in the time interval [tx, tx+1),
where tx and tx+1 are given points in time, tx < tx+1 and
x is an integer number.

4. Theoretical Background

The schedulability test proposed in this paper computes
an upper bound on the loading factor generated on a given
processor by the task set Tl. Tl consists of all tasks already
running on the processor and a newly arriving task Tnew.
By definition, if the maximum loading factor does not ex-
ceed 1, Tl is schedulable (i.e., no deadline is missed) and
the arriving task can be assigned to the processor.

The following two lemmas are concerned with finding
such an upper bound on Tl’s loading factor. As discussed
later, we then apply these lemmas in the proposed schedu-
lability test.

LEMMA 1 Let Tl−1 be a subset of T, for which ρ̂l−1(tx)
is the maximum loading factor within the time interval
[tx, tx+1). If any task Tnew is added to Tl−1, where tx ≤
dnew < tx+1, the loading factor of the resulting subset Tl

in [tx, tx+1) is bounded above by:

ρ̂l(tx) = ρ̂l−1(tx) +
enew

dnew
.



Proof: Tl−1’s maximum loading factor in [tx, tx+1) is
given by ρ̂l−1(tx). This means that ρl−1(t) = hl−1(t)

t ≤
ρ̂l−1(tx) holds in [tx, tx+1). It follows that hl−1(t) ≤ t ·
ρ̂l−1(tx), i.e., Tl−1’s demand bound function can be upper
bounded in this interval. Hence, we can obtain an upper
bound on Tl’s loading factor in [tx, tx+1):

ρl(t) ≤ ρ̂l−1(tx) +

(
b t−dnew

pnew
c+ 1

)
· enew

t
. (1)

Since ρ̂l−1(tx) is known and constant, we need to find
the maximum possible value of the second term on the right-
hand side of (1).

Now, this term is greater than zero if t ≥ dnew holds and,
for t = dnew, it is equal to enew

dnew
. On the other hand, for

t > dnew, b t−dnew

pnew
c increases at every t = dnew + c · pnew

where c > 0 is a positive integer number. In this case, the
second term of (1) can be expressed as (c+1)·enew

dnew+c·pnew
.

Further, it can be proven that enew

dnew
≥ (c+1)·enew

dnew+c·pnew
holds

for every integer number c > 0:

enew

dnew
≥ (c + 1) · enew

dnew + c · pnew
,

dnew + c · pnew

dnew
≥ (c + 1) · enew

enew
,

c
pnew

dnew
≥ c.

As dnew ≤ pnew holds, enew

dnew
is the maximum possible

value of this term and ρ̂l(tx) = ρ̂l−1(tx)+ enew

dnew
constitutes

ρl(t)’s upper bound in [tx, tx+1). The lemma follows.

LEMMA 2 Let Tl−1 be a subset of T, for which ρ̂l−1(tx)
is the maximum loading factor within the time interval
[tx, tx+1). If any task Tnew is added to Tl−1, where
tx+1 > tx ≥ dnew, the loading factor of the resulting sub-
set Tl in [tx, tx+1) is bounded above by:

ρ̂l(tx) = ρ̂l−1(tx) + max
(

k · enew

tx
,
(k + 1) · enew

tk

)
,

where k = b tx−dnew

pnew
c+ 1 and tk = dnew + k · pnew.

Proof: The maximum loading factor of Tl−1 in
[tx, tx+1) is given by ρ̂l−1(tx). That is, ρl−1(t) =
hl−1(t)

t ≤ ρ̂l−1(tx) holds in [tx, tx+1), which yields
hl−1(t) ≤ t · ρ̂l−1(tx). As a consequence, the following
inequality holds in [tx, tx+1), where the second term on the
right-hand side is the loading factor of Tnew alone:

ρl(t) ≤ ρ̂l−1(tx) +

(
b t−dnew

pnew
c+ 1

)
· enew

t
. (2)

To find an upper bound on ρl(t) in the interval [tx, tx+1),
we first need to compute (2) at t = tx:

ρl(tx) ≤ ρ̂l−1(tx) +

(
b tx−dnew

pnew
c+ 1

)
· enew

tx
,

where b tx−dnew

pnew
c+ 1 was denoted by k in this lemma. Fur-

ther, removing the floor function in (2) and reordering, we
obtain:

