) iy

Technical University of Munich
Department of Electrical and Computer Engineering
Chair of Electronic Design Automation

Mathematical Methods of Circuit Design

Textbook

Helmut Graeb

Formerly ,,Optimization Methods for Circuit Design*
Since WS 19/20 ,,Mathematical Methods of Circuit Design*®
Since SS 2020 as textbook

Version 3.0 - 3.2 (SS 20 - WS 21/22) Helmut Graeb
Version 2.11 - 2.13 (WS 15/16 - WS 18/19) Maximilian Neuner
Version 2.8 - 2.11 (WS 12/13 - WS 15/16) Michael Zwerger
Version 2.0 - 2.7 WS 08/09 - SS 12) Michael Eick
Version 1.0 - 1.2 SS 07 - SS 08) Husni Habal

Presentation follows:
H. Graeb, Analog Design Centering and Sizing, Springer, 2007.
R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, 2nd Edition, 2000.

Status: September 1, 2021

Copyright 2008 - 2021
Mathematical Methods of Circuit Design
Textbook

Helmut Graeb

Technical University of Munich

Chair of Electronic Design Automation
Arcisstr. 21

80333 Munich, Germany
helmut.graeb@tum.de
graeb@protonmail.com

Phone: +49-170-9024260

All rights reserved.

Contents

1__Introduction| 1
(1.1 Parameters, pertormance, simulation| 2
(1.2 Performance specification|. 4
(1.3 Design flow| 5
(1.4 Organization of the presentation|. 6

2 Some basics of optimization| 9
[2.1 Maximization, minimization, minimum, unconstrained optimization| 9
[2.2 Constrained optimization|. 10
[2.3 Classification of optimization problems 12
[2.4 Multivariate Taylor series| 14
[2.5 Structure of an iterative optimization process| 16

3 Optimality conditions| 19
[3.1 Optimality conditions — unconstrained optimization| 19

[3.1.1 First-order condition for a local minimum of an unconstrained op- [

timization problem| 00000 21

B17 S Tord Ton T ool oo [—od l

| optimization problem|. L. 21
[3.2 Optimality conditions — constrained optimization| 24
[3.2.1 Feasible descent direction x| 24

[3.2.2 First-order conditions for a local minimum of a constrained opti- |

mization problem (Karush-Kuhn-Tucker (KKT) conditions)| 27

[3.2.3 Second-order condition for a local minimum of a constrained opti- |

mization problem| 29

[3.2.4 Sensitivity of the optimum objective value with regard to a change |

10 an active constraintl L L. L. 30

Mathematical Methods of Circuit Design i

[4 Worst-case analysis| 31

BT Taskl . . . oo 31
4.2 Typical tolerance regions| oL 33
4.3 Linear performance model| L. 34
4.4 Classical worst-case analysis| 36
[4.4.1 Classical worst-case analysis, lower worst casel 37
[4.4.2 Classical worst-case analysis, upper worst case| 38
4.5 Realistic worst-case analysis| 39
[4.5.1 Realistic worst-case analysis, lower worst case] 41
[4.5.2 Realistic worst-case analysis, upper worst case| 43
4.6 General worst-case analysis| L 44

[4.6.1 General worst-case analysis, lower worst case, tolerance hyperellipsoid| 45

[4.6.2 General worst-case analysis, upper worst case, tolerance hyperellisoid| 47

[4.6.3 General worst-case analysis, tolerance hyperrectangle] 47

a7

Input/output of worst-case analysis| 48

Mathematical Methods of Circuit Design ii

[> Unconstrained optimization| 51

BI Tinesearchl 51
[5.2 Golden sectioning| 55
[>.3 Line search by quadratic model| 57
[>.4 Backtracking line searchl o000 58

(5.5 Coordinate search for multivariate unconstrained optimization without deriva- |

[5.6 Polytope method (Nelder-Mead simplex method) for multivariate uncon- |
| strained optimization without derivatives| 61

[5.7 Newton approach for multivariate unconstrained optimization with deriva- |

[>.8 Quasi-Newton approach for multivariate unconstrained optimization with [
| derivatives L 66

[5.9 Levenberg-Marquardt approach (Newton direction plus trust region) for |
| multivariate unconstrained optimization with derivatives 68

[5.10 Least-squares (plus trust-region) approach for multivariate unconstrained |
| optimization with derivatives|. oL, 69

[5.11 Conjugate-gradient (CG) approach for multivariate unconstrained opti- |

[mization with derivatives oo 000000 73
[6 Constrained optimization| 79
(6.1 Quadratic Programming (QP) — linear equality constraints| 79
[6.2 Quadratic Programming — inequality constraints{ 83
(6.3 Sequential Quadratic Programming (SQP), Lagrange-Newton| 89
[7 Statistical parameter tolerances| 93
[7.1 Univariate Gaussian distribution (univariate normal distribution)| 95
[7.2 Multivariate Gaussian distribution (multivariate normal distribution|. . . . 97
[(.3 Transformation of statistical distributions 100

Mathematical Methods of Circuit Design il

8 Expectation values and their estimation| 105

8.1 Expectation values o 105
1.1 Definitions. o 105
[8.1.2 Expectation value of linear transtormation| 107
8.1.3 Variance of linear transformationl 107
8.1.4 Translation law of varianceslo 108
[8.1.5 Normalizing a random variable| 108
8.1.6 Tinear transformation of a normal distribution 109

[8.2 Estimation of expectation values|. 00000 110
[8.2.1 Variance of the expectation value estimator| 112
[8.2.2 Estimated expectation value of linear transformation| 113
B8.2.3 kstimated variance of linear transformationl 113
8.2.4 Translation law of estimated variancel 113

9 Yield analysis| 115

9.1 Problem formulationl oo 115

[9.2 Statistical yield estimation/Monte-Carlo analysis| 116

[9.3 Accuracy of statistical yield estimation| 118

[9.4 Geometric yield analysis for linearized performance feature| 122
[9.4.1 Upper pertormance bound o < gyl 126

[9.5 General geometric yield analysis|o 0 0L 127

[9.6 Accuracy of geometric yield approximation| L. 129

9.7 Overall yield from geometric yield analysis| 131

[9.8 Consideration of range parameters|. 132

[9.9 Another interpretation of the worst-case distance and preparing its gradient|134

Mathematical Methods of Circuit Design iv

[10 Yield optimization/design centering/nominal design| 137
[10.1 Optimization objectives| 137
[10.2 Derivatives of optimization objectives| 140
[10.3 Problem formulations of analog optimization| 142
(10.4 Input/output of yield optimization with worst-case distances| 143

(11 Sizing rules for analog circuit optimization| 145
(11.1 Library of NMOS transistor groups| 146
[11.2 Single (NMOS) transistor| 148

[11.2.1 Sizing rules for single transistor that acts as a voltage-controlled [
current source (vees) ... Lo 149
(11.2.2 Sizing rules for single transistor that acts as a voltage-controlled |

| resistor (veres)| 149

[11.3 Transistor pairs (NMOS)|. 150
(11.3.1 Simple current mirror|. 150
11.3.2 [evelshifterd 150
(11.3.3 Differential pair{ 151
[(11.3.4 Cross-coupled pair| 151

[11.4 Transistor pair groups| 151
[1.41 Cascode current mirror 151
0142 4-Transistor current mirror. 151
[11.4.3 Wide swing cascode current mirror| 152
144 Wilson current mirrorl 152
(11.4.5 Improved Wilson current mirror| 152

Mathematical Methods of Circuit Design v

A Main I 503
AT Vectod
A2 Malrixl o o o
A3 Additionl

[A.4 Multiplication|o

[A.5 Special cases|.

[A.6 Determinant of a quadratic matrix]

[A.7 Inverse of a quadratic non-singular matrixl

[A.8 Some properties|

|C Partial derivatives of linear, quadratic terms in matrix/vector notation/161

D Norms

|[E Pseudo-inverse, singular value decomposition (SVD)|

(I Linear equation system, rectangular system matrix with full rank]

[F.1 underdetermined system of equations|

[F.2 overdetermined system of equations| 0oL

[F.3 determined system of equations|

|G Probability space]

(H Convexity|

IH.1 Convex set K € R™

(I Derivatives of the statistically estimated yield|

163

165
165

166

167
167
168

169

171

173
173

173

175

Mathematical Methods of Circuit Design Vi

Mathematical Methods of Circuit Design Vil

1 Introduction

The presentation in this book is based on matrix and vector notations. It is important
that the reader checks his/her familiarity with these notations. Please read the Appen-
dices [A]l B} [C] and D] to revise and refresh your memories of this part of linear algebra
before starting to read on in the book.

Appendix [A] gives definitions of vector, matrix and its row and column vectors, transposed
matrix, addition and multiplication of matrices, special cases like identity matrix and
diagonal matrix, determinant and inverse of a matrix, as well as a number of properties
of matrices.

Appendix [Bf presents notations for the first-order derivative (gradient) and second-order
derivative (Hessian matrix) of a scalar function with regard to a vector of parameters
and to a vector of a subset of parameters. The abbreviated notations detailed in this
Appendix are frequently used throughout the book.

We abbreviate with V f (x]) the first-order derivative of a function f with regard to a
vector X of a subset of the overall parameters x at a specific point x/, of this subset, while
the rest of parameters are kept constant.

Similarly, we abbreviate with V2 f (x/, x}) the second-order derivative of a function f with
regard to two vectors xq, X5 of a subset of the overall parameters x at a specific point x/,
x_ of this subset, while the rest of parameters are kept constant. Please familiarize with
these notations.

Appendix [C] gives the basic formulas for the derivatives in the linear and quadratic term
of a function model in matrix/vector notation. These are frequently used throughout
the book. Familiarization with it is important as well. The proofs are not given, they
can be obtained by moving from the matrix/vector notation to a compontent-wise nota-
tion, conducting the symbolic derivation, and moving the result back to a matrix/vector
notation.

Appendix [D] lists some vector norms and matrix norms. They will be used in the scalar-
ization of a vector optimization problem, i.e., to combine several optimization objectives
into a single objective.

Mathematical Methods of Circuit Design 1

1.1 Parameters, performance, simulation

The methods presented in this book have been developed for and applied to analog inte-
grated circuits. They are representative for all kinds of technical problems where a single
mathematical function evaluation, e.g., by numerical simulation, is expensive and in the
range of minutes to an hour. As numerical optimization is frequently calling function
evaluation, the optimization cost then sum up to hours or even days. When statistical
estimations come into the play, the CPU cost is even worse.

We do not rely on or include modeling methods, as, e.g., response surface modeling, to
reduce the CPU cost by approximating the function evaluation. According to our experi-
ence, the simulation cost to establish such models is often better used for an optimization
process that works on function evaluation by direct simulation. Of course, any type of
function evaluation can be used in optimization.

But the main idea is that function evaluation is expensive and requires specific optimiza-
tion approaches. This holds for many types of technical systems, as does the characteri-
zation of parameters and performance in Table [I}

We distinguish between parameters and performance in this book. Parameters are prob-
lem variables that are input to the simulation/function evaluation. Performance features
are problem variables that are output of the simulation/function evaluation.

Three types of parameters are distinguished.

e Design parameters are subject to the sizing by the design engineer. In analog in-
tegrated circuit design, transistor widths and lengths, and capacitance values are
typical design parameters.

e Statistical parameters are subject to manufacturing variations. They carry charac-
teristics of statistical distributions, mostly mean values, variances and covariances,
and a type of statistical distribution, e.g., a multivariate normal distribution. In
analog integrated circuit design, a subset of transistor model parameters typically
form the statistical parameters, e.g., threshold voltage, oxide thickness, carrier mo-
bility of transistors.

e Range parameters are also subject to variation. However, only a range, mostly an
interval, of the potential variability is given, but not a probability of occurrence
or density, respectively. These are often parameters describing an operating range
in which the system has to be functional. In analog integrated circuit design, the
supply voltage and the temperature are typical range parameters. In case that
aging is to be considered and an aging model is including in the simulation model,
a certain lifetime will be another range parameter.

Mathematical Methods of Circuit Design 2

design parameters Xg € R e.g. transistor widths, capacitances

statistical parameters | x, € R"™* e.g. oxide thickness, threshold voltage
range parameters X, € R™r e.g. supply voltage, temperature
(circuit) parameters | x =[x x7 xﬂT

performance feature | ; e.g. gain, bandwidth, delay, power
(circuit) performance | @ = [---¢;---]" € R"

(circuit) simulation | x — (%) e.g. SPICE

Table 1: Simulation maps different types of parameters to the performance features.

In integrated circuit design, the process, temperature and supply voltage parameters are
often denoted as the PVT parameters that are subject to variation. In integrated circuit
design, the transistor parameters, while carrying the information of the manufacturing
variation, are not subject to design.

Please note that a design parameter and a statistical parameter may be identical, or refer
to the same physical parameter. An example is the width of a transistor, which in fact
is subject to a variation due to the manufacturing process. As this variation is often
global and identical for all transistors, a statistical parameter, e.g., width reduction AW,
is forked with zero mean and a given variance. The nominal values of the individual
transistor widths W), are then the design parameters. When calling a simulation, the
value of the one statistical parameter is added to the individual design parameter values
Wy + AW to obtain the physical width parameter. This proceeding has the advantage
that there is just one statistical parameter, which reduces the complexity of the statistical
circuit design.

Another example of partitioning physical parameters in design and statistical parts is the
transistor threshold voltage. In addition to a global statistical variation AV}, there are
local statistical variations AVj,, of each individual transistor k. The physical threshold
voltage that is sent to the simulator therefore is the sum of the two statistical and the
nominal part: Vo + AVy, + AVy . Local statistical variations are often modelled as
statistically independent, from which follows that their correlation is zero.

The statistical parameter modeling will be detailed in chapters [7] and [§]

The performance of a circuit/system is described by a variety of individual features. For
an operational amplifier, a fundamental analog circuit, more than a dozen performance
features are of interest. Among these are for instance gain, bandwidth, slew rate, phase
margin, delay, power, common mode rejection ratio, power supply rejection ratio, offset.
These performance features have to be within specified bounds, which are defined in the
next section.

Simulation represents THE abstraction from the physical level in circuit-level integrated
circuit design.

Please note that the setup of simulation requires not only the circuit/system itself, e.g.,
in form of a circuit netlist in integrated circuit design, but a simulation bench including

Mathematical Methods of Circuit Design 3

input stimuli, information about the manufacturing process, i.e., the so-called process
development kit (pdk) in integrated circuit design, and other data.

Please note that once an automatic simulation has been set up, the optimization process
can start. Automatic simulation means that given values of the parameters, the simula-
tion results are values of the performance features. Simulators often provide waveforms
of circuit variables like voltages and currents over time (transient simulation) or over
frequency (AC simulation). The extraction of performance values from these waveforms
must be provided as part of an automatic simulation setup.

And please note that simulation means a pointwise evaluation of the mapping x — ¢(x).
Usually, there is no closed-form analytical function available for this mapping.

1.2 Performance specification

For each performance feature, an upper limit or a lower limit or both an upper and lower
limit may be specified. Each bound is denoted as a performance specification feature:

©i 2 0ri Vo < QU (1)

The lower (upper, respectively) bound for the number of performance specification fea-
tures npgp results if either an upper or a lower bound (or both, respectively) is specified
for each performance feature (with n, as the number of performance features):

Ny S npsr S 271,%0 (2)

We define a vector notation for the combination of all performance specification features
as follows:
pr1 < 1 (x) < pun

= ¢, < p(x) <@y (3)

@L,nw S Spnw (X) S @Uynw

Mathematical Methods of Circuit Design 4

1.3 Design flow

The optimization of the parameters of a system, also called sizing, starts after the structure
of the system has been designed. In circuit design, the structure is the specific connection
of a specific set of transistors.

Once the system is sized, the manufacturing plan is determined. In integrated circuit
design, this is the layout.

This makes three main design steps, which are structural synthesis, parametric synthesis
(i.e., sizing), layout synthesis.

The sizing is partitioned into two main steps. These are the nominal design and the
tolerance design.

In the nominal design step, the nominal performance values are optimized by tuning the
design parameters, while keeping the statistical and range parameters at fixed values.
These fixed values may be nominal parameter values, or some worst or corner values.
Chap. 4] will explain how such worst or corner values can be determined. The nominal
design step can further be divided in substeps by partitioning the set of performance
features and the set of circuit /system constraints into ordered subsets, which are optimized
one after the other. In each subsequent step, the optimized performance features from all
prior steps are allowed to move a bit, but stay within their bounds.

In the tolerance design step, not the nominal performance values are optimized but the
robustness and the yield (i.e., percentage of circuits fulfilling the specification) under con-
sideration of the statistics of the manufacturing process and the operating range. Chap. [J)
will explain how yield can be analyzed. We will distinguish between a statistical and a
geometric approach. In literature, geometric approaches for tolerance design are often
called design centering. We will use the terms yield optimization and design centering as
synonyms in this book.

The partitioning into several nominal design steps and the tolerance design step is done to
save simulation cost. Having smaller sets of optimization objectives eases the optimization
process. It also mimics the practical proceeding of design engineers. Tolerance design has
to include the statistical parameters and more complex analysis types, as we will see in
the course of the book. A good nominal design provides a good starting point for the
more CPU-intensive tolerance design and leads to a faster progress towards a solution.

Fig. [1] illustrates the nominal and tolerance design steps for an operational amplifier,
which is sketched at the top left of the figure.

In the table at the bottom of the figure, five performance features are given with their
respective specification bounds. These are the AC features gain, transit frequency and
phase margin, the transient feature slew rate, and the power consumption, approximated
as a DC feature. Do not worry about the technology node, this example can hold for
any. It can be seen that all performance features but the phase margin violate their
specification initially. This may be the initial situation after moving to another process
node, which is usually beneficial for the digital system part, but may jumble up the analog
part. After nominal design, all specifications are fulfilled. A yield analysis shows that the
yield is roughly 90% after nominal design, in other words, 90% of produced opamps will

Mathematical Methods of Circuit Design 5

Parametric Yield Y 100%

el

50%
ibias] 0% 88.7%
Sl
Opamp =
Initial Nominal Design
Performance Specification | values design centering
Gain > 80dB 67dB 100dB 100dB
Transit frequency > 10MHz 5MHz 20MHz 18MHz
Phase margin >60° 75° 68° 72°
Slew rate >10V/ps 4.1Vlps 12V/ps 12Vlus
DC power <50pW 122uW 38uW 39uW

Figure 1. Nominal design and design centering of a circuit example.

fulfill the given specification values. Looking at the individual performance safety margins
does not allow to identify which one is the weak element in the chain. Design centering
as presented in Chap. therefore looks at what will be called worst-case distances.
After design centering, the yield is 99.9%. We can see that the performance of the transit
frequency has been slightly relaxed compared to the nominal design, and the phase margin
has been slightly improved to maximize the yield.

1.4 Organization of the presentation

The remainder of the book is organized around three main tasks of tolerance design. These
tolerance design tasks are worst-case analysis, yield analysis, and yield optimization. First,
the necessary mathematical preliminaries to formulate the respective tolerance design task
are described. Right afterwards, problem formulations and solution approaches of the
respective tolerance design task are presented. The resulting presentation sequence is as
follows.

In the following chapter [2 some basics of optimization will be sketched. Classifications
of optimization problems will be given and the ones treated in this book identified. The
mathematical formulation of an unconstrained and a constrained optimization problem
will be given. As many of the later derivations will be based on a Taylor series of the
optimization variables, the multivariate formulation of a Taylor series will be given. And
the basic structure of an iterative optimization process will be sketched. In the subse-
quent chapter [3] the first-and second-order optimality conditions for an unconstrained
optimization problem and a constrained optimization problem will be introduced.

Using optimality conditions, we are able to formulate the tolerance design task of worst-
case analysis. This is done in the next chapter [df Three different formulations will be
presented. These are classical worst-case analysis, realistic worst-case analysis and general
worst-case analysis. It will turn out that analytical formulas for the results of classical
and realistic worst-case analysis can be derived. The general worst-case analysis remains

Mathematical Methods of Circuit Design 6

a specific type of nonlinear optimization problem, which has to be solved iteratively by
numerical methods. This chapter presents one of the two core messages of this book. It
explains why the computation of worst-case parameter sets requires design technology and
manufacturing technology, in other words, why the computation of worst-case parameter
sets is part of the circuit/system design as it depends on the specific design at hand. Worst-
case parameter sets that are determined upfront without consideration of the specific design
problem are approximations to the true worst-case of unknown accuracy.

