High-level timing analysis of concurrent applications
on MPSoC platforms using memory-aware
trace-driven simulations

Roman Plyaskin*, Alejandro Masrur?, Martin Geier, Samarjit Chakraborty?, Andreas Herkersdorf*

*Institute for Integrated Systems, *Institute for Real-Time Computer Systems
Technische Universitidt Miinchen, Arcisstr. 21, 80290 Munich, Germany
roman.plyaskin@tum.de

Abstract—Due to the growing complexity of multiprocessor
systems-on-chip (MPSoCs), there is an increasing demand on
efficient design space exploration techniques. In addition to the
analysis of diverse hardware architectures, these techniques should
assist the designer in flexible evaluation of various scheduling
policies and application mappings while taking effects of the
shared on-chip communication infrastructure into account. Most
available simulation approaches are either unable to cover all
these aspects jointly or have poor simulation performance. In this
paper, we present a framework for timing analysis of MPSoC
architectures using abstract and yet accurate traces. The traces
capture both precise processing latencies and memory access
patterns and represent application- and OS-related workload.
Performance estimation is performed by an interleaved execution
of the traces on a highly configurable multiprocessor platform
modeled in our trace-driven SystemC TLM simulator. Using the
flexible scheduler model presented in this paper, various mappings
and scheduling policies can be rapidly evaluated while considering
on-chip interconnect contention and usage of shared resources. Due
to the abstraction of the trace-driven simulations, the proposed
framework allows for both fast and accurate explorations of
MPSoC design alternatives.

I. INTRODUCTION

In modern embedded systems, the amount of functionality
merged into single chips is increasing continuously. As a result,
system designers have to deal with the constantly growing
complexity of MPSoC architectures. The MPSoC paradigm has
introduced new challenges for software developers with respect
to the efficient use of CPUs, also referred to as processing ele-
ments (PEs). Parallelization of existing sequential software often
requires non-trivial identification of independent code blocks.
In many cases, the software has to be re-written completely
in order to utilize multiprocessor architectures. However, in
various domains, e.g., multimedia or consumer electronics, the
efficient utilization of an MPSoC can be achieved by integrating
multiple independent or weakly dependent applications on the
same platform (Fig. 1).

If multiple applications need to share PEs, the use of an
operating system (OS) becomes essential for resource manage-
ment. Since porting the target applications to a specific OS is a
very time-consuming process, the developer would benefit from
a high-level simulation available earlier in the design process.
Using the simulation, the designer can perform timing analysis
of the whole MPSoC platform, in which diverse scheduling
policies, various mappings of the applications to PEs as well
as effects of the shared communication can be considered at
very early stages.

Fig. 1. MPSoC platform executing multiple applications

System-level simulations often have contradicting require-
ments on accuracy and simulation performance. For timing
analysis of complex multiprocessor architectures, cycle accurate
CPU models are not feasible in terms of performance due to
many low-level details and high complexity of the models.
Therefore, for rapid performance evaluations, MPSoC com-
ponents should be modeled at a higher level of abstraction.
As a trade-off between accuracy and performance, trace-based
approaches have been proposed [1], [2], [3], [4], [5]. Traces
capture the software execution in the abstracted form and, thus,
accelerate the exploration of MPSoC architectures.

In this paper, we propose to extend the existing trace-based
approaches to support high-level evaluation of scheduling poli-
cies and mappings of the target applications while considering
fine-grained memory traffic. Our framework is based on abstract
and yet accurate traces for both applications and OS-related
workload. The traces are obtained using a cycle-accurate CPU
simulator and, therefore, contain precise timing latencies and
memory access patterns of the applications and OS functions.

In the proposed workflow, the generated traces are reused
multiple times during design space exploration. We employ
a SystemC TLM trace-driven simulator to perform system-
level simulations by the interleaved execution of the traces on
a multiprocessor hardware platform model. For that purpose,
we have created a model of a scheduler which controls the
trace execution on the underlying PEs. The scheduler model
is highly configurable and allows evaluating various preemptive
scheduling policies. This model can be applied for both single-
and multiprocessor architectures. In our investigations, we con-
sider general MPSoC architectures consisting of multiple PEs
with local caches, shared hierarchical on-chip interconnect and
memory components. Since the bus traffic is captured precisely
in the traces, the impact of the additional access latencies
induced by shared resources and on-chip interconnect can be

studied more accurately, while retaining high-level scheduling
of the running applications.

