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Abstract.

Our aim is to establish a precise link between prices of European options in Lévy models
and PIDEs. We follow a Fourier transform based approach and outline a structural affinity
of PIDE and Fourier methods in this context. Our analysis provides a framework that is
extendible to more complex problems, such as to PIDEs for pricing barrier options.

Since the payoff functions of a wide range of options such as calls or puts, written as func-
tions on the log-price of the underlying, are not in L

2(R), exponentially weighted Sobolev–
Slobodeckii spaces are studied. It turns out that the exponential weight corresponds to a
shift of the symbol of the Lévy process in the complex plane. We derive natural assumptions
on the symbol and its analytic extension, under which the associated evolution problem has
a unique weak solution in an exponentially weighted Sobolev–Slobodeckii space.

To provide the characterization of option prices as weak solutions of PIDEs in weighted
Sobolev–Slobodeckii spaces, a Feynman–Kac formula for weak solutions of PIDEs is proved.
Furthermore, an explicit solution in terms of the Fourier transform is derived.

1. Introduction

The Feynman–Kac formula builds a bridge between conditional expectations and solutions
of Partial Integro Differential Equations (PIDEs). In recent years this has lead to a remarkable
development of algorithms to price options in Lévy models by solving PIDEs based on the
finite element method. For the development of wavelet-Galerkin methods for pricing European
and American options, see Matache et al. (2004), Matache et al. (2005b), Matache et al.
(2005a), a multivariate extension is provided in Reich et al. (2010), and Winter (2009). We
refer to Hilber et al. (2009) for an overview of different numerical methods, including finite
element methods, for option pricing in Lévy models.

Our central concern of this article is to establish a precise link between conditional ex-
pectations that represent European option prices and weak solutions of PIDEs. The payoff
functions of options such as calls, puts or up and out digitals are, written as functions of the
logarithmic returns of the underlying, not square integrable. To enforce sufficient integrability,
we have to work with exponentially weighted spaces.

Let us point out that our analysis of PIDEs for European options in Lévy models is not
motivated by a numerical method for solving PIDEs compatible with Fourier transform based
methods. Instead our intention is to provide a framework that is extendible to more complex
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situations, such as the pricing of barrier and American options; that is to problems for which
solving a PIDE can actually be more efficient than following a Fourier approach. The results
of the present article are used in Glau (2010) in the proof of a Feynman–Kac formula which
allows to characterize the distribution of the supremum of a Lévy process or more generally
the prices of barrier options. We would like to point out that our analysis of PIDEs in expo-
nentially weighted spaces can also be useful for numerical methods. This may be surprising
since numerical procedures for solving PIDEs typically start with the restriction to a finite
domain. In this situation, exponential weighting is unnecessary. There are also recent results
on algorithms to solve PDEs numerically on unbounded domains without restricting the do-
main, see Kestler and Urban (2010). The finite element methods developed therein might also
be useful for solving PIDEs related to option prices in Lévy models.

The papers mentioned above by Schwab et. al. concentrate on the numerics of PIDEs. Their
starting point already assumes the characterization of prices as weak solutions of PIDEs.
Feynman–Kac formulas for PIDEs related to Lévy models have been studied in Cont and
Voltchkova (2005). These authors characterize the prices of European and barrier options as
viscosity solutions of PIDEs. Let us mention that they assume polynomial boundedness of the
payoff functions, written as functions of the logarithm of the stock price, which is not satisfied
for the payoff function of a European call. They additionally assume Lipschitz-continuity of
the payoff written as a function of the stock price itself. This is not the case for a digital up
and out barrier option.

In this article, we restrict ourselves to the case of European options. On the other side our
framework is designed to capture all standard payoff functions.

We follow a Fourier transform based approach by understanding the PIDE as a pseudo dif-
ferential equation and show that exponentially weighting the underlying Sobolev-Slobodeckii
space corresponds to shifting the symbol in the complex plane. This fact is used to derive
conditions on the symbol, under which the related parabolic equation has a unique solution
in an exponentially weighted Sobolev-Slobodeckii space. These techniques are also to be used
in the more complex situation of pricing e.g. barrier or lookback options.

We further derive an explicit solution of PIDEs associated to European options. This arises
in a natural way following the Fourier approach to PIDEs. Even more, it allows to reveal a
structural affinity between PIDE and Fourier methods. We emphasize that this is true in
the context of European option prices, but there is no comparable analogy in the case of
path-dependent options like barrier or American options.

The basic notation and results concerning an analytic extension of the symbol resp. on
the characteristic function of time-inhomogeneous Lévy processes in the complex plane, are
provided in Section 2.

In Section 3, exponentially weighted Sobolev-Slobodeckii spaces are introduced via Fourier
transforms, which allows to conclude that the dual space of Hs

η(Rd) and the space H−s
η (Rd)

are isomorphic. This fact is used in Section 4, where we derive under additional assumptions on
the symbol, that the infinitesimal generator of a time-inhomogeneous Lévy process represents
a family of continuous linear mappings from a weighted Sobolev space into its dual space.
The proof is based on the observation that exponential weighting of a function corresponds
to a shift of its Fourier transform in the complex plane. The same is true for the operator
and the symbol, which leads to a polynomial growth condition for the symbol on a certain
complex domain. The proof provided in Section 4 relies on a version of Cauchy’s theorem,
that is given in the appendix.
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In section 4, we additionally translate the G̊arding condition for the bilinear form to a
condition on the symbol, and from the ellipticity of the operator, we obtain under suitable
conditions on the symbol, that the related evolution problem has a unique solution in a certain
weighted Sobolev–Slobodeckii space.

For the homogeneous evolution problem, i.e. when the right hand side of the equation
equals 0, in Section 6 the equation is transformed by a Fourier transform into an ordinary
differential equation. The resulting equation has an explicit solution. This allows for example
for an elementary proof of the smoothness of the solution of the homogeneous Cauchy problem.
In particular, one can derive a Feynman–Kac formula for the solution.

2. Time-inhomogeneous Lévy processes, infinitesimal generator and symbol

This section provides the basic notation and preliminary results on the symbol of time-
inhomogeneous Lévy processes. Lévy processes are adapted stochastic processes with càdlàg
paths with stationary and independent increments. The wider class of time-inhomogeneous
Lévy processes, also called PIIAC (process with independent increments and absolutely con-
tinuous characteristics), consists of those adapted stochastic processes with càdlàg paths,
that have independent increments, compare Eberlein et al. (2005). This class of processes
is closely related to the class of additive processes, in particular, every time-inhomogeneous
Lévy process is an additive process, see Sato (1999) and Kluge (2005, Lemma 1.3).

An introduction to Lévy processes is provided in Sato (1999), Bertoin (1996), Kyprianou
(2006), and Applebaum (2009). A detailed introduction to time-inhomogeneous Lévy pro-
cesses is given in Kluge (2005).

Let (Ω,F , (Ft)t≥0, P ) be a stochastic basis. The distribution of an Rd-valued time-inhomo-
geneous Lévy process L is determined by the characteristic functions of the distributions of
Lt for t ≥ 0,

E ei〈ξ,Lt〉 = e
∫ t
0

θs(iξ) ds , (1)

where the cumulant function θs for any fixed s ≥ 0 equals

θs(iξ) = −
1

2
〈ξ, σsξ〉 + i〈ξ, bs〉 +

∫

Rd

(
ei〈ξ,y〉−1 − i〈ξ, h(y)〉

)
Fs(dy) (2)

for a truncation function h : Rd → R. A bounded measurable function h : Rd → R with
compact support is called a truncation function, if h(x) = x in a neighbourhood of 0.

Here 〈·, ·〉 denotes the Euclidean scalar product in Rd. Furthermore, for every s > 0, σs

is a symmetric, positive semi-definite d × d-matrix, bs ∈ Rd, and Fs is a Lévy measure,
i.e. a Borel measure on Rd with

∫
(|x|2 ∧ 1)Fs(dx) < ∞. The maps s 7→ σs, s 7→ bs and

s 7→
∫

(|x|2 ∧ 1)Fs(dx) are Borel-measurable with

T∫

0

(
|bs| + ‖σs‖M(d×d) +

∫

Rd

(|x|2 ∧ 1)Fs(dx)
)

ds <∞

for every T > 0, where ‖ ·‖M(d×d) is a norm on the vector space formed by the d×d-matrices.
For Lévy processes L, the identity (1) is the Lévy-Khintchine formula, and in this case the
quantities b, σ, F and θ do not depend on s.
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The canonical representation of the process is, according to Jacod and Shiryaev (1987,
Theorem II.2.34), given by

L =

·∫

0

bs ds+ Lc + h ∗ (µ− ν) +
(
x− h(x)

)
∗ µ ,

where Lc denotes the continuous martingale part of L and µ is the random measure of jumps of

the process L. The continuous martingale part Lc can be written in the form Lc =
∫ ·
0 σ

1/2
s dWs

with a standard Brownian motion W with values in Rd, see Karatzas and Shreve (1991,
Theorem 3.4.2). Choosing the truncation function h(x) := x1{|x|≤1}(x), one obtains the more
explicit representation

L =

·∫

0

bs ds+

·∫

0

σ1/2
s dWs + h ∗ (µ− ν) +

∑

s≤t

∆Ls1{|∆Ls|>1} .