To solve the nonlinear optimization problem of a general worst-case analysis, the next
two chapters will present basics of nonlinear optimization in a nutshell. Chap. |5| will deal
with unconstrained optimization, Chap. [6] will deal with constrained optimization. We
will reach up to the problem formulation of Sequential Quadratic Programming. These
two chapters follow the presentation of Fletcher’s ”Practical methods of optimization”
published by Wiley. Many other books on optimization exist, but the author of the book
at hand is a fan of Fletcher’s presentation.

The methods described for nonlinear optimization are of course applicable to the technical
circuit /system optimization tasks of nominal design and design centering. These will be
treated later on. Before that, the technical problem of yield analysis has to be treated,
in order to obtain the design centering’s optimization objective. As this brings statistics
into the play, we first introduce basics of multivariate statistical parameter tolerances
in Chap. [7, and multivariate formulations of expectation values and their estimation in

Chap.

Based on that, Chap. [9] will formulate yield and present two methods for its statistical
estimation and geometric approximation, respectively. We will find out that worst-case
analysis and yield analysis can be formulated by nonlinear optimization problems that
are closely related through an exchange of constraint and objective. This chapter presents
the second core message of this book. It advertizes to replace statistical estimation tech-
niques by a deterministic approach. This deterministic approach defines a characteristic
parameter set of a stochastic variable, which is the point of highest probability (probability
density, to be precise) to fail a specification value. It will be shown that this character-
istic point not only allows an accurate approrimation of yield, but is more suitable for
robustness characterization in case of high-sigma problems. This characteristic point is a
suitable deterministic approach in problems of rare event statistics.

Based on the worst-case analysis and yield analysis, Chap. [10| deals with formulations of
the optimization tasks of circuits/systems. Different optimization objectives of nominal
and tolerance design will be given, and first- and second-order derivatives of these ob-
jectives will be derived. These objectives and their derivatives can be applied together
with the optimization methods in chapters 5] and [6] to create application-specific solution
approaches to circuit/system sizing.

A design problem is often incompletely specified. This makes automatic optimization
impossible, as the optimizer does not have information to find a technically reasonable
solution. Interactive optimization is the method of choice in that case. Detailed diag-
nosis based on sensitivity analysis and local performance models allows the user to steer
the optimization process. For analog circuits, inherent properties can be automatically

Mathematical Methods of Circuit Design 7

extracted from the netlist, which complement the input from the user and enable an auto-
matic optimization process. The presentation of these so-called sizing rules will complete

this book in Chap. [I1]

So stay on and read on!

Mathematical Methods of Circuit Design 8

2 Some basics of optimization

We first look at some properties of optimization.

2.1 Maximization, minimization, minimum, unconstrained op-
timization

Optimization aims at either maximizing or minimizing the value of an objective f. A
maximization problem can be reformulated as a minimization problem without loss of
generality. We obtain a maximization of the objective for instance by adding a minus
sign to the objective, then minimizing this, afterwards removing the minus sign:

max f = —min — f (4)

Therefore, a formulation as minimization problem is sufficient, a maximization problem
does not have to be formulated separately.

We will mostly use the formulation of an optimization problem as minimization problem
in this book.

Usually, the abbreviation "min” will be used. As optimization usually is an iterative
process towards the optimum, we can distinguish between the process and the result.
Both can be meant with the abbrevation min:

()

) minimum, i.e., result
min =

minimize, 1i.e., process

The following two formulations are used for minimizing a single optimization objective f
over an optimization variable vector x in the absence of any constraints:

min f(x) = f(x) 5 min (6)

The resulting values of unconstrained optimization are often denoted with a *. The result
comprises the optimal variable values x* and the optimal objective value f*:

min f(x) — x%, f(x) = f* (7)

Various types of optimization objectives f exist in circuit/system design (see Chap. .
For the moment, we can imagine that the circuit/system performance features ¢ are the
optimization objectives.

The unconstrained optimization problem is formulated in different flavors, e.g.:

Fo= minf(x)

*

x* = argmin f(x) = argmin f

min{f(x)}
argmxin f(x) = argmin{f(x)}

min f min f(x)

(8)

The second row is used when the optimization variable (the argument) shall be described
rather than the optimization objective.

Mathematical Methods of Circuit Design 9

2.2 Constrained optimization

Reality brings limited resources. This leads to the problem of constrained optimization,
which is formulated as optimization of the optimization objective f over the optimization
variable vector x subject to equality and inequality constraints:

min f(x) s.t. ¢(x)=0,1€F
ci(x)>0,iel

(9)

f: optimization objective x: optimization variable ¢;: constraint

E: set of equality constraints [I: set of inequality constraints s.t.: subject to

This formulation includes constraints with a ”<” condition, ¢;(x) < 0, which are trans-
formed by multiplication with —1 into the form of (9): ¢;(x) = —¢;(x) > 0.

The constrained optimization problem can also be formulated in different flavors based on
the feasibility region €2, which describes the region of optimization variables that fulfull
the equality and inequality constraints:

min f s.t. x € (10)
min f (11)
min {f(x) | x € Q} (12)

with,

ci(x)>0,iel

Q:{X

The so-called Lagrange function combines objective and constraints in a single expression
in the following way:

¢(x) =0, i€ E }

Lagrange function

L) = f(x) = Y Ai-ei(x) (13)

i€ BUT

A; is the so-called Lagrange multiplier associated with constraint . The purpose of the
Lagrange function is to transform the constrained optimization problem into an uncon-
strained optimization problem of £, whose solution is exactly at the solution of the con-
strained problem. We can consider the constrained optimization problem as an uncon-
strained one with the Lagrange function as objective function and the Lagrange multipliers
as additional optimization variables.

We inspect the Lagrange function, first for the case that there is no competition between
the objective and inequality constraints. Minimizing the objective will then not drive
the constraints towards zero or even drive it away, assuming the Lagrange multiplier is
non-negative. The equality constraints are zero, hence do not influence the value of the

Mathematical Methods of Circuit Design 10

Lagrange function. If there is a competition between the objective and an inequality
constraint, then decreasing the objective will drive the constraint towards its bound zero.

Take the example of an objective function f(z) = x?, which has its minimum at argmin z?
0. Adding the constraint ¢(x) = x —1 with ¢(x) > 0 only allows x to go down to the value
of 1, which is the minimum of this constrained optimization example. The corresponding
Lagrange function is £(z,\) = 22 — X - (x — 1). Tt is illustrated in Fig.

The purpose of the Lagrange multiplier is to create a minimum of the Lagrange function
exactly where the solution of the constrained problem is. In this example, A* = 2 and the
corresponding Lagrange function, £(x,2) = 2? — 2(z — 1), has a minimum at z* = 1.

Fig. [2| illustrates another property of the Lagrange function, which is that the solution
is a saddle point of L(z,A). Around the solution, the Lagrange function has a minimum
with regard to the variable and a maximum with regard to the Lagrange multiplier.

L(x*,N) < L(xz*,\") < L(x, \Y) (14)

This property is related to the so-called duality principle in optimization, which will not
be deepened here.

Figure 2. Lagrange function £(z,\) = 22 — X - (z — 1) of the example, y = A, z = L.

Mathematical Methods of Circuit Design 11

2.3 Classification of optimization problems

There are several types of optimization problems. We will mention some of them here
and narow down to those that will be subject of this book. In addition, some basic
assumptions will be made.

/ /

strong local minimum weak local minimum global minimum

(b)

N

Figure 3. Smooth function (a), i.e. continuous and differentiable at least several times on
a closed region of the domain. Non-smooth continuous function (b).

The first assumption we make is that the functions are smooth, as illustrated in Fig. [3]
The second assumption is that we deal with local optimization, i.e. finding the nearest
optimium within a certain range of values. Depending on the starting point, local opti-
mization would find one of the three minima in the example in Fig.[3] Global optimization
can build on local optimization and adds methods for determining regions in which local
optimization is performed.

A classification of optimization problems can be done according to the type of functions
as summarized in the following. We will deal with solution approaches to quadratic and
nonlinear programming.

objective constraints

linear and linear linear programming

quadratic and linear quadratic programming

nonlinear or nonlinear nonlinear programming

convex linear equality, convex programming (local = global mini-

concave inequality —mum)

Mathematical Methods of Circuit Design 12

More classification critieria are summarized in the following.

deterministic, The iterative search process is deterministic or random.

stochastic

continuous, Optimization variables can take an infinite number of values, e.g., the set of
discrete real numbers, or take a finite set of values or states.

local, global

The objective value at a local optimal point is better than the objective
values of other points in its vicinity. The objective value at a global optimal
point is better than the objective values of any other point.

scalar, vector

In a vector optimization problem, multiple objective functions shall be op-
timized simultaneously (multiple-criteria optimization, MCO). Usually, ob-
jectives have to be traded off with each other. A Pareto-optimal point is
characterized in that one objective can only be improved at the cost of an-
other. Pareto optimization determines the set of all Pareto-optimal points.
Scalar optimization refers to a single objective. A vector optimization prob-
lem is scalarized by combining the multiple objectives into a single overall
objective, e.g., by a weighted sum, least-squares, or min/max.

constrained,
uncon-
strained

Besides the objective function that has to be optimized, constraints on the
optimization variables may be given as inequalities or equalities.

with-
deriva-

with,
out
tives

The optimization process may be based on gradients (first derivative) or
on gradients and Hessians (second derivative), or it may not require any
derivatives of the objective/constraint functions.

We will deal with deterministic solution approaches for scalar and continuous optimization
problems. Basic approaches to combine the different objectives of a vector optimization
problem in a scalar cost function will though be presented. This is necessary, as we will
formulate several circuit/system optimization problems as vector optimization problems
initially. We will treat both constrained and unconstrained optimization and solution
approaches both with or without derivatives.

Mathematical Methods of Circuit Design 13

2.4 Multivariate Taylor series

In optimization, many properties are derived using a Taylor series of the objective or the
constraints with regard to the optimization variables up to the second-order term. That
means that a quadratic model is considered, higher order terms of the Taylor series are
not considered. In the following, we will formulate a Taylor series of the objective f. The
formulas hold analogously for any specific objective or constraint. If there is only one
variable, the Tayor series at xy up to the second term is:

f(x) = f(l’o) + qgo - (37 — .CE()) + %ho . (33 — ZB0)2 4+ ... (15)

go and hg are the first and second derivative of f with regard to x at xy. If there are two
variables 1, x2 , the Taylor series at xq; , g2 is:

f(x,22) = f(mo1,202) + Gog- (21 —201) + go2 - (2 — 20,2) (16)
1
+ §h0,11 (xg — 1170,1)2
+ ho,lz : (!El - $0,1) : (€E2 - 5130,2) + §h0,22 : ($2 - $0,2)2 + ...

go,i are the first partial derivatives of f with regard to both variables x; at x 1, 2. ho,i;
are the corresponding second partial derivatives.

If there are n, variables, the Taylor series is:

Ny 1 Ny Ng
FX) = fot+ D g0 (@ —x0s) + 3 DO hosi - (@ — woq) - (x5 — wog) + ... (17)
i=1 i=1 j=1

This component-wise formulation can be moved to a compact matrix-vector formulation
(see Appendix [A| for formulas to derive it):

FO) = F o) bl (e xo) b g = x) Hy(x—xo) £ (19

Please note that Hy is a symmetric matrix, as the order of the partial derivation with
regard to two different parameters is commutative.

Optimization is an iterative process. An intermediate value of the optimization variables

is denoted as iteration point x*). The Taylor series of a function f at iteration point
(%) ig:

x") is:

F) = Fx®) 4+ Vf (x)T - (x = x)

1 T
Z(x = x®) Ly K . (x — x(®) 19
o L eV (1) (- x) 4 (19
(x) ()T I OO (x)
=" + g (x—x)+§<X—X) -HW . (x—x") 4+ ...(20)
f®) . value of function f at point x**)
g® : gradient (first derivative, direction of steepest ascent) at point x*)
H® : Hessian matrix (second derivative) at point, symmetric x ()

Mathematical Methods of Circuit Design 14

See Appendix [B] for the definition of the components of the gradient and Hessian matrix.

Iterative optimization distinguishes between a search direction r starting at the current
iteration point x*) and a step length « of the search direction r(* starting at the current
iteration point x*). The Taylor series , can be reformulated to represent search

direction and step length.

The Taylor series with regard to a search direction r starting at the current iteration
point x*) is:

x(r) =x" +r (21)

1
fW 41y = f(r) = f@ + g7 r 4 §rT CH® p 4 (22)

The Taylor series with regard to the step length of the search direction r*) starting at
current iteration point x*) is:

x(a) = x" 4+ q . r® (23)
1

f™ +a-r®) = fla) = f® + g(n)T o 4 §r(H)T H e 4+ (24)
1

Please note that Hessian, gradient and search direction are combined to the first and
second derivative of objective f with regard to step length « in (25):

Vf(a=0) : slopeof f along direction r(*)
V2f(a=0) : curvature of f along r(*

Mathematical Methods of Circuit Design 15

repeat
determine the search direction r*)
determine the step length a(*) (line search)

X(H+1) f— X(H) + Od(n) . r(’i)

K=k+1

until termination criteria are fulfilled

Figure 4. Basic structure of an iterative optimization process.

2.5 Structure of an iterative optimization process

The basic structure of an iterative optimization process is given in Fig. [4l Iterative
optimization usually partitions an iteration step in two parts. First, to compute a suitable
search direction, then to compute a step length for that search direction. The second part
is also called line search. We will present methods for line search and computation of a
search direction in Chapters [5] and [6] The search direction is computed based on a local
model of objective and constraints at the current iteration point. The step length then
uses single function evaluations.

Steepest descent approach

A simple way to determine a search direction is the so-called steepest descent approach,
which is soley based on the gradient in the current iteration step:

r(®) — _g(ﬁ) (26)

The steepest descent approach often features very slow convergence, as is illustrated in

Fig. Bl

The Rosenbrock function, although featuring just two optimization variable, is a very
ill-conditioned optimization problem, as the function is a banana-shaped valley with ex-
tremely steep side walls and the valley decreasing extremely slowly towards the optimum
x*. Using the steepest descent direction then will always move towards the opposite steep
rise of the valley and hardly along the banana trajectory to the optimum. This leads to
a strong zig-zagging of the iteration process.

Please note that this book will frequently illustrate optimization aspects with level con-
tours of functions of two variables. It would be helpful if the reader familiarizes this
method of visualization. Two main features are necessary to "read” pictures of level
contours:

e The direction of gradient is orthogonal to a level contour (see Fig. @ That means
that both the direction of steepest ascent (that is the gradient direction) and the
opposite direction of steepest descent are orthogonal to a level contour.

e Neighbouring level contours usually represent a constant difference in the function
value ("height”). That means that the closer to each other two level contours are,
the steeper the slope.

Mathematical Methods of Circuit Design 16

08r

061

04r

02r

02r

-1 08 06 04 02 0 02 04 06 08 1
%

Figure 5. Visual illustration of the steepest-descent approach for Rosenbrock’s function
f (x1,22) = 100(22 — 22)® + (1 — 21)%. A backtracking line search is applied (see Sec. [5.4]
page with an initial x© = [<1.0,0.8]" and o/® = 1, & := ¢3- . The search terminates
when the Armijo condition is satisfied with ¢; = 0.7, ¢3 = 0.6.

Trust-region approach

Trust-region approaches are not partitioning search direction and step length computa-
tion, but compute them simultaneously. The process adapts the search direction according
to increasing step length. A simple way is to model the objective function,

f(x)~m (x(“) + r) , (27)

and determine a search direction that minimizes this model in a certain trust region, e.g.,
for the step length:

min m (x(“) +r) st. r€ trust region (28)

r

e.g., |r]| <A

Solving this problem (which can be done efficiently, as model evaluation is cheap) for
several sizes of trust regions gives a set of search directions of different lengths.

Consideration of constraints

One approach is to combine the constraint functions and the objective function in an
unconstrained optimization model in each iteration step. There are several ways to do
that, e.g.:

e Lagrange formulation
e Penalty function

e Sequential Quadratic Programming (SQP)

These will be further elaborated or sketched in Chap. [6]

Another approach is a projection onto so-called active constraints in each iteration step.
Active constraints are constraints that hit their bound. They are set to equality con-
straints for the moment. Equality-constrained problems can the be transformed into un-
constrained problems by coordinate transformation. This is called active set method
and will further be elaborated in Chap. [6]

Mathematical Methods of Circuit Design 17

Mathematical Methods of Circuit Design 18

3 Optimality conditions

3.1 Optimality conditions — unconstrained optimization

The conditions for optimality of a point will be derived based on a Taylor series of the
objective f along a search direction r at the optimum point x*. We use (22]) and replace
with the respective terms at the optimum point:

f(x*+r)Ef(r):f*+g*T-r+%rT-H*-r—l—... (29)

The abbreviations are:
fr=f(x: optimum objective value at the optimum variable value x*

gr=Vf(x): gradient at optimum x*

H* = V2f (x*): Hessian matrix at optimum x*

The point x* can only be (locally) optimal if there is no way to reduce the correspond-
ing optimum objective value f* in the surrounding of x*. In other words, this can be
formulated as:

x* is locally optimal <=

30

there is no descent direction r that leads to a smaller objective value f (r) < f* (30)
A descent direction is derived from the linear term in the Taylor series :

descent direction r: V f (x(“))T T <0 (31)

The steepest descent is opposite to the gradient, which in turn represents the steepest
ascent:
steepest descent direction: r = =V f (x(“)) (32)

Mathematical Methods of Circuit Design 19

X2

steepest descent f(x) < f(x")
direction

Figure 6. A descent direction from x(*) lies in the green shaded area.

Fig. [6] illustrates a situation where descent directions exist.

At point x*) an intermediate solution of an iterative optimization process, the gradient
is drawn perpendicular to the level contour of the optimization objective f. This is the
direction of steepest ascent towards higher values of f. Opposite is the steepest descent.
Simplifiying, all directions with an angle smaller than 90 degree to the steepest descent
represent descent directions. They are just not as steep. Please note that the 90 degree
statement only holds for the linearization of objective f at x*). Due to the curvature
at this point, either directions with more than 90 degree, as in this example point, may
provide descent, or less, if the curvature is to the side of the descent.

The optimality conditions are derived based on a separate consideration of the first-order
term and second-order term of the Taylor series . Each term individually shall be
guaranteed to not provide a descent. This leads to the first-order optimality condition
and second-order optimality condition, respectively.

Mathematical Methods of Circuit Design 20

3.1.1 First-order condition for a local minimum of an unconstrained opti-
mization problem

No descent in the objective function is obtained if the linear term in the Taylor series
is non-negative for any direction r:

T
>
”VEO g- -r>0 (33)
This can only be achieved if the gradient is zero, which means that all components of the
gradient vector are zero:

g =Vf(x)=0 (34)

If any component would be non-zero, then there would be a descent opportunity in the
direction of the corresponding variable.

The first-order optimality condition is a necessary condition for a local minimum.

A point x* satisfying the first-order optimality condition is denoted as stationary point.

3.1.2 Second-order condition for a local minimum of an unconstrained opti-
mization problem

The second-order optimality conditions refers to the quadratic term in the Taylor se-
ries . As a necessary condition, it requires that this quadratic term does not provide
a descent of the objective in any direction. As a sufficient condition, it requires that this
quadratic term provides only increase in the objective value in any direction:

Necessary:

Z’O vl V2f(x*) r>0 < V2f(x*) is positive semidefinite (35)
r 35

<~ f has non-negative curvature

Sufficient:

Vil - V2f(x*) - r>0 <= V2f(x*) is positive definite
r70 (36)

<= has positive curvature

The second-order optimality condition immediately refers to positive (semi-)definiteness
of the Hessian matrix of the objective function at the optimum.