ρl(t) ≤ ρ̂l−1(tx) +
(pnew − dnew) · enew

pnew

t
+

enew

pnew
. (3)

From (3), we know that the smallest possible t results
in an upper bound on ρl(t). However, we do not need to
compute (3) until tk = dnew+k ·pnew for k = b tx−dnew

pnew
c+

1. This is because the loading factor for jobs in (tx, tk)
cannot exceed the one at tx. Replacing t by tk in (3), we
proceed as follows:

ρl(t) ≤ ρ̂l−1(tx) +
(pnew − dnew) · enew

pnew

tk
+

enew

pnew
,

≤ ρ̂l−1(tx) +
(pnew − dnew) · enew

pnew
+ tk · enew

pnew

tk
.

Now, taking into account that tk is equal to dnew + k ·
pnew, we finally obtain:

ρl(t) ≤ ρ̂l−1(tx) +
(k + 1) · enew

dnew + k · pnew
. (4)

Thus ρ̂l(tx), ρl(t)’s upper limit in [tx, tx+1), is given by
ρ̂l−1(tx) + max

(
k·enew

tx
, (k+1)·enew

tk

)
and the lemma fol-

lows.

5. Uniprocessor Schedulability

In this section, we introduce our schedulability test based
on lemmas 1 and 2. Our test computes the maximum load-
ing factor, which is produced on a given processor by the
task set Tl of all already running and the newly arriving
task. If the maximum loading factor does not exceed 1, the
new task can be accommodated on that processor without
causing deadline misses.



ρ̂2

ρ̂3

ρ̂1

t1 t2 t0

hl(t)

Figure 1. Approximation technique for computing the
maximum loading factor

To calculate the maximum loading factor on a given pro-
cessor, our algorithm partitions the time line into b+1 non-
overlapping intervals considering that jobs of all tasks in Tl

can be released simultaneously at time t = 0. This way,
Tl’s demand bound function and, hence, its loading factor
are approximated by linear segments as illustrated in Fig-
ure 1. Clearly, the quality of the approximation depends on
the number of segments we use. However, more segments
result in a longer running time of the algorithm.

The first b intervals starting at time t = 0 have the same
length tlen, while the last interval starts at tb = b · tlen and
covers the remaining time axis up to infinity. We enumerate
intervals from t = 0 onwards, so that [0, tlen) is referred
to as the first interval, [tlen, 2tlen) is the second one, [tb −
tlen, tb) is the b-th and [tb,∞) is the (b + 1)-th interval.

Figure 1 illustrates the used approximation technique for
the case b = 2 (i.e., the time axis is divided into three). In
Figure 1, t1 = tlen and t2 = 2tlen are the lower bounds
of the second and third intervals. The maximum loading
factor in the first time interval [0, t1) is represented by ρ̂1,
whereas ρ̂2 and ρ̂3 denote the maximum loading factors in
the second [t1, t2) and third interval [t2,∞) respectively.

Accommodating an arriving task into one of these inter-
vals according to its deadline dnew allows more accuracy
in computing the loading factor generated by Tl (i.e., the
task set of all already accepted plus the new task) on the
processor. This procedure can be associated to a restricted
sorting of tasks according to deadlines so as to retain con-
stant complexity. The execution demand of tasks hl(t) is
approximated this way by b + 1 slopes—in Figure 1, we
have three slopes ρ̂1, ρ̂2 and ρ̂3. The maximum between ρ̂1

and ρ̂2 and ρ̂3 gives an upper bound on the loading factor of
all tasks executing on the processor.

Figure 2 shows the pseudo-code of the proposed schedu-
lability analysis in the form of an admission control test
(i.e., the schedulability of a newly arriving task is tested
on the system). The parameters b and tb can be chosen arbi-
trarily to reach a desired accuracy/running time. In Figure 2,
line 5, the length of the time intervals tlen is computed. Re-
call that the first b intervals have the same length and only
the last interval [tb,∞) is longer.

