Constant-Time Admission Control for Deadline
Monotonic Tasks

Alejandro Masrur

Samarjit Chakraborty

Georg Firber

Institute for Real-Time Computer Systems, TU Munich, Germany
{Alejandro.Masrur, Samarjit.Chakraborty, Georg.Faerber} @rcs.ei.tum.de

Abstract—The admission control problem is concerned with
determining whether a new task may be accepted by a system
consisting of a set of running tasks, such that the already admitted
and the new task are all schedulable. Clearly, admission control
decisions are to be taken on-line, and hence, this constitutes a
general problem that arises in many real-time and embedded
systems. As a result, there has always been a strong interest
in developing efficient admission control algorithms for various
setups. In this paper, we propose a novel constant-time admission
control test for the Deadline Monotonic (DM) policy, i.e., the time
taken by the test does not depend on the number of admitted
tasks currently in the system. While it is possible to adapt known
utilization bounds from the literature to derive constant-time
admission control tests (e.g., the Liu and Layland bound, or
the more recent hyperbolic bound), the test we propose is less
pessimistic. We illustrate this analytically where possible and
through a set of detailed experiments. Apart from the practical
relevance of the proposed test in the specific context of DM tasks,
the underlying technique is general enough and can possibly be
extended to other scheduling policies as well.

I. INTRODUCTION

In this paper, we present an efficient constant-time test
for admission control of real-time tasks under the Deadline
Monotonic (DM) policy. Such an admission control test has
to decide whether a new task can be feasibly scheduled (i.e.,
without causing any deadline misses) together with a set of
already accepted tasks currently running in a system. Since
admission control decisions are taken on-line, it is important
to develop efficient algorithms/tests with predictable execution
time which does not depend on the number of tasks in the
system.

The DM policy consists in assigning fixed priorities to
tasks according to their deadlines: the shorter the deadline,
the higher the priority assigned to the task. This scheduling
case is of particular practical relevance because fixed priorities
are supported by most real-time operating systems and, in
addition, DM is the optimal priority assignment for the case
that deadlines (d;) are less than periods (p;) [1].

Exact schedulability tests are already known for fixed pri-
orities, e.g., [2], [3] and [4], however, they are generally not
eligible for admission control. This is because they all have
pseudo-polynomial complexity and thus it is difficult to predict
their running time (which depends not only on the number of
tasks, but also on task parameters, e.g., periods, etc.).

Although the complexity of the admission control problem
is the one of testing schedulability for only one new task in the
system, an exact schedulability test still results in a pseudo-

polynomial-time admission control test. Additionally, all ex-
act schedulability tests require tasks to be sorted according
to decreasing (non-increasing) priority, i.e., increasing (non-
decreasing) deadlines under DM. Of course, it is possible to
sort tasks on-line as they arrive. This way, when a new task ar-
rives, we only need to add it to a sorted list. However, if a new
task is added to the system, using an exact schedulability test
also implies retesting all already accepted lower-priority tasks.
This is time-consuming and can be impracticable particularly
for a large number of tasks.

On the other hand, we can adapt the utilization bounds
obtained for Rate Monotonic (RM) to the case of DM where
d; < p; holds for all tasks. As discussed later, we can use,
for example, the Liu and Layland bound [5] with very little
modification. An admission control test based on this bound
presents constant complexity O(1), however, it becomes rather
pessimistic as the number of accepted tasks grows.

In order to increase accuracy while retaining constant com-
plexity O(1), we propose a novel admission control test, called
load test, for DM tasks with deadlines less than or equal to
periods. This test calculates an upper bound on the worst-case
response time of tasks considering all already accepted and
the arriving task. If this upper bound is always less than or
equal to the respective deadlines, the accepted and the new
task are going to be schedulable under DM. As shown later,
the load test outperforms the constant-time tests that can be
designed for DM based on approaches from the literature.

This paper is structured as follows: The next two sections
provide a survey of related work and a description of the
used task model and notation. Afterwards, the proposed ad-
mission control test is presented and analyzed in Section IV.
Section V shows the results of an extensive comparison
against approaches with the same complexity based on well-
known techniques from the literature. Finally, some concluding
remarks are discussed in Section VI.