Mathematical Methods of Circuit Design 21

Fig. [7] illustrates quadratic objective functions in two variables with four situations of
the definiteness of its Hessian matrix: positive definiteness (a), negative definiteness (b),
indefiniteness (saddle point, c¢), and positive semidefiniteness (d).

(a) (h)

Figure 7. Quadratic functions (top) and their level contours (bottom): (a) positive definite
Hessian matrix, minimum at x*, (b) negative definite Hessian matrix, maximum at x*,
(c) indefinite Hessian matrix, saddle point at x*, (d) positive semidefinite Hessian matrix,
multiple minima along trench.

Mathematical Methods of Circuit Design 22

We can see that the stationary point is unique in each of the cases (a), (b) and (c).
Depending on the curvature of the function, which is determined by the second-order
derivative, the stationary point can be a maximum, minimum or saddle point. Case (a)
satisfies the sufficient second-order optimality condition ([36]). Case (d) satisfies the nec-
essary second-order optimality condition . The objective has a minimum value here,
but multiple points that lead to the minimum value.

There are several methods to check the positive definiteness of a second-order derivative
V2f (x*). Examples are:

e Eigenvalue decomposition: A symmetric matrix is positive definitive if all eigenval-
ues are > 0. This is the situation in case (a) of Fig.[7] In case (b), the eigenvalues
are both negative. In case (c), one eigenvalue is positive, one eigenvalue is negative.
In case (d), one eigenvalue is positive, the other eigenvalue is zero.

e Cholesky decomposition V f2(x*) = L - L”: If all diagonal elements are positive,
i.e., l;; > 0, then the Hessian is positive definite.

e Cholesky decomposition V f? (x*) = L-D - L” with l; = 1: If all diagonal elements
are positive, i.e., d; > 0, then the Hessian is positive definite.

e Gaussian elimination: If all pivot elements during the Gaussian elimination without
pivoting are positive, then the Hessian is positive definite.

e Determinant (see App. [A)): If all leading principal minors of a symmetric matrix are
> 0, then the Hessian is positive definite.

Mathematical Methods of Circuit Design 23

3.2 Optimality conditions — constrained optimization

The optimality conditions for an unconstrained optimization problem have been derived
based on a Taylor series of the optimization objective, and by looking individually at
the linear and quadratic model term, in order to define conditions for these terms that
guarantee that there is no more descent in the surrounding of the local optimum. In a
constrained optimization problem, this concept of descent direction has to be expanded by
the concept of feasible direction. A feasible direction is a direction that keeps a constraint
satisfied. In the following section, the idea of a feasible descent direction will be described
for inequality constraints. Equality constraints will be considered later.

3.2.1 Feasible descent direction r

A feasible descent direction is a direction that provides a descent in the objective function
f while not violating an inequality constraint ¢;. Both conditions are defined using the
linear terms of the respective function models.

T T
descent direction: f (x(“) + r) ~) LV f (x(”)) -r, ie, Vf (x(”)) -r < 0(37)
T

feasible direction: ¢; (x(”) + r) ~ ¢ (x(”)) + Ve (x(”)) T>0 (38)
Two cases are distinguished with regard to the constraint: it is either inactive or active.
An inactive constraint still has some margin to its bound, while an active constraint
has reached its bound. The notation is related to the active set method for constrained
optimization (Chap. @, where inequality constraints that reach their bound, i.e., the

bound is active, temporarily become equality constraints. The two cases are treated in
the following.

Inactive constraint

A constraint ¢; is inactive at the current iteration point z(®), if the constraint value is
greater than the bound:
constraint ¢ is inactive <= ¢ (X(”)) >0 (39)

In that case, any search direction r is feasible, as long as it does not trespass the bound.
As length limitation, the linear constraint model is used. For instance, the following
search direction is satisfying while going in the steepest descent direction with regard
to the optimization objective:

Ci (x(”))
IVe; (xt) |- IV f (x|
This can be proven by inserting into , which leads to:

Ve, (x9)" - Vf ()
0 41
Ve G [TV F @) | = (41)

Vf (x(“)) (40)

r =

¢ (x(”)) 1=

The inner term in the bracket of describes the angle between constraint gradient and
objective gradient at =), for which holds:

K T K
e Ve (x()) -Vf(x())

= Ve G [V7 &) = (42)

Mathematical Methods of Circuit Design 24

T2)

feasible

feasible
descent ~ _

VCi (X(K)>

X

-
!

Figure 8. Dark/blue shaded area: feasible directions according to , light /green shaded
area: descent directions according to , overlap: feasible descent directions.

Active constraint A constraint ¢; is active at the current iteration point z(*), if the
constraint value is exactly at the bound:

constraint ¢ is active <= ¢; (x(“)) =0 (43)

In that case, and become the following two conditions that describe a feasible

descent direction:

descent direction: Vf (X(”))T r<0 (44)
feasible direction: ~ V¢; (x(“))T r>0 (45)

Fig. [§ illustrates the situation for an active inequality constraint ¢; and an objective f at
an iteration point x*). The green curve shows the current level contour of the objective
function, the green arrow shows the corresponding objective gradient. The green shaded
circular sector indicates all descent directions from x(*). The blue curve shows the current
level contour of the active constraint ¢; = 0, the blue arrow shows the corresponding
constraint gradient. The blue shaded circular sector indicates all feasible directions from
x(%). Please note that optimization is towards smaller objective values, hence we go on
the opposite side of the objective gradient. And a constraint is to be larger than zero,
hence we go in the direction of the constraint gradient for an active constraint. Feasible
descent directions then are determined by the overlapping part of the two circular sectors,
which is indicated in purple.

Optimality of a constrained optimization problem means that there is no feasible descent.

Geometrically this means that the purple circular sector in Fig. [§ is empty. This is
obtained if the optimal point x* satisfies:

Vf(x*)=A Ve (x*) with A >0 (46)

Mathematical Methods of Circuit Design 25

The geometrical consideration can be extended to more than one active inequality con-
straint. This leads to the condition that the gradient of the objective is a linear combi-
nation with positive coefficients of all active inequality constraints:

V() =) A - Ve (x*) with V;Af >0 (47)

Fig. [illustrates this for two active inequality constraints ¢;, ¢, in two variables and one
objective f and three different geometric situations. In the two upper cases, the linear
combination of the gradients of the two active constraints yields the objective gradient
only if the Lagrange multipliers are positive. At the same time, there is no overlapping
region among feasibility and descent, and hence no more feasible descent. Hence, this
is a stationary point of the constrained optimization problem. In the lower case, the
Lagrange multipliers are negative and feasible descent is still possible, hence this is not
yet a stationary point.

The complete first-order conditions for a local minimum of a constrained optimization
problem are given in the following section.

A _ - Lopslhle

y iy =0
foocible € vteasihle
clace o,

Figure 9. Illustration of condition for two active constraints in two variables.

Mathematical Methods of Circuit Design 26

3.2.2 First-order conditions for a local minimum of a constrained optimiza-
tion problem (Karush-Kuhn-Tucker (KKT) conditions)

The first-order necessary optimality conditions are formulated based on the Lagrange
function. The optimum values of variable vector, objective, Lagrange multiplier and
Lagrange function are denoted as x*, f* = f (x*), A*, £L* = L (x*, X*), respectively.

VL(x*)=0 (48)
¢ (x*)=0 i€k (49)

G (x)>0 iel (50)
N>0 iel (51)

Ao (x)=0 ie EUI (52)

Please note that we have already given a motivation for the Lagrange function as an
objective function of an unconstrained optimization problem that models the original
constrained optimization problem. The KKT condition represents the first-order
optimality condition for a stationary point of the unconstrained optimization problem ((34)
on the Lagrange function.

Inserting the Lagrange function into leads to:

ViD= Y N Ve (x)=0 (53)

1E€EA(x*)
Here, A (x*) is the set of active constraints at x*:
A=A)=EU{iel|¢(x")=0} (54)

Please note that equality constraints are always active. The set of active constraints
contains all equality constraints and the set of inequality constraints which are at their
respective bound.

and repeat the constraints of the original problem formulation. They result from
the condition of a stationary point of the Lagrange function with regard to the Lagrange
multiplier VL(A*) = 0.

Please note also that (53) has already been motivated from a geometrical point of view
into the same form and that has also been motivated from a geometrical point
of view.

Please note that reflects the fact that nothing can be said for the sign of A} of an
equality constraint despite the fact that it is always active. This can be motivated by
splitting an equality constraint into two inequality constraints:

The two inequality constraints for the same function would yield contradicting conditions
on the sign of A\7. It cannot be defined which one of the two inequality constraints becomes
active at the end of an iteration process.

Mathematical Methods of Circuit Design 27

is called the complementarity condition. It says that either the Lagrange multi-
plier is 0 (for an inactive constraint) or the corresponding constraint ¢; is 0 (i.e., is active
in the optimum). This can be interpreted as an instruction for the optimization process
to actively reset the Lagrange mulitpliers for all inactive constraints to zero. The for-
mulation either/or is not correct: there may be the special case that the solution of the
constrained problem is the same as the solution without the constraint, nevertheless, the
constraint is at its bound (i.e., is zero). In this special case, both the Lagrange multiplier
and the constraint are zero.

Inserting into the Lagrange function leads to the result that in the optimum all
terms with Lagrange multipliers disappear, such that the optimal value of the Lagrange
function at is just the optimal value of the objective:

L= f* (56)

Condition can also be derived in the following way. Take a point x¢c close to the
optimal point x* that satisfies the constraint ¢; (x¢) > 0. The Lagrange function being
the minimum value of the objective, inserting x¢ into the Lagrange function results in a
larger value than the Lagrange function at x*, and with we obtain:

L(xc,\) =2 LX) = [(x7) (57)

Inserting the Lagrange function on the left side leads to
Z Af-ei(xe) > f(x7), (58)
1EA*

which can be rewritten as

flxe) > F &)+ > A (59)

i€EA*

As the constraint values are greater or equal zero, then also the Lagrange multipliers must
be greater or equal zero to fulfill the inequality.

Mathematical Methods of Circuit Design 28

3.2.3 Second-order condition for a local minimum of a constrained optimiza-
tion problem

The second-order optimality condition for constrained optimization is derived by looking
at the objective function at the optimal point x* along a search direction r, using ,
and then developing the Lagrange function in a Taylor series up to the second term:

f(x*+r) = L(X +r,A) (60)
= L(X5A) +r" VL (x) +1rT VL(X) Tt
—_—— 2
0
= f*+%rT-V2£(x*)-r—|—--- (61)
with V2L (x) = V2f(x)— > A Vi (x') (62)
i€A(x*)

Here, we have used to obtain a quadratic model around the optimum objective value.
We can see that the first-order derivative term disappears due to the condition . As
in the unconstrained case, the Hessian of the Lagrange function at the optimum point
has to satisfy positive curvature along certain directions.

A difference to the unconstrained case is that the Hessian of the Lagrange function is
a combination of the Hessian matrix of the objective and the Hessian matrices of the
active constraints. Another difference is that we do not require positive definiteness of
the Hessian matrix of the Lagrange function, but positive curvature only along feasible
stationary directions r at x*, which are are defined as:

r#0
Fe=3r| Ve(x) r=0 ied={jeA)]|jeEVN >0} (63)
Ve (x) - r>0 i e A(x*)\ AL

The necessary second-order optimality condition for constrained optimization using JF,
then is:

Vol VL(x*)r>0 (64)

I‘E.Fr

The sufficient second-order optimality condition for constrained optimization using F, is:

Vol V2L (x*) - r >0 (65)

I'E‘Fr

The set of feasible stationary directions JF, reflects that the optimum is defined by a cer-
tain set of constraints that are active. The solution cannot be somewhere where these
constraints are not active, therefore it is only necessary to check that the Lagrange Hes-
sian has a positive curvature in the subspace where these constraints stay active. This
is defined by the second row in , which defines search directions that keep the lin-
ear model term of the constraint zero, so that the constraint does not move away from
its bound. The second row in is specifically for equality constraints and inequality
constraints that are essential because their Langrange multiplier is positive. There may

Mathematical Methods of Circuit Design 29

be inequality constraints which just became active in the optimum, but deleting them
would not change the solution. These are characterized by a constraint value of zero and
a Lagrange multiplier of zero. We do have to check positive curvature of the Lagrange
Hessian in the complete half-space where these constraints are not active, as in the uncon-
strained case. This leads to the third line in . Here, the feasible side of the constraint
is defined by the given inequality for its linear model term.

3.2.4 Sensitivity of the optimum objective value with regard to a change in
an active constraint

How much does the solution change if a constraint is slightly changed? This question can
be answered by performing a new iterative optimization process with changed constraint.
It can also be approximated by determining the sensitivity of the solution with regard to
the constraint.

Assume a perturbation of an active constraint at x* by some A; > 0. This changes the
constraint ¢; (x) > 0 to ¢; (x) > A; < ¢; (x) — A; > 0, which gives a modified Lagrange
function

LxAA)=f(x)=> A (a(x)—A) (66)
The partial derivative of this Lagrange function with regard to A; is calculated as follows:
Va, [* = Val (67)
- 8£_6x+8£'8>\+8£
o \oxT 9A; AT 9A; 9AT o\
~— ~—
o7 o7
oL
0A; A !
This means in summary:
Va " =X (68)

In words: The sensitivity of the optimal objective value f* with regard to a change in an
active constaint ¢; is defined by the corresponding Lagrange factor A;.

This attributes the Lagrange multiplier with a significant practical interpretation. The
sensitivity interpretation is used in the active set method for constrained optimization in

Chap. [6]

Mathematical Methods of Circuit Design 30

4 Worst-case analysis

The technical problem of worst-case analysis will be formulated based on optimization and
optimality conditions. First, the task will be described in words and then ”translated”
into the mathematical problem formulation. Before that, some preliminaries on tolerance
regions and linear performance models will be given.

Please note that the worst-case analysis task will be formulated for one performance
feature ¢ without index ¢ for simplicity. Please keep in mind that the following problems
then have to be solved for all performance features individually. Individual worst-case
analysis for specific performance features instead of a one-fits-all worst-case parameter
sets, or few-fit-all, is one of the main messages of this book!

Please note also that no index d, s or r for the parameter vector x will be given for
simplicity. It will turn out later that each of the three types of worst-case analysis pre-
sented in the following, i.e., classical, realistic, general, is suited specifically for different
parameter types or statistical distribution types. For the moment, x stands for any or all
parameters.

4.1 Task

The prevalent understanding of worst-case analysis is to take a given set of worst-case
parameter sets, in practice often called corner cases, simulate them and check if the
performance specification is satisfied.

These corner cases are determined for certain manufacturing process conditions that are
known to drive few key performance features to worst values. Such a key performance
feature is the delay in integrated circuits, which determines the speed and operating fre-
quency. Corner cases are determined by driving PMOS and NMOS transistor parameters
into regions which make them either slow or fast. Both can be made slow or fast, or the
PMOS transistors are made slow and the NMOS transistors fast, or vice versa. This leads
to corner cases slow-slow, fast-fast, fast-slow, slow-fast. More complex combinations have
been developed.

But things are more complicated in general. There are more performance features beyond
delay, so how do such corners reflect their worst cases?” And what probability does a
corner case represent? Then, there are local variations. Here, the practice moves to
statistical methods like Monte-Carlo simulation, but that is already a solution method.
A problem formulation should be done before thinking about the solution approach. So
let us properly formulate worst-case analysis:

The task of worst-case analysis consists in computing

e the worst-case performance value gy for a given performance feature
e and the corresponding worst-case parameter set xy

e that the circuit takes over a given tolerance region T’ of parameters.

Mathematical Methods of Circuit Design 31

We distinguish between performance features that should obtain maximum values, e.g.,
gain, slew rate, and performance features that should obtain minimum values, e.g., power,
area, by design. If a good performance value is large, then the worst-case is a small value
("lower worst-case”), and it should not go below a specified lower bound. If a good
performance value is small, then the worst-case is a large value ("upper worst-case”), and
it should not exceed a specified upper bound.

“good” specification type “bad” worst-case
performance performance | performance and
parameter set
o7 Y > pr @l ewr = ¢ (Xwr)
(lower bound) (lower worst case)
ol v <y et ewu = ¢ (Xwr)

(upper bound)

(upper worst case)

The mathematical formulation of computing the lower or upper worst-case performance
value over a given tolerance region then yields the following constrained optimization
problem of worst-case analysis:

min /max ¢(x) , s.t. x € Tpyg — Xwiu, Pwiju = ¢ (XWL/U) (69)

Mathematical Methods of Circuit Design

32

4.2 Typical tolerance regions

Two typical tolerance regions are of rectangular form or of ellipsoidal form. A rectangular
form is called interval, rectangle, box, and hyperrectangle for dimensions 1, 2, 3 and
beyond. An ellipsoidal form does not exist in a one-dimensional space, where just intervals
exist. An ellipsoidal form is called ellipsis, ellipsoid, and hyperellisoid for dimensions 2, 3,
and beyond. The formulas for a hyperrectangle and a hyperellipsoid are given as follows:

Hyperrectangle: Tr = {x|x;, < x < x¢ }

Hyperellipsoid: Tg = {X‘ p%(x) = (x — XO)T Ch (x—x¢) < B%V}
C is symmetric, positive definite

Please note that the bounds of a hyperrectangle are independent for each parameter, while
the bounds of a hyperellipsoid are a combination of all parameters. The quadratic formu-
lation of a hyperellipsoid is chosen such that it represents the exponent of a multivariate
normal distribution (Chap. (7).

Fig.|10]illustrates both types of tolerance regions for two parameters, i.e., a rectangle and
an ellipsis.

X2 T2

Tyu.2

Ts

Trpat---

- -
' '

| |
| |
| |
| |
T Tyl T1 T

Figure 10. Tolerance hyperrectangle, tolerance hyperellipsoid for two parameters.

Tolerance hyperrectangles are especially suited to describe tolerance intervals of range
parameters and tolerances of discrete parameters (their values are mostly at the end of
the interval due to the manufacturing testing).

Tolerance hyperellipsoids are especially suited to describe the statistical distribution of
statistical parameters, e.g. transistor model parameters.

Mathematical Methods of Circuit Design 33

4.3 Linear performance model

The classical and the realistic worst-case analysis that will be presented next are based
on a linear model of the performance feature. A linear model can be established based
on a sensitivity analysis of the circuit/system at any point X,:

P(x) = ¢atg - (x—x,) (70)
Pa = SO(Xa) (71)
g = Vp(xi) (72)

In practice, the derivatives of performance functions are often not available in simulation.
Then, a finite difference approximation of the gradient can be computed. The finite differ-
ence approximation can be forward, backward or central. The forward finite difference
approximation is determined by additional simulations with one respective parameter
altered by an amount Az; at a time and computing the quotient of the performance differ-
ence between starting value x; and altered value x; + Ax; and of the parameter difference
Az;. In matrix/vector notation this can be formulated with the help of a vector e; that
is zero with the exception of the component i, where it is one, such that it addresses an
alteration in the parameter vector x at the ¢-th position:

0 (Xa + Ay - €;) — 0 (X,)
A.Z'i

Vo (Ta:) = gi = (73)

e=10[0...010...0" (74)
1 i-th position

Fig. illustrates the two approaches for a single parameter. The gradient is either
computed exactly or approximated by a secant. The parameter A; has to be chosen
carefully. If it is too small, then it will be "swallowed” by the noise in simulation. If it is
too large, it will deviate significantly from the gradient. In certain applications, a linear
model may be wanted that gives a broader trend in a performance than the gradient can
provide. A; will then be determined for that purpose rather than for approximating the
gradient. For instance, the performance trend in a 1-sigma or 3-sigma range of statistical
parameters may be targeted.

Mathematical Methods of Circuit Design 34

Figure 11. Linear performance model based on gradient (a), based on forward finite-
difference approximation of gradient (b).