In case L is a special semimartingale, we can chose h to be the identity, h(x) = x, which leads
to the more convenient representation

L =

·∫

0

bs ds+

·∫

0

σ1/2
s dWs + x ∗ (µ− ν)

with different coefficients bs, see Jacod and Shiryaev (1987, Corollary II.2.38).
Of special interest in the next sections is the infinitesimal generator Gs of time-inhomo-

geneous Lévy processes L, that is

Gsϕ(x) =
1

2

d∑

j,k=1

σj,k
s

∂2ϕ

∂xj∂xk
(x) +

d∑

j=1

bjs
∂ϕ

∂xj
(x) (3)

+

∫

Rd

(
ϕ(x+ y) − ϕ(x) −

d∑

j=1

∂ϕ

∂xj
(x)(h(y))j

)
Fs(dy)

for ϕ ∈ C2
0 (Rd,R), compare e.g. Dynkin (1965).

We define At := −Gt for every t ≥ 0. It turns out that At can be written in the form

A tu(x) =
1

(2π)d

∫

Rd

e−i〈ξ,x〉At(ξ)F(u)(ξ) dξ for all u ∈ C∞
0 (Rd,R) .

For short we write

Atu = F−1
(
AtF(u)

)
for all u ∈ C∞

0 (Rd,R) , (4)

where

At(ξ) :=
1

2
〈ξ, σtξ〉 + i〈ξ, bt〉 −

∫ (
e−i〈ξ,y〉−1 + i〈ξ, h(y)〉

)
Ft(dy)

= −θt(−iξ) (ξ ∈ R
d) ,

(5)

F denotes the Fourier transform and F−1 its inverse. It is standard to show that
∣∣At(ξ)

∣∣ ≤ C
(
1 + |ξ|

)2
for all ξ ∈ R

d . (6)
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As a consequence, the Fourier inversion F−1 in (4) is well defined. (4) shows that At is
a so-called pseudo differential operator (PDO) with symbol At. In analogy to the symbol
of a Lévy process, compare Jacob (2001), we call the family (At)t∈[0,T ] the symbol of the
time-inhomogeneous Lévy process.

We outline in the following remarks and lemmas some properties of the symbol of time-
inhomogeneous Lévy processes, where we focus on its analytic extension which allows to
interpret the operator A as a continuous linear operator between exponentially weighted
Sobolev–Slobodeckii spaces (see Section 4). In the sequel we restrict ourselves to a finite time
horizon [0, T ] and we will concentrate on an analytic extension of the symbol to the domain

U−η = U−η1 × · · · × U−ηd , (7)

which is defined for η = (η1, . . . , ηd) ∈ Rd by the strips U−ηj := R − i sgn(ηj)[0, |ηj |) in the

complex plane for ηj 6= 0. For ηj = 0 we define U−ηj = U0 := R. We denote by Rη the

d-dimensional cuboid Rη = sgn(η1)[0, |η1|] × · · · × sgn(ηd)[0, |ηd|].
The following lemma generalises Lemma 25.17 (ii) and (iii) in Sato (1999) from Lévy

processes to time-inhomogeneous Lévy processes. In particular, we show that an analytic
extension of the symbol to the domain U−η exists, if a related exponential moment condition

is satisfied. For z, w ∈ Cd we define

〈z, w〉 :=
d∑

j=1

zjwj .

Note that this is not the scalar product in Cd.

Lemma 2.1. Let η ∈ Rd.

(a) E e〈η,Lt〉 <∞ for every 0 ≤ t ≤ T if and only if

T∫

0

∫

|x|>1

e〈η,x〉 Fs(dx) ds <∞ .

(b) If E e〈η,Lt〉 <∞ for every 0 ≤ t ≤ T , then

E e〈iξ+η,Lt〉 = e
∫ t
0

θs(iξ+η) ds = e−
∫ t
0

As(−ξ+iη) ds

for every t ∈ [0, T ] and ξ ∈ Rd.

(c) If E e〈η
′,Lt〉 < ∞ for every 0 ≤ t ≤ T and every η′ ∈ Rη, then the maps z 7→ As(−z)

for every s ≥ 0 as well as

z 7→ E ei〈z,Lt〉 = e
∫ t
0

θs(iz) ds = e−
∫ t
0

As(−z) ds

have a continuous extension to the domain U−η which is analytic in
◦
U−η.

Proof. Parts (a) and (b) are straightforward extensions of Theorem 25.17 in Sato (1999) as
shown more explicitly in Lemma 6 and formula (14) in Eberlein and Kluge (2006).

In order to prove (c), let γj be an arbitrary (compact) triangle, that lies inside the strip

Uηj = R + i sgn(ηj)[0, |ηj |), and let w = (w1, . . . , wd) ∈ Cd for fixed wk ∈ Uηk for every
k ∈ {1, . . . , d} \ {j}.
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We shall derive ∫

∂γj

At(w1, . . . , wj−1, wj , wj+1, . . . , wd) dwj = 0 .

Then, the analyticity of the mapping wj 7→ At(w1, . . . , wj−1, wj , wj+1, . . . , wd) in the in-
terior of Uηj follows from the theorem of Morera. Since this is true for every coordinate

j ∈ {1, . . . , d}, the analyticity of the map w 7→ At(w) in
◦
Uη follows.

Consider the symbol as given in (5). The mapping wj 7→
1
2〈w,Σtw〉+ i〈w, bt〉 is analytic in

C. The same is true for the mapping wj 7→
(
e−i〈w,y〉−1 + i〈w, h(y)〉

)
. An application of the

theorem of Fubini and the lemma of Goursat yields
∫

∂γj

At(w1, . . . , wj−1, wj , wj+1, . . . , wd) dwj

=

∫

∂γj

(1

2
〈w,Σtw〉 + i〈w, bt〉

)
dwj −

∫

∂γj

∫

Rd

(
e−i〈w,y〉−1 + i〈w, h(y)〉

)
Ft(dy) dwj

= −

∫

Rd

∫

∂γj

(
e−i〈w,y〉−1 + i〈w, h(y)〉

)
dwj Ft(dy)

= 0 .

To justify the use of Fubini’s theorem, we derive an upper bound of
∣∣∣ e−i〈w,y〉−1 + i〈w, h(y)〉

∣∣∣
in L1(Ft(dy),R

d) which does not depend on wj .
For |y| ≤ 1 we have

∣∣∣ e−i〈w,y〉−1 + i〈w, h(y)〉
∣∣∣ ≤

1

2
|〈w, y〉|2 ≤

1

2
|w|2|y|2 ≤

1

2

(
max

wj∈∂γj

|w|2
)
|y|2 .

For |y| > 1, we get when chosen h(y) = y1|y|≤1
∣∣∣ e−i〈w,y〉−1 + i〈w, h(y)〉

∣∣∣ =
∣∣∣ e−i〈w,y〉−1

∣∣∣ ≤ e〈ℜ(−iw),y〉 +1 = e〈ℑ(w),y〉 +1 ,

where we denote by ℜ(w) resp. ℑ(w) the vector of the real parts (resp. the imaginary parts)
of the components of the vector w ∈ Cd. By assumption ℑ(w) belongs to R−η. This is also
the case for

v1 :=
(
ℑ(w1), . . . ,ℑ(wj−1), max

wj∈∂γj

ℑ(wj),ℑ(wj+1), . . . ,ℑ(wd)
)

and for

v2 :=
(
ℑ(w1), . . . ,ℑ(wj−1), min

wj∈∂γj

ℑ(wj),ℑ(wj+1), . . . ,ℑ(wd)
)

It follows that
∫

|y|>1

∣∣∣ e−i〈w,y〉−1 + i〈w, h(y)〉
∣∣∣Ft(dy) ≤

∫

|y|>1

(
e〈v

1,y〉 + e〈v
2,y〉 +1

)
Ft(dy) <∞ .