II. RELATED WORK

Numerous utilization bounds have been proposed for RM,
which we can modify to design admission control tests for
the DM policy. In this section, the most relevant related work
is discussed briefly, whereas we analyze how to adapt RM
utilization bounds to DM in Section IV.

For a set of preemptive, independent, periodic, real-time
tasks with deadlines equal to periods, Liu and Layland proved
in [5] that the worst-case scheduling situation on one processor

called critical instance occurs when tasks are released simul-
taneously. Further, they presented in [5] a utilization bound
for the case where tasks are scheduled under RM and d; = p;
holds for all tasks.

A better utilization upper bound for this case was proposed
independently by Liu in [6] and by Bini et al. in [7], [8].
This latter utilization bound does not depend on the number
of tasks as the Liu and Layland bound does. Bini et al. called
it hyperbolic bound and proved that it improves the acceptance
ratio over the utilization bound of Liu and Layland by a factor
of 1/2 for a large number of tasks. A similar utilization bound
was proposed by Oh et al. in [9] to be used in the task
allocation problem.

There are some other utilization bounds for the case that
d; = p; holds for all tasks under RM. For example, Kuo and
Mok presented in [10] a bound that exploits the fact that 100%
utilization is possible under RM when tasks have harmonic
periods. Further, Burchard et al. presented in [11] another
utilization bound that varies not only with the number of tasks
but also with a factor quantifying how close tasks are to having
harmonic periods. For arbitrary deadlines, Lehoczky proposed
in [12] an RM utilization bound that depends on the number
of tasks and on the ratio % that is assumed to be the same
for all tasks.

An exact schedulability test with pseudo-polynomial com-
plexity was presented by Lehoczky et al. in [2] for the case
of RM and deadlines equal to periods. In [3], Audsley et al.
improved Lehoczky’s exact schedulability test by observing
that tasks’ worst-case response times can be found in an
iterative manner. Further, Audsley et al. considered deadlines
less than or equal to periods and other priority assignments.
More recently, Bini and Buttazzo presented in [4] a tunable
schedulability test for the case that d; < p; holds for all
tasks under fixed priorities. Bini and Buttazzo’s test allows
configuring complexity versus acceptance ratio for the testing.

Finally, in [13], Fisher and Baruah proposed a polynomial-
time approximation scheme (PTAS) for the known exact
schedulability test [2], [3]. However, as this PTAS also requires
tasks to be sorted according to priorities, if a new task is added
to the system, all already accepted lower-priority tasks will
have to be retested.

III. TASK MODEL AND NOTATION

In this section, we specify the task model and some related
notation used in this paper. We denote by T a set of n periodic,
independent, fully preemptive, real-time tasks. Further, we
assume that T is scheduled on one processor under the DM
policy. T; C T is used to denote the subset of tasks with
higher priority than or equal priority to a task 7T; € T.

In principle, each task T; is an infinite succession of jobs
and is characterized by a period of repetition p;, a relative
deadline d; and a worst-case execution time e;. Further, the
ratio u; = % is called task utilization and w; represents 7;’s
worst-case response time. For this paper, it is assumed that
all tasks are released simultaneously at the beginning of the
schedule (at time ¢ = 0), i.e., T is a synchronous task set. As

already mentioned, all relative deadlines d; are assumed to be
less than or equal to the respective periods p; for 1 < ¢ < n.

IV. CONSTANT-TIME TESTS FOR DM

As stated, a number of approaches originally developed for
RM may be adapted so as to come up with constant-time tests
for admission control under DM. For example, the utilization
bound of Liu and Layland [5] can be adapted to:

n

S < (2l). (1
o di

Note that here periods p; have been replaced by the respec-
tive deadlines d; to reflect the DM rather than the RM policy.
The validity of Equation (1) for DM follows from the validity
of the Liu and Layland utilization bound for RM and from the
fact that d; < p; holds for all tasks.

Similarly, the hyperbolic bound [6], [7], [8] may be modified
to (with p; being replaced by d;):

n
I1 (1 n e) <.)
i=1 di

As we are considering general task sets, i.e., we are not
assuming harmonic periods, the utilization bound of Kuo and
Mok [10] reduces to the hyperbolic bound.