Mathematical Methods of Circuit Design 35

4.4 Classical worst-case analysis

The classical worst-case analysis is based on
e a hyperrectangle tolerance region Ty = {x |x; < x < xy }, and

e a linear performance model ¥ (x) = p, + g - (x — x,)

Fig. [12]illustrates the situation for two parameters. The tolerance rectangle T is shown
and some of the equidistant level contours of the linear performance model ». The gra-
dient g points in the direction of steepest ascent (i.e. strongest increase) in the perfor-
mance function. From the formulation of worst-case analysis as upper worst-case or lower
worst-case value of the performance function over a tolerance region, we can identify the
corresponding worst-case parameter sets Xy, and xy ¢y from visual inspection: xy ¢ is at
the upper right corner. Here is the level contour with maximum (i.e., upper worst case)
performance value that can be reached with a point within the tolerance region. Anal-
ogously, xy 1, is at the lower left corner. Here is the level contour with minimum (i.e.,
lower worst case) performance value that can be reached with a point within the tolerance
region. Obviously, the classical worst-case analysis relates to so-called corner cases, as we
go into the corner of a hyperrectangle (in case of non-zero gradient component). Please
note that intervals of parameters are individually defined without consideration of any
(e.g., statistical) relation among parameters.

In the following, the mathematical problem formulation of classical worst-case analysis
for the lower worst-case will be given and an analytical solution will be derived based on
optimality conditions.

) A

Ty,2

L2

Figure 12. Classical worst-case analysis with tolerance hyperrectangle and linear perfor-
mance model.

Mathematical Methods of Circuit Design 36

4.4.1 Classical worst-case analysis, lower worst case

The lower worst case searches the minimum value of the performance function over the
tolerance hyperrectangle. That leads to a constrained minimization problem with the
linear performance model als objective and the tolerance hyperrectangle as constraint. We
can leave out the constant parts in the linear model and move the remaining scalar product
g’ . x into a component-wise notation. Likewise, we can formulate the hyperrectangle

with individual intervals for the parameters. This leads to the following formulation:
mmZgZ T S.t. VZ (33[,71' S ZT; S xU,i) (75)

Inspection of this formulation reveals that each parameter can be treated individually,
which gives the following problem formulation of classical worst-case analysis:

Vi (ming; - z; s.t. (xp,; <z < ay,)) (76)

This is a special case of a linear programming problem. While linear programming prob-
lems require iterative solutions in general, we will be able to calculate an analytical solu-
tion for this special case in the following. We write the corresponding Lagrange function
for one parameter:

ﬁ(%’,)\L,z’>)\U,i) =0i"T; —)\L,i : (931 - iULJ) -)\U,i : (xU,i - 371) (77)
The gradient of this Lagrange function with regard to x; is:
V,C(.CE%) = g; —)\L7i +)\U7i (78)

Let us just check the second-order optimality condition before calculating the station-
ary point. The Hessian matrix of the Lagrange function is a zero matrix. This results
from the problem formulation being a linear programming problem with no higher-order
derivatives. But a zero matrix at least satisfies the necessary second-order optimality
condition.

For the stationary point, we have to distinguish two cases.

Case I: The gradient of parameter i is non-zero: g; # 0.
As the objective is linear and does not have a minimum in itself, we can state that the
solution is in an active constraint. From inspection of the constraint, we can state that
not both bounds can be active. That means, either the lower bound zr ; is active and
the upper bound is inactive zy; , or the upper bound is active and the lower bound is
inactive:

[ALi>0AX;, =0] @ [A[, =0A X, =0] (79)

This is equivalent to:
[= wLi] @[] = zu,] (80)

How do we decide which one it is? Using and considering that Lagrange multipliers
are positive in the optimum, (78| with leads to:

(i =X, >0] @ [g:=—\}; <0] (81)

Mathematical Methods of Circuit Design 37

This means that the sign of the gradient determines where the lower worst-case is. If the
gradient is positive, the lower worst-case is at the lower interval bound. If the gradient
is negative, the lower worst-case is at the upper interval bound. This is what we confirm
from visual inspection of Fig. [12]

Case II: The gradient of parameter i is zero: g; = 0.

The objective in disappears and we are left with satisfying the constraint. That
means there is no worst-case parameter set, it is undefined within the given interval.
This corresponds to a zero gradient, which says that the performance is insensitive to a
parameter, i.e.; it does not change if the parameter changes.

Overall, we obtain the following analytical solution of classical lower worst-case analysis.
One component xy 1 ; of the worst-case parameter vector xy, is:

L, gi >0
Twri =1 TuUis g; <0 (82)
undefined, ¢; =0

The resulting lower worst-case performance value py;,; of the linear performance model
1s:

Pwr = P(xwr) = va+ 8" - (Xwr —Xa) = @a + Z 9i - (Twri— Tai) (83)

7

Simulation can be used to obtain the true performance value at xy

ewr = e(xwr) (84)

4.4.2 Classical worst-case analysis, upper worst case

The upper worst case is obtained by maximizing the performance. This is formulated by
adding a minus sign to the objective in and leads to the following analytical solution
of classical upper worst-case analysis. One component zyy7; of the worst-case parameter
vector Xy is:

Tris 9; <0
Twui =\ Tug, g >0 (85)
undefined, ¢; =0

The resulting upper worst-case performance value @y of the linear performance model
is:

Bwr = P(xwr) = a+ 8" - (Xwr — Xa) = @a + Zgi (Twui — Ta) (86)

1

Simulation can be used to obtain the true performance value at xyy:

ewu = o(Xwu) (87)

Mathematical Methods of Circuit Design 38

4.5 Realistic worst-case analysis

The realistic worst-case analysis is based on
e a hyperellisoid tolerance region T = {x ’(X —x0)" - Ct - (x —x0) < B }, and

e a linear performance model around any parameter point x,, which is transformed
into a linear performance model around the center of the hyperellipsoid xq,

P(x)=ps+8" (x—x4) =po+8" - (x—x0) with pg = ¢, + 8" - (x0 — X4)

Fig. [13|illustrates the situation for two parameters. The tolerance ellipsis T is shown and
some of the equidistant level contours of the linear performance model ». The gradient g
points in the direction of steepest ascent (i.e. strongest increase) in the performance func-
tion. From the formulation of worst-case analysis as upper worst-case or lower worst-case
value of the performance function over a tolerance region, we can identify the correspond-
ing worst-case parameter sets xy;, and Xy from visual inspection: xy ¢y is where a level
contour of the performance is touching the tolerance ellipsoid (i.e., is tangential to the
tolerance ellipsoid) in direction of the gradient. Here is the level contour with maximum
(i.e., upper worst case) performance value that can be reached with a point within the
tolerance region. Analogously, xy;, is where a level contour of the performance is touch-
ing the tolerance ellipsoid (i.e., is tangential to the tolerance ellipsoid) in the opposite
direction of the gradient. Here is the level contour with minimum (i.e., lower worst case)
performance value that can be reached with a point within the tolerance region. Unlike
in the classical worst-case analysis where (with the exception of zero gradient) always a
corner represents the worst-case, the worst-case parameter set can be any point on the
surface of the hyperellipsoid in a realistic worst-case analysis. Which point, depends not
only on the signs of the gradient components but on the values. Visual inspection alone
does not allow to find a formulation of the worst-case parameter sets. Please note that the
realistic worst-case analysis allows to consider statistical correlation among parameters,
as its level contours coincide with the level contours of a multivariate normal distribution.
This will lead to a more realistic characterization of the worst case than the classical
worst-case analysis, hence the term.

In the following, the mathematical problem formulation of realistic worst-case analysis
for the lower worst-case will be given and an analytical solution will be derived based on
optimality conditions.

Mathematical Methods of Circuit Design 39

Zo,2

Figure 13. Realistic worst-case analysis with tolerance ellipsoid and linear performance
model.

Mathematical Methods of Circuit Design 40

4.5.1 Realistic worst-case analysis, lower worst case

The lower worst case represents the minimum value of the performance function over
the tolerance hyperellipsoid. That leads to a constrained minimization problem with the
linear performance model as objective and the tolerance hyperellipsoid as constraint. We
can leave out the constant parts in the linear model, then the scalar product g’ -x remains
as objective with the tolerance ellipsoid as constraint:

ming” - x st. (x— XO)T CCTh e (x —x0) < By (88)

This is a specific nonlinear programming problem, it has a linear objective function and
one quadratic constraint function. In the following, we will derive an analytical solution.
The corresponding Lagrange function of the problem is:

£<X,A):gT.x_A(ﬁgv_(X_XO)T.C*%(X—XO)) (89)

The first-order optimality conditions for the stationary point xy 7, and Lagrange multiplier
Awr, are the following:

VE(X) =g+ 2)‘WL . Cil . (XWL — X(]) = 0 (90)
(xwi—%0) - C - (xwr —x0) = By (91)
>\WL > 0 (92)

The constraint is active because of the following consideration: assume it would be inac-
tive, then Ay, = 0, and from it would follow that g = 0, which is a contradiction
to an implicit assumption we made: that the problem is technically reasonable and ¢ is
sensitive to at least one of the considered parameters.

The second-order optimality condition holds for V2L (x) = 2\, - C™!, because C! is
positive definite, and because of . That means the Hessian matrix of the Lagrange
function is positive definite.

We can rewrite as follows,

XWL—on—Q)\iVL-C-g (93)
and insert it into to obtain:
g’ Cog= (94)
4N
Extracting 2/\‘1“ from , using that the final Lagrange factor is positive, and inserting

it into gives an analytical formula for the lower worst-case parameter vector in terms
of the performance gradient and tolerance region constants:

Xwr —Xo = — /‘:;‘,/C,g'c'g (95)
= _bw.C.g

Mathematical Methods of Circuit Design 41

0z denotes the standard deviation of the linearized performance. We will prove the
correctness of this relation in Chap. [§

By substituting into the linear performance model, the corresponding lower worst-
case performance values are obtained as:

Pwr = P(xwr) =wo+8" - (xwr —X0)
wo—PBw-vgl-C-g (96)

= ©o — Pw - 0%

Here, we need to stop for a moment and take a closer look at what actually reveals.
In words, it says:

The worst-case performance value is [y times the performance standard deviation
away from its nominal value.

This gives us on the one hand an information on how we should choose the size, i.e., By,
of the tolerance hyperellipsoid in a realistic worst-case analysis.

On the other hand, By gives us a characteristic variable of tolerance design. You can
hear people talk about x-sigma design, but virtually no one can tell you what it means
if there is a multivariate parameter space.

The size By of the tolerance region defines the [y -sigma worst case of a single
performance features for a multivariate parameter space, or, in other words, describes
the By -sigma robustness of this performance feature.

Bw is defined as worst-case distance.

If we are interested in the 3-sigma robustness, we use Sy = 3. If we are interested in the
6-sigma robustness, we use Sy = 6, etc.

We do not only anticipate from the later Chap. [7| that features the standard de-
viation of the linearized performance, but also that a linear performance model maps a
multivariate normal distribution of parameters into a normal distribution of the corre-
sponding performance. By, therefore represents the multiple of the standard deviation of
a normally distributed (linear) performance. That means, we can take out our knowledge
on percentage of occurrence in intervals of one-dimensional normal distributions. E.g.,
the interval from —oo to 3-sigma refers to 99.9%.

In other words:

The yield of a half-space of a multivariate normal distribution cut by a hyperplane
(Fig. such that the maximum hyperellisoid inside the half-space has a size of By is
determined by the [—o0 to fy]-sigma range of a one-dimensional normal distribution.

Mathematical Methods of Circuit Design 42

This is an exact yield value, no statistical estimation is needed! We will give evidence
and more illustration on this finding later on.

Please note from that we do not have to compute the worst-case parameter set if we
are interested in the worst-case value of the linear performance model.

Simulation can be used to obtain the true performance value at xy .:

owr = ©(Xwr) (97)

4.5.2 Realistic worst-case analysis, upper worst case

The upper worst case is obtained by maximizing the performance. This is formulated by
adding a minus sign to the objective in and leads to the following analytical solution
of realistic upper worst-case analysis.

Xwy —Xg = + /—SXC_g'C'g (98)
= +i_VZCg
%)

The resulting upper worst-case performance value ¢y, of the linear performance model
is:

Pwy = PEwu)=vo+8" - (Xwu —Xo)
o+ Bw-vgl-C-g (99)
= wo + Bw - 05

Simulation can be used to obtain the true performance value at xyy:

owr = o(Xwu) (100)

Mathematical Methods of Circuit Design 43

4.6 General worst-case analysis

The general worst-case analysis is based on

e a hyperellisoid tolerance region Ty = {X ‘(x —x0)" - Ct - (x —x¢) < % }, and/or

a hyperrectangle tolerance region Tr = {x|x; < x < xy }, for subsets of parameters,
and

e a general nonlinear performance that can often only be evaluated point-wise by
simulation x — ¢

In the following, we will treat the case of a tolerance hyperellipsoid, in order to ana-
lyze in how far the interpretation of fBy-design extends to the general case of nonlinear
performance features.

Fig. illustrates the situation for two parameters. The tolerance hyperellipsoid Tg is
shown and some of the level contours of the performance ¢. These contour lines are now
nonlinear. The example function has curved contours fanning out from the lower left
part of the graph with increasing performance values from the lower right to the upper
left. Still there are contours that touch the border of the tolerance hyperellipsoid and
represent a lower and upper worst-case performance. And we can identify visually where
the related worst-case parameter sets are. But the gradients in those boundary points
are different from each other and from the gradient at the nominal point. This leads to
an individual linear performance model ") and W) in each worst-case point, which
can only be determined after having computed the worst-case point.

In the following, the mathematical problem formulation of general worst-case analysis for
the lower worst-case with tolerance hyperellipsoids will be given.

) A
***** WY = oy
““““ Y =9wu =@ (XWU)
R _TE

=D = gy
WL “‘QDZSDWL:SE(XWL)
X

Figure 14. General worst-case analysis with tolerance ellipsoid and nonlinear performance
function.

Mathematical Methods of Circuit Design 44

4.6.1 General worst-case analysis, lower worst case, tolerance hyperellipsoid

The lower worst case is the minimum value of the performance function over the tolerance
hyperellipsoid, as in the realistic worst-case analysis. The difference is that now the full
nonlinear performance is considered. This leads to a constrained minimization problem
with the performance function als objective and the tolerance hyperellipsoid as constraint.

ming (x) st. (x—xp)" -C' (x—x0) < % (101)

This a special nonlinear programming problem with a nonlinear objective function and one
quadratic inequality constraint. This optimization problem cannot be solved analytically
and requires an iterative solution process as outlined in the beginning. A fundamental
nonlinear optimization method is Sequential Quadratic Programming (SQP), whose prob-
lem formulation and prerequisites will be built up in the subsequent chapters 5 and [6] As
a result of an SQP-based solution process, the gradient V f (xy 1) of the performance at
the worst-case point is also available.

Please note that in general, the solution may also be inside the tolerance hyperellipsoid
or more than one solution may exist. In integrated analog circuit design, two solutions
are frequently encountered in so-called mismatch situations, e.g., of transistor pairs. And
sometimes, the solution is inside T.

In the following, we will assume that the solution is unique and on the border
of Tr and take a look at formulas that we can establish based on the results of an
iterative solution of (101]).

With the results of (101)), a linear model at the worst-case point can be written:

WL

7 (%) = owr + Ve (xwr)" - (x — xwr) (102)

Let us put the cart before the horse and insert this result of (101)) into (101)) itself:

min Vo (xpz)’ - x st (x—x9)" - C7 (x —x0) < B2 (103)

We recognize that is identical to the realistic worst-case analysis , only the
gradient g in has been replaced with the gradient Vo (xw) obtained after having
solved . Therefore we can write the equation for the worst-case parameter vector of
the general worst-case analysis by replacing g in the formula of the realistic worst-case
analysis with Vi (xy). We obtain for the worst-case parameter vector:

XKWL= X0 VVelaws) " C-Velxwr) @ () (104)
- __Bw .
_ C C- Vo (xwr)

Please note that T5wL) is the standard deviation of the linear performance model
in the worst-case point xy .

Mathematical Methods of Circuit Design 45

To obtain a formula for the worst-case performance value, we first formulate the perfor-
—_(WL)

mance value @, at the nominal point, using the linear performance model

in the worst-case:

7D (%) = @()WL) = pwrL+ Vp (XWL)T - (X0 —xwr)
pwr = By O+ Ve xwr) - (xwr — xo) (105)

Substituting (104) in (105]) gives the following formula worst-case performance value:

owr = @SWL) — Bw - \/V<p (xwz)" - C- Vo (xwr)

WL (106)
Yo

) — By - Om(Wi)

Please be reminded that these formulas are based on the results of a general worst-case
analysis after iterative solution of the optimization problem.

(106) shows that the interpretation of By as worst-case distance and as [y -design
of realistic worst-case analysis from is valid in general.

The main difference is that nominal performance and performance standard deviation are
determined from a linear model in the worst-case parameter set.

As a side note: If we replace xy;, on the left side of by X(V;Jil) and Vo(xwr)
on the right side by V(p(ng,)L), we obtain an iteration formula for solving the general
worst-case analysis problem. It would kind of iteratively ”shoot” from the nominal point
with iteratively improved gradients until the final gradient in the worst-case point is
reached. Please note that there is no investigation on when and how this iteration formula
converges.

The general worst-case analysis is a nonlinear optimization problem that cannot be solved
analytically, but requires iterative approaches. The next two chapters 5] and [0] are ded-
icated to the presentation of ”optimization in a nutshell”, and to iterative approaches
to nonlinear optimization problems, as for instance the general worst-case analysis, and
circuit optimization in general.

Mathematical Methods of Circuit Design 46

4.6.2 General worst-case analysis, upper worst case, tolerance hyperellisoid

For the upper worst case, the objective receives a minus sign in the formulas for the lower

worst case. ((101])) becomes:

min —p (x) st. (x—x0) -C7'-(x —x0) < B (107)

(102) becomes:
7Y (x) = pwr + Ve (xwo) - (X — xwo) (108)

(103) becomes:
min —Vo (xpy)’ - x st (x—x0) - C7l - (x —x¢) < B2 (109)

The worst-case parameter vector can be written as:

_ Bw
X —xy = + -C-Vo(x
wu o N @ (xwu)

B (110)
The worst-case performance value can be written as:
ewu = @E)WU) + Bw - \/VSO (xwv)" - C - Vo (xwr) (111)

= @éWU) —+ ﬂw . O‘E(WU)

4.6.3 General worst-case analysis, tolerance hyperrectangle

The general worst-case analysis with tolerance hyperrectangle is written for the lower
worst-case as:

X > X
miny (x) s.t. = (112)
x <x
and for the upper worst-case as:

>XL

min —p (x) s.t. {X_

113
< x0 (113)

Combination of tolerance hyperrectangle and tolerance hyperellipsoid in the general worst-
case analysis leads to a respective combination of constraints in the problem formulation.

Mathematical Methods of Circuit Design 47

4.7 Input/output of worst-case analysis

In the following, the three types of worst-case analysis are illustrated from a black-box
point of view with their input, output and calling of sensitivity analysis and simulation.

Classical and realistic worst-case analysis differ in their inputs, for classical it is a hy-
perrectangle, for realistic it is a hyperellipsoid. Both need the set of parameters and
performance features as input. Both call a sensitivity analysis once to get the gradient
in the nominal point. Both have as output the lower and/or uppper worst-case parame-
ter sets, as well as the lower and/or upper worst-case performance values. The latter are
evaluated based on the linear performance model and/or on a simulation in the worst-case
parameter sets. This is done for each performance feature separately.

for each ¢;
worst-case parameter vector
_> . .
tolerance box (i) (i)
- . Xwr,co Xwu,c

Tp(xr,Xy) classical
worst-case performance

worst-case analysis | e @))

—>
X, ¢ — Pwr,c:Pwu,c
A (i) 1
2 2
x, ¢ |(once)|J WL,C» PWU,C
A 4
sensitivity
analysis
for each ;
worst-case parameter vector
. . —>
tolerance ellipsoid @ @)
Te(C, %o, Bw) realistic : WL,R V;UvR
9) . 9 . -
Pw-sigma design worst-case analysis | o worst c(:gse per(i;)rmance
N _ _
X, ¥ — YwL,R PWU,R

A (Z) i
X, @ |(once)|J PWLR PWUR

A

sensitivity
analysis

The general worst-case analysis has tolerance hyperellipsoids and /or tolerance hyperrect-
angles as input, and provides the true worst-case parameter sets and true worst-case
performance values as output. For this purpose, an iterative optimization process is per-
formed, which calls sensitivity analysis in each iteration step.