The remainder of this paper is organized as follows. Section II
gives a short comparison of our approach with the related
work. Section III describes the workflow for MPSoC design
space exploration using traces, while section IV deals with
the proposed high-level scheduler model. The results of our
experiments are summarized in section V. Finally, section VI
concludes the paper.

II. RELATED WORK

Consideration of various task mappings and scheduling po-
lices at system level has been addressed in several research
works before. A. Gerstlauter et al. introduced a highly abstracted
RTOS model implemented in SpecC language [6]. In this
framework, the RTOS model provides interface functions that
are used by a task model for requesting the RTOS services.
R. Le Moigne et al. [7] employed an RTOS model for the
analysis of task scheduling at very early design stages. In this
method, abstracted functional task models are supplied with
additional RTOS function calls for task management. In [8],
an RTOS model is used for scheduling and synchronization of
applications modeled using task graphs. Each node in the task
graph represents an atomic scheduling entity characterized by
its execution time. S. Yoo et al. [9] proposed to generate timed
OS models using the same methods applied for generation of the
final OS code. The above mentioned methods follow a top-down
flow of the system design from abstract application models
towards the final implementation. In contrast, our approach aims
at platform-based MPSoC design for applications for which the
executable is already available.

In order to improve accuracy of system-level simulations,
instruction set simulators have been used along with an abstract
RTOS model [10], [11], [12]. In [12], the authors proposed
to co-simulate an ISS and a trace-driven simulator. However,
we generate traces before starting the simulations. In this way,
the simulation performance is not restrained by the ISS, thus,
enabling faster explorations of multiprocessor architectures.

Since an operating system is co-executed with the applica-
tions, the timing characteristics of the tasks may get affected due
to the additional utilization of the underlying hardware resources
by the OS. In many approaches [12], [7], [13], [14], the
corresponding overhead is modeled by notating the associated
time delays to the OS model. However, on a multiprocessor
platform, the CPUs typically compete for a shared resource,
e.g., a HW peripheral over the shared arbitrated bus. Therefore,
the use of annotated delays is not sufficient for taking these
effects into consideration. In many other methods, OS timing
characteristics are generally not considered [8], [10]. In the
proposed approach, the OS workload is represented in the form
of traces containing both communication transactions and fine-
granular processing delays. The OS-related traces are then co-
executed with the application traces. Thus, the OS effects can
be studied more accurately with a marginal loss of simulation
performance.

Trace-based approaches have been widely used in high-level
modeling of SoC architectures. Spade and Sesame frameworks
[4], [5] employ traces to capture computation and communi-
cation requirements of target applications modeled using Kahn
Processing Networks. By means of a special mapping layer, the
trace entries can be mapped and scheduled on various hardware
architectures. However, in both frameworks the traces define
coarse-grained communication between the KPN processes, and

memory accesses imposed by the processes themselves are not
considered. Thus, accurate bus contentions cannot be modeled
at this level of abstraction. T. Isshiki et. al [3] proposed to use
trace-driven workload models that can be mapped and handled
in the processors using non-preemptive scheduling. However, in
this framework accurate memory access traffic is not considered
as well. Mahadevan et al. [8] proposed to employ very accurate
traces using an instruction set simulator. However, this approach
has a limited support for flexible task mapping and scheduling
strategies. In turn, the methodology proposed in this paper
allows both for enhanced scheduling capabilities as well as
for accurate analysis of the contentions on the shared on-chip
interconnect.

III. MPSOC EXPLORATION USING TRACES
A. Description of the workflow

The purpose of our framework shown in Fig. 2 is to assist
the system designer in the exploration of MPSoC architec-
tures on which multiple applications have to be executed. In
the presented workflow, timing analysis of the applications is
performed on a highly configurable model of a multiprocessor
platform controlled by the scheduler model. Thus, bottlenecks
of the underlying architecture can be identified very early,
providing the designer with approximated timing estimations.