Further, although the utilization bounds of Burchard et al.
[11] and of Lehoczky [12] can also be used in the above
manner, our experiments with a large number of synthetic
task sets show that the test given by Equation (2) is the least
pessimistic. That is, while all the mentioned tests are safe,
Equation (2) accepts the largest number of schedulable task
sets.

The previously discussed methods can be used to perform
a constant-time admission control under DM, i.e., the com-
putational complexity for accepting (or rejecting) a new task
does not depend on the number of tasks already accepted.
The main drawback of these methods is, however, that they
are rather pessimistic particularly as the number of accepted
tasks grows. In what follows, we introduce a novel admission
control test for DM that has constant complexity while it is
less pessimistic than the methods already discussed.

A. The Load Test

The schedulability of T under DM can be tested in pseudo-
polynomial time by calculating the worst-case response time
w; for each task 77 in T. If w; < d; for every T, then the
task set T is schedulable under DM [3].

Since tasks are periodic and their deadlines are less than or
equal to periods, the worst-case response time of a 7j is the
one of its first job in the critical instance, i.e., when this job
is released together with jobs of all higher priority tasks [5].
As a consequence, the worst-case response time of a task 7;
can be computed in the following manner [3]:

D) o t™) 3
=a+ Y, €, 3)

vrer, | Pi

where T; denotes the subset of tasks with higher priority than
or equal priority to 7; (i.e., for every T; in Ty, d; < d; must
hold under the DM policy). Thus, > 7 o, [(k)}ez results
in the execution demand of higher (or equal) pr10r1ty jobs.
Equation (3) can be solved iteratively starting from ¢t(1) = ¢;
and until t(#+tD) = () ig satisfied for some k > 1. This
resulting value of t(*+1) is T;’s worst-case response time
denoted by wy.

The following two lemmas are used later to prove Theo-
rem 1 and, this way, the validity of the proposed test.

LEMMA 1 Let the task set T be scheduled under the Deadline
Monotonic policy. If w; < d; holds for a task Tl in T

-‘ €
Pi
dl <

where w; is T)’s worst-case response time, then

max (2—1, p?j‘el) holds for every T; with higher priority than

or the same priority as Ty for which e; < p; also holds.

Proof: Because w; denotes T;’s worst-case response time,
the following equality holds:
Pl

w=et ¥
VT; €Ty

which results by replacing t***1) and ¢**) by w; in Equa-

tion (3). Each term (%]ei stands for the execution demand

within w; of an individual task 7; with higher priority than or

the same priority as 7.
ij i

4)

For w; < p;, = e’ holds, el <z %i also holds because
d; < d;. In this case the lemma holds true

L
On the other hand, if “’1] L = kd—fi holds for any w; > p;
where k; > 1 is an integer number, then w; > k; - p; +e; must
hold because Equation (4) holds. As w; < d; is assumed to
be true, we have:

[%161’ . kl c € <]ﬂz c € - €;
dy di T kipite pit it
As p; > Pite for p. > e (5 1e: < & < 28 holds
pi = 73 Pi = €, —q— = pi+% — pite;
and the lemma follows. |

LEMMA 2 Let the task set T be scheduled under thf Dead-

€
line Monotonic policy. Given a task T; in T, fp:i] <

max (d , pzfe) holds for every T; with higher priority than

or the same priority as T} for which e; < p; also holds.

Proof: T; has higher priority than or the same priority as
T;. As a consequence, under DM, d; is less than or equal to
(pﬂ i

d;. For d; < p;, = e‘ holds and fl‘ < Zl also holds. In
this case, the lgmma is correct
—Lle;
Further, if “’Zi] =k del holds for an integer number k; >

1, then d; > k; - p; also holds and we have:

d
[orlei ki-e chice e

d A T kiopi pi

iy i
As p; > “T'*'eb for p; > e, [”Z’l]e < % < p2€1 holds and
the lemma follows. O

The following theorem constitutes the main contribution of
this paper and forms the basis of the proposed test called load
test.