For every fixed choice of complex numbers wk ∈ Uηk for k ∈ {1, . . . , d} \ {j} and every fixed

y ∈ Rd, the mapping wj 7→ e−i〈w,y〉−1 + i〈w, h(y)〉 is continuous. Furthermore, the following
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estimate,
∣∣∣ e−i〈w,y〉−1 + i〈w, h(y)〉

∣∣∣ ≤
1

2

(
max

wj∈∂γj

|w|2
)
|y|21{|y|≤1}(y)

+
(
e〈v

1,y〉 + e〈v
2,y〉 +1

)
1{|y|>1}(y)

(8)

which is an upper bound in L1(Ft(dy),R
d), from where the continuity of the mapping w 7→

At(w) on Uη follows. �

The next remark collects further elementary properties of
(
At(·−iη)

)
t∈[0,T ]

, where
(
At

)
t∈[0,T ]

is the symbol of a time-inhomogeneous Lévy process.

Lemma 2.2. Let L be a PIIAC with characteristic triplet (bt, σt, Ft)t∈[0,T ], with symbol
(At)t∈[0,T ]. If

T∫

0

∫

|x|>1

e−〈η′,x〉 Ft(dx) <∞ for all η′ ∈ Rη ,

then the following holds.

(a) For every η′ ∈ Rη we have

At(ξ − iη′) =At(−iη
′) +AL−η′

t (ξ) ,

where AL−η′

is the symbol of a time-inhomogeneous Lévy process L−η′

which is given

by the characteristic triplet (b−η′

t , σt, F
−η′

t )t≥0 with

b
−η′

t = bt − σtη
′ +

∫ (
e−〈η′,x〉−1

)
h(x)Ft(dx) and

F
−η′

t (dx) = e−〈η′,x〉 Ft(dx) .

(b) For every η′ ∈ Rη there is equivalence between

At(−iη
′) = 0 for all t ∈ [0, T ]

)

and the martingale property of the process
(
e−〈η′,Lt〉

)

t≥0
.

(c) For every ξ ∈ Rd we have

ℜ
(
At(ξ − iη′)

)
= At(−iη

′) +
1

2
〈ξ, σtξ〉 −

∫ (
cos(〈ξ, x〉

)
− 1
)
F

−η′

t (dx)

≥ At(−iη
′) .

Proof. The derivation of the decomposition (a) follows in a straightforward way, compare
Glau (2010, Satz II.15), as does (c).
To show (b), we notice that

E e−〈η′,Lt〉 = e
∫ t
0

θs(−η′) ds = e−
∫ t
0

As(−iη′) ds

and for s ≤ t the equality

E
(
e−〈η′,Lt〉

∣∣Fs

)
= e−〈η′,Ls〉E e−〈η′,Lt−Ls〉 = e−〈η′,Ls〉 e−

∫ t
s Au(−iη′) du

follows. Hence e−〈η′,L〉 is a martingale, if and only if At(−iη
′) = 0 holds for every t ∈ [0, T ]. �
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3. Exponentially weighted Sobolev–Slobodeckii spaces

We consider so-called weighted Sobolev–Slobodeckii spaces with weight functions of the
form x 7→ e〈η,x〉 with a vector η ∈ Rd. We study only Sobolev–Slobodeckii spaces with
exponential weight functions and define these spaces analogously to the definition of Sobolev–
Slobodeckii spaces based on Fourier transformed functions in Wloka (1987). The main reason
besides the benefits of an appropriate access via the symbol is the result which will be given

in theorem 3.4, that the dual space
(
Hs

η(Rd)
)′

of Hs
η(Rd) is isomorphic isometric to the space

H−s
η (Rd). This property of the Sobolev space is necessary for the interpretation in section 5

of the PDOs At associated with the symbols At as linear operators from the Hilbert space

Hs
η(Rd) to its dual space

(
Hs

η(Rd)
)′

.

We denote by L2
η(R

d) the Hilbert space of complex-valued square integrable functions

L2
η(R

d) :=
{
u ∈ L1

loc(R
d)
∣∣x 7→ u(x) e〈η,x〉 ∈ L2(Rd)

}
(9)

with scalar product

〈u, v〉L2
η

:=

∫

Rd

u(x)v(x) e2〈η,x〉 dx for all u, v ∈ L2
η(R

d) . (10)

The crucial step for a definition of the Sobolev spaces via Fourier transforms is based on
Parseval’s identity,

〈u, v〉L2 =

∫

Rd

u(x)v(x) dx =
1

(2π)d

∫

Rd

û(ξ)v̂(ξ) dξ . (11)

In order to derive the analogous identity for functions in the space L2
η(R

d), we denote

uη(x) := u(x) e〈η,x〉

û(ξ−iη) :=

∫
ei〈ξ,x〉 u(x) e〈η,x〉 dx = F(uη)(ξ) (12)

for functions u : Rd → C with
∫
|u(x)| e〈η,x〉 dx <∞. Let us further notice the equality

〈u, v〉L2
η

=
1

(2π)d

∫
û(ξ−iη)v̂(ξ − iη) dξ , (13)

for functions u , v ∈ L2
η(R

d). This leads to the following equivalent definition of the space

L2
η(R

d).

Remark 3.1. The space L2
η(R

d) is isomorphic isometric to the space
{
u ∈ L1

loc(R
d)
∣∣F(uη) ∈ L2(Rd)

}
.

Furthermore the space
(
L2

η(R
d), 〈·, ·〉L2

η

)
is a separable Hilbert space. The space C∞

0 (Rd,C)

of infinitely differentiable complex functions with compact support is a dense subspace.

For a consistent definition of the Sobolev–Slobodeckii spaces with exponential weights, we
first define the analogue of the Schwartz space S(Rd) and of the generalized functions.

Definition 3.2 (Exponentially weighted Schwartz space). For η ∈ Rd let

Sη(R
d) :=

{
u ∈ C∞(Rd,C)

∣∣ ‖u‖m,η <∞
}

with
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‖ϕ‖m,η := ‖ϕ e〈η,·〉 ‖m

and we denote by S′
η(R

d) the dual space of Sη(R
d).

For every m ∈ N0 the norms ‖ · ‖m are defined as usual by

‖ϕ‖m := sup
|p|≤m

sup
x∈Rd

(
1 + |x|2

)m
|Dpϕ(x)| ,

compare e.g. (Rudin, 1973, section 7.3). In the following remark, we define a Fourier transform
Fη for functions in the weighted Schwartz space which is the analogue of the Fourier transform
F on the Schwartz space.

Remark 3.3. [Fourier transform with weights] The mapping

Fη(ϕ) := e−〈η,·〉F
(
ϕ e〈η,·〉

)
(ϕ ∈ Sη(R

d) resp. ϕ ∈ L2
η(R

d))

and
F−1

η (ϕ) := e−〈η,·〉F−1
(
ϕ e〈η,·〉

)
(ϕ ∈ Sη(R

d) resp. ϕ ∈ L2
η(R

d))

is a continuous bijection, Fη : Sη(R
d) → Sη(R

d) resp. Fη : L2
η(R

d) → L2
η(R

d).

It follows similarly that the transformation Fη : S′
η(R

d) → S′
η(R

d), defined by the Parseval
identity

Fη(u)(ϕ) := (2π)du
(
F−1

η (ϕ)
) (

u ∈ S′
η(R

d), ϕ ∈ Sη(R
d)
)

resp.

u(ϕ) =
1

(2π)d
Fη(u)

(
Fη(ϕ)

) (
u ∈ S′

η(R
d), ϕ ∈ Sη(R

d)
)

(14)

is continuous and bijective. The weighted Sobolev–Slobodeckii spaces for s ∈ R and η ∈ Rd

are defined via
Hs

η(Rd) :=
{
u ∈ S′

η(R
d)
∣∣ ‖ e〈η,·〉Fη(u)‖Ĥs <∞

}

with the scalar product

〈u, v〉Hs
η

:= 〈Fη(u),Fη(v)〉Ĥs
η

:= 〈e〈η,·〉Fη(u), e
〈η,·〉Fη(v)〉Ĥs (15)

where

〈ϕ,ψ〉
Ĥs :=

∫
ϕ(ξ)ψ(ξ)

(
1 + |ξ|)2s dξ . (16)

For the scalar product of the weighted space, this entails

〈u, v〉Hs
η

=

∫
Fη(u)(ξ)Fη(v)(ξ)

(
1 + |ξ|)2s e2〈η,ξ〉 dξ . (17)

The space of Fourier transforms of functions in Hs
η(Rd) is given by

Ĥs
η(Rd) :=

{
Fη(u)

∣∣u ∈ Hs
η(Rd)

}

with scalar product 〈·, ·〉
Ĥs

η
. Inserting the notation uη = u e〈η,·〉 and vη = v e〈η,·〉 yields

〈u, v〉Hs
η

=
〈
e〈η,·〉Fη(u), e

〈η,·〉Fη(v)
〉
Ĥs =

〈
F(uη),F(vη)

〉
Ĥs = 〈uη, vη〉Hs . (18)

In particular, we have ‖u‖Hs
η

= ‖uη‖Hs and Hs
0(Rd) = Hs(Rd).