In the first step, each application is executed on a cycle-
accurate simulator of the target CPU. At this point, the stand-
alone applications run in the context of a single-core architecture
without the notion of an operating system. The information
produced by the simulator is further abstracted and used for
trace generation. A trace (Fig. 3) is a sequence of pseudo-
commands which represent the activity of the CPU captured
during the execution of the target application. Particularly,
traces contain processing latencies interleaved with commu-
nication transactions, e.g., accesses to a memory component.
Each latency represents internal processing performed by the
micro-architectural components on the register data. The key
assumption made at this abstraction level is that the latency
values do not depend on whether the CPU is operating as a
single unit or as a part of a multiprocessor architecture. The
influence of other CPU components occurs during load and store

Stand-alone
application

Cycle-accurate CPU
simulator

i

Trace
modification |~

Auxiliary Application

traces

traces

Scheduler configuration
and task properties

Scheduler

xml

Evaluation

7Y
Trace-driven MPSoC
simulator

HW
xml | configuration

Fig. 2. Workflow for design space exploration of MPSoC architectures

Instructions of the target code Trace
ADDI R9, R9, Oxl
SUBF RO, R8, R11l

— | Delay 4 cycles
ADD R11, R11, RS
ADD R10, R10, R8
LD RO, R9, 0x0 Read OxFFF8
CMPI 7, 0, RO, 0x64

—» | Delay 5 cycles
BC 0x4, 0x1ld, Oxffec
STB R7, R10, 0x0 Write OXFFFC

Fig. 3. Representation of an application’s execution in the trace form

operations performed via the shared on-chip interconnect. A
trace can represent the execution of a complete SW program or
a part of the application’s code that, according to the designer’s
expertise, should be later scheduled by the operating system. In
addition to the application traces, the designer may include a set
of system traces representing additional OS-related workload,
e.g., context save/load operations etc.

The resulting traces are used as workload for our trace-driven
SystemC TLM simulator. During the simulation, both applica-
tion and OS-related traces are executed in an interleaved fashion
on abstract CPU models controlled by the scheduler model.
Scheduling parameters and the configuration of the underlying
hardware architecture are specified using XML description
files. For example, the designer can set the number of CPUs
and the parameters of the on-chip interconnect, specify the
memory hierarchy and define how traces should be mapped and
scheduled on the CPUs. Depending on the simulation outcomes,
the designer can iteratively modify the platform configuration
as well as change the mapping and scheduling policies in order
to find the optimal architecture which satisfies the performance
requirements of the target applications.

B. Trace execution

At simulation runtime, abstract trace-driven CPU models
consequently read and execute the pseudo-commands from
the trace files. When executing a delay command, the CPU
model calls the SystemC wait function simulating the annotated
value of the processing latency. On execution of read or write
commands, the CPU makes a request to the data cache model
providing the notated target address of the transaction. The
cache model is highly configurable and supports various read,
write and cache line replacement policies as well as basic
coherence mechanisms. We explicitly model the data cache
in order to consider data miss penalties in the MPSoC scope
dynamically at simulation runtime. In case of a cache miss, the
CPU performs a blocking TLM transaction on the arbitrated bus
to the memory component. If multiple masters share the bus,
the transaction might get blocked until the bus arbiter grants
access for the CPU. Thus, the overall timing analysis of an
MPSoC is performed by a superposition of traces executed by
the CPUs. The current level of trace abstraction takes the effects
of data caches into account, whereas timing characteristics of
instruction caches are assumed to be reflected in the delay prim-
itives. In order to consider the instruction cache effects during
the simulation, the traces can be tagged with the additional
information about the instruction cache lines used.

In order to support the OS-oriented execution, we have
extended the CPU model to consider preemptions and interrupts.
Immediate preemptions triggered by the scheduler are per-
formed using sc_wait(delay, p) function, where p is a SystemC
interrupt event notified by the scheduler. If a preemption occurs

during the execution of a processing latency, the CPU model
stores the remaining delay as well as the current offset of
the trace file in a dedicated trace handle. When the CPU
resumes executing the preempted trace, the model waits for the
remaining delay and continues the execution of the trace from
the interrupted position. Thus, multiple traces can be correctly
executed on the same instance of the CPU model when using
preemptive scheduling.