// Tnew: the newly arriving task

// b + 1: number of time intervals

// tb: start point of the last interval

5: tlen =
tb
b
;

if dnew ≥ tb

ρ̂b+1 = ρ̂b+1 + enew
dnew

;

else

10: j = d tb−dnew
tlen

e;
ρ̂b−j+1 = ρ̂b−j+1 + enew

dnew
;

for x = b − j + 1 to b

tx = tb − (b − x) · tlen;

15: k = b tx−dnew
pnew

c + 1;

tk = dnew + k · pnew;

ρ̂x+1 = ρ̂x+1 + max
(

k· enew
tx

,
(k+1)· enew

tk

)
;

end

end

20:

if max1≤ i≤ b+1(ρ̂i) > 1

return("not schedulable");

else

return("schedulable");

end

Figure 2. Proposed schedulability test for admission con-
trol based on Lemma 1 and Lemma 2

For an arriving Tnew, if dnew ≥ tb holds, we can ap-
ply Lemma 1 in line 8 to compute the maximum loading
factor ρ̂b+1 = ρ̂l(tb), i.e., Tl’s maximum loading factor in
[tb,∞). As dnew ≥ tb holds, adding Tnew does not change
the loading factor for intervals less than tb.

On the other hand, if dnew is less than tb, we need to
find out in which interval the new deadline dnew fits. Now,
the number of intervals of length tlen between dnew and tb,
including the one containing dnew, can be obtained calcu-
lating j in line 10. Clearly, including Tnew in the system
changes the loading factors from the (b− j + 1)-th interval
onwards.

Since dnew is greater than or equal to tb−j = tb−j ·tlen,
Tl’s maximum loading factor for the (b−j +1)-th interval,
i.e., ρ̂b−j+1 = ρ̂l(tb−j), can be computed using Lemma 1—
see Figure 2 line 11. From the (b − j + 2)-th interval on-
wards, we can apply Lemma 2 because dnew is less than
the lower bound of the (b− j + 2)-th interval (i.e., tb−j+1)
and, consequently, it is less than the lower bounds of the
following intervals. The maximum loading factors of these
intervals are computed within the for-loop (lines 13 to 18).
In line 14, the lower bound tx of the corresponding interval
is calculated. The values k and tk required by Lemma 2 are



computed in lines 15 and 16, whereas Tl’s maximum load-
ing factor for the (x + 1)-th interval is obtained in line 17
(where x is the variable of the for-loop).

Finally, if the maximum loading factor in all the time
intervals is not greater than 1 in line 21, Tl is schedulable
on the processor and the new task Tnew can be accepted.
Otherwise, this algorithm rejects Tnew.

6. Constant-Time Admission Control for Par-
titioned EDF

As discussed previously, we can use a bin-packing
heuristic like FF [13] to perform an on-line allocation of
tasks to processors. The FF heuristic consists in allocating
tasks to a processor arrangement in a configured order start-
ing by the same processor. A task can be assigned to a pro-
cessor only if it is schedulable on that processor, i.e., if all
currently running and the new task can meet their deadlines
on the processor.

Now, FF can be combined with a proper schedulabil-
ity test to solve the admission control problem under Parti-
tioned EDF for the case di < pi. Among the known tests for
di < pi, only the density condition leads to a constant-time
admission control algorithm. In this case, the sum of densi-
ties for all tasks already running on a given processor (i.e.,
all tasks in Tl−1) can be kept in memory:

∑
∀Ti∈Tl−1

ei

di
.

When a new task Tnew arrives, only Tnew’s density enew

dnew

needs to be computed. If the sum of Tnew’s density and den-
sities in Tl−1 does not exceed 1 for some processor, Tnew

can be assigned to it. As the number of processors is lim-
ited, the density test requires only O(1) time for testing a
new task in the system.

However, to overcome the pessimism incurred by the
density test, we use FF and the schedulability test of Fig-
ure 2. The test of Figure 2 requires constant time to com-
pute how the new task changes the loading factor on a given
processor and decide whether it can be assigned to that pro-
cessor or not. (Notice that the for-loop in Figure 2 is limited
by the constant b, which can be freely chosen to attain a de-
sired accuracy.) Additionally, as the number of processors is
limited, the resulting admission control algorithm also has
constant complexity.

When a task Told leaves the system, we have to update
the loading factor on the corresponding processor. In this
case, the algorithm of Figure 2 needs little modification. It
is necessary to identify in which interval dold is contained.
Then, we need to compute again the loading factor compo-
nent of the leaving task: eold

dold
or max

(
k· eold

tx
, (k+1)· eold

tk

)
depending on the interval in which dold is contained. And
finally, instead of summing the loading factor component as
for Tnew in Figure 2 (lines 8, 11 and 17), Told’s loading fac-
tor component has to be subtracted from maximum loading
factor in the corresponding interval.