A sensitivity analysis usually computes the gradients of all performance features by a
finite difference approach. In each step, it alters one parameter and calls a simulation to
compute alle performance features for this one altered parameter. That means it calls
simulation n, times in addition to the simulation at the nominal point. The resulting
sensitivity matrix is also called Jacobian matrix.

The Jacobian matrix, or sensitivity matrix, is rectangular, it has all the performance
features in the rows and all the parameters in the columns. The element J;; is the partical
derivative of performance feature y; with regard to parameter z,;. A row J;. contains the

Mathematical Methods of Circuit Design 48

for each y;
worst-case parameter vector

tolerance ellipsoid — ORI
and /or general : WL.G XWu,G
tolerance box worst-case analysis | » Worst—case performance
X, — Spgf)L,GﬂO%/)U,G
x(®) %) < (ng times) > Jx)
sensitivity
analysis

Jacobian matrix

sensitivity matrix
— J-— 9%

oxT

sensitivity

X > .
P analysis

x + Ax,e; < (n, times) > Ap; = pi(x + Azie;) — p;

simulation

gradient of performance feature ¢; with regard to all parameters. A column J.; contains
the partial derivatives of all performance features with regard to parameter x;, or the
delta in all performance features with regard to Ax;.

[91 dor .. Op1] [7 9p]
Ox1 Oxa OTny, g1 = oxT
Op2 Op2 . Op2 T _ Op2 1

| m B Drny | _ | B2 T oxT |
J= _ ~l LA,
L ; Az,

&Pmp 6‘Pmp . Btpmp T 880n(p

| Oz Oz2 0Tn, _gnso ooxT

Simulation finally gets the parameter values as input and provides the performance values
as output. Simulation is done based on the specific circuit netlist, the manufacturing
process technology data and a simulation bench with input stimuli.

parameters

Xq performances
x = |x, —» simulation — ®

X, i

netlist, technology
simulation bench

Mathematical Methods of Circuit Design 49

Mathematical Methods of Circuit Design 50

5 Unconstrained optimization

The presentation starts at the innermost part of an iterative optimization process, which
is the line search. Aspects of line search, as the requirement of a unimodal function,
partitioning into bracketing and section, Wolfe-Powell conditions to control the bracketing
and sectioning will be presented. Three sectioning approaches will be sketched, these are
golden sectioning, quadratic model and backtracking.

Next, multivariate optimization will be approached, first for unconstrained problems in
this chapter. First, methods that do not require derivatives will be presented, these are
coordinate search and the polytope method. Then, methods working on derivatives will be
presented. These are steepest descent, Newton method, Quasi-Newton method, Levenberg
Marquardt approach, least-squares approach, and conjugate-gradient approach.

5.1 Line search

The line search optimizes the objective function f over a single parameter, therefore it can
be regarded as a univariate optimization problem. Line search starts within an iterative
optimization process at the point where a search direction has been determined and the
factor a on the length of the step along the search direction has to be determined. The

function that is investigated is given by , and .

Convergence

The convergence of an iterative optimization method has to be investigated, not just
for the line search but for the overall procedure. The convergence is defined from the
end, that is, an error vector is defined that denotes the difference between the current
solution vector and the optimal solution:

e — x(®) _ x* (114)
The global convergence determines that the iterative process converges at all:

lim € =0 (115)

K—00

In addition, the speed of convergence is to be investigated. This is done through the

convergence rate:
e D) = L[] (116)

Here it is assumed that the norm of the error vector is less than 1. p is the convergence
rate, L is the convergence factor. The main convergence rates are linear and quadratic:

p=1: linear convergence, L < 1 (117)

p=2: quadratic convergence (118)

Mathematical Methods of Circuit Design 51

To illustrate the difference between linear and quadratic convergence, please see the fol-
lowing one-dimensional numerical example with €® = 0.1:

p=1,L=05|p=2L=1
e 10.05 0.01
€? 10.025 1074
€® 10.0125 1078
e | 0.00625 1016

We can see that float accuracy has been achieved within 4 iteration steps in case of
quadratic convergence, while linear convergence takes much longer.

In practice, non-integer convergence rates p are considered, these are called super-linear,
i.e., better than linear, worse than quadratic.

Unimodal function

To obtain convergence, a line search shall be done over a start interval that has exactly
one minimum. Such a function is defined as unimodal over an interval [L, R] if there
exists exactly one value o, € [L, R] for which holds:

L<a1¥a2<Ra2 < Qopt — f (1) > f(ag) (Fig. [15]a)) (119)
and Y oan>agy = f (o) < flas) (Fig. [13(b)) (120)

\J
Q

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
L a1 Oopt X2 R

(a) (b)

Figure 15. Unimodal function.

Please note that unimodality is a weaker requirement on a function than convexity (see

App. .

Mathematical Methods of Circuit Design 52

Bracketing, sectioning

A line search consists of two stages, these are bracketing and sectioning:

e Bracketing: Find an initial interval a € [0, R] in which f(«) is unimodal.

e Sectioning: Iteratively reduce the size of the interval while keeping the objective
minimum within the interval, until one is close enough to the minimum.

The requirements on a line search in general are defined as to find an « that brings a

e sufficient reduction in f, and a

e big enough step length.

These criteria are used to define termination criteria for both the bracketing and the
sectioning phase of a line search. They are formalized in the Wolfe-Powell conditions.

Please note that it is often more efficient to perform the line search only approximately.
Wolfe-Powell conditions

The Wolfe-Powell conditions consist of the following three conditions. They are illustrated

in Fig. [16]

Vf(a=0)
S
Co - Vf (Oé = 0) A
c-Vf(a=0) f(\a)
(<)
0 | -
| : Qopt : :
- ! - (121)) satisfied
: : - satisfied
! ' (123)) satisfied

Figure 16. Illustration of Wolfe-Powell conditions.

Mathematical Methods of Circuit Design 53

e Armijo condition: The Armijo condition describes a sufficient objective reduction
using the gradient at the current point, i.e., « = 0. multiplied by some factor
0<c <1t

T
fl@) < f0)+a-c-Vf(x") r (121)

—_———

V f(a=0)
A unimodal function goes through a minimum before rising again. The Armijo
condition defines a linearly decreasing function from the start point that should not
be exceeded and hence defines a right interval bound on « where it is satisfied. It

can be interpreted as to require more function decrease for more step length.

e Curvature condition: The curvature condition describes a sufficient gradient in-
crease in relation to the gradient at the current point, i.e., a = 0, multiplied by
some factor ¢; < ¢y < 1:

Vf (x(")—i-a-r)T-chg‘Vf (x("))T'r (122)
~- v —_——
Vf(a) V f(a=0)

It uses the property that a unimodel function starts at « = 0 with a negative slope
which may first even become more negative before rising again. The curvature
condition identifies this point of reaching again the initial gradient times ¢, and
defines a left interval bound on « where it is satisfied.

e strong curvature condition: The strong curvature condition describes a more
narrow interval around the minimum of the line search by defining an interval with
a certain flatness of the gradient:

Vi(@)| <e-|[Vf(a=0)] (123)

0<ec <<l (124)

It can be interpreted as a relaxed first-order optimality condition for a sta-
tionary point.

The Wolfe-Powell-conditions are used to prove the convergence of a line search method.

Mathematical Methods of Circuit Design 54

5.2 Golden sectioning

As a side comment please note that the root finding of a univariate monotone function
works with a start interval that includes the root, i.e., the point where the function signs
switches. The sectioning then is a bi-sectioning and reducing the interval to either the left
or right half, such that the switch of function sign is maintained in the reduced interval.

Unlike root finding, the minimization of a unimodal univariate function requires two
sampling points within the interval. This is due to the properties (119) and (120)) of uni-
modality. Take a look at Fig. |17, Two additional functional evaluations, i.e., simulations,
have been done inside the interval [L, R] of width A. The minimum cannot be in the
interval g, R|, because the function value was already rising from «; to ay and cannot
go down again in a unimodal function. But it cannot be said if the minimum is in [L, o]
or [, o). Therefore, the new reduced interval is [L, o] of width A®),

The question now is if we can reuse one of the two inner simulation points for the next
sectioning step and only add one more simulation point, in order to save simulation cost.
And this should be possible for both alternatives of new intervals, [L, as] and [aq, R]. The
approach is a sectioning parameter, 7, which is used to determine the sectioning intervals’
ratio as shown in the first three rows under the coordinate system in Fig. [I7]

f

A

| | :

L Qb R
i-7)-4 A :
-
LT A (1-7)-A
-
A
-
L3 af);agm R®
—
(1=7)-AR 7. A@)

-~

A 1A

Figure 17. Two steps of Golden sectioning

For the new interval shown in row 4 under the coordinate system in Fig. [I7, the same
sectioning principle shall be applied, such that the old left inner point a; becomes the
new right inner point o(?. This is illustrated in rows 5 to 7 under the coordinate system

in Fig. [I7

Mathematical Methods of Circuit Design 55

From the widths of the left sub-intervals in rows 3 and 4, we can write: A® =7.A. And
from the widths of the left sub-intervals in rows 2 and 7, we can write 7-A®) = (1—-7)-A.

Together this yields 72 + 7 — 1 = 0 and a golden sectioning ratio of 7 = #5 ~ 0.618.

Another approach leads to the same result: the three right sub-intervals in rows 3 to 1
of Fig. |17 should relate equally to each other as: (IZZ'A = %. This results in the same

golden sectioning ratio 7:
l—7 7 —1++/5

=— <= ?+7-1=0:7=
T 1

~ 0.618 (125)

A pseudocode for the Golden sectioning method is given in the following:

/* left inner point */
ap:=L+(1—71)-|R—L|
/* right inner point */
as:=L+7-|R—1L|
REPEAT

IF f () < f (o)

[/* o* € [L, a3], oy is new right inner point */
R .= ay
g =y

| ap =L+ (1—-7)-|R—-1L|

ELSE

[/* a* € [, R], ay is new left inner point */
L:=oy
ap = Qg

| ag:=L+7-|R—L|

UNTIL A < A,

How many steps to get to given accuracy?
The convergence rate of Golden sectioning is linear with a convergence factor of 7, because:

A — A (126)

How many steps are required to reduce a start interval of width A down to a specified
interval width of A®? For that purpose we note that

AW = 7. A0 (127)

Solving for xk we obtain:

1 A0) A©)
o — [_@ -log mw A [4.78 -log mw (128)

Mathematical Methods of Circuit Design 56

5.3 Line search by quadratic model

After having performed bracketing and having determined an initial interval with uni-
modal function behavior, the minimum in that interval can be approximated with the
help of a quadratic function model. A quadratic model m(«)

1
m(a):f0+g-a+§-h-0z2 (129)
can be computed with

e three sampling points, or

e first and second-order derivatives of the function.

Fig. illustrates the quadratic modeling with three sampling points. «; is determined
based on the quadratic model m(«). The small circle indicates the true function value at
Q.

The minimum of the univariate quadratic model is determined by applying the optimal-
ity conditions on the quadratic model. This approach is called a univariate Newton
approach. The first-order optimality condition yields:

minm(a)—>Vm(a):g+h-at£0—>at:—g/h (130)
with the second-order optimality condition:

h>0 (131)

Figure 18. Quadratic model.

Mathematical Methods of Circuit Design 57

5.4 Backtracking line search

Another line search approach is backtracking. The principle is to start with a large step
length value and reduce it iteratively until the Armijo condition is satisfied. That means
we start with a too long step length and pull it back till we are inside the upper interval
end of the Wolfe-Powell conditions. A pseudo-code of backtracking would be:

O<ez <l
determine step length a; /* big enough, not too big */
WHILE «; violates (121)

[y =3+ oy

Mathematical Methods of Circuit Design 58

5.5 Coordinate search for multivariate unconstrained optimiza-
tion without derivatives

We are now moving forward to optimization over more than one variable. For the moment,
we are looking at methods without derivatives.

What would you do if you want to optimize over several variables, but all you have is the
line search we just discussed?” Well, you do a line search in each of the variables. This is
called coordinate search.

The next question is if you are ready once you went over all coordinates? The answer is
no, because a line search in one variable was performed for specific values of the other
variables. After you changed one of them, the line search has to be done again for the
other parameters. This has to be repeated until there is no more change in all of the
coordinates.

A pseudo-code for coordinate search therefore looks like this:

REPEAT
FOR j=1,--,n,

ap :=argminf (x + a - €;)

X=X+ Q- €

UNTIL convergence or maximum allowed iterations reached

e;=1[0...0 1 0...0"
1 j-th position

An illustration of coordinate search is given on the top part of Fig. [19]

In the first run of the repeat loop in this example, first the y-coordinate is run through
a line search. We assume an exact line search and a quadratic objective function. Then,
the level contour of the objective function with smallest radius that can be reached on the
vertical line shown is looked for. This is a point where the vertical line touches an ellipsis
of the objective function. Next, the x-coordinate is searched through exactly, yielding the
next touching point of this horizontal line with an ellipsis. This completes the first run.
It can be seen that the repeat loop has to be performed many times. The resulting search
trajectory is ”zig-zagging” towards the optimum.

However, a steepest descent approch is not much better. This is illustrated on the lower
part of Fig. [19 Using the gradient as search direction instead of a coordinate axis, we
see search lines perpendicular to the level contours. Exact line search goes along the
steepest descent till it touches an ellipsis as level contour of the objective function. We
can see a similarly zig-zagging search trajectory for the steepest descent approach. But
in each iteration step, we usually have to compute the gradient based on finite difference
approximation, which brings extra simulation effort compared to coordinate search.

Mathematical Methods of Circuit Design 59

1st run of REPEAT loop

2nd run of REPEAT loop

Figure 19. Coordinate search with exact line search for quadratic objective function (a).
Steepest-descent method for quadratic objective function (b).

Please note that steepest descent is never the method of choice for the search direction,
only for the first step. We will soon see how to do better.

Please note also that coordinate search becomes faster the more "losely coupled” or ”un-
correlated” the variables are, i.e., the stronger the diagonal dominance of the Hessian
matrix is. If the Hessian is even a diagonal matrix, then a coordinate search with exact
line search may ideally just need one run of the repeat loop, as illustrated in Fig. [20]

" f = const
X

S ——
1-st run of REPEAT loop 1

Figure 20. Coordinate search with exact line search for quadratic objective function with
diagonal Hessian matrix.

Mathematical Methods of Circuit Design 60

5.6 Polytope method (Nelder-Mead simplex method) for mul-
tivariate unconstrained optimization without derivatives

The polytope method is another method for multivariate unconstrained optimization that
works without derivatives. It is also called Nelder-Mead simplex method to correspond
to its creators. The term simplex stems from its initial geometric structure and must not
be confused with the Simplex algorithm for linear programming, which is a completely
different problem and solution area.

We will see that the polotype method is a very simple method that is easy to imple-
ment. [t may be very effective and efficient. But it is not an optimization method of the
mathematical canon, as there is no proof of convergence nor any theory of convergence
rate.

The idea of the polytope method is to create a linear model of the objective with an
ng-simplex in the n,-dimensional variable space. This is illustrated in the following figure
for two parameters.

Z2

An n,-simplex is the convex hull of a set of parameter vector vertices x;,i =1,--- ,n,+ 1.
The vertices are ordered such that f; = f(x;), i < fo < -+ < fo 11

The idea is to move the simplex towards smaller objective values in the easiest way, say,
by keeping its form and just changing one point. With regard to the simplex this means
to flip the point with highest objective value, i.e., x,,,+1 on the other side of the n, — 1
-dimensional simplex of the remaining points. This is done by reflection of x,,, 11 through
the center of gravity of the simplex of the remaining points:

Reflection

X2

X3

-
= . ; 132
x> (132

Xy =Xo + p - (X0 — Xn,+1) (133)

Mathematical Methods of Circuit Design 61

p is called the reflection coefficient p > 0, its default value is p = 1.

After reordering the simplex points according to the order of their objective values, this
basic procedure is repeated. One can also interpret the proceeding in the sense that the
respective point of largest objective value iteratively tunnels through the rest simplex on
the other side, so that the maximum value of the objective values over the simplex points
is minimized.

There are a number of refinements that are added to the basic procedure. These refine-
ments will be defined first. After that, the overall procedure of the polytope method
will be given. Please note that all refinement steps change the shape of the simplex to a
general polytope.

If the reflection appears to be promising, an expansion is considered in the current iteration
step. This means that the simplex corner point is not just mirrored on the other side of
the simplex, but it is expanded:

Expansion

X2

X3

X1

X, = X0 + X - (X, — X0) (134)
X is called the expansion coefficient, with y > 1 andyx > p. The default value is y = 2.

If on the other hand the reflection does not look promising, an outer contraction of the
reflection is considered. That means the reflection is maintained but the steplength is
contracted.

Outer contraction

X. = X0+ 7+ (X, — Xp) (135)

v is called the contraction coefficient, with 0 < v < 1. The default value is v = %

If the reflection looks even less promising, an inner contraction is considered. Here, the
step does not even flip the polytope, but it rather reduces the size by moving the point
with largest objective value closer to the center of gravity of the rest of the polytope:

Inner contraction
Xee = X0 — 7 (XO - an—l—l) (136)

Mathematical Methods of Circuit Design 62

X2

X3

X1

If this does not help either, then a reduction of the size of the polytope is done by moving
all but the polytope corner with the smallest objective value closer to it:

Reduction (shrink)

X2
X3
V2
V3
X1
Vi:X1+O"(Xi—X1),7;:2,"',nx—f—l (137)
o is called the reduction coefficient,with 0 < ¢ < 1. The default value is o = %
These ingredients are combined to the following overall polytope method:
Cases of an iteration step of the polytope method
(re-)order f;; reflection
fr<f1 flgfr<fnz fn1§f7'<fnz+1 fnz+1SfT
expansion outer contraction inner contraction
fe<fr? . fcgfrr? fcc<fnz+1?
msert X,
yes no yes no no yes
delete x,, 11 -
Xp, 41 = Xe | Xp,41 = Xpr Xp, 41 = Xe reduction Xp,41 = Xee
X1, Vo,... 7V7Lg;+1

The case distinction depends on the comparison of the objective value at the intermediate
reflection point with the objective values of all polytope corners. If it is smaller than at
any polytope corner, an expansion is tried. If the objective value is then even better,
expansion is done, else we stay with regular reflection. If the objective value at the
reflection point is just smaller than the largest value at the polytope corners, then outer
contraction is tried. If this brings improvement compared to the reflection point, it is
done, else a shrink is performed. Analogously, if the new objective value at the reflection
point is larger than at any of the polytope corners, inner contraction is tried. If this brings
a better objective value than at the worst polytope corner, it is done, else a reduction is
performed.

By the reduction and the other steps that decrease the size of the polytope, we are reducing
the step size and increase the accuracy of the solution. Depending on the problem, the
initial size of the simplex has to be determined before starting the algorithm.

Mathematical Methods of Circuit Design 63

5.7 Newton approach for multivariate unconstrained optimiza-
tion with derivatives

Now we move forward to optimization methods for unconstrained optimization that use
derivatives. The method using the first derivative, i.e., the steepest descent approach,
has already been discussed. We switch to the approach using the quadratic objective
model, which is called Newton approach for a search direction. It is based on a
second-order model of the objective function based on the Taylor series given in ({19
and , truncated after the second-order derivative, which gives the quadratic model
m(“)(r). Applying the first-order optimality condition to to the minimization of this
quadratic model, i.e., Vm® (r) = 0, yields:

H® .p = —g® 5 ¢ (138)

r%) is obtained through the solution of a system of linear equations, and it represents the
search direction for a subsequent line search.

X2
A p , \\\/ W\(3-:): sz
" }f r}” ATy mu W™
N@M‘}w
e Kot e
7 X4

Figure 21. Steepest descent direction and Newton direction of quadratic model at x(*)

Fig. illustrates the Newton direction at x*). While the steepest descent points per-
pendicular to the level contour at that point, the Newton direction points directly to the
minimum of the quadratic model.

Question: Why do we have to add a line search, as the Newton direction points directly
to the minimum of m®? Answer: Because it is only a model. This model is valid in a
certain environment of r®) but not at the mimimum it suggests. It is much better than
a linear model, but still not capturing the full nonlinearitiy. Hence, a subsequent line
search is required.