C. Classification of traces

Application and OS-related traces are treated differently
by the scheduler. For the following explanation, we define a
runnable as an abstract entity which is handled by the scheduler
model. Each runnable represents the context in which the
execution of a trace is started or stopped in the simulator.
Application traces are mapped and scheduled in the context of
application runnables (AR). In turn, system traces representing
the OS-related workload are managed by the scheduler in the
context of system runnables (SR).

Before the simulation starts, the designer should specify
how the traces should be handled by the scheduler. For the
application traces, the configuration file specifies a list of rask
descriptions that are used to parameterize the corresponding
ARs (Table I). A task description defines which trace file should
be executed in the context of the runnable and describes its
invocation parameters. Using task descriptions, the designer
can force application traces to be executed on a certain CPU
instance specified by the T_CpuID parameter. Alternatively,
the scheduler can perform global scheduling and decide at
simulation runtime on which CPU the trace should run.

In the current version, the scheduler model can perform
both local and global scheduling using: (i) fixed priorities
assigned by the designer or (ii) dynamic priorities based on
the earliest-deadline-first algorithm. Other scheduling policies
can be implemented in the model using the dedicated APIs. In
addition, the designer should specify a period of a trace (if it
should be invoked periodically), its initial start time (phase) as
well as a number of trace invocations.

At simulation run-time, the scheduler dynamically creates
application runnables, which are then scheduled and executed
on the CPUs according to the invocation scenario configured
by the user. In turn, system runnables are created when the
OS-related execution should be simulated, e.g., during context
switches or interrupt service routines.

IV. SCHEDULER MODEL

The scheduler model shown in Fig. 4 has been implemented
as a separate SystemC module that interacts with the CPU
models. It is a finite state machine that manages the execution
and synchronization of ARs and SRs at simulation runtime.

TABLE I

A TASK DESCRIPTION SPECIFYING EXECUTION PARAMETERS OF AN
APPLICATION TRACE

Type Parameter Description

string T_TraceFile | Trace file

int T_CpulD CPU the trace must be executed on

sc_time | T_Period Period of trace invocation

sc_time | T_Phase Initial start time

int T_nExec Number of trace invocations

int T_Priority Priority value used in case of
priority-based scheduling

sc_time | T_Deadline Deadline value used for EDF
scheduling

Scheduler model

/[ncpu
>
CPU
System Ready Queue »
traces |”] Y Next Runnable
Synchro Queue Hold Container
Applic.
traces || Sleep Queue Immediate Queue
Task Timer Event List CPU status
descrip- [N
tions Control FSM « | CPY

Fig. 4. Structure of the scheduler

Application runnables are processed by the scheduler accord-
ing to the model shown in Fig. 5. Since the ARs are dynamically
created at each invocation of the respective application, the
model does not have a dormant state, i.e., a state when a
task is inactive. Using the invocation parameters from the task
description, the internal timer of the scheduler calculates time
points when ARs have to be created. Afterwards, an AR is
placed to the ready queue and its initial state is set to READY.
Additionally, the scheduler decrements the T_nExec parameter
and calculates the deadline of the runnable (Eq. 1). In case of
a periodical trace, the timer is programmed for the time of the
next trace invocation calculated using Eq. 2. When the CPU
completes executing the trace, the corresponding AR is deleted.

Deadline(AR;) = sc_time_stamp() + T_Deadline; (1)
Invocation(AR; 1) = sc_time_stamp() + T_Period. (2)

The ready queue contains all ARs sorted — depending
on whether it is fixed-priority-based or earliest-deadline-first
scheduling — by their priorities or deadlines. In our scheduler
model, the same queue is used for partitioned and global
scheduling. During the partitioned scheduling, a CPU takes only
ARs that are mapped to this CPU. Thus, the next running AR is
the one which is closest to the queue’s top and whose T_CpuID
corresponds to this CPU. During the global scheduling, the
scheduler always selects the first runnable from the queue top
and ignores the T_CpuID value.