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e 
ta

sk
 se

ts

 

 

Devi’s test

proposed(5)

density test

proposed(50)

Figure 3. Schedulability versus utilization for 500 tasks

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

utilization [%]

im
pr

ov
em

en
t [

%
]

 

 
proposed(50)
proposed(5)

Figure 4. Improvement of the proposed test over the den-
sity test for 500 tasks

7 Experimental Results

In this section, we present some experimental re-
sults comparing the proposed admission control algorithm
against possible approaches based on well-known tech-
niques such as the density and Devi’s test.

This section is structured in two subsections. The first
one is concerned with a comparison of the mentioned meth-
ods on the basis of synthetic task sets, whereas, in the sec-
ond subsection, we analyze a real-world application.

7.1 Synthetic Task Sets

The proposed test, the density test and Devi’s test are
compared with respect to their accuracy versus utilization
for sets of 500 and 1000 tasks respectively. As discussed
above, Devi’s test has a higher complexity than the other
two and cannot be used for constant-time admission con-
trol, however, it serves as a reference in this comparison.
(Since Devi’s test has a higher complexity, it results in a
better acceptance ratio than all constant-time tests.)

The proposed test can be configured to compute an ap-
proximated maximum loading factor for different number



of intervals b + 1. Clearly, the value of b influences the
algorithm’s performance. For larger values of b, the algo-
rithms becomes more accurate, but, on the other hand, it
has a longer running time. To illustrate the effect of b, we
always consider two variants of this algorithm. In the case
of 500 tasks, proposed(5) and proposed(50) are considered
for b = 5 and b = 50 respectively, while proposed(10) (i.e.,
b = 10) and proposed(100) (i.e., b = 100) are taken into
account for 1000 tasks per task set. The parameter tb in
Figure 2 was assigned to the average value of the relative
deadlines in the task set. (In reality, it is not unusual to
know the average relative deadlines of tasks.)

The accuracy of all the tests is measured as the percent-
age of schedulable task sets that they are able to accept
on a single processor. Although we are concerned with
the admission control problem, i.e., a new task should be
admitted on a running system, the experimental results
with synthetic tasks are presented in the form of whether
an entire task set is schedulable or not. This way, if a given
task set of n tasks is schedulable, it means that adding an
n-th task to the set of n− 1 tasks was possible.

Task Set Generation: We first generated a random set of
task utilizations ui with UUniFast presented in [8, 9]. Then,
we created pi using a uniform distribution and obtained
ei = ui · pi. The relative deadlines di were uniformly cho-
sen from the range [ei, pi]. Additionally, we increased the
utilization in uniform steps (a total of 24 steps) generating
each time 10,000 different task sets.

Figure 3 shows the percentage of accepted task sets for
the different algorithms and 500 tasks per set. Between 10%
and 60% utilization, the proposed schedulability test can
accept more task sets than the density test, whereas pro-
posed(50) has a better performance than proposed(5). In
the utilization interval (15%, 35%), proposed(5) presents an
improvement of around 20% more accepted task sets over
the density test. The variant proposed(50) admits around
50% more task sets in the utilization interval (15%, 55%).
This is illustrated in Figure 4, where the length of bars rep-
resents the improvement over the density test.

In Figure 5, considering 1000 tasks per set, the proposed
tests with b = 10 and b = 100 accept more task sets than
the density test. The performance improvement over the
density test is around 30% for b = 10 and in the utiliza-
tion range (15%, 25%). On the other hand, the variant pro-
posed(100) (b = 100) outperforms the density test in ap-
proximately 50% more accepted task sets between 15% and
almost 60% utilization. Figure 6 shows that the improve-
ment over the density test where the longer bars stand for
more accepted tasks sets.

The acceptance ratio of the proposed test can be bettered
by improving the approximation of the loading factor. This
can be achieved using more slopes in the approximation

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e 
ta

sk
 se

ts

 

 

Devi’s test

proposed(10)

density test

proposed(100)

Figure 5. Schedulability versus utilization for 1000 tasks

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

utilization [%]

im
pr

ov
em

en
t [

%
]

 

 
proposed(100)
proposed(10)

Figure 6. Improvement of the proposed test over the den-
sity test for 1000 tasks

scheme, i.e., increasing b. However, if b is configured to
be equal to b0.1 · nc where n is the number of tasks (i.e.,
setting b = 50 when testing 500 tasks), the proposed test
has an acceptable accuracy as shown in this section.