Theorem 3.4. The dual space
(
Hs

η(Rd)
)′

of Hs
η(Rd) is isomorphic isometric to H−s

η (Rd).
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Proof. We argue similar to Eskin (1981, S. 62–63). Let l ∈
(
Hs

η(Rd))′. From the representation

theorem of Riesz, we conclude the unique existence of a function v ∈ Hs
η(Rd) with ‖v‖Hs

η
=

‖l‖(Hs
η(Rd))′ , such that by equation (18) and (15)

l(ϕ) = 〈v, ϕ〉Hs
η

=

∫
(1 + |ξ|)2s v̂(ξ − iη)ϕ̂(ξ − iη) dξ

for every ϕ ∈ Hs
η(Rd). If we then define w := e−〈η,·〉F−1

(
(1 + | · |)2s v̂(· − iη)

)
, we obtain

‖w‖2
H−s

η
=

∫

Rd

(
1 + |ξ|

)−2s
∣∣∣F
(
e〈η,·〉w

)
(ξ)
∣∣∣
2
dξ

=

∫

Rd

(
1 + |ξ|

)2s∣∣v̂(ξ − iη)
∣∣2 dξ

= ‖v‖2
Hs

η

and hence w ∈ H−s
η (Rd) with ‖w‖H−s

η
= ‖v‖Hs

η
= ‖l‖(Hs

η(Rd))′ . Hence l 7→ w defines an

isometry from
(
Hs

η(Rd))′ to the space H−s
η (Rd). Since the Riesz mapping l 7→ v and the

mapping defined by v 7→ w := e−〈η,·〉F−1
( (

1 + | · −iη|2
)s
v̂(· − iη)

)
are both bijective maps,

their composition defines the desired isomorphism. �

4. Symbol and Pseudo-Differential operator

Let A be a PDO with symbol A as in (5), i.e.

Au = F−1
(
AF(u)

)
for all u ∈ S(Rd)

with A : Rd → C measurable satisfying
∣∣A(ξ)

∣∣ ≤ c
(
1 + |ξ|

)α
for all ξ ∈ R

d

for an α ∈ R and a constant c ≥ 0. The latter estimate guarantees that the Fourier inversion
operator F−1 is well defined. In (Eskin, 1981, Lemma 4.4) it is shown that

‖Au‖Hs−α ≤ c‖u‖Hs for all u ∈ S(Rd) .

As a consequence, A has a unique extension to a continuous linear operator A : Hs(Rd) →
Hs−α(Rd).

In this section we derive conditions on the symbol, that allow the interpretation of A as a
continuous linear operator

A : Hs
η(Rd) → Hs−α

η (Rd) .

Let U−η be given as in (7). We denote by Sα(−η) the set of symbols A that have a continuous
extension

A : U−η → C

that is analytic in the interior of U−η, and further satisfies the continuity condition
∣∣A(z)

∣∣ ≤ Cη

(
1 + |z|

)α (
for all z ∈ U−η

)
. (19)

Note that as a consequence of the identity theorem for holomorphic functions, the extension
is unique on U−η. By continuity, the extension is unique on the closure U−η.
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Let us observe that by definition of the Fourier transforms Fη, F
−1
η and the estimate (19),

it is obvious that

u 7→ F−1
η

(
A(· − iη)Fη(u)

)

is a linear continuous mapping from Hs
η(Rd) to Hs−α

η (Rd). We prove the following consistency
result.

Theorem 4.1. Let A be a PDO with symbol A ∈ Sα(−η) for an index α ∈ R and a weight
index η ∈ Rd. Then

Au = F−1
(
AF(u)

)
= F−1

η

(
A(· − iη)Fη(u)

)
for all u ∈ C∞

0 (Rd,C)

and there exists a constant c(η) > 0 with
∥∥Au

∥∥
Hs−α

η (Rd)
≤ c(η)‖u‖Hs

η(Rd) for all u ∈ C∞
0 (Rd,C) .

Moreover, the operator A can be extended to a linear continuous operator A : Hs
η(Rd) →

Hs−α
η (Rd) in a unique way.

Proof. For u ∈ C∞
0 (Rd,C) we have

Au(x) = F−1
(
AF(u)

)
(x) =

1

(2π)d

∫

Rd

e−i〈ξ,x〉A(ξ)F(u)(ξ) dξ for all x ∈ R
d .

The map ξ 7→ e−i〈ξ,x〉A(ξ)F(u)(ξ) is continuous on U−η and holomorphic in the interior
◦
U−η.

The continuity of A on U−η entails

|A(z)| ≤ Cη

(
1 + |z|

)α
for all z ∈ U−η . (20)

Furthermore, for η′ := (η′1, . . . , η
′
d) with η′j ∈ sgn(ηj)[0, |ηj |], we obtain

∣∣ e−i〈ξ−iη′,x〉A(ξ − iη′)û(ξ − iη′)
∣∣ = e−〈η′,x〉

∣∣A(ξ − iη′)û(ξ − iη)
∣∣

≤ e−〈η′,x〉Cη

(
1 + |ξ − iη′|

)α
CN

eR|η′|

(
1 + |ξ − iη′|

)N

with a constant CN for arbitrary N ∈ N0, if the support of the function u is inside of the
open ball with radius R ∈ R+, tr(u) ⊂ BR(0). This is a direct consequence of A ∈ Sα(−η)
and the Paley-Wiener-Schwartz theorem, compare Jacob (2001, Theorem 3.4.6).

Now define f(ξ − iη′) := e−i〈ξ−iη′,x〉A(ξ − iη′)û(ξ − iη′) for x ∈ Rd fixed, then for any
N > α+ d+ 1 this yields in particular

∣∣f(ξ − iη′)
∣∣ ≤ CηCN e−〈η′,x〉 eR|η′| 1

(1 + |ξ − iη′|)N−α
≤ C(x, η,N,R)

(
1 + |ξ|

)−(d+1)
(21)

with a constant C(x, η,N,R) independent of ξ and η′ for all (ξ − iη′) ∈ U−η and

f(ξ − iη′) → 0 for |ξ| → ∞ ,

which shows assumption (i) of lemma A.2. The integrability assumption (ii) in the same
lemma is obviously satisfied, hence we can apply the version of Cauchy’s theorem, that we
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provide in lemma A.2, from where we obtain

Au(x) =
1

(2π)d

∫

Rd

e−i〈ξ,x〉A(ξ)û(ξ) dξ

=
1

(2π)d

∫

Rd

e−i〈ξ−iη,x〉A(ξ − iη)û(ξ − iη) dξ .

We then insert the definition of Fη, compare equation (12) and remark 3.3 to obtain

Au(x) = e−〈η,x〉 1

(2π)d

∫

Rd

e−i〈ξ,x〉A(ξ − iη) e〈η,ξ〉 e−〈η,ξ〉 û(ξ − iη) dξ

= e−〈η,x〉 1

(2π)d

∫

Rd

e−i〈ξ,x+iη〉A(ξ − iη)Fη(u)(ξ) dξ . (22)

Furthermore we show that the mapping ξ 7→ A(ξ − iη)Fη(u)(ξ) belongs to L1
η(R

d) where the
latter space is defined in an analogous way to (9). Using the definition of Fη and (21) we get

∥∥A(· − iη)Fη(u)(·)
∥∥

L1
η(Rd)

=

∫

Rd

|A(ξ − iη)Fη(u)(ξ)| e
〈η,ξ〉 dξ

=

∫

Rd

∣∣A(ξ − iη)
∣∣∣∣û(ξ − iη)

∣∣ dξ

≤ C(x, η,N,R)

∫

Rd

(
1 + |ξ|

)−(d+1)
dξ

< ∞ .

It follows from the last line in (22) that

Au(x) = F−1
η

(
A(· − iη)Fη(u)

)
(x) .

In order to prove the continuity property, we choose u ∈ C∞
0 (Rd,C), and inserting (17) we

estimate

∥∥Au
∥∥2

Hs−α
η (Rd)

=

∫

Rd

∣∣Fη

(
Au
)∣∣2(1 + |ξ|

)2(s−α)
e2〈η,ξ〉 dξ

=

∫

Rd

∣∣A(ξ − iη)
∣∣2∣∣Fη(u)(ξ)

∣∣2(1 + |ξ|
)2(s−α)

e2〈η,ξ〉 dξ

≤ C2
η(1 + |η|)2α

∫

Rd

∣∣Fη(u)(ξ)
∣∣2(1 + |ξ|

)2s
e2〈η,ξ〉 dξ

= c(η)‖u‖2
Hs

η(Rd) .