In contrast to application runnables, system runnables are
created only when a CPU should simulate a trace representing
OS-related workload. For example, the designer can specify
traces for the OS scheduler, context switches, interrupt service
routines etc. Our framework is capable of modeling external
interrupts that force the execution of an ISR system runnable
followed by rescheduling of the current ARs.

Being created, SRs are placed into the immediate queue of
the corresponding CPU. If there is at least one entry in this
queue, the scheduler temporarily stops (but not yet preempts)
the running AR, places it to the hold container and maps the SR
to this CPU. After the OS-related trace has finished executing,
the AR will either continue executing or will be placed back to
the ready queue. We differentiate between these two situations
since the execution of a certain OS service may or may not
lead to a preemption of the running application. If the running
AR is to be preempted (e.g., because another AR with higher

Delete
runnable

Create
runnable

Fig. 5. Model of an application runnable

priority gets ready), the scheduler will map a context save SR
to the underlying CPU and place the preempted AR back to the
ready queue. Afterwards, when the preempted AR is about to
continue executing, the scheduler will create and map a context
load SR respectively.

A. Customization of system runnables

So far system traces have been considered to be fixed for all
ARs which might not be true in real systems. For example, task
descriptors are typically stored in different memory locations.
Therefore, the use of the same context save/load traces for all
application runnables is not fully correct.

To address this problem, we have added the possibility to
specify a set of custom system traces. The execution of a trace
from this subset may be conditioned during the simulation. For
example, instead of a common context save SR, an array of
SRs can be specified individually for each AR. However, in this
particular case the only difference between the context save/load
traces will be an address offset in the load and store commands.

Another important aspect which has to be considered is the
dependency of the execution time of some OS functions on a
current state of the scheduler. For example, the execution of the
OS scheduler itself may depend on the number of ARs currently
located in the ready queue. Therefore, in this particular case
a set of OS scheduler traces can be specified which will be
dynamically selected depending on the current size of the ready
queue in the model. Thus, accuracy of the timing estimation can
be improved compared to permanent SR traces.

B. Synchronization

1) Synchronization mechanisms: An application trace rep-
resents the execution of an application without the notion
of an OS or other applications. However, in a new MPSoC
constellation the designer may want to serialize the trace ex-
ecution. For example, an application trace may need to be
stopped until another trace reaches a certain synchronization
point or when a shared resource being used by another AR
becomes available. In order to support producer-consumer and
mutual exclusive synchronization of traces, our scheduler model
provides semaphores and signals triggered by the corresponding
trace commands (Table II). These synchronization commands
can be easily added to the original application traces. Currently,
this is a manual process which, however, can be automated
based on the application analysis.

TABLE 1T
COMMANDS FOR INTER-TRACE SYNCHRONIZATION

Command Parameter ‘ Description

INIT_SEM | sem_id, value | Initialize semaphore to value
DEC_SEM sem_id Decrement semaphore
INC_SEM sem_id Increment semaphore
SIG_WAIT | signal_id Wait for a signal
SIG_FIRE | signal_id Notify a signal

Semaphores and signals are managed by the scheduler using
the event list (Fig. 4). It is a database which contains status of
the synchronization events. If the required semaphore is negative
on decrementing or when an AR has to wait for a signal, the
scheduler puts the AR to SLEEPING state after mapping a
context save SR.

The sleep queue (Fig. 4) is an associative storage for all ARs
in the SLEEP ING state and the synchronization events they are
waiting for. The scheduler processes the queue depending on
the type of an arriving event. For example, if a semaphore has
been incremented, the scheduler selects one application runnable
which is allowed to decrement it according to the rule specified
by the designer. In contrast, on a signal notification all of the
respective ARs are allowed to continue executing. In both cases,
the scheduler moves the selected AR(s) from the sleep queue
to the ready queue and generates respective context load SRs.