7.2 Case Study

A comparison based on a real application illustrates the
utility of the proposed constant-time admission control al-
gorithm, i.e., the combination of FF with the test of Fig-
ure 2. Again, we consider two variants of this algorithm:
proposed(5) and proposed(10) for b = 5 and b = 10 re-
spectively. The parameter tb was again set to the average or
expected deadline value.

Besides comparing with the approach consisting of FF
and the density test, we include in this comparison the algo-
rithm based on FF and Devi’s test as well. Clearly, combin-
ing FF and Devi’s test results in an admission control with
linear rather than constant complexity, i.e., the time taken
by it depends on the number of tasks already accepted in
the system. However, the combination of FF and Devi’s test
should serve as a reference in this comparison too.



admission 
control

AMD
K6-2E

AMD
K6-2E

accepted

arriving tasks
rejected

Real-time Multimedia Platform

AMD
K6-2E

AMD
K6-2E

AMD
K6-2E

AMD
K6-2E

AMD
K6-2E

AMD
K6-2E

Figure 7. Setup for a real-time multimedia server

Task description pi di ei

Matrix arithmetic 0.3176 0.0257 0.0009
Fast Fourier Transform 0.0192 0.0030 0.0016
Inverse FFT 0.0526 0.0055 0.0015
Compress JPEG 1.2821 0.1519 0.0560
Decompress JPEG 5.7866 0.4939 0.0450
High-pass gray-scale filter 0.5015 0.0494 0.0110
RGB to CYMK conversion 0.1073 0.0155 0.0077
RGB to YIQ conversion 0.0771 0.0208 0.0160
Image rotation 0.3597 0.0301 0.0021
Autocorrelation (sine) 0.0138 0.0014 0.0004

Table 1. Task pool based on E3S: parameters are given in
seconds

The presented case study consists of a real-time multi-
media server where requests from clients (tasks) are con-
stantly arriving and have to be accommodated or rejected
on-line. A number of modern multimedia applications such
as high-definition video processing and interactive applica-
tions such as games are associated with tight timing con-
straints. In particular, the QoS requirements of these ap-
plications often necessitate that deadlines be less than the
corresponding periods. As a consequence, many of the ar-
riving tasks in our multimedia example have deadlines less
than periods/minimum inter-release times.

The considered multimedia server consists of two to
eight processors. In normal operation, only two of the pro-
cessors are in active mode, while the other six remain in
sleep mode and can be activated to cope with temporal in-
creases of computation demand. The processors of this plat-
form are identical and of type AMD K6-2E operating at
400 Mhz. Partitioned EDF scheduling is used, thus, once
a task is assigned to a processor, it remains on that proces-
sor (i.e., task migration is not possible). Figure 7 shows a
schematic representation of the described setup for the mul-
timedia server in this example.

In order to obtain realistic tasks, we make use of the Em-
bedded Systems Synthesis Benchmarks Suite (E3S) [21],
which is based on embedded processor and task informa-

10 20 30 40 50 60 70 80 90 100

10

15

20

25

30

number of arriving tasks

nu
m

be
r o

f a
cc

ep
te

d 
ta

sk
s

 

 

FF+Devi’s test

FF+proposed(10)

FF+density test

FF+proposed(5)

Figure 8. Number of accepted vs. number of arriving
tasks considering two processors

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

number of arriving tasks

ru
nn

in
g 

tim
e 

[s
]

 

 

FF+Devi’s test

FF+
proposed(5) or
proposed(10)

FF+
density test

Figure 9. Running time vs. number of arriving tasks con-
sidering two processors

tion from the Embedded Microprocessor Benchmark Con-
sortium (EEMBC). We first created a task pool with tasks
typically encountered in high-end multimedia applications
such as autocorrelation, Fast Fourier Transform, compress-
ing/decompressing JPEG, high-pass gray-scale filter, etc.
Table 1 shows a brief description of tasks in the mentioned
task pool together with their parameters (minimum inter-
release time pi, relative deadline di and worst-case execu-
tion time ei).

An arbitrary task from this pool can arrive at any time to
the multimedia server triggered by a client request. When
a new task arrives, the admission control tests have to ac-
cept/reject it according to whether they can find a feasible
allocation or not.