THEOREM | Let T be a set of n fully preemptive, indepen-
dent, synchronous, periodic, real-time tasks with deadlines less
than or equal to periods. 'T can be feasibly scheduled on
one processor under the Deadline Monotonic policy, if the
following inequality holds:

(&)

Proof: Let us initially suppose that T is schedulable under
DM. Then, for every T; in T where 1 <[< n, T;’s worst-
case response time wj; is less than or equal to d; [3], i.e.,
w’ < 1 holds for every Tj. Replacing t**1) and t*) by w;
m Equation (3) and dividing by d;, we obtain:

[orle
>

vT; €Ty

wy €l
d 4

As w; < d; is assumed to hold, we can apply Lemma 1 to

wl el 2e;

reach: < g+ ZVT e, ax d e
Cons1der1ng that && < max (Z’ Ze,) holds and sum-

1 17 piter

ming the n tasks in T (and not only the tasks in the
2e;
’ pitei -

subset T;), we obtain: & + > 7 o, max(

> imy max (%, p?j»lei>'

As a consequence, if Z _, max (h ,p?i’e) < 1 holds,
Z—; < 1 also holds for 1 < [< n and the task set T
is schedulable under DM. However, as it can be seen from
the previous analysis, this is a sufficient but not necessary
condition.

Let us assume now that a job of task 7; misses its deadline.
As a consequence, the first job of 7; in the critical instance
misses its deadline as well. Hence, the execution demand in
(0,d;] (due to all tasks with higher priority than or equal
priority to T}) is greater than d;: e; + ZVT eT,[Lle; > d.
Dividing by d;, we reach:

Applying Lemma 2, this inequality leads to: Z—i +

J}
e; 2¢e; fpj.-\ €

> vr,eT, Max (dﬁ» p,;—‘re,;) > F+ e, 5 > L

€r 261
di’ pite

in T, we obtain:

Considering that Z—i < max

again
holds and summin the n tasks
>, max & pfj‘es > 1.

This means that if the task set T is not schedulable under
DM, the first job of a task 7; misses its deadline in the critical

100 ~—===— ‘ :
801 NN]
] N N
E N NS AN exact PPT
£ 6or NN]
o N N
) N “<——load test
5 hyperbolic bound Eq.2)——>%. N
B 40 S AN i
5 N N
é Liu and Layland Eq.(1)——— S N
201 N AN 4
0 L L I L e |
0 10 20 30 40 50
utilization [%]
Figure 1. Schedulability versus utilization for 10 tasks

instance for any 1 <[< n. Hence, Equation (5) does not hold
and the theorem follows. O

Notice that Theorem 1 does not depend on the order of
tasks in T. Consequently, the load test can be used to perform
a constant-time admission control of DM tasks.

The following lemma compares the load test with the
hyperbolic bound of Equation (2) which was adapted for DM.

LEMMA 3 The load test of Theorem 1 is less pessimistic than
the hyperbolic bound of Equation (2), if d; < ’”Qj holds for
1 <i<nandn > 1 where n is the number of tasks in T.

Proof: If d; < P holds for all tasks in T,
€4 2€i

max (cTﬂ pi+e7:) = 2— holds for all possible i where 1 <
1 < n. Consequently, Equation (5) can be reshaped to:

ifl— <1 (©)
i=1 "

On the other hand, decomposing []}", (1 + Z—’) into its
terms—only the first terms are written to simplify, the hyper-
bolic bound of Equation (2) can be rewritten as follows:

<2 (7

i=1

For n > 1, i.e., for more than one task, the third term
of the left-hand member in Equation (7) is not zero. In this
case, the hyperbolic bound implies summing additional non-
zero terms to > .-, g-—recall that not all terms are shown in
Equation (7). As a consequence, it is more pessimistic than
the load test and the lemma follows. O

Ifd; > ”’T'H” holds for some T; in T, Lemma 3 is not valid
anymore. Whether the load test performs well in this case is
going to be analyzed in the next section through an extensive
comparison.