2) Synchronization balancing: Abstraction of the scheduler
allows for flexible evaluation of synchronization mechanisms in
the simulator. For example, synchronization can be carried out
with or without the OS services by performing, e.g., a busy-
wait loop on a shared variable. On the one side, this method
can eliminate unnecessary context switchings and reduce the
OS overhead. On the other side, the loop-based synchronization
may take too long, and the CPU resource will be wasted when
there are other ARs ready to be executed.

In order to identify whether the OS-based and OS-free
synchronization suits the most for the current application, the
runnable model has been extended with additional SYNCHRO
state (Fig. 5). In this state, the AR continues running on
the CPU. However, instead of executing the application trace,
the CPU runs a pre-defined pattern. In most cases, the CPU
would be polling a shared variable in the memory; however,
the designer is free to create its own pattern. If the required
event occurs while the AR is in SYNCHRO state, the CPU will
continue executing the application trace and the AR state will
be set back to RUNNING.

The user can set a maximum time interval for the SYNCHRO
state which is similar to a watch dog timer interval. If the
required event has not been occurred within this interval, the
AR will be preempted and moved to the sleeping queue. Thus,
the designer can easily evaluate possible synchronization options
without modifying the application trace.

V. EXPERIMENTAL RESULTS

In this section we demonstrate the proposed workflow for tim-
ing estimations of multimedia applications on various MPSoC
platforms. For the following experiments, we selected a set of
three applications: two instances of a low-priority application
performing JPEG image encoding [15] and one high-priority
application performing ADPCM encoding of 10 kByte audio
samples [16]. The experiments were conducted on a PC with a
2 GHz Intel Core 2 Duo processor and 2 GB of RAM.

The respective traces of the applications were obtained by
executing the SW code on a cycle accurate model of PPC
€200z6 processor provided by VaST CoMET tool [17]. Table III
shows the accuracy of the trace abstraction and the associated

increase of the simulation performance. The error in the trace-
driven simulation originates from the blocking memory access
mechanisms. Currently, possible pipeline stalls or out-of-order
execution on cache misses are not considered during the trace
generation [2], which is a limitation that we plan to overcome
in our future work. In addition to the target applications, we
executed the code of the C-OS/II real-time kernel [18] in order
to derive a set of representative traces for the OS scheduler and
context switches.

The performance estimation of MPSoC platforms was ac-
complished in our SystemC-based trace-driven TLM simulator.
In order to expand the space of possible design solutions, we
identified the most performance demanding part of the JPEG
algorithm which was the calculation of discrete cosine transform
(DCT). Therefore, in addition to the CPUs, we considered an ab-
stracted model of a DCT hardware accelerator which offloaded
the DCT computation from the CPUs. To enable the usage of
the accelerator, we replaced the respective parts of the JPEG
traces with new trace commands for accessing the component.
Moreover, we extended the traces with semaphore primitives for
providing mutually exclusive access to the peripheral. On a CPU
request, the peripheral model simulated the annotated processing
latency of the DCT algorithm and blocked the execution of the
application trace until the processing was completed.

During the explorations in the trace-driven simulator, we took
four platform architectures (Fig. 6) consisting of CPUs, hierar-
chical buses as well as local shared memory and an interrupt
controller. The architectures differentiated in the number of
CPUs and application mappings as follows:

e Aj: CPUg(adpcm, jpegi, jpegs);

e As: CPUg(adpcm, jpeg;, jpegz), DCT—HW;

e Ajz: CPUp(adpcm, jpegi), CPU;(jpega);

o Ay4: CPUg(adpem, jpegi), CPU1(jpegz), DCT—HW.

For all architectures, the JPEG application processed 5 image
frames in the time interval of 300 ms, whereas ADPCM
processed 30 audio samples on an external interrupt triggered
every 50 ms. The synchronization between the interrupt service
routine and ADPCM was carried out using a signal.

In architecture A, all applications were mapped to CPU,
(Fig. 7). Thus, processing of the image frames and the audio
samples on this platform resulted in relatively high utilization
of 95.8% for CPUj and average frame processing time of 242.8
ms for JPEG; and 287.4 ms for JPEGs. In architectures As—Ay,
the use of second processor CPU; and the hardware accelerator
for the DCT computation resulted in a reduced utilization of
the CPUs as well as faster execution times of both JPEG
applications, as can be quantitatively observed in Table IV.
Please note that due to the high abstraction of the traces, the
simulation time of the experiments is of the same order of
magnitude as the simulated time, which enables fast exploration
of the design solutions.