By density, the operator has a unique continuous extension A : Hs
η(Rd) → Hs−α

η (Rd). �
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5. Parabolic Equation

In Glau (2011) a Sobolev index is introduced, and it is shown that the evolution problem
associated with a Lévy process with Sobolev index α has a unique weak solution in the
Sobolev–Slobodeckii space Hα/2. In this section, we generalize the results obtained in Glau
(2011) to the case of weighted Sobolev–Slobodeckii spaces, and we examine Rd-valued time-
inhomogeneous Lévy processes instead of genuine Lévy processes.

Let L be an Rd-valued PIIAC with local characteristics
(
bs, σs, Fs

)
for s ≥ 0. Let us consider

the following assumptions on the symbol A of the process as defined in (5).

(A1) Assume
T∫

0

∫

|x|>1

e−〈η′,x〉 Fs(dx) ds <∞ ∀η′ ∈ Rη .

(A2) There exists a constant C1 > 0 with
∣∣At(z)

∣∣ ≤ C1

(
1 + |z|

)α

for all z ∈ U−η and for all t ∈ [0, T ]. (Continuity condition)
(A3) There exist constants C2 > 0 and C3 ≥ 0, such that for a certain 0 ≤ β < α

ℜ
(
At(z)

)
≥ C2

(
1 + |z|

)α
− C3

(
1 + |z|

)β

for all z ∈ U−η and for all t ∈ [0, T ]. (G̊arding condition)

Let us make the following remarks.

Remark 5.1. (i) For Lévy processes with Brownian part the conditions (A2) and (A3)
are valid for α = 2 and those η ∈ R that satisfy assumption (A1). In particular
the Brownian motion (with drift) satisfies the assumptions for every η ∈ R, compare
section 7, where also further examples are studied.

(ii) Conditions (A1)–(A3) are for example satisfied for CGMY-processes with parameters
C, G, M > 0 and Y ∈ [1, 2) with α = Y and η ∈ (−M,G).

Remark 5.2. Conditions (A2) and (A3) are not necessary assumptions of theorem 5.3 about
the existence and uniqueness of the weak solution of the corresponding PIDE in a weighted
Sobolev-Slobodeckii space. We choose this set of assumptions, since usually the symbol is
well known for real arguments and it is hence convenient to extend the polynomial growth
conditions to the complex domain U−η. Moreover by theorem 4.1, this approach allows us to
work in a unique framework for the PDO A associated with exponentially weighted Sobolev-
Slobodeckii spaces Hs

η(Rd) with different weights η.
However, it is instead also possible to assume the growth conditions (A2) and (A3) only

for a fixed imaginary part of the arguments, i.e. for the function x 7→ At(x − iη). Instead of

(A1) one would then assume
∫ T
0

∫
|x|>1 e−〈η,x〉 Fs(dx) ds <∞.

Under assumptions (A1) and (A2), we conclude from theorem 4.1, that for every fixed
t ∈ [0, T ] the operator At|C∞

0
(Rd,C) : C∞

0 (Rd,C) → C∞(Rd,C) associated with the symbol At

has a unique linear and continuous extension

At : Hα/2
η (Rd) → H−α/2

η (Rd)
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with Atu = F−1
η

(
At(· − iη)Fη(u)

)
for all u ∈ H

α/2
η (Rd). Since the Hilbert spaces H

−α/2
η (Rd)

and
(
H

α/2
η (Rd)

)′
are isomorphic, the operators At can be identified with continuous linear

operators

At : Hα/2
η (Rd) →

(
Hα/2

η (Rd)
)′
.

Let us further define the family of bilinear forms at by

at(ϕ,ψ) :=
(
Atϕ

)
(ψ) for ϕ, ψ ∈ Hα/2

η (Rd) (23)

for every t ∈ [0, T ]. Inserting Parseval’s equality (11), we obtain for every ϕ, ψ ∈ H
α/2
η (Rd)

the equality

at(ϕ,ψ) =
1

(2π)d
〈Fη(Atϕ),Fη(ψ)〉L2

η(Rd)

=
1

(2π)d

∫
At(ξ − iη)Fη(ϕ)(ξ)Fη(ψ)(ξ) e2〈η,ξ〉 dξ

=
1

(2π)d

∫
At(ξ − iη)ϕ̂(ξ − iη)ψ̂(ξ − iη) dξ

for each t ∈ [0, T ].

Theorem 5.3. Let L be an Rd-valued PIIAC with local characteristics
(
bs, σs, Fs

)
for s ≥ 0

and symbol A = (At)t∈[0,T ] and associated pseudo differential operators (At)t∈[0,T ]. If the
assumptions (A1)–(A3) are satisfied, the parabolic equation

∂tu+ Atu = f

u(0) = g ,
(24)

with real-valued f ∈ L2
(
0, T ;H

−α/2
η (Rd)

)
and real-valued initial condition g ∈ L2

η(R
d) has a

unique weak solution u ∈W 1
(
0, T ;H

α/2
η (Rd), L2

η(R
d)
)
, and the estimate

‖u‖
W 1(0,T ;H

α/2

η (Rd),L2
η(Rd))

≤ C(T )
(
‖f‖

L2(0,T ;H
−α/2

η (Rd))
+ ‖g‖L2

η(Rd)

)

with a constant C(T ) > 0, only depending on T , is satisfied.

The space W 1
(
0, T ;H

α/2
η (Rd), L2

η(R
d)
)

consists of those functions u ∈ L2
(
0, T ;H

α/2
η (Rd)

)

that have a derivative with respect to time ∂tu in a distributional sense that belongs to the

space L2
(
0, T ;

(
H

α/2
η (Rd)

)′)
. For a Hilbert space H, the space L2

(
0, T ;H

)
denotes the space

of functions u : [0, T ] → H, that are weakly measurable and that satisfy
∫ T
0 ‖u(t)‖2

H dt <
∞. For the definition of weak measurability and for a detailed introduction of the space
W 1
(
0, T ;Hα/2(Rd), L2(Rd)

)
that relies on the Bochner integral, we refer to the book of Wloka

(1987).

Proof. To apply the classical result on existence and uniqueness of solutions of linear parabolic
equations in Hilbert spaces, see e.g. Wloka (1982, Satz 25.5, S. 381), it is at this point sufficient

to verify the G̊arding inequality of the bilinear form a : [0, T ] ×H
α/2
η (Rd) ×H

α/2
η (Rd) → R

uniformly in t ∈ [0, T ]. For ϕ ∈ H
α/2
η (Rd), we conclude

ℜ
(
at(ϕ,ϕ)

)
=

1

(2π)d

∫
ℜ
(
At(ξ − iη)

)∣∣Fη(ϕ)(ξ)
∣∣2 e2〈η,ξ〉 dξ .
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From the G̊arding condition (A3) and an elementary calculation the G̊arding inequality

ℜ
(
at(ϕ,ϕ)

)
≥ C2‖ϕ‖

2

H
α/2

η (Rd)
− C ′

3‖ϕ‖
2
L2

η(Rd) .

with constants C2 > 0 and C ′
3 ≥ 0 follows uniformly in t ∈ [0, T ]. �

6. Explicit solution of the Fourier transformed equation

and a Feynman–Kac formula

In Theorem 5.3, we showed the existence of a unique solution of the parabolic equation
(24) under (A1)–(A3). We will now look for a more explicit form of this solution in the
homogeneous case f ≡ 0. Since we are moreover interested in a stochastic representation of
the solution that usually corresponds to an evolution problem with given terminal condition,
we replace the operator A t in equation (24) with A T−t. Thus we consider

∂tu+ A T−tu = 0

u(0) = g ,
(25)

with real-valued initial condition g ∈ L2
η(R

d). It will turn out that the weak solution has an
explicit Fourier transform. Furthermore it is smooth.

In order to derive the Fourier representation, let us notice that a function u that belongs
to the space W 1

(
0, T ;Hα

η (Rd), L2
η(R

d)
)

is a solution of the linear parabolic equation (25), if
and only if

Fη(∂tu) + Fη(A T−tu) = 0 in L2
(
0, T ; Ĥ−α(Rd)

)
(26)

and
Fη

(
L2

η−lim
t↓0

u(t)
)

= Fη(g) . (27)

It is a consequence of the continuity of the Fourier transform Fη with respect to the L2
η-norm,

that equation (27) is equivalent to L2
η − limt↓0 Fη(u(t)) = Fη(g). Furthermore the equality

Fη

(
∂tu
)

= ∂tFη(u) can be derived inserting the definition of the Bochner integral: For every

ψ ∈ C∞
0 ((0, T )) the following chain of equalities for elements in the Hilbert space

(
Hα

η (Rd)
)′

holds,

T∫

0

Fη

(
∂su(s)

)(
ψ(s)

)
ds = Fη

( T∫

0

(
∂su(s)

)(
ψ(s)

)
ds

)
= −Fη

( T∫

0

(
u(s)

)(
∂sψ(s)

)
ds

)

= −

T∫

0

Fη

(
u(s)

)(
∂sψ(s)

)
ds =

T∫

0

(
∂sFη

(
u(s)

))(
ψ(s)

)
ds .