V. EXPERIMENTAL RESULTS

In this section, we present some experimental results com-
paring the proposed test against the hyperbolic bound of

25

[Thyperbolic bound Eq.(2) - _
[JLiuand Layland Eq.(1) n
20} 1 n |

improvement [%]

W

@MM I I

0 10 20 30 40 50
utilization [%]

Figure 2. Improvement of the load test over the hyperbolic and the
Liu and Layland bound for 10 tasks

Equation (2) and the Liu and Layland bound of Equation (1),
which were adapted to DM. As already mentioned, our ex-
perimental results have shown that the hyperbolic bound of
Equation (2) is the least pessimistic test—the one that accepts
the largest number of task sets—that can be obtained from
the literature. For ease of exposition, we do not include the
comparison results for all the other possible methods discussed
in Section IV. On the other hand, we include the exact pseudo-
polynomial-time schedulability test from [2], [3] denoted by
exact PPT in this comparison.

A. Synthetic Task Sets

The mentioned algorithms are compared with respect to
their accuracy versus utilization for 10 and 100 tasks respec-
tively. The accuracy of methods is measured at the percentage
of schedulable task sets that they are able to accept.

Although we are concerned with the admission control prob-
lem, i.e., a new task should be admitted on a running system,
the experimental results with synthetic tasks are presented in
the form of whether an entire task set is schedulable or not.
This way, if a given task set of n tasks is schedulable, it means
that adding an n-th task to the set of n — 1 tasks was possible.

For the presented curves, we first generated a random set
of task utilizations u; with UUniFast introduced in [14], [15].
Then, we created periods p; also in a random way with
uniform distribution and obtained e; = w; - p;. The relative
deadlines d; were uniformly chosen from the range [e;, p;].
Additionally, we increased the utilization in uniform steps (a
total of 24 steps) generating each time 100,000 different task
sets.

Figure 1 shows the percentage of accepted task sets for the
different algorithms and 10 tasks. In this case, the proposed
load test can accept more task sets than the hyperbolic and
the Liu and Layland bound between 5% and 50% utilization.
For the utilization interval (20%,40%), the load test presents
an improvement of around 15% more accepted task sets over
these other tests. This can be better appreciated in Figure 2,
where the length of bars illustrates the improvement of the
load test over the other constant-time admission control tests.

For 100 tasks, the performance of all constant-time tests
for admission control, the proposed and the known ones,
decays. Where for 10 tasks, the constant-time tests detect

100 —=r=—=—
b \ b > ~
NS N

80r N AN 4
) \ N exact PPT
2 N \
4 - AN
s 60r N N 1
% \v\‘ N&—load test
= . N
S b * N i
% 40 hyperbolic bound Eq.(2)—¥\‘ AN
§ \,,\ AN .

20+ Liuand Layland Eq.(1)—> N]

<. N
0 | | | | S~ S -
0 5 10 15 20 25 30

utilization [%]

Figure 3. Schedulability versus utilization for 100 tasks
35 : : ‘
—/ hyperbolic bound Eq.(2) 1 -
30t [_JLiu and Layland Eq.(1) | [|| [I| 1 |
_25¢ 1
£ 20f 1
£
o
215t .
o
£
T 10p 1
1 sall s
oLadil (H llm
0 5 10 15 20 25 30
utilization [%]
Figure 4. Improvement of the load test over the hyperbolic and the

Liu and Layland bound for 100 tasks

schedulable task sets up to 60% utilization, they are unable to
find schedulable task sets for a utilization over 40% and 100
tasks. However, the performance improvement of the load test
over the hyperbolic bound and the test of Liu and Layland
increases—see Figure 3. Figure 4 shows that the load test is
able to detect up to 30% more schedulable task sets in the
utilization range (10%, 20%).

B. Case Study

Although a comparison based on synthetic tasks gives a
notion of how algorithms behave, it is always meaningful to
compare them on the basis of a real application. For this
purpose, we present a case study consisting of a real-time
multimedia server where requests from clients (tasks) are
constantly arriving and have to be accommodated or rejected
on-line.