According to the sufficient second-order optimality condition for the stationary point of
the model function m®*), the second-order derivative has to be positive definite:

V2m (r) = H® is positive definite (139)

Mathematical Methods of Circuit Design 64

Second-order optimality condition not fulfilled

The next question that arises is: What can we do if the second-order optimality condition
is not fulfilled? There are three basic ways to deal with this:

e The first approach is to give up on the quadratic model and fall back on steepest
descent r®) = —g(¥),

e The second approach is to compute an eigenvalue decomposition of the Hessian
matrix H*®) and switch the signs of the negative eigenvalues. Then, the stationary
point is a minimum of the model, but the model does not properly reproduce the
real objective. The idea behind this approach is that usually a small number of
eigenvalues compared to the dimension of the variable space is negative. For all the
positive eigenvalues, the model function correctly reproduces the behavior of the
objective. The Hessian then has a certain relevance that is used by this approach.

e The third approach is less "rude” and keeps better the relation among the eigen-
values and thus the reproduction of the true objective by adding a constant value
A to all diagonal elements of the Hessian matrix. This is called the Levenberg-
Marquardt approach: (H(“) + A I) .r = —g® . The background of the Levenberg-
Marquardt approach is the rule that a diagonal-dominant matrix is positive definite.
Diagonal dominance means that the absolut value of each diagonal element is greater
than or equal to the sum of absolute values of non-diagonal elements in the same row
or column. By adding the same value to all diagonal elements, the matrix will even-
tually become diagonal dominant and positive definite. This is similar to increasing
all eigenvalues until they are all positive and at the same time keep the relation
between them. Please note that the Levenberg-Marquardt approach is a homotopy
method between steepest descent (A — oo) and Newton direction (A = 0).

Mathematical Methods of Circuit Design 65

5.8 Quasi-Newton approach for multivariate unconstrained op-
timization with derivatives

The second question in connection with the Newton approach is what we do if no Hessian
matrix is available. This is typically the case in many technical problems with numerical
simulation, where already the gradient has to be approximated with finite differences, not
to mention the second-order derivative.

The good news is that there are methods to approximate the Hessian from the different
gradients over the iterative steps of the optimization process. These gradients are used
to build up information on the curvature of the function.

In a one-dimensional space for instance, it is enough to have two gradients to establish
the quadratic model. In a high-dimensional space, it is more difficult. Each new gradient
spans another direction in the space, and depending on the different gradient directions,
quadratic information is built up in the subspaces of these gradients.

This approximated Hessian matrix is used to determine quasi a Newton direction, hence
the name quasi-Newton approach.

The approximation of the Hessian matrix is denoted as B. It is usually initialized with
the identity matrix: B =1.

Using the quadratic model in iteration step x, i.e. and , the second derivative in
the next iteration k + 1 can be approximated by:

From this the quasi-Newton condition for an approximation B of the Hessian matrix
is derived:

gt — gl — Blt) L (x(s+1) _ (0)) (141)
' M ()
y(¥) s

(141) describes an implicit relation between the difference in two subsequent gradients,
the difference in two subsequent solution points, and the Hessian matrix approximation.
This condition can be used to design update formulas for the approximation B(*+1.

A simple example for an update formula is the following:
Symmetric rank-1 update (SR1)

The approach is starting from the following formula:
B = B®W L. vT (142)

The available new gradient is a vector that will be incorporated in the two vectors u and
v of (142)). A dyadic product of two vectors as in (142)) is of rank one, hence the name

Mathematical Methods of Circuit Design 66

of the approach. ([142)) is inserted in the quasi-Newton condition (141]), which leads to a
formula for the vector u:

(B® 4 u-vT) s = y®

uovT s =) B . g

) _ B . g
u =7 > (143)

vT . g(k)

Here, the dyadic product has been dissolved towards a scalar product. The correctness
results from inserting (143)) in the previous formula. We now substitute ((143) in (142)),

(y) — B® . sW) .7

(+1) — B
B =BY + T 5

(144)

and, due to the symmetry requirement of a Hessian matrix, we obtain the SR1-update

formula:
(y(n) —_B® .S(H)) . (y(ff) —_B®. S(H))T

(y*) — B0 . g())T . g)
In case that y®) — B . s(®") = 0, the update would be skipped: B+ = B,

Bt — B 4

(145)

Please note that the SR1 update does not guarantee positive definiteness of the Hes-
sian approximation B. Well-known alternatives that maintain positive definiteness are,
e.g., Davidon-Fletcher-Powell (DFP), Broyden-Fletcher-Goldfarb-Shanno (BFGS). BFGS

update is a frequent method for quasi-Newton approaches.

As the computation of the Newton direction requires the solution of a linear equation
system, often an approximation of the inverse B~! instead of B or an approximation of a
decomposition of the system matrix of linear equation system (|138)) is done, in order to
facilitate the computation of the search direction r*.

Please note also that if the vectors s*), k = 1, - - -, n, are linear independent and if f would
be a quadratic function with Hessian matrix H, the quasi-Newton with SR1 update would
terminate after not more than n, + 1 steps with B*+*1) = H.

Mathematical Methods of Circuit Design 67

5.9 Levenberg-Marquardt approach (Newton direction plus trust
region) for multivariate unconstrained optimization with
derivatives

This method does have a constraint, but it is one from the algorithm, not from the
technical problem, therefore we prefer to place it under unconstrained optimization. The
idea is to include a trust region into the computation of the search direction, which limits
its length:

minm (r) st. |[r|]> <A (146)
—

rT.r

The constraint is a trust region of the model m (r), e.g., with regard to the validity of the
quadratic model of the objective, or, with regard to positive definitiveness of the Hessian
matrix.

The corresponding Lagrange function using the quadratic model of the objective is:

1
Lr,\)=f" gt . p 4 §rT-H(“) T—A-(A—-r""r) (147)

The first-order optimality condition for a stationary point VL (r) = 0 leads to:

(H® +2.0-1) -x = —g® (148)

Please note that this formula is (aside of the factor 2) identical to the form derived for
indefinite Hessian matrices of the Newton approach. The motivation there was from
positive definiteness of the Hessian matrix through diagonal dominance of the matrix.
Here, the motivation is from a trust region constraint in the formulation of the Newton
approach.

Mathematical Methods of Circuit Design 68

5.10 Least-squares (plus trust-region) approach for multivariate
unconstrained optimization with derivatives

We have so far dealt with scalar optimization, i.e., optimization of a single objective.
Technical problems usually are featuring many objectives, not just one, which results in
a so-called multi-objective or multi-criteria optimization problem (MOO, MCO). In addi-
tion, the objectives are competing with each other, making optimal trade-offs necessary.
Finding the set of possible trade-offs is called Pareto optimization.

A common approach to combine several objectives into a scalar cost function is the least-
squares approach. A target value is specified for each objective. Then, the differences
between the objective values and their target values are squared and summed up in a
scalar cost function. If we then add a trust-region constraint on the length A of the
search direction to be computed, we obtain:

min || (r) - fiarget|)” st TP < A (149)

This is an easily implementable scalarization approach, as reasonable optimization targets
can be specified in technical applications. If all targets are reached at the end of the
optimization process, they can be pulled tighter and the process can be restarted to see
if further improvement is achievable.

The next important ingredient is to create a linear model of the objective:

f(r)~ £ (r) =f (x")) + Vf (X(”)T) T (150)
() v
£" S(r)

We introduce an error vector to denote the difference between objective and its target
vector, and we insert the linear model of the objective function, while leaving out the
index (k), to obtain the following:

[e@)* = [If(r) = frarge|l” (151)
= €(r)-€(r) = (f — frarget +S - r)" - (eg+S-r) (152)

€

0
= € -e+2-v"- ST +r"-ST.S.r (153)

The optimization problem then is:

min |[€(r)[]* s.t. |r)* <A (154)

Please note that S-S is a part of the second derivative of ||€(r)||?. It results from squaring
a linear function.

Mathematical Methods of Circuit Design 69

The corresponding Lagrange function is:

L)) =¢ €+2-1"- 8" -g+r" -S"-S.r—A-(A-r""1) (155)

It has a stationary point VL (r) =0 at

2-ST.€+2-8"-S-r+2-A-r=0 (156)

which is obtained by solving to the following equation system:

(S"-S+A-I):r=-8"-¢ (157)

Please note the structural similarity to the Levenberg-Marquardt approach . We can
identify a quadratic component on the left side, which was the Hessian in the Levenberg-
Marquardt approach and is a part of the Hessian in the least-squares approach, and a
gradient component on the right side.

If the trust region is skipped, i.e, A = 0, we obtain the so-called Gauss-Newton method:

ST.S.r=-8".¢ (158)

The Gauss-Newton method consists in creating a Newton approach for a linear objective
function by means of a least-squares objective formulation. It is a popular approach to
benefit from the Newton approach if the function model originally is just linear.

Characteristic boundary curve
The solution of the equation system (157) yields a search direction r*) for a given factor .

Different from the usual search direction and line search partitioning, a trust-region ap-
proach for an iterative optimization step can be established by sweeping the factor A
in (157)).

For each A with 0 < A\ < oo, we obtain a search direction of length [r*)|| and a cor-
responding cost function value, specifically, the linearized least-squares error between
original objectives and their targets € (r*)) ||.

The set of different solutions is presented in form of a Pareto curve, e.g., as in Fig.

The x-axis in Fig. [22|gives the length ||r(®)||, please note that the directions r*®) themselves
are all different (see Fig. . The y-axis gives the achievable cost function [[€) (r)) ||
with linearized objective f for that respective search step r(.

For A — oo, the initial error value is given, as a zero step results. For A\ = 0, no trust
region constraint is active, and the full step to reach the mininmum cost function is taken.
As the original objective model in (154]) is linear, the target value can be reached, such
that the cost function reaches zero.

Please note that the linear model is only valid in a certain surrounding of the current
iteration point. Therefore, the accuracy will deteriorate with increasing step length and
the Pareto front based on the linearized objective model will become wrong. This is

Mathematical Methods of Circuit Design 70

small

error

=)] = A
small step length

Figure 22. Characteristic boundary curve in a least-squares with trust-region optimization
step, typical sharp bend for ill-conditioned problems.

illustrated in Fig. [22| by the dashed line which shows how the true error possibly deviates
from the linearized the longer the step length becomes.

From the Pareto front, a reasonable step can be derived. Typical technical problems have
many degrees of freedom in the solution. This means that different parameter solutions
lead to the same objective values. The design degree of freedom translates to mathematical
ill-conditioning, and leads to a typical bend in the shape of the Parot front. The bend
is used to identify a good step: it is a step with a lot of reduction in the cost function
and a still small step length. It has to be taken care that the bend is within the range of
validity of the linear objective model.

Ty — wgﬂ)

A € (r) || = const

r) (A)

K
>[L‘1—ZE§)

A= e il = A

Figure 23. Characteristic boundary curve of a two-dimensional parameter space.

Fig. illustrates the characteristic boundary curve in a space of two parameters. The
origin represents the current iteration point. The concentric circles around the origin are
the different trust regions of constrained step length. The concentric ellipses are the level
contours of the scalarized cost function. The problem condition results in the degree of
spread of one of the two axes of the ellipses, which corresponds to the two eigenvalues
of the part ST - S of the Hessian of the objective function. For each feasible step length,
the touching point of circle with a cost ellipsis is the corresponding step r®. All possible

Mathematical Methods of Circuit Design 71

steps are shown on the curved trajectory from the origin to the minimum of the cost
function. One can imagine that the more ill-conditioned the problem is, the stronger the
difference in eigenvalues, and the more bent the curve will be.

Significant research effort has been spent at the Chair of Electronic Design Automation
of the Technical University of Munich to develop methods to efficiently compute the
characteristic boundary curve both for unconstrained and for constrained optimization
problems. A number of commercial tools for circuit optimization and transistor parameter
optimization have adopted the characteristic boundary curve.

Mathematical Methods of Circuit Design 72

5.11 Conjugate-gradient (CG) approach for multivariate uncon-
strained optimization with derivatives

Please recall that the minimization of a quadratic objective function leads to the solution
of a linear equation system due to the first-order optimality condition in the Newton ap-
proach . The conjugate-gradient approach was originally developed for the solution
of a linear equation system. We will use these notations:

1 |
fi(x)=bl . x+ 3 x’ -H-x — min, H is symmetric, positive definite (159)

Vi(x)=g(x)=0—->H -x=-b —x" (160)

The conjugate-gradient approach is dedicated to a linear equation system such as
that is large and has a system matrix H that is sparse. In this case, the usual matrix
decomposition or an eigenvalue decomposition are prohibitive, as they destroy the sparsity
and lead to unnecessary computational cost and even memory overflow. A more efficient
solution approach is needed. This is achieved by the concept of conjugate directions.

Conjugate directions

Conjugate directions are characterized by the property of H-orthogonality of any two
directions r® and r¥):

Z'r(")T -H-r% =0 (H-orthogonal) (161)
i

H-orthogonality describes that the orthogonal transformation of two vectors according to
an eigenvalue decomposition would make them orthogonal. Take the eigenvalue decom-
position of H:))

H=U-D2.D:.UT, U'=U" U.UT =1 (162)

where D2 is the diagonal matrix of square roots of eigenvalues, and where the columns
of U are the corresponding orthonormal eigenvectors.

Inserting (162)) into (161)) gives:

ve® H.r0 =0

i#]
1 AN 1 .
= V (D§ -UT-r@) . (D§ .UT.I-(J)> —0
i#j
AT \
< V I-(Z) . r(]) =0 (163)
i7#]
This shows that the transformed conjugate directions
N 1)
I'(Z) = D§ . UT . r(l) (164)

are orthogonal. In the following, a solution of the problem of minimizing a quadratic
objective function will be presented.

Mathematical Methods of Circuit Design 73

Search direction

A new search direction is defined to be a linear combination of the actual steepest
descent and the previous search direction:

p(rHD) = _glst) | gletD) . () (165)

Substituting 1} into 1} leads to a formula of the combination factor S<+1):

i g(ﬁ+1)T .H- r(’f) + 5(“+1) . r(”)T .H- I'(N) =0 (166)

(41T . p)
B = B (167)
I‘(“) -H - r(ﬂ)

Step length

The step length for a given search direction can be formulated analytically for a quadratic
objective function. We substitute x = x*®) + o - v in ((159):

1
fo (@) =b7 - (x4 - r®) 4 - (x® 4 a-r®)" H- (x4 q-) (168)
Vi, (@) = bl.r 4 (X(”) +a- r(“))T “H - r™® (169)
B gr, (x™) 2 4o p®T H . (170)
T
g(“)

The first-order optimality condition V f, (o) = 0 then leads to:

_g(®T . p(x)
o= 85 T

B r&T . H -) (171)

At this point, we have all ingredients for an iterative search process. Before formulating
it, we will look at some properties of the gradients and search directions that we have just
defined. We will show that the condition holds while formulating these conditions.
Afterwards, we will derive simplified formulas for the search direction and step length,
which are cheaper to evaluate. Then, the conjugate gradient algorithm will be formulated.
And it will be extended to nonlinear optimization!

Some properties

We formulate the gradient of the next iteration step from the formula for a new step,

g) = b H-x® = b+ H-x® + o H .
g +a . H. (172)

Mathematical Methods of Circuit Design 74

and insert this into:

(h+1)T W7 1) L o) T L)

g
@ H .
r®T . H - r®)
= 0 (173)

This result tells us that the actual gradient is orthogonal to the previous search direction.

We establish the following relation betwen actual gradient and actual search direction:

o () (09) x)T K-
HT K K K T K—
= g g() 6().g() -r(1)
—_—
o by (173)
IiT K
= gt g (174)

This property will be used for a simplified formula for the step length.
Next, we look at the scalar product of two subsequent gradients:

gt)T L () () g g o) 0T . g(rs)

I L N O OB OISO = (—r) 4 g . ple=D)y
(161) P OENMONIPN O RO & JP0
(]

’ _g(K/)T . r(K/) _|_ g(H)T . r(H)
= 0 (175)

That shows that the actual actual gradient is orthogonal to the previous gradient.

Substituting (165]) into (173])

K T K H
gDt (+ 8" . 1)) =0
gD pe=1) — (176)
shows that the new gradient of the next step is orthogonal to the search direction of the

previous step. Repeatedly inserting (165)) in this equation (176 then leads to the result
that the next gradient is orthogonal to ALL previous search directions.

Substituting (172)) into (175))
g(nH)T . (g(nfl) + oD H. r(ﬂfl)) -0
gD gl (D) L (Lplet) 4 gt ()Y L L (D) —
g(HH)T . g(ﬂfl) -0 (177)
shows that the next gradient is orthogonal to the previous gradient. Repeatedly inserting

(172) into (177)) then leads to the result that the next gradient is orthogonal to ALL
previous gradients.

Mathematical Methods of Circuit Design 75

Simplified computation of conjugate gradient step length

Substituting (174)) into (171)) gives the following formula for the step length:

(k) g(”)T . g('{)
o = (178)
Simplified computation of conjugate gradient search direction
Substituting H -) from (172)) into (167) gives:
K T 1 K K
r&” . H . rk)
Using (178]) and (175]) in (179) finally leads to:
(k1T | (k41
(k+1) _ 8 g
p g7 - g (180)

Here, no matrix-vector multiplication is needed which reduces computational cost.
Conjugate gradient algorithm

The following pseudo-code summarizes the iterative conjugate-gradient approach.

g =b+H- xO
r(® = _g(0
k=0
while r®) £ 0
step length: o(®) = % = line search
in nonlinear programming
new point: x*t) = x() 4 o) . p()
new gradient: g"t!) = g + o . H.r(®) = gradient computation

in nonlinear programming

Fletcher-Reeves: g+ = %
new search-direction: 1) = —g(t1) 4 gletl) . p(x)
| Ri=RA 1
| end while

Please note that the CG algorithm solves optimization problem with a quadratic objective

function ((159)), (160) in at most n, steps.

Mathematical Methods of Circuit Design 76

Please note also that the fomula we have derived for § in the search direction is the
Fletcher-Reeves formula. Other formulas have been derived, as, e.g., the Polak-

Ribiere formula: .
g(fﬁ-l) . (g(fﬂ-l) _ g(*ﬂ))

5(f€+1) — (181)

g(“)T . g(“)

The structure of the conjugate gradient algorithm can be generalized to a nonlinear op-
timization problem:

e The analytical formula for the step length is replaced by a general line search.

e The analytical formula for a new gradient is replaced by a general gradient compu-
tation.

What stands out as important feature of the CG approach for nonlinear programming are
the orthogonality properties of the search directions, which are H-orthogonal with regard
to the Hessian matrix of the Taylor series of the objective function, which is notably never
explicitly determined.

The intuitively clear message of the CG approach is to try to look into a new direction
in each iteration step of the optimization process into which has not been looked before.
In addition, H orthogonality allows to adapt these "looks” to the shape of the quadratic
part of the objective.

Mathematical Methods of Circuit Design 77

Mathematical Methods of Circuit Design 78

6 Constrained optimization

We have seen how to solve an unconstrained optimization problem with a quadratic objec-
tive function. We will now extend this to solve a so-called quadratic optimization problem,
which has a quadratic optimization objective and linear constraints. This will be done
in two steps. First, linear equality constraints will be treated. By a so-called coordinate
transformation, the problem will be transformed into a subspace without constraints.
There, we have a quadratic objective and can use the solution methods from the previous
chapter. Second, linear inequality constraints will be treated. Here, the active-set method
will be introduced that maps certain inequality constraints into equality constraints (and
back to inequality constraints.) And how to deal with equality constraints has been intro-
duced before. Then, we will formulate the general nonlinear optimization problem. We
will see how to transform it into a sequence of quadratic optimization problems (whose so-
lution has been explained just before) by the means of the Newton approach to a Lagrange
formulation of the problem.