Figure 8 shows how many tasks the different admission
control tests are able to accept when two processors are
used. The density-based admission control can accept up
to around 12 real-time multimedia tasks, after which it be-
comes pessimistic and starts rejecting almost all new tasks.
On the other hand, the proposed admission control with
b = 5 accepts around 5 additional tasks before starting to



20 40 60 80 100 120 140 160 180 200

10

15

20

25

30

35

40

45

number of arriving tasks

nu
m

be
r o

f a
cc

ep
te

d 
ta

sk
s

 

 

FF+Devi’s test

FF+proposed(10)

FF+density test
FF+proposed(5)

Figure 10. Number of accepted vs. number of arriving
tasks considering four processors

20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

number of arriving tasks

ru
nn

in
g 

tim
e 

[s
]

 

 

FF+Devi’s test

FF+
proposed(5) or
proposed(10)

FF+
density test

Figure 11. Running time vs. number of arriving tasks
considering four processors

reject other requests. The algorithm with b = 10 admits
up to 15 more tasks than FF and the density test. This pro-
posed algorithm with b = 10 accepts only 5 tasks less than
the Devi’s test approach.

Figure 9 shows the running times of algorithms as a func-
tion of the number of arriving tasks for the case of two active
processors. The proposed test (for both b = 5 and b = 10)
and the density test require around 1 to 2 orders of magni-
tude less time than the solution based on Devi’s test.

Figures 10 and 11 are concerned with the case where
four processor are in active mode. Because two more pro-
cessors are available, the admission control algorithms are
able to allocate more tasks than in the previous case. The
density-based algorithm admits approximately 15 tasks be-
fore it starts denying acceptance to further requests. Pro-
posed(5) (i.e., b = 5) is now able to allocate up to 27 tasks
without much pessimism, after which it rejects almost all
following tasks. Our algorithm with b = 10 can accommo-
date over 30 tasks. This algorithm is capable of allocating
almost the same amount of tasks as the one based on Devi’s
test—see Figure 10. As shown in Figure 11, the algorithm

50 100 150 200 250 300 350 400

20

40

60

80

100

120

number of arriving tasks

nu
m

be
r o

f a
cc

ep
te

d 
ta

sk
s

 

 

FF+Devi’s test

FF+proposed(10)

FF+density test

FF+proposed(5)

Figure 12. Number of accepted vs. number of arriving
tasks considering eight processors

50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of arriving tasks

ru
nn

in
g 

tim
e 

[s
]

 

 

FF+Devi’s test

FF+
proposed(5) or
proposed(10)

FF+
density test

Figure 13. Running time vs. number of arriving tasks
considering eight processors

based on Devi’s test takes around 2 orders of magnitude
longer time than the constant-time alternatives (again con-
sidering the running time as a function of the number of
arriving tasks).

The performance of the admission control algorithms is
shown in Figure 12 for eight active processors. Clearly, the
number of accepted tasks increases because there is more
computation capacity. The density-based admission algo-
rithm is able to accommodate up to 30 tasks before it turns
pessimistic and rejects further requests. The combination
of FF and our test with b = 5 allows accepting around 30
more tasks than the density test, while the admission con-
trol based on the test with b = 10 is still more accurate and
can assign approximately 90 tasks to the processors before
becoming pessimistic. In this case, the Devi’s test approach
allows 10 more accepted tasks than the proposed test with
b = 10. In Figure 13, the running times versus the number
of arriving tasks are depicted for the case of eight processors
in active mode. Here again, the admission control based on
Devi’s test still requires around 2 orders of magnitude addi-
tional running time than the constant-time algorithms.



8 Conclusions
In this paper, we presented an admission control test with

constant complexity for partitioned EDF on identical pro-
cessors and di < pi (i.e., this test requires a constant time
to accept/reject a new task in the system with a fixed number
of processors). The presented admission control is based on
the combination of FF and a new schedulability test. Al-
though the known density condition can also be used to de-
rive a constant-time admission control, the test we propose
is less pessimistic. We illustrated this by a set of detailed ex-
periments with synthetic tasks and a case study consisting
of a multimedia server.