From Theorem 4.1 we conclude

Fη(A tv) = At(· − iη)Fη(v) for all v ∈ Hs
η(Rd) .

Altogether, we have u ∈W 1
(
0, T ;H

α/2
η (Rd), L2

η(R
d)
)

is a solution of equation (25), iff Fη(u)

belongs to the space W 1
(
0, T ; Ĥ

α/2
η (Rd), L2

η(R
d)
)
, and if Fη(u) solves the ordinary differential

equation (ODE)

∂tFη(u) +AT−t(· − iη)Fη(u) = 0

Fη(u)(t = 0) = Fη(g) .
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Theorem 6.1. Assume (A1)–(A3). The function u ∈W 1
(
0, T ;H

α/2
η (Rd), L2

η(R
d)
)

is a weak

solution of equation (25), iff Fη(u) ∈W 1
(
0, T ; Ĥ

α/2
η (Rd), L2

η(R
d)
)

and the Fourier transform
Fη(u) solves the ODE

∂tFη

(
u(t)

)
(ξ) +AT−t(ξ − iη)Fη(u(t))(ξ) = 0 in (0, T ) for a.e. ξ ∈ R

d

Fη

(
u(t = 0)

)
=Fη(g) .

(28)

The solution of (28) is given by

Fη

(
u(t)

)
(ξ)) = Fη(g)(ξ) e−

∫ T
T−t As(ξ−iη) ds (29)

and hence

u(t, x) =
e−〈η,x〉

(2π)d

∫

Rd

e−i〈ξ,x+iη〉Fη(g)(ξ) e−
∫ T

T−t As(ξ−iη) ds dξ (30)

is the weak solution of equation (25). If furthermore the mapping t 7→ At(ξ− iη) is continuous
for every fixed ξ ∈ Rd, then we have u ∈ C1

(
(0, T );Hm

η (Rd)
)

for every m ∈ N and hence

u ∈ C1
(
(0, T ), Cm(Rd)

)
for every m ≥ 0 is the pointwise solution of the equation (25).

As a direct consequence, under the additional assumption that gη ∈ L1, we obtain the
stochastic representation

u(T − t, x) = E
(
g(Lt

T−t + x)
)

(31)

with Lt
T−t := LT −Lt. We use this notation since the process Lu :=

(
Lu+s−Lu

)
s≥0

is a PIIAC

as well, and the local characteristics of Lu, (bL
u

s , σLu

s , FLu

s ), with respect to the truncation
function h are given by

(
bu+s, σu+s, Fu+s

)
.

To show equation (31), we fix t and T and we set

U(x) := E
(
g(Lt

T−t + x)
)

= e−〈η,x〉E
(
e−〈η,Lt

T−t〉 gη(L
t
T−t + x)

)
,

then a short calculation based on Fubini’s theorem provides

Fη(U)(ξ) = e−〈η,ξ〉F(Uη)(ξ) = Fη(g)E
(
ei〈LT−Lt,iη−ξ〉

)
= Fη(g) e−

∫ T
t As(ξ−iη) ds .

Let us notice that the real-valued initial function g results in a real-valued solution u of
the parabolic equation. This stems from the fact that A tϕ is real-valued, if ϕ ∈ C∞

0 (Rd,R).
Let us mention that this property of a PDO A can be translated to symmetry properties of
the corresponding symbol, compare e.g. p. 206 in Glau (2010).

Remark 6.2. Theorem 6.1 illuminates the parallelism between Fourier and PIDE methods
for option pricing: The PIDEs for European options are interpreted as a pseudo differential
equation, then the Fourier transform is applied which results in an ordinary differential equa-
tion that can be solved explicitly. The solution leads to equation (30) which coincides with
the famous convolution formula for option prices, derived independently in Carr and Madan
(1999) and Raible (2000). See Eberlein et al. (2010) for a derivation of the formula under
conditions similar to (A1)–(A3).

Proof of theorem 6.1: Our previous arguments show the equivalence of equations (25) and
(28). Equations (29) and (30) are immediate consequences. Hence we are left to show that
the function u defined by equation (29) resp. (30) satisfies u ∈ C1

(
(0, T ), Hm

η (Rd)
)

and

u ∈ C1
(
(0, T ), Cm(Rd)

)
for every m ≥ 0.
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An elementary calculation provides that the G̊arding inequality yields

ℜ
(
As(ξ − iη)

)
≥ C1|ξ|

α − C2

(
s ∈ (0, T ), ξ ∈ R

d
)
.

with a strictly positive constant C1 and C2 ≥ 0. Whence the inequality

e−
∫ t

s ℜ(Au(ξ−iη)) du ≤ c2 e−(t−s)C1|ξ|α (32)

with a positive constant c2 independent of s ∈ [0, T ].
We derive successively for every t ∈ (0, T ) and for every m ≥ 0

(i) u(t) ∈ Hm
η (Rd),

(ii) lims→t ‖u(t) − u(s)‖Hm
η (Rd) = 0,

(iii) ∂tu(t) = F−1
η

(
AT−t(· − iη)Fη

(
u(t)

))
∈ Hm

η (Rd) and

(iv) lims→t ‖∂tu(t) − ∂su(s)‖Hm
η (Rd) = 0

hence u ∈ C1
(
(0, T ), Hm

η (Rd)
)

for every m ≥ 0. In view of the smoothness of the weight
function, we conclude from the Sobolev embedding theorem, compare e.g. Wloka (1982), that
the function u also belongs to the space C1

(
(0, T ), Cm(Rd)

)
for every m ≥ 0.

Let us first estimate the norm of u,

‖u(t)‖2
Hm

η (Rd) =

∫
|Fη(u(t))(ξ)|

2(1 + |ξ|)2m e2〈η,ξ〉 dξ

=

∫
|Fη(g)(ξ)|

2
∣∣ e−2

∫ T
T−t As(ξ−iη) ds

∣∣(1 + |ξ|)2m e2〈η,ξ〉 dξ

=

∫
|Fη(g)(ξ)|

2 e−2
∫ T

T−t ℜ(As(ξ−iη) ds(1 + |ξ|)2m e2〈η,ξ〉 dξ

≤ c2

∫
|Fη(g)(ξ)|

2 e2〈η,ξ〉 e−2tC1|ξ|α(1 + |ξ|)2m dξ

<∞

for every t > 0 and every m ≥ 0.
In order to derive (ii) we conclude

‖u(t) − u(s)‖2
Hm

η (Rd)

=
∥∥∥Fη(g) e−

∫ T
T−s Au(·−iη) du

∣∣ e−
∫ T−s

T−t Au(·−iη) du −1
∣∣
∥∥∥

2

Ĥm
η (Rd)

=

∫

Rd

∣∣F(gη)(ξ)
∣∣2 e−2

∫ T
T−s ℜ(Au(ξ−iη)) du

∣∣∣ e−
∫ T−s

T−t Au(ξ−iη) du −1
∣∣∣
2(

1 + |ξ|
)2m

dξ

→ 0 (s→ t) ,

which follows by dominated convergence if t > ǫ > 0 orm = 0, since
∣∣ e−

∫ T−s
T−t Au(ξ−iη) du −1

∣∣→
0 for s→ t and

sup
ξ∈Rd

∣∣ e−
∫ T−s

T−t Au(ξ−iη) du −1
∣∣ ≤ const .
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In order to derive the explicit expression for the Fourier transform of the time derivative
of u given in (iii) we consider
∥∥∥
u(t) − u(s)

t− s
−F−1

η

(
AT−t(· − iη)Fη(u(t))

)∥∥∥
Hm

η (Rd)
(33)

=

∥∥∥∥∥Fη(g)

(
e−

∫ T
T−t Au(·−iη) du − e−

∫ T
T−s Au(·−iη) du

t− s
−AT−t(· − iη) e−

∫ T
T−t Au(·−iη) du

)∥∥∥∥∥
Ĥm

η (Rd)

.

From the continuity of t 7→ At(ξ − iη) for every fixed ξ ∈ Rd we get

e−
∫ T

T−t Au(ξ−iη) du − e−
∫ T

T−s Au(ξ−iη) du

t− s
→ AT−t(ξ − iη) e−

∫ T
T−t Au(·−iη) du for s→ t

for every fixed ξ ∈ Rd. From inequality (32) and assumption (A2) it follows
∣∣∣AT−t(· − iη) e−

∫ T
T−t Au(·−iη) du

∣∣∣ ≤ C2

(
1 + |ξ|

)α
e−tC1|ξ|α (34)

with a positive constant C2. Because of the continuity of t 7→ At(ξ− iη) for every fixed ξ ∈ Rd

the mean-value theorem moreover yields together with inequality (32) and assumption (A2)

∣∣∣
e−

∫ T
T−t Au(ξ−iη) du − e−

∫ T
T−s Au(ξ−iη) du

t− s

∣∣∣ ≤ C3

(
1 + |ξ|

)α
e−(t∧s)C1|ξ|α (35)

with a constant C3 > 0. Hence by dominated convergence we get that the term (33) vanishes
for s → t for any t ∈ (0, T ), which shows ∂tu(t) = F−1

η

(
AT−t(· − iη)Fη(u(t))

)
∈ Hm

η (Rd) for
every m ≥ 0.