6.1 Quadratic Programming (QP) — linear equality constraints

The general formulation of Quadratic Programming with linear equality constraints is the
following:

min f, (x) st. A-x=c
fo(x)=bT-x+ix" - H-x
H: symmetric, positive definite

(182)

A<nc><nz>> Ne S nm rank (A) = N¢

Here, we assume that the linear equation system of constraints is underdetermined and has
full rank (Appendix. Full rank means that the equations are independent and cannot be
further reduced to a system with smaller number of equations. Underdetermined means
that there is a manifold of solutions to the equation system and no unique solution. The
degree of freedom in the solution of the equation system leaves the space for minimizing
the objective function.

Mathematical Methods of Circuit Design 79

Transformation of ([182) into an unconstrained optimization problem by coor-
dinate transformation

A generic formula to approach coordinate transformation without prior mathematical
knowledge is the following linear combination of the right side of the constraint c and a
vector of coordinates y that are unconstrained:

Ccne>
x = [Yenons | 2l vn,s |—— = Y¢c + Z-y (183)
non-;;gular y feasible point degrees of
<ng> of Ax =c freedom in
Ax=c

Please note that a product of a matrix and a vector can be interpreted as a linear com-
bination of the columns of the matrix with the vector elements as coefficients. Hence,
in Y - ¢ the components of ¢ are coordinates in a coordinate system, where the columns
of Y describe the coordinate axes in the Carthesian coordinate system. Analogously, in
Z -y the components of y are coordinates in a coordinate system, where the columns of
Z describe the coordinate axes in the Carthesian coordinate system. We will come back
to this soon. If we insert into the constraint equation system, we obtain:

A-x=A-Yct+A - Zy=c (184)
(=5) (T26)

The constraint equation system is fulfilled by the following conditions on Y and Z:

A. . Y - I<nc><nc> (185)
A‘ ' Z = 0<nc><nx—nc> (]‘86)

With these conditions on Y, Z, any vector y fulfills the constraint equation
system. We now insert ((183)) into the optimization problem (182)),

o(y) = fo(x(¥)) (187)
= bT-(Y-c+Z-y)+%(Y-c+Z-y)T-H-(Y-C+Z-y) (188)
- (b+%H-Y-c) Y-c (189)

+(b+H-Y-¢)" Z-y

1
—|—§yT~ZT~H-Z~y
and obtain an unconstrained optimization problem in ¢ (y) that is equivalent to the

original problem:
min f, (x) st. A-x=c = min¢(y) (190)

The stationary point y* of the unconstrained optimization problem ((190)) is computed
through V¢ (y) = 0, and transformed back to the constrained solution x*:

(z"-H-Z) y=-Z"-b+H-Y-¢c) » y* = x*=Y-c+Z-y" (191
— ~ ~ —
reduced Hessian reduced gradient

Mathematical Methods of Circuit Design 80

Computation of Y, Z by QR-decomposition

An example of how the matrices Y and Z can be determined is the QR-decomposition of
the matrix AT = Q- R. Please see App. |[F| for more details on QR-decomposition. Insert-
ing the QR-decomposition of A into the conditions and yields the following
formulas for Y and Z:

from (I85): R"-Q"-Y=1 - | Y=Q -R7’ (192)

from (I85): R -Q"-Z=0 — | Z=Q" (193)

Figure [24] illustrates the coordinate transformation that is obtained for three parameters
x1 to x3 using a QR-decomposition.

L3 . .
. __-A - x = c "feasible space”

Figure 24. Illustration of coordinate transformation with a QR-decomposition for three
parameters.

The plane in the three-dimensional space that is indicated by the dotted rectangle repre-
sents all parameter vectors x that satisfy the constraint equation, i.e., the feasible space
of x: any parameter set on this plane is a feasible solution. The optimization objective
determines the specific parameter set on this plane that minimizes the quadratic objec-
tive. In case of a QR-decomposition, the vector Y - c is the shortest vector that satisfies
the constraint equation. It is orthogonal to the plane and represents the minimum-length
solution of the underdetermined equation system. Z -y lies in the kernel of A. The col-
umn vectors z;,i = 1,--+ ,n, — n,. are an orthonormal basis of the kernel (null-space) of
A ie. it holds A - (Z-y) = 0. These column vectors represent an orthogonal coordinate
system in the feasible space, the components of y are the coordinates of points within
that feasible space using the coordinate system spanned by the columns of Z.

Mathematical Methods of Circuit Design 81

Computation of Lagrange factors A

For the active set method for inequality constraints in the next section, we need to be able
to determine the value of the Lagrange factors of the corresponding Lagrange function of
optimization problem ([182]):

LA =fx—-A"-(A-x—c) (194)

The stationary point VL (x) = 0 yields an overdetermined equation system that can be

solved using ([185))

—|
1

AT X = Vf,x)=b+H-x
A YTV, (x*) (195)
= YT (b+H- x")
In case of a QR-decomposition we replace AT by Q- R in the first part of (195)) to obtain:

Q- R-A=b+H- x (196)

R-A=Q" - (b+H-x) > A (197)

Solving ([197)) is possible by backward substitution, as R is an upper triangular matrix.
As a result, we obtain the values of A at any point of the optimization process, be it
intermediately or in the optimum.

Computation of Y - ¢ in case of a QR-decomposition

By replacing the QR-decomposition for the system matrix A in the equality constraint,
the product Y - ¢ can be computed in two steps.

Ax = ¢
[@6a
£ g Q" x = ¢
——
u
forward (198)
substitution
Rf''u = ¢ — u
(92) 7 .
Y-c = Q-R 7' .-c=Q-u (insert u)

First, the intermediate vector u is computed by forward substitution (please note that
R is a lower triangular matrix). Then, Y - ¢ is obtained as described above.

Mathematical Methods of Circuit Design 82

6.2 Quadratic Programming — inequality constraints

The general formulation of Quadratic Programming with linear inequality constraints and
with linear equality constraints is the following:

min f, (x) st. al -x=¢, (€FE
aj - x>c¢;, jel
fq(x):bT~x—|—%xT-H~x (199)

H: symmetric, positive definite

A<ncxnx>>nc S Ny, rank (A) = N

T.
a;,jel

Here, we have written the equations and inequations individually. The index 7 is denoting
equations out of the set E of equality constraints. The index 7 is denoting inequations out
of the set I of inequality constraints. Combining all constraint equations and inequations
in a matrix A, we assume that this matrix has full rank and that the feasible region is
not empty.

An approach to handle inequalities, this holds not only for Quadratic Programming but for
nonlinear programming in general, is to iteratively make them to equality constraints when
appropriate and handle a resulting problem with only equality constraints by coordinate
transformation, as described in the previous section. Whenever appropriate, equality
constraints (if they are originally inequality constraints) are turned back to inequality
constraints.

When are inequality constraints made to equality constraints? The moment, they are
threatened to be violated, i.e., when they reach the bound 0. For the respective set of
equality constraints in an iteration step, a search direction is computed. In this com-
putation, a number of inequality constraints is ignored. Therefore, the resulting search
direction may violate one or more of these inequality constraints. This is checked for,
and if it happens, the search direction is limited, so that the constraints are not violated,
but only reach their bound. They are said to become ”active”, hence the name of the
approach: active set method. As an inequality constraint becomes active, it is made
in equality constraint, and the computation restarts with a new set of active constraints.

In the further course of optimization, it may turn out that the optimization wants to move
away from the bound of an active inequality constraint back into the feasible region. How
do we know if an active inequality constraint should become inactive? We compute the

Mathematical Methods of Circuit Design 83

Lagrange multiplier: if the Lagrange multiplier is negative, this means that this is not a
necessary condition for an optimum, and we can set it inactive again. Then, the active
set of constraints changes and we can search for a new direction of optimization.

This process is repeated until all active constraints have positive Lagrange multipliers, i.e.,
satisfy the first-order optimality conditions, and a stationary solution of the Quadratic

Programming problem ((199)) has been reached.

The active set method is sketched in the following pseudo-code and illustrated with an
example afterwards. Before going through the example, we will go through the algorithmic
principle.

We start with the first line of the pseudo-code. The starting point has to be a point that
is inside the feasible region. Usually, it is a corner point of the feasible region, which has
for instance been computed with linear programming. As a result of the computation of
the starting point, also a certain set of active constraints is given.

Then, a repeat-loop is started. At the beginning of this loop, Quadratic Programming
with equality constraint with the current set of active constraints is performed. The
solution approach using coordinate transformation has been described in the previous

section. As a result, the computed search direction §**) may be zero (case I) or non-zero
(case II):

In case I, a zero search direction means that no further step is possible with the current
set of active constraints. There are now two possibilities:

In case Ia, all Lagrange multipliers of active inequality constraints are non-negative. That
means that the first-order optimality conditions are fulfilled and the optimum solution
has been reached. We can stop.

In case Ib, there exists at least one Lagrange multiplier of active inequality constraints
that is negative. This means that the first-order optimality conditions are not fulfilled
and the optimum solution has not been reached. An inequality constraint with nega-
tive Lagrange multiplier should be set inactive, and the repeat-loop continued. Which
constraint should be set inactive if there are several with negative Lagrange multipliers?
To answer this question, please recall what has been revealed when interpretating the
Lagrange multiplier: the value of the Lagrange multiplier is the sensitivity of the solution
with regard to a change in the constraint. Therefore, the inequality constraint with the
most negative value should be set inactive, because this will enable the strongest fur-
ther progress towards the minimum among all active inequality constraints with negative
Lagrange multipliers.

Now to case II. We can do a step, but as we have ignored all inactive inequality con-
straints in the computation of this step, we have to check if we surpass one of the ignored
constraints. This can be done by computing the amount of safety margin of an inequality
constraint to its bound, and divide it by how much we would consume of it with a full
step along the search direction. This directly gives the step length for the considered
constraint. This is done for all inactive constraints for which the search direction moves
towards the bound. The smallest value gives the overall step length we will take. Either
it is one and no new constraint becomes active (case ITa). Or the smallest step length is
less than one (case IIb), which gives the overall step and the corresponding constraint
which is added to the set of active constraints before continuing the repeat-loop.

Mathematical Methods of Circuit Design 84

compute initial solution x(© that satisfies all constraints, e.g., by linear programming
k=0

repeat

[/* problem formulation at current iteration point x*) + §

for active constraints A®) (active set method) */

min f, () st. al - §d=0,ic AW — §»

case I: 8" =0 /*ie., x® optimal for current A®) */

compute A" e.g., by (193) or (197)

case Ia: (V))\5“) >0, /* i.e., first-order optimality conditions satisfied */
e ARINT

x* = x): stop
case Ib: 3 A" <,
ieANI
/* i.e., constraint becomes inactive, further improvement of f possible */

q = arg min)\z(.”),
icARNI
/* i.e., ¢ is most sensitive constraint to become inactive */

A = A {g)

K5+ — ()

case II: 6 #0, /*ie., f can be reduced for current A®"); step-length computation;
if no new constraint becomes active then a(*) =1 (case Ila); else find inequality

constraint that becomes inactive first and corresponding a(*) < 1 (case IIb) */

safety margin bound

T | (%)

. . C; —a; X
o™ = min(1, min L)
A qT . 5 al . 5"
1 ¢ A ,al * 6 < 0 1
——
~
inactive constraints that consumed safety margin
at Oé(’i) =1

approach their lower bound
¢’ = argmin (—"-)
case ITa: o™ =1
[A+ — A(k)
case ITb: a® < 1
[A(HH) =AM U (¢)
X(Ii+1) — X(K) + a(ﬂ) . 5(’{)

Ki=Kk+1

Mathematical Methods of Circuit Design 85

Example

I

_—[fq = consi

5 — ()
T

Figure 25. Example of active set process of Quadratic Programming

(k) | AW | case
(1) | {A,B} | Tb
(2) | {B} | Ila
3)| {B} | b
(4) {} ITh
(5) | {C} | Ila
©) | {C} | Ia

Fig. illustrates the active set process with an example. We have two parameters xq,
xo. The level contours of the quadratic objective function are given with three ellipses.
There are three inequality constraints indicated by three lines and indexes (A), (B),
(C). No equality constraints are given in this example. The hatched sides of the lines
are the "forbidden” half-spaces. (A) represents the constraint xo > 0, (B) represents
the constraint x; > 0, (C) represents that a linear combination of z; and xy should be
less than or equal to some positive value. We can see that the minimum of the objective
function is outside the feasible region. We can also immediately identify that the minimum
is where constraint boundary (C) touches the most inner ellipsis. But that is not what
the algorithm sees.

The algorithm starts at x(V, i.e., the coordinate system’s origin, with an active set of
{A, B}. This point and active set results for instance if the objective x; 4+ x5 has been
minimized over this set of inequalities with linear programming.

For this set of active constraints, which says to stay both on the boundary lines of (A) and
(B), we cannot move whatever an objective is, the search direction is zero, we have case
I. The question now is if we can set a constraint inactive. Please note that the algorithm

Mathematical Methods of Circuit Design 86

only sets one constraint active or inactive at a time. This is for control of convergence.
Either we compute the Lagrange multiplier, or, in this case, we can conduct a visual
inspection. For that purpose, we draw the gradients of active constraints and of objective
in the current point x;. This results in Fig. [26]

VA

Vi,

Figure 26. Check first-order optimality condition in iteration step (1).

The gradients point in the direction of largest function increase. That means upwards
for constraint (A), to the right for constraint (B). As constraints are linear, this holds
constantly. The gradient of the objective is perpendicular to the respective ellipsis and
pointing away of the objective minimum. From Fig. we can derive for the first-order
optimality equation, which is in the first step (1)

VIO =\P . vA® 20 vBO
the following about the signs of the Lagrange multipliers:
AP <028 =0

That means, the Lagrange multiplier for constraint (A) is negative. We have case Ib, set
constraint (A) inactive, set x? = x(!) and continue with the repeat-loop.

Please note that the lengths of gradients should be normalized to one for this consideration
(see tutorial).

In step (2), the search direction from QP with active constraint (B) yields the search
direction 6¥, which is along the boundary line of (B) till it touches the drawn middle
contour ellipsis of the objective where the minimum objective value along this line is
reached. So we have case II. As no constraint is along the way of 8, we have case Ila
and can take the full step to point x).

In step (3), there is no new direction for the same set of active constraint, this is again
case I. Can we set the constraint (B) active? Do not look at the full picture, imitate the
algorithm and look at the gradient of the constraint and the objective function in x®).
The gradient of constraint (B) points to the right, the gradient of the objective in this
point goes to the left. Hence objective gradient is obtained by multiplying the constraint
constraint with a negative factor, i.e., negative Lagrange multiplier. Hence, we have case
Ib, set x) = x® and set constraint (B) inactive.

Now the set of active constraints is empty. That means, the next search direction of step
4 does not see any constraint and yields the full Newton direction ™. We have case II
here. From visual inspection, we see that constraint (C) lies on the way of Y. That

Mathematical Methods of Circuit Design 87

means, we have case IIb and can only go till the boundary of (C), stop at x®), and set
constraint (C) active.

In step (5), with active constraint (C), the Quadratic Programming yields the small step
6®) along the boundary of constraint (C) to the next touching ellipsis. We reach point
x(as no constraint is on the way, it is the full step length, hence case Ila.

In the next step (6), a non-zero step with this active constraint set is not possible. Looking
at the gradients of the constraint (C) and the objective, we recognize that both point
perpendicular to the constraint boundary, to the lower left. Hence the Lagrange multiplier
is positive, the first-order optimality condition is fulfilled, we have case Ia and reached
the optimum.

Mathematical Methods of Circuit Design 88

6.3 Sequential Quadratic Programming (SQP), Lagrange—-Newton

Sequential Quadratic Programming — equality constraints

The formulation of a general nonlinear optimization problem with equality constraints is
as follows.

min f (x) s.t. c(x)=0

c<7LC>7 Uz S Ny

(200)

Both objective and constraints are nonlinear. The number of constraints is smaller than
the number of parameters, the feasible region is not empty. In a first step, we write the
Lagrange formulation of this optimization problem:

E(x,)\):f(x)—)\T~c(x):f(x)—Z)\i-cl-(x) (201)

Then, we write the first-order derivatives of the Lagrange function, both with regard to
the parameters x and to the Lagrange multipliers A:

VL(x) _
VL (x,A) = _ | VI _—%Z i) Ve (x)
VL(A)
_ o
= | gx) =T Ve (x)--]-A (202)
—c (x)

Please note that we have used the previously mentioned property that a matrix-vector
product is the linear combination of the matrix columns with vector elements as com-
bination factor, and have combined the gradients of constraints as column vectors of a
matrix AT (x).

Then, we write the second-order derivative of the Lagrange function, again both with
regard to the parameters x and to the Lagrange multipliers A:

[ViL(x) —2Ln]
VL (x,A) = 2() ox-ONT
CEL VEL(N)
axoxT

[V(%) = XA Vi (x) —AT(x)]

= —vczj (x)” 0 (203)

~A(x)]

With the first-order derivative and the second-order derivative of the Lagrange function,
we can formulate a Newton approach by setting the model of the gradient of the Lagrange

Mathematical Methods of Circuit Design 89

function, using the Hessian of the Lagrange function, at a new value of parameter and
Lagrange multiplier, i.e., x*), A**D equal to zero:

5*)

!
AN® | T 0

VLES 467, + AXD) & V£ (x9, A0) 4+ V2L (x9, A1)

X (k+1) A(Fv+1)

VZW v?};r(n)
(204)

Here, we have defined the change from x® to x"**1) as §, and the change from A" to
A ag AN

Please note that this is a Newton approach on the Lagrange function (including the
gradient with regard to the Lagrange multipliers), hence the overall approach is also
called a Lagrange-Newton approach.

Inserting (202) and (203)) in (204)) results in:

W(n)
Z)\ Vi (x®) —AWT

_A(fﬂ) 0

(205)
With the abbrevation W) and using that AX"™ has a zero coefficient in the second
row, but appears on the right side of the first row, we obtain the following formulation
to iteratively compute new values for x(**% and A from the first- and second-order
derivatives of objective and constraints in step (k):

5 —g(®
' [)\(HH)] - [)] (206)

[Wm) _A®T

—A® 0
fr
T 1
LGN =g .6+ §5T WE 5 — AT (AW . § 4 W) (207)
fr
ming"™" - § + 5T W) . § st. AW.§=—c" (208)

As can be seen, the result of the Lagrange-Newton approach can also be derived
over the Lagrange function of a Quadratic Programming problem (208). As this
is iteratively repeated, we obtain a sequence of Quadratic Programming problems, hence
the name Sequential Quadratic Programming (SQP).

A fascinating feature, which enables the whole process, is that the quadratic information
of objective and constraints, i.e., the Hessian matrix of both, all move to the SQP objective
function in (208)), while the SQP constraints only contain the linear parts of the original
constraints.

Mathematical Methods of Circuit Design 90

Please note that if the second-order derivatives of objective and constraints are not avail-
able, the quasi-Newton approach is applied to make SQP work.

Please note also that inequality constraints, i.e., A*).§ > —cgﬁ), are treated with an active

set method as described for Quadratic Programming. The nonlinearity of objective and
constraints requires special methods to keep the constraints satisfied at any time of the
optimization process (Feasible SQP, FSQP).

Penalty function

As a side note, instead of an active set method, the constraints can also be combined
with the objective function into a scalar objective function (penalty function) of an un-
constrained optimization problem. The constraints are given a penalty parameter p > 0
There are different types of penalty function, e.g.,

quadratic:
1
Pyuaa (%, 1) = f (x) + @CT (x) - ¢ (x) (209)
logarithmic:
Pog (X, 1) = f(x) — pu- Y _logc; (x) (210)
l1-exact:

Py (xo0) = o £ (%) = 3 Jes (%) + 3 max (—6:(x),0) (11)

i€E icl
Concluding remark

Basics of nonlinear optimization have been presented in this and the preceding chapter.
This was suggested as we found out that the circuit design task of general worst-case anal-
ysis leads to the mathematical formulation of a nonlinear optimization problem. Other
circuit /system design tasks lead to mathematical tasks of nonlinear optimization problems
as well.