The proposed test computes the maximum loading factor
generated on a given processor by the set of all tasks already
running on that processor plus the newly arriving task. By
definition, if the maximum loading factor does not exceed 1,
this task set is schedulable and the new task can be assigned
to the considered processor. The test we propose partitions
the time axis into intervals, such that the maximum load-
ing factor is approximated by linear segments. The number
of intervals determines the number of approximation seg-
ments. Clearly, if we use more segments, the approximation
accuracy can be improved. However, many approximation
segments increase the running time of the test.

How to configure the number of approximation intervals
is a question that arises by our work. In our experiments
with a large number of synthetic task sets, we showed that
the proposed algorithm has a good performance, if we set
the number of intervals to be 10% of the number of tasks
(e.g., 50 intervals if we are expecting around 500 tasks to
be active at the same time). However, this is an empirical
result and some more analysis is still required.

In addition, a certain distribution of task parameters is
often known in real-life applications (e.g., the expected
workload on multimedia, communication or web servers
is usually known). This previous knowledge about tasks
can surly be used to configure the proposed test for a
better performance. As future work, we plan to analyze
common statistical distributions of task parameters and
workload estimations on commercial servers, so as to use
this information for improving the schedulability analysis.

Acknowledgments: We would like to thank the reviews for
their valuable contributions to improving this paper.

References
[1] K. Albers and F. Slomka. An event stream driven approxi-

mation for the analysis of real-time systems. Proceedings of
the 16th Euromicro Conference on Real-Time Systems, June
2004.

[2] K. Albers and F. Slomka. Efficient feasibility analysis for
real-time systems with EDF scheduling. Proceedings of the
DATE 05 Conference, March 2005.

[3] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of sporadic task systems. Proceedings of the 26th
Real-Time Systems Symposium, pages 321–329, December
2005.

[4] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of deadline-constrained sporadic task systems.
IEEE Transactions on Computers, 55(7):918–923, 2006.

[5] S. Baruah and N. Fisher. The partitioned dynamic-priority
scheduling of sporadic task systems. Real-Time Systems,
36(3):199–226, 2007.

[6] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. Proceedings
of the 11th IEEE Real-Time Systems Symposium, December
1990.

[7] S. Baruah, L. Rosier, and R. Howell. Algorithms and
complexity concerning the preemptive scheduling of peri-
odic real-time tasks on one processor. Real-Time Systems,
2(4):301–324, November 1990.

[8] E. Bini and G. Buttazzo. Biasing effects in schedulability
measures. In Proceedings of the 16th Euromicro Conference
on Real-Time Systems, June-July 2004.

[9] E. Bini and G. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–154,
2005.

[10] S. Chakraborty, S. Künzli, and L. Thiele. Approximate
schedulability analysis. Proceedings of the 23rd IEEE Real-
Time Systems Symposium, December 2002.

[11] M. Devi. An improved schedulability test for uniprocessor
periodic task systems. Proceedings of the 15th Euromicro
Conference on Real-Time Systems, July 2003.

[12] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., San Francisco, USA, 1979.

[13] D. Johnson. Near-Optimal Bin Packing Algorithms. Mas-
sachusetts Institute of Technology (MIT), Department of
Mathematics, Cambridge, USA, 1973. Ph.D. Thesis.

[14] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in hard real-time environments. Journal of the
Association for Computing Machinery, 20(1):40–61, 1973.

[15] J. Liu. Real-Time Systems. Prentice Hall, 2000.
[16] J. López, J. Dı́az, and D. Garcı́a. Utilization bounds for EDF

scheduling on real-time multiprocessor systems. Real-Time
Systems, 28(1):39–68, 2004.

[17] J. López, M. Garcı́a, J. Dı́az, and D. Garcı́a. Worst-case uti-
lization bound for EDF scheduling on real-time multiproces-
sor systems. Proceedings of the 12th Euromicro Conference
on Real-Time Systems (ECRTS), pages 25–33, June 2000.

[18] A. Masrur, S. Drössler, and G. Färber. Improvements in
polynomial-time feasibility testing for EDF. Proceedings of
the DATE 08 Conference, March 2008.

[19] A. Ripoll, I. Crespo and A. Mok. Improvement in feasibility
testing for real-time tasks. Real-Time Systems, 11(1):19–39,
1996.

[20] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo.
Deadline Scheduling for Real-Time Systems: EDF and Re-
lated Algorithms. Kluwer, Dordrecht, The Netherlands,
1998.

[21] http://ziyang.eecs.umich.edu/∼dickrp/
e3s/.