The continuity of the time derivative as a function [ǫ, T ] → Ĥm
η (Rd) i.e. assertion (iv)

follows in a similar way. 2

7. Examples

We provide examples of classes of time-inhomogeneous Lévy processes that satisfy the
assumptions (A1)–(A3). Let us first consider Lévy processes.

Example 7.1 (σ positive definite). For Lévy processes with a Brownian part and a positive
definite covariance matrix σ, the assumptions (A2) and (A3) with α = 2 are satisfied for
every choice of η ∈ R such that assumption (A1) is satisfied. In particular, for α = 2 the
assumptions are satisfied for the Brownian motion with or without drift for every η ∈ R.

In order to derive the G̊arding condition, we conclude by lemma 2.2 (c)

ℜ
(
A(ξ − iη′)

)
= A(−iη′) +

1

2
〈ξ, σξ〉 −

∫ (
cos(〈ξ, x〉

)
− 1
)
F−η′

(dx) .

Since the integrand is nonpositive and σ is positive definite we get

ℜ
(
A(ξ − iη′)

)
≥ A(−iη′) +

1

2
σ|ξ|2 ,

where σ denotes the smallest eigenvalue of the matrix σ. The G̊arding condition follows, since
|A(−iη′)| is bounded for all η′ ∈ Rη by some constant only depending on η which can be
shown similar to inequality (8) by summing up over all possible combinations of signs. In a
similar way, the continuity condition can be derived.
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Example 7.2 (GH-processes). GH-processes with parameters λ, α′, β and δ satisfy the
assumptions (A1)–(A3) with index α = 1, if the GH-parameters α′ and β satisfy

β − α′ < η < β + α′ .

Let us briefly derive that statement. It is shown in Raible (2000, Appendix A.1) that
the characteristic function of the GH-distribution has an analytic extension for z ∈ C to
the domain −α′ < β − ℑ(z) < α′. In particular this entails E e−ηLt < ∞ and hence∫
|x|>1 e−ηx F (dx) < ∞ for −α′ < β − η < α′. From lemma 2.2 we obtain the following

representation of the symbol A of the GH-process

A(ξ − iη) = A(−iη) + ib−ηξ +

∫ (
e−iξx −1 − iξx) e−ηx FGH(dx) ,

where b−η = µ +
∫

(e−ηx −1)xFGH
t (dx) and (µ, 0, FGH) are the local characteristics of the

GH-process with respect to the truncation function h(x) = x.
Moreover, the Lévy measure FGH has a Lebesgue density fGH , whose behaviour around

the origin is explored in Raible (2000). The asymptotic behaviour around the origin remains
unaffected when multiplying with the term e−η·. Therefore the statement can be proven as in
the case η = 0 which is treated in Glau (2011).

CGMY processes can be discussed along the same lines.

7.1. Examples of time-inhomogeneous Lévy processes. For time-inhomogeneous Lévy
processes we make the following assumptions on the local characteristics (bt, σt, Ft)t≥0.

Assumption 7.3.

sup
s∈[0,T ]

{
|bs| + ‖σs‖M(d×d) +

∫ (
|x|2 ∧ 1

)
Fs(dx)

}
<∞ .

Time-inhomogeneous Lévy processes with local characteristics (bt, σt, Ft)t∈[0,T ], that have a
Brownian part with (σt)t∈[0,T ] being uniformly positive definite and that satisfy an appropriate
exponential moment condition, satisfy assumptions (A1)–(A3):

Example 7.4. Let L be a PIIAC with symbol (At)t∈[0,T ], PDO (At)t∈[0,T ] and characteristic
triplet (bt, σt, Ft)t∈[0,T ]. If Assumption 7.3 is satisfied and

sup
t∈[0,T ]

∫

|x|>1

e〈η
′,x〉 Ft(dx) <∞

(
η′ ∈ U−η

)
,

which is a stronger condition than assumption (A1), and if furthermore the family of matrices
(σt)t≥0 is uniformly positive definite in the following sense,

inf
t∈[0,T ]

‖σt‖M(d×d) ≥ σ > 0 ,

then A satisfies the continuity and G̊arding condition (A2) and (A3) with index α = 2.
In order to show this, we conclude from lemma 2.2

∣∣At(ξ − iη)
∣∣ ≤ |At(−iη)| +

∣∣〈b−η
t , ξ〉

∣∣+ 1

2

∣∣〈ξ, σtξ〉
∣∣+
∣∣∣
∫ (

e−i〈ξ,x〉−1 + i〈ξ, h(x)〉
)
F

−η
t (dx)

∣∣∣
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with b−η and F−η as in the lemma. Inserting assumption (7.3) yields

|At(−iη)| ≤ sup
t∈[0,T ]

{
|bt||η| +

1

2
‖σt‖

2
M(d×d)|η|

2 +
∣∣∣
∫ (

e−〈η,x〉−1 + 〈η, h(x)〉
)
Ft(dx)

∣∣∣

}

≤ c1(η) ,

and together with

|b−η
t | ≤ |bt| +

∣∣σtη
′
∣∣+
∫ ∣∣ e−〈η,x〉−1

∣∣h(x)Ft(dx) ≤ c2(η)

and
∣∣〈b−η

t , ξ〉
∣∣+ 1

2

∣∣〈ξ, σtξ〉
∣∣ ≤ sup

t∈[0,T ]
|b−η

t ||ξ| + sup
t∈[0,T ]

‖σt‖
2
M(d×d)|ξ|

2

we get the continuity condition

∣∣At(ξ − iη)
∣∣ ≤ |At(−iη)| +

∣∣〈b−η
t , ξ〉

∣∣+ 1

2

∣∣〈ξ, σtξ〉
∣∣+
∣∣∣
∫ (

e−i〈ξ,x〉−1 + i〈ξ, h(x)〉
)
F

−η
t (dx)

∣∣∣

≤ c(η)
(
1 + |ξ| + |ξ|2

)
.

On the other hand we have

ℜ
(
At(ξ − iη)

)
= ℜ

(
At(−iη)

)
+

1

2
〈ξ, σtξ〉 −

∫ (
cos
(
〈ξ, x〉

)
− 1〉

)
F

−η
t (dx)

≥ min
t∈[0,T ]

‖σt‖
2
M(d×d)|ξ|

2 − sup
t∈[0,T ]

∣∣At(−iη)
∣∣ ,

whence the G̊arding condition.

Appendix A. A multivariate version of Cauchy’s theorem

We start with a formulation of Cauchy’s theorem for rectangles. This formulation is based
on the usual version of Cauchy’s theorem for rectangles, that is e.g. provided in Jänich (1996).
From standard arguments we obtain the following lemma.

Lemma A.1. (A) Let R1 := [a1, a2] × i[b1, b2] with −∞ < a1 < a2 < ∞ and −∞ < b1 <

b2 <∞ and let γ := ∂R1.

If f is holomorphic in the interior
◦
R1 of the rectangle R1 and continuous on R1 =

R1, then ∫

γ

f(z) dz = 0 .

(B) Let R := (−∞,∞)× i[b1, b2] with −∞ < b1 < b2 <∞ and let f be holomorphic in the

interior
◦
R of R and continuous on R = R. Furthermore assume f(·+ ib1), f(·+ ib2) ∈

L1(R). For every y ∈ [b1, b2] we assume
∣∣f(K + iy)

∣∣→ 0 for K ∈ R, |K| → ∞

and that there exists an upper bound h ∈ L1
(
(b1, b2)

)
such that

∣∣f(K + iy)
∣∣+
∣∣f(−K + iy)

∣∣ ≤ h(y) for all y ∈ [b1, b2] uniformly in K.
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Then
∞∫

−∞

f(x+ ib1) dx =

∞∫

−∞

f(x+ ib2) dx .

We prove a generalization of the version of Cauchy’s theorem provided in lemma A.1 for
the multivariate case.

Lemma A.2. Let Rj := (−∞,∞) × i[bj , βj ] with −∞ < bj < βj < ∞ for j = 1, . . . , d and

Qd = R1 × . . . Rd. Let f : Qd → C be holomorphic in the interior
◦
Qd of Qd, and continuous

on Qd = Qd. Further, we assume the following integrability and convergence properties.