A number of modern multimedia applications such as high-
definition video processing and interactive applications such
as games are associated with tight timing constraints. In
particular, the QoS (quality of service) requirements of these

accepted i
FF + AMD | +AMD ,
‘ ‘ ‘ |::> admission ’—> K6-2E| | K6-2E|
control | VT 77
arriving AMD | | AMD !
tasks <:JJ rejected K6-2E| !K6-2E'
Real-time Multimedia Platform
Figure 5. Setup for the real-time multimedia server

N
(=1

(=)
=
T

L

load test

%3
=
T

exact PPT—>

'S
=
T

[o%)
=

T

1
\
1
1

L

number of accepted tasks

Liu and Layland Eq.(1)

[
=
T

L

10
10 20 30 40 50 60 70
number of arriving tasks

Figure 6. Number of accepted vs. number of arriving tasks consid-
ering two processors

applications often necessitate that deadlines be less than the
corresponding periods (which is typical in the sensor data
processing or control domain). As a consequence, many of
the arriving tasks in our multimedia example are assumed to
have deadlines less than periods.

The considered multimedia server consists of two to four
identical processors of type AMD K6-2E operating at 400
Mhz. We considered a partitioned DM scheduling without task
migration, i.e., once a task is assigned to a processor, it remains
on that processor. Furthermore, the task assignment is also
performed on-line using the well-known First Fit (FF) heuristic
in combination with the discussed constant-time admission
control tests. Figure 5 schematizes the described setup for the
multimedia server in this example.

In order to obtain realistic task parameters, we make
use of the Embedded Systems Synthesis Benchmarks Suite
(E3S) [16], which is based on embedded processor and task
information from the Embedded Microprocessor Benchmark
Consortium (EEMBC). We first created a fask pool with
the tasks typically encountered in high-end multimedia ap-
plications such as autocorrelation, Fast Fourier Transform,
compressing/decompressing JPEG, high-pass gray-scale filter,
etc. Further, we consider that an arbitrary task from this pool
can arrive at any time to the multimedia server (triggered by a
client request). When a new task arrives, the combination of FF
and the admission control tests leads to rejection or acceptance
of the task. Apart from the previously discussed constant-
time tests, we include again the exact pseudo-polynomial-time
test in this analysis [2], [3]. Of course, an admission control
based on this exact test has pseudo-polynomial complexity
and would normally not be used for on-line computations,
however, it acts as reference in this comparison.

Figure 6 shows how many tasks the different admission con-
trol tests are able to accept when two processors are used. The
hyperbolic as well as the Liu and Layland bound can accept
up to around 30 real-time multimedia tasks, after which they
become pessimistic and start rejecting new tasks. On the other
hand, the load test admits approximately 10 more additional
tasks before it starts denying acceptance to further requests.
The exact pseudo-polynomial-time test (shortly exact PPT) has
a better performance than all constant-time algorithms and can

140 T T T T T

130 J
120 b
110 exact PPT' q

100 load test J

M0 L~ eeemem === - b

number of accepted tasks

80 Liu and Layland Eq.(1) hyperbolic 3ound Eq.(2) b

O L L R

60
80 90 100 110 120 130 140
number of arriving tasks

Figure 7. Number of accepted vs. number of arriving tasks consid-
ering four processors

0

10

10_1;’/_/_4/_/’_’7

exact PPT

running time [s]
—_
S
T
.

=l Liu and Layland Eq.(1) hyperbolic bound Eq.(2) load test

10_ L L L L L
80 90 100 110 120 130 140
number of arriving tasks

Figure 8. Running time vs. number of arriving tasks considering four
processors

accommodate up to 63 tasks without rejections.

When considering four processors, the number of accepted
tasks increases because of the additional computation capacity.
Figure 7 illustrates the performance of the different algorithms
in this case. Both, the hyperbolic and the Liu and Layland
bound cannot accept much more than 70 tasks before they
start refusing additional computation demand on the server.
On the contrary, the load test is able to allocate around 90 of
the arriving tasks onto the processors. As expected, the load
test is not as efficient as the exact pseudo-polynomial-time test,
but it allows accepting some extra tasks (20 tasks) compared
to the other constant-time methods.