Further extension of the MPSoC platform with additional

CPUo CPU1

Local
cache cache mem

[! : :
processor local bus @I

i : | Bridge

IC |{ DCT-HW |

peripheral bus

Fig. 6. Platform architectures used in the trace-based simulations: Ay (1 CPU,
without DCT-HW), Ao (1 CPU, with DCT-HW), A3 (2 CPUs, without DCT-
HW), A4 (2 CPUs, with DCT-HW)

ISR interru pt\’xyr_ TsigR _; o _v_v;i_t_li’_;_ Context Sl_aovaedss/
['I 11 1| cruo{IpegT [T 1SR [J[ADPCM [[] Jreg2 § |l
Scheduler 0S scheduler.A____________} time
(I N
ADPCM/Priol
et ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂm
IPEG2/Prio2
OOl OO0 OO0 @@l aaolo
IPEG1/Prio2
(50 A A R e e A W W
0 200 400 600 800 1000 1200 1400
Time, ms

Fig. 7. Execution chart of JPEG;, JPEG2 and ADPCM applications
running on CPUq without DCT-HW support (platform Al)

TABLE III
COMPARISON OF CYCLE-ACCURATE AND TRACE-BASED SIMULATIONS

Appl. # of inst. Estimated exec. time, cycles | Simulation time, s
VaST Trace Error | VaST Trace
JPEG, 7.1IM 11.38M | 11.97M | 5.1% | 0.804 0.587
JPEG, 7.1M 11.39M | 11.98M | 5.1% | 0.886 0.520
ADPCM | 0.48M 0.8IM | 0.83M 1.5% | 0.115 0.029
TABLE IV
RESULTS OF TIMING ESTIMATIONS IN THE TRACE SIMULATOR
Utilization Average execution time, ms | Sim- Sim-
Areh- | cpy, | CPU, | JPEG, | JPEG, | ADPCM | t€d | tion
time, s | time, s
Ay 95.8% — 242.8 287.4 50.3 1.51 8.29
Aqy 60.5% — 131.3 162.8 50.3 1.51 6.50
As 56.3% | 39.9% | 143.5 120.3 50.3 1.51 8.97
Ay 38.8% | 22.4% 82.5 67.5 50.3 1.51 8.46

CPUs emphasizes the importance of accurate modeling of
memory accesses in the trace-based modeling. Fig. 8a illustrates
simulation results of the platform with a varying number of
CPUs (each executing the JPEG algorithm) without precise
modeling of CPU-memory communication. We managed to
reconstruct this scenario in our framework by employing a
shared bus without arbitration. As the number of masters that
can simultaneously communicate over the bus is not bounded,
the execution times of the applications running on the MP-
SoC become underestimated. In contrast, Fig. 8b shows the
simulation results of the MPSoC with enabled first-come first-
served bus arbitration. Due to the larger bus contention periods,
the performance of the JPEG application decreased drastically,
which can be clearly observed in the architectures with a low-
bandwidth bus (slow-down by factor of 1.71 for an 8-bit bus
with 8 CPUs).

VI. CONCLUSIONS

In this paper, we presented a new approach for high-level
timing analysis of MPSoCs using abstract and yet accurate
traces that represent execution of the target applications and
OS-related workload. The execution of traces is managed by
the scheduler model which enables fast and flexible exploration
of application mappings and scheduling policies. Moreover, the
exact memory traffic of the applications captured in the traces
allows for examination of shared bus contentions and their im-
plication on the performance of the applications. Currently, our
approach aims at independent applications or weakly dependent
applications. However, in our future work we will focus on more
detailed modeling of inter-process communication using traces.
In addition, we plan to increase accuracy of the trace-based

B w

Sr 3e+008 3

of 28e+008 o 2 80+006
< %.?“882 - 2 Be+008
(6] eH o

wl 572¢+008 o 421000
&l "2e+008 g

k) 5

(]

E £

3] 5”"

16 18
S 1y, &y,
Wiy, 32 5 iy, 32
g K o7 i 5
'br[:e 64 2 #of PEs #’ b,}e B4 {2 ;0* PEs
(a) (b}
Fig. 8. Average execution time of JPEG; running on multiple CPUs without

DCT-HW in an MPSoC model (a) with fixed memory latencies w/o bus arbitration,
and (b) with the consideration of first-come first-served bus arbitration

modeling by the elaborate consideration of microarchitectural
effects during the trace generation.