(i) Assume

f(z) → 0 for |ℜ(z)| → ∞ and ℑ(z) ∈ [b1, β1] × . . .× [bd, βd]

with z = (z1, . . . , zd).
(ii) For zj = xj + iyj with xj ∈ R and yj ∈ [bj , βj ] for j = 1, . . . , d we assume

∣∣f(z1, . . . , zd)
∣∣ ≤ h(x1, . . . , xd) uniformly for y ∈ [b1, β1] × . . .× [bd, βd]

with a function h ∈ L1(Rd). For d = 1 let c > 0 be a constant such that
∣∣h(x)

∣∣ ≤ c for all x ∈ R .

In the case d > 1 we additionally assume for every j ∈ {1, . . . , d} the existence of a
function hj ∈ L1(Rd−1) such that

∣∣h(x1, . . . , xd)
∣∣ ≤ hj(x1, . . . xj−1, xj+1, . . . , xd)

for all (x1, . . . , xd) ∈ Rd.

Then the following is true
∞∫

−∞

. . .

∞∫

−∞

f(x1 + ib1, . . . , xd + ibd) dx1 . . .dxd

=

∞∫

−∞

. . .

∞∫

−∞

f(x1 + iy1, . . . , xd + iyd) dx1 . . .dxd .

for every y ∈ [b1, β1] × . . .× [bd, βd].

Proof. We verify the assertion by induction over the dimension d. For the base case d = 1 the
assertion follows from part (B) of lemma A.1.

Assume the assertion is true for the dimensions 1, . . . , d. We observe that the integrability
condition (ii) assures that the integral

I :=

∞∫

−∞

dxd+1

∞∫

−∞

dxd . . .

∞∫

−∞

dx1 f(x1 + ib1, . . . , xd+1 + ibd+1) (36)

is well defined and

I = lim
K→∞

K∫

−K

dxd+1

∞∫

−∞

dxd . . .

∞∫

−∞

dx1 f(x1 + ib1, . . . , xd+1 + ibd+1) .
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For y ∈ [b1, β1] × . . .× [bd, βd] and z ∈ Rd+1 we let

gy(z) :=

∞∫

−∞

dxd . . .

∞∫

−∞

dx1 f(x1 + iy1, . . . , xd + iyd, z) .

In this notation the integral in (36) reads

I =

∞∫

−∞

g(b1,...,bd)(x+ ibd+1) dxd+1 .

We prove successively the following assertions.

(a) For every y ∈ Qd = Qd the mapping z 7→ gy(z) is continuous in Rd+1.
(b) Let b = (b1, . . . , bd). For every yd+1 ∈ [bd+1, βd+1] and every x ∈ R we have

gb(x+ iyd+1) = gy(x+ iyd+1) for all y ∈ Qd = Qd .

(c) For every fixed y ∈
◦
Qd the mapping z 7→ gy(z) is holomorphic in the interior

◦
Rd+1 =

(−∞,∞) × (bd+1, βd+1) of Rd+1.

(d) For every y ∈
◦
Qd

gy(z) → 0 for
∣∣ℜ(z)

∣∣→ 0 with ℑ(z) ∈ [bd+1, βd+1]

and there exists a constant c > 0 such that
∣∣gy(z)

∣∣ ≤ c for all y ∈
◦
Q.

(e) For every fixed y ∈
◦
Qd

∞∫

−∞

gy(x+ ibd+1) dx =

∞∫

−∞

gy(x+ iy′) dx for all y′ ∈ [bd+1, βd+1] .

When assertions (a)–(e) are shown, they allow for the following chain of equalities

I =

∞∫

−∞

g(b1,...,bd)(x+ ibd+1) dx

(b)
=

∞∫

−∞

g(y′

1
,...,y′

d)(x+ ibd+1) dx
(
y′j ∈ (bj , βj) , j = 1, . . . , d

)

(e)
=

∞∫

−∞

g(y′

1
,...,y′

d)(x+ iyd+1) dx
(
yd+1 ∈ [bd+1, βd+1]

)

(b)
=

∞∫

−∞

g(y1,...,yd)(x+ iyd+1) dx
(
yj ∈ [bj , βj ] , j = 1, . . . , d+ 1

)

=

∞∫

−∞

dxd+1 . . .

∞∫

−∞

dx1 f(x1 + iy1, . . . , xd+1 + iyd+1)

for every (y1, . . . , yd, yd+1) ∈ [b1, β1]× . . .× [bd, βd]× [bd+1, βd+1], whence the lemma is proved.
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Assertion (a) is a direct consequence of the continuity of the function f in Qd+1 = Qd+1

and the estimate
∣∣f(z1, . . . , zd, z) − f(z1, . . . , zd, z

′)
∣∣ ≤ 2hd+1

(
ℜ(z1), . . . ,ℜ(zd)

)

for an integrable function hd+1 ∈ L1(Rd), which exists by assumption (ii).
Assertion (b) does not follow directly from the induction hypothesis, since the mapping

y 7→ gy(x+ibd+1) is not holomorphic in general for y ∈
◦
Qd, as for z ∈

◦
Qd and x ∈ R the points

(z1, . . . , zd, x+ ibd+1) do not lie in the interior of Qd+1 where f is known to be holomorphic.
Note that for every 0 < ǫ′ < βd+1 − bd+1 the mapping

(z1, . . . , zd) 7→ f(z1, . . . , zd, x+ i(bd+1 + ǫ′))

is holomorphic in the interior of Qd and continuous on Qd. The convergence and integrability
assumptions (i) and (ii) are obviously satisfied for the function (z1, . . . , zd) 7→ f(z1, . . . , zd, x+
i(bd+1 + ǫ′)) and the induction hypothesis yields

gb(z) = gy(z) for all z ∈
◦
Rd+1 .

The continuity of the map z 7→ gy(z) for y ∈ Qd and z ∈ Rd+1, provided in assertion (a)
shows

gb(z) = gy(z) for all z ∈ Rd+1 .

Proof of assertion (c): To verify the analyticity of the map z 7→ gy(z) in the interior of Rd+1,
let △ be an arbitrary triangle (non-degenerate), that lies completely in Rd+1. Let us further

denote by γ a curve surrounding the triangle △. For y ∈
◦
Rd we conclude with the help of the

theorem of Fubini,

∫

γ

gy(z) dz =

∫

γ

dz

∞∫

−∞

dxd . . .

∞∫

−∞

dx1 f(x1 + iy1, . . . , xd + iyd, z)

=

∞∫

−∞

dxd . . .

∞∫

−∞

dx1




∫

γ

f(x1 + iy1, . . . , xd + iyd, z) dz



 .

Fubini’s theorem is justified here, since we have
∣∣f(x1+iy1, . . . , xd+iyd, z)

∣∣ ≤ hd+1(x1, . . . , xd)

with hd+1 ∈ L1(Rd) by assumption and the curve γ is of finite length. Further, as (y, z) lies

inside of
◦
Qd+1 for z ∈ γ, the mapping

z 7→ f(x1 + iy1, . . . , xd + iyd, z)

is holomorphic in
◦
Rd+1 ⊃ △. An application of the lemma of Goursat yields

∫

γ

f(x1 + iy1, . . . , xd + iyd, z) dz = 0

for every (x1 + iy1, . . . , xd + iyd) ∈
◦
Qd. Hence we get
∫

γ

gy(z) dz = 0 .
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In view of the continuity assertion (a), the theorem of Morera yields that for y ∈
◦
Qd the map

z 7→ gy(z) is holomorphic in
◦
Rd+1.

Proof of assertion (d): From assumption (i) and (ii) of the theorem, we know that
∣∣f(x1 + iy1, . . . , xd + iyd, z)

∣∣→ 0

for
∣∣ℜ(z)

∣∣→ ∞ and ℑ(z) ∈ [bd+1, βd+1] and
∣∣f(x1 + iy1, . . . , xd + iyd, z)

∣∣ ≤ hd+1(x1, . . . , xd)

with hd+1 ∈ L1(Rd). As a direct consequence, we obtain

∣∣gy(z)
∣∣ ≤

∞∫

−∞

dxd . . .

∞∫

−∞

dx1

∣∣f(x1 + iy1, . . . , xd + iyd, z)
∣∣ ≤ const. <∞

uniformly for all z ∈ C with ℑ(z) ∈ [bd+1, βd+1], and via dominated convergence, we obtain
furthermore

gy(z) =

∞∫

−∞

dxd . . .

∞∫

−∞

dx1 f(x1 + iy1, . . . , xd + iyd, z) → 0

for
∣∣ℜ(z)

∣∣→ ∞ and ℑ(z) ∈ [bd+1, βd+1], which proves assertion (d).
Assertion (e) is a direct consequence of the assertions (a), (c), (d) and lemma A.2. �
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