With respect to the running time of algorithms, Figure 8
shows a comparison for the case of four processors. Although
the exact PPT is more efficient than the other tests, its running
time depends not only on the number of accepted tasks already
in the system but also on task parameters. On the other hand,
constant-time algorithms requires always almost the same
running time to test a new arriving task, which is desirable
for on-line computations in real-time systems. (Clearly, the
time for computing the right-hand member of Equation (1)
depends on the value of n, i.e., the number of the accepted
plus the new task, however, this requires only one and not n
computations.) In general, when considering four processors,
the exact PPT needs more than two orders of magnitude longer
running time than the other tests to accept/reject a new task
in the system—see Figure 8.

VI. CONCLUSIONS

In this paper, a more accurate constant-time admission
control test, called load test, was proposed for periodic real-
time tasks with deadlines less than or equal to periods, which
are preemptively scheduled under Deadline Monotonic (DM)
and on one processor.

We proved that the load test is always less pessimistic than
the hyperbolic bound of Equation (2), if d; < % holds for
all tasks in the task set T. Additionally, some experimental
results were presented using synthetic and real-world tasks.
Our results show that the load test allows a clear accuracy
improvement over other possible constant-time tests from the
literature, like the mentioned hyperbolic bound and the Liu
and Layland bound (both adapted to DM). This means that the
load test is able to detect more schedulable task sets than these
other tests under DM (i.e., considering the already running and
the new arriving task as a set). In general, this improvement
tends to increase as the number of tasks grows. For 10 tasks,
the load test accepts around 15% more schedulable task sets,
whereas it detects approximately 25% more task sets when
considering 100 tasks per set.

REFERENCES

[1] J.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” in Performance Evaluation,
vol. 2, 1982, pp. 237-250.

[2] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior,” in Proceedings
of the Real-Time Systems Symposium, December 1989, pp. 166-171.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings, “Ap-
plying new scheduling theory to static priority pre-emptive scheduling,”
Software Engineering Journal, vol. 8, no. 5, pp. 284-292, September
1993.

[4] E. Bini and G. Buttazzo, “Schedulability analysis of periodic fixed
priority systems,” IEEE Transactions on Computers, vol. 53, no. 11,
pp. 1462-1473, November 2004.

[5] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
hard real-time environments,” Journal of the Association for Computing
Machinery, vol. 20, no. 1, pp. 40-61, 1973.

[6] J. Liu, Real-Time Systems. New Jersey, USA: Prentice Hall, 2000.

[7]1 E. Bini, G. Buttazzo, and G. Buttazzo, “A hyperbolic bound for the rate
monotonic algorithm,” in Proceedings of the 13th Euromicro Conference
on Real-Time Systems, June 2001.

[8] E. Bini and G. Buttazzo, “Rate monotonic analysis: the hyperbolic
bound,” IEEE Transactions on Computers, vol. 52, no. 7, pp. 933-942,
July 2003.

[9] Y. Oh and S. Son, “Allocating fixed-priority periodic tasks on multipro-

cessor systems,” Real-Time Systems, vol. 9, no. 3, pp. 207-239, 1995.

T.-W. Kuo and A. Mok, “Load adjustment in adaptive real-time sys-

tems,” in Proceedings of the 12th IEEE Real-Time Systems Symposium,

December 1991, pp. 160-170.

A. Burchard, J. Liebeherr, Y. Oh, and S. Son, “New strategies for

assigning real-time tasks to multiprocessor systems,” IEEE Transactions

on Computers, vol. 44, no. 12, pp. 1429-1442, 1996.

J. Lehoczky, “Fixed priority scheduling of periodic task sets with

arbitrary deadlines,” in Proceedings of the 11th IEEE Real-Time Systems

Symposium, December 1990, pp. 201-209.

N. Fisher and S. Baruah, “A fully polynomial-time approximation

scheme for feasibility analysis in static-priority systems with arbitrary

relative deadlines,” in Proceedings of the 17th Euromicro Conference on

Real-Time Systems, July 2005, pp. 117-126.

E. Bini and G. Buttazzo, “Biasing effects in schedulability measures,” in

Proceedings of the 16th Euromicro Conference on Real-Time Systems,

June-July 2004.

E. Bini and G. Buttazzo, “Measuring the performance of schedulability

tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129-154, 2005.

http://ziyang.eecs.umich.edu/~dickrp/e3s/.

(10]

(11]

(12]

[13]

[14]

[15]

[16]