REFERENCES

T. Wild, A. Herkersdorf, and G.-Y. Lee, “TAPES - trace-based architecture
performance evaluation with SystemC,” Design Automation for Embedded
Systems, vol. 10, no. 2-3, pp. 157-179, 2005.

R. Plyaskin and A. Herkersdorf, “A method for accurate high-level per-
formance evaluation of MPSoC architectures using fine-grained generated
traces,” in Architecture of Computing Systems - ARCS 2010. Springer,
2010, pp. 199-210.

T. Isshiki, D. Li, H. Kunieda, T. Isomura, and K. Satou, “Trace-driven
workload simulation method for multiprocessor System-On-Chips,” in
Proceedings of the 46th Annual Design Automation Conference. San
Francisco, California: ACM, 2009, pp. 232-237.

P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere, “System level
design with spade: An M-JPEG case study,” in Computer Aided Design,
2001. ICCAD 2001. IEEE/ACM International Conference on, 2001, pp.
31-38.

A. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to exploring
embedded system architectures at multiple abstraction levels,” Computers,
IEEE Transactions on, vol. 55, no. 2, pp. 99-112, 2006.

A. Gerstlauer, H. Yu, and D. Gajski, “RTOS modeling for system level
design,” in DATE, 2003, 2003, pp. 130-135.

R. Le Moigne, O. Pasquier, and J.-P. Calvez, “A generic RTOS model for
real-time systems simulation with SystemC,” in DATE ’04. Washington,
DC, USA: IEEE Computer Society, 2004, p. 30082.

S. Mahadevan, K. Virk, and J. Madsen, “ARTS: A SystemC-based frame-
work for modelling multiprocessor systems-on-chip,” Design Automation
of Embedded Systems, 2006.

S. Yoo, G. Nicolescu, L. Gauthier, and A. Jerraya, “Automatic generation
of fast timed simulation models for operating systems in SoC design,” in
DATE ’02. Washington, DC, USA: IEEE Computer Society, 2002, p.
620.

M. Krause, D. Englert, O. Bringmann, and W. Rosenstiel, “Combination
of instruction set simulation and abstract RTOS model execution for fast
and accurate target software evaluation,” in CODES/ISSS ’'08. New York,
NY, USA: ACM, 2008, pp. 143-148.

J. Chevalier, M. Rondonneau, O. Benny, G. Bois, E. M. Aboulhamid,
and F. Boyer, “Space: A hardware/software SystemC modeling platform
including an RTOS.” in FDL. ECSI, 2003, pp. 704-716.

D. Kim, Y. Yi, and S. Ha, “Trace-driven HW/SW cosimulation using
virtual synchronization technique,” in DAC '05. New York, NY, USA:
ACM, 2005, pp. 345-348.

H. M. AbdEISalam, S. Kobayashi, K. Sakanushi, Y. Takeuchi, and
M. Imai, “Towards a higher level of abstraction in hardware/software co-
simulation,” in ICDCSW ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 824-830.

Z. He, A. Mok, and C. Peng, “Timed RTOS modeling for embedded
system design,” in RTAS ’05. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 448-457.

Embedded JPEG Codec Library.
http://sourceforge.net/projects/mb-jpeg/

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,
“MiBench: A free, commercially representative embedded benchmark
suite,” Workload Characterization, Annual IEEE International Workshop,
vol. 0, pp. 3-14, 2001.
VaST Systems
http://www.vastsystems.com
J. J. Labrosse, Microc/OS-I1.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15] [Online]. Available:

[16]

[17] Technology. [Online]. Available:

[18] R & D Books, 1998.