Parameter tolerances are an important design aspect. Before formulating mathematically
the corresponding design tasks, the following two chapters will introduce basics of statis-
tics. Then, we will formulate the tolerance design objectives and their computation in
Chap. [9 Only after that, the general circuit optimization tasks based on nominal and
tolerance design objectives will be given in Chap. [10]

Mathematical Methods of Circuit Design 91

Mathematical Methods of Circuit Design 92

7 Statistical parameter tolerances

Up to now, we have learnt about basic notations of mathematical optimization, of what
optimality conditions for unconstrained and constrained optimization are and how to
apply them to formulate the classical, realistic and general worst-case analysis. For a
general worst-case analysis, being a nonlinear optimization problem, we made a tour
d’horizon through iterative solution approaches to unconstrained and constrained op-
timization problems. Now, we will switch to take a look at tolerance design of cir-
cuits/systems. In the following, basics of statistical parameter tolerances will be sketched.
The main idea is to show notations of multivariate statistics with statistical parameter
vectors, and to show how to transform one type of statistical distribution into another
type of statistical distribution.

Let us first recall some terms using a simple picture. For some more background on
probability space please take a look at App.[G] Fig. 27 illustrates frequency in statistics.
Throwing the dice is a discrete statistical event space, one of the numbers one to six can

frequeucy velalve ﬁ'r’quwfﬁ cuwulatb ye
R % relékye Goeacy
i1 il i
i 2 ot e ¢ icere
AT ele W11 L1l o
s“-|«='l=-~‘—'Lr—w#r—»*)- -—a——-e—«-—z—L-% ik
! 234 &4 L 2 XM Se
n=10

probaéc,l«\b cdf ewmulm’wg \L

wu_gwy l i 0}:5“1’15(/#6&
w thou VL Boucikou
/ conhwy 0 (
i Pveuts
Wr——?y[*",{{,

Figure 27. Top: throwing the dice 10 times and showing result. Bottom: function
counterparts in case of continuous events

happen. The frequency function counts how often each of the numbers happened in a
sample of, here, 10 sample elements. If we want to get rid of the absolute number, we
divide by the sample size, here, 10, to obtain the relative frequency. We can also denote
how often we obtained a number up to one, up to two, and so on, till up to 6. ”Up to zero”
represents the impossible event, "up to six” represents the certain event. The resulting
function is called cumulative relative frequency and increases monotonously from zero to
one. On the lower part, the counterparts in the case of continuous events are illustrated.
In the continuous case, the relative frequency becomes the probability density function
(pdf), and the cumulative relative frequency becomes the cumulative distribution function

(cdf).

We will denote specifically the statistical parameters in the following, as the statistical
distributions specifically refer to them. The manufacturing variations are modeled through
a multivariate continuous distribution function of these statistical parameters x,. The

Mathematical Methods of Circuit Design 93

multivariate cumulative distribution function (cdf) is a multiple integral over the
probability density function of the statistical parameters:

i) = [e [b 6 (212)

with the abbreviation:
dt =dt, -dty-...-dt,,,

The multivariate probability density function (pdf) is obtained by partially deriving

the cumulative distribution function with regard to all statistical parameters:

ores
)

Ts,ngs

pdf (x,) = cdf (x,) (213)

0

Ts,1

In the following, we will first recall the univariate normal distribution, and then describe
the multivariate normal distribution.

Mathematical Methods of Circuit Design 94

7.1 Univariate Gaussian distribution (univariate normal distri-
bution)

A single random variable x4 that is normally distributed with mean value z, o and variance
0?2 is denoted as:
x5~ N (250,07) (214)
with
Ts0 @ mean value
o2 variance

o : standard deviation

The probability density function of the univariate normal distribution is as follows:

Ts—Tg, 2
pdf (25, 50,0%) = ﬁ Ler () (215)

Fig. shows the probability density function and the cumulative distribution function
of a univariate normal distribution.

A pdfn

30 -20 0 0 o | 2 '307%_%’0

Figure 28. Probability density function, pdf, and corresponding cumulative distribution
function, cdf, of a univariate Gaussian distribution. The area of the shaded region under
the pdf is the value of the cdf as shown.

The probability density function has a bell shape around the mean value and is sym-
metrical. Due to the symmetry, the mean value is also the median, and the cumulative
distribution function has the value of 0.5 at the mean value: half of the pdf is on each
side.

Typcial values of the cumulative distribution function are given in Table [2]

Mathematical Methods of Circuit Design 95

Ts — Tsp ‘ —30 —20 —0 0 o 20 30 4o

cdf(xs—xs,o)‘o.l% 22% 15.8% 50% 84.2% 97.8% 99.9% 99.99%

Table 2: Typical values of the cumulative distribution function of the univariate normal
distribution.

Whenever people talk about ”"x-sigma”, they think of a univariate normal distribution
and the percentage that is within +xzo or from —oo to zo. 30 for instance refers to 99.9%
for all random variable values below 3c.

Mathematical Methods of Circuit Design 96

7.2 Multivariate Gaussian distribution (multivariate normal dis-
tribution

A random variable vector x, that is normally distributed with mean value vector x; and
covariance matrix C is denoted as

x5 ~ N (X4, C) (216)

with the abbreviations of x, o as vector of mean values of statistical parameters x, and C
as symmetric, positive definite covariance matrix of statistical parameters x;.

The probability density function of the multivariate normal distribution is given as

1 152 c
pdfn (Xs, Xs, ,C) = Nas - e 38 (s %5,0,0) 217
N (s Xa0, C) V21 .\ /det (C) (217)
62 (Xs> X5,05 C) = (X - Xs,O)T ’ C_l ’ (X - XS,O) (218)
C=YX-R-X (219)
I 1 e n]
o 0 P;Q P1,nzs
- R=| M T P (220)
0 Ons ' ' .
L pl,nzs pzynzs o 1]
0% 0101202 O01P1n,sOngs
C _ O’lp1720-2 O-% ." ’ U2p2,n'cvso-nzs (221)
lelynzs Onzs e e 0-727/15

with the following abbreviations:

R: correlation matrix of statistical parameters
C: matrix of variances and covariances
or: standard deviation of component z;, o > 0
o?: variance of component zg
OkPL,107: covariance of components Tsky Tl
pr: correlation coefficient of components z,; and z,;, —1 < pg; < 1
pr; = 0: uncorrelated and also independent if jointly normal

lpra| = 1o strongly correlated components

Mathematical Methods of Circuit Design 97

Ts o B = const

Ts 1

Figure 29. Probability density function of a normal distribution of two statistical param-
eters (right) and corresponding level contours (left).

Fig. [29]illustrates the probability density function of a normal distribution of two statis-
tical parameters.

You can see the typical Gaussian bell curve of the probability density function (217)).
The level contours are in general hyperellipsoids, which are described with the quadratic
form , as we had already anticipated in the realistic and general worst-case analysis.
The covariance matrix C gathers the individual standard deviations oy of the statistical
parameters and the mutual correlation factors py; to the variances a,% in the diagonal and
the covariances oypy ;07 in the off-diagonal elements.

Let us take a look at how the shape of the hyperellipsoidal level contours changes with
changing correlation and standard deviation values. Fig. [30| shows that the half-axes of
the ellipsoids coincide with the coordinate axes in case of uncorrelated parameters.

(a) (b) (c)
Ts 2 Ts,2 Ts,2
2 — .
B (i‘s) = const B2 (icb) = const
e N o - o N

| |

| | |

I | L7

Zs,0,1 Ts, 1 Zs,0,1 Ts,1 Zs,0,1 Ts 1

Figure 30. Level sets of a two-dimensional normal pdf with general covariance matrix C,
(a), with uncorrelated components, R = I, (b), and uncorrelated components of equal
spread, C = o2 - 1, (c).

This corresponds to a covariance matrix that is diagonal. If, in addition, the variances
of the parameters have the same variance, we obtain concentric circles around the mean
value vector, which refers to the covariance matrix as an identity matrix multiplied with
the common variance value. Another property of the shape of the matrix results from
taking a specific value of # and then sweep the correlation of parameter. Fig.|31|illustrates
this for two statistical parameters.

We can see that the shape of the hyperellipsoid changes to become more and more narrow
towards the north-east and south-west in case of a positive correlation and north-west and

Mathematical Methods of Circuit Design 98

o A
p=70
[a\]
s}
=~ .
6 I~
3% = const = a?
| o
a 201 1
p=05 p=-5
p=08a p=-0.8
p = 0.90 p =-0.00
p=1 p=-1

Figure 31. Level set with 3? = a? of a two-dimensional normal pdf for different values of
the correlation coefficient, p.

south-east for a negative correlation. This corresponds to a positive (negative) correlation
that biases the distribution towards more similar values of the two parameters of equal
(opposite) sign. The interesting feature is that the hyperellipsoid always stays within the
same hyperrectangle. This can be interpreted as the hyperrectangle being the worst-case
level contour to catch any possible value of an unknown correlation.

Mathematical Methods of Circuit Design 99

7.3 Transformation of statistical distributions

We have seen that the level contours of the multivariate normal distribution are hyper-
ellipsoids described by a quadratic function. We also know from our excursion into the
optimization theory that a quadratic function is an advantageous function for optimiza-
tion. We will therefore describe and develop our methods for yield analysis and yield
optimization/design centering based on a multivariate normal distribution. In reality,
however, the parameter distribution may be of any other type. For instance, if physical
parameters cannot be negative, like oxide thickness, then a normal distribution that at-
tributes probabilities to the complete range of real numbers is not suitable. In such cases,
we use the fact that any statistical distribution type can be transformed into another type.
The approach for transforming statistical distributions will be explained in the following.

Assume two random variable vectors, y € R™ and z € R"=, which have the same number
of random variables n, = n,. Assume further that there is a bijective and smooth mapping
between the two random variables, such that z = z(y) and y = y (z) (more precisely

z=p(y),y=p"(2).
Then, we can transform the cumulative distribution function cdf, (y) of type y of the

random variable vector y into the cumulative distribution function cdf, (z) of type z of the
random variable vector z by means of variable substitution in multiple integration

as follows:
dy
- |det (8ZT> ’ dz’'

cdfy (y) = / / pdf, (y') - dy’ = / / pdfy (y

:/ / pdf. (&) - dz' = cdf. (2) (222)

We obtain two formulas for transforming statistical distributions:

/ / pdf, (') - dy’ = / / pdf. (z (223)

. (@) = iy (@) et (55)] (224)

dy
0z

The first formula is suitable if two probability density functions are given, and we are
searching for the mapping function between these two probability density functions. The
second formula is suitable if one probability density function and the mapping function
are given, and we are searching for the probability density function that results from the

mapping.

univariate case: pdf.(z) = pdf, (y(2)) - (225)

Mathematical Methods of Circuit Design 100

pdfy (y) pdf (2)

N

Y1 Y2 Y3 Yy Z1 %2 Z3

Figure 32. Univariate pdf with random number y is transformed to a new pdf of new
random number z = z (y). According to (223)), the shaded areas as well as the hatched

areas under the curve are equal.

In the univariate case, the function pdf, has a domain that is a scaled version of the
domain of pdf,. ‘%’ determines the scaling factor. This is illustrated in Fig. . The
three values v, y2, y3 are mapped onto the values of z with the same index, i.e., 21, 2o,
z3, and vice versa. says that the area under the pdf from —oo to the respective
point is identical for both pdf, and pdf.. Hence, the hatched areas are identical. Building
differences from the cdf values, also the two shaded areas are identical. Making the shaded

area infinitesimaly small, we have the two pdf values scaled by |%}.

In high-order cases, the random variable space is scaled and rotated with the Jacobian
matrix ‘det (i—’;)‘ determining the scaling and rotation.

We will now use to transform a univariate uniform distribution into an arbitrary
distribution, and then extend this to create samples of a multivariate normal distribution.
This is, e.g., happening in a Monte-Carlo analysis or any other statistical method that
has to simulate samples of given distributions.

Transforming a univariate uniform distribution into arbitrary univariate dis-
tribution

Given are the probability density function pdfy(z) of a uniform distribution

lfor0<z<1

pdfy(z) = { (226)

0 otherwise

and another probability density function pdf,(y), v € R.

What is the mapping function to obtain a random number z that is distributed according

to (223) from a uniformly distributed random number z distributed according to (226))?

We first clarify the domain bounds of the two random variables that are to be mapped
onto each other. These are:

Mathematical Methods of Circuit Design 101

0] —o0
+00
From ([223)), we obtain:
z Y
sy de= [)y (227)
0 S—— —00
lfor0<2<1
from ([226))
and hence: y
= [pdny)y = ey v) (228)
The overall mapping function y = p~!(z2) then is
y = cdf;(2) (229)

The transformation process now is:

e Beforehand:

— Insert pdf,(y) in (228)).
— Compute cdf, by integration.

— Compute the inverse cdf, .

e Creating sample element y:

— Create uniform random number z according to the distribution given by pdf,(z).

— Insert obtained z into (229) to get sample value, y, distributed according to
pdfy(y)-

Generating multivariate normally distributed sample from univariate uniform
distribution

We can use the approach just outlined and adapt it in the following way:

e First, we create a whole set of uniformly distributed random numbers that are
statistically independent.

e Second, the computation of the cdf and the inverse cdf ! are already avalaible for
a standardnormal distribution, i.e., a normal distribution with mean value 0 and
standard deviation 1. In any book on statistics there are tables for these functions.

Mathematical Methods of Circuit Design 102

e Third, anticipating derivations done in the subsequent chapter, a multivariate stan-
dardnormal distribution (with zero mean values and standard deviations all one)
can be transformed into a normal distribution with arbitray mean value vector and
covariance matrix C by a linear transformation.

First, we generate ny, independent uniformly distributed random numbers 2z, k =1, ... ny.:
z=1[..2.. .]an3>. This can be done, e.g., in hardware by a linear feedback shift regis-

ter, in software by arithmetic random number generators. Corresponding uniform random
functions are available in most software libraries. Please note that we do not create ran-
dom numbers in this way, but pseudorandom numbers. It is an own research area to
create pseudorandom number generators that are as random as possible.

Second, we map each z;, onto a univariate standardnormally distributed y, with the help
of the respective statistical tables:

2z~ U(0,1) — yx~N(0,1) (230)

For instance, z; = 0.6950 from a uniform distribution maps onto y, = 0.51 from a
standardnormal distribution, z; = 0.9406 from a uniform distribution maps onto y, =
1.56. For more details, please see the tutorial.

This is done for each component of the standardnormally distributed random number

vector y = [y .. .JE, o ~ N(O,T).

Third, we map the standardnormally distributed random number vector y on the normally
distributed random number vector x; ~ N (x50, C) by

x,=A - y+x,0 , C=A AT (231)

This formula is derived in the next chapter. The matrix decomposition A - AT of the
covariance matrix C is preferably computed through an eigenvalue decomposition.

Mathematical Methods of Circuit Design 103

Mathematical Methods of Circuit Design 104

8 Expectation values and their estimation

The definition of yield and the methods for yield analysis and yield optimization will be
based on the concept of expectation values and their estimation. This chapter is dedicated
to describe all the necessary formulas. In particular, it will present multivariate versions
of expectation values and estimation.

8.1 Expectation values
8.1.1 Definitions

We introduce h (z) as a deterministic multivariate function of a random variable vector z
that is distributed according to the probability density function pdf (z).

Expectation value

The expectation value E{-} of the deterministic function h(z) of the random variable
vector z with regard to the probability density function pdf (z) is defined as the multiple
integral of the function times the probability density function:

E {h(2)} = E{h(z)} - / /) - pdf (2 (232)

pdf (z

The expectation value (or: expected value) can be seen as an operator that consists of
a specific integration function. There are specific functions whose expectation leads to
statistical key figures. Examples follow.

Moment of order s

The moment of order k of the univariate random variable z is the expectation value of 2*:

m® = B {2~} (233)

Mean value (first-order moment)

The first-order moment is obtained for k = 1 and defines the mean value m
m =m = E{z} (234)
Instead of m, the mean value is often denoted with the letter u.

The mean value vector m is defined as the vector of the individual mean values of its
components:

E{z}
m=FE{z} = : (235)

E {an}

Mathematical Methods of Circuit Design 105

Central moment of order

The central moment of order of the univariate random variable z is the moment of order
k of z subtracted by its mean value. The central moment of order 1 is zero:

e = E{(z-m)}

236
A = 0 (236)

Variance (second-order central moment)

The second-order central moment yields the variance of the univariate random number z.
It is also denoted as V{-}:

A =F {(z — m)2} =o0% =V{z} (237)

The square root of the variance is the standard deviation o. It is important to note that
the standard deviation has the same physical unit as the random variable. It is therefore
the standard deviation that is used for a technical interpretation.

Covariance

The covariance between two random variables z; and z; is defined as:

cov{z, 2} = E{(z —my) (z; — my)} (238)

Thinking of quadratic models, the variance corresponds to the quadratic part in one vari-
able, the covariance corresponds to the mixed quadratic part in two variables. Analogous
to the Hessian matrix, we can combine all variances and covariances of a vector of ran-
dom variables in one matrix, which is denoted as variance/covariance matrix and usually
abbreviated as covariance matrix:

Variance/covariance matrix

C = V{z}:E{(z—m)-(z—m)T}

[V{z} cov{z,z} -+ cov{z,z,.}]
cov {22, 2 V{z <o Ccov {2, Zn,
_ {.2 1} { 2} ' { 2 } (239)
cov{zn,,z1} cov{z,., 20} --- V{z.}

We cannot only write the covariance matrix of the multivariate random variable vector,
but also the covariance matrix V {h(z)} of the multivariate deterministic function h (z)
of a random variable vector:

Vin()}=E{0(z) - Eh@)}): (h(z) - E{h(z))"} (240)

Mathematical Methods of Circuit Design 106

8.1.2 Expectation value of linear transformation

The expectation value of a linear mapping can be reformulated according to the following
rule:

E{A-h(z)+b}=A-E{h(z)} +b (241)

The proofs of this and the next two rules are given in the tutorial. The proof is using the
fact that the expection operator is an integral, from which constants can be taken out.

There are the following special cases of this general multivariate rule:

E{c} = ¢, cisa constant
E{c-h(z)} = c-Ef{h(z)}
E{hi(2) +hy(2)} = E{hi(2)} + E{hy(2)}

8.1.3 Variance of linear transformation

The variance of a linear mapping can be reformulated according to the following rule:

V{A h(z)+b}=A -V{h(z)} AT (242)

The result has to do with the formulation of the variance as an expectation of quadratic
forms of the random variable. The multiplicating matrix will then go out of the integral
twice, the constant disappears because of the central moment forming.

There are the following special cases of this general multivariate law:

V{a" -h(z)+b} = a’ - V{h(z)} a
Vi{a-h(z)+b} = a* - V{h(2)}

The Gaussian error propagation, or, measurement error propagation, is another special
case:

\%4 {aT -7+ b} =al-C-a= Z a;a;0ip;;0; = Z a?af

%, i#]

Mathematical Methods of Circuit Design 107

8.1.4 Translation law of variances

The translation law of variances reads as:

Vin(2)} = E{((z) ~a) (h(z) ~a)" } - (E{h(2)} ~a) - (E{h(2)} — a)"

(243)
It says that the variance does not have to be formulated as central moment, i.e., with
regard to the mean values, but that it can be formulated with regard to any constant
vector a, if then the mean value vector minus the constant vector are subtracted as a
dyadic product.

There are the following special cases of this general multivariate law:

Vih(z)} = E{(h(z) —a)’} — (E{h(2)} —a)’
V{h(z)} = E{h(z) h'(z)} - E{h(z)} E{h' (z)}
Vin@} = E{(h* ()} - (E{h(@)})

8.1.5 Normalizing a random variable

The goal of normalizing a random variable is to take out the mean value and the standard
deviation and transform it to a random variable with zero mean and standard deviation
one. The formula for this is to subtract the mean value and divide by the standard
deviation:

. Z—E{z}:z—mz (244)
\/ %4 {Z} (op?
While this is intuitively suggesting itself, we can prove it using the laws just stated:
E{z}—-—m, m,—m,
E{Y = = =0 245
) L = (245)
E{(z—m.)’ o2
2 z z
vy = p{w-or) - B (246)

Mathematical Methods of Circuit Design 108

8.1.6 Linear transformation of a normal distribution

In the following, we leave out the index s that usually denotes statistical parameters.

Assume that a parameter vector x is normally distributed,
x~ N (X(]a C)

and is linearly mapped onto a performance p:

?(x)=pa+g" (x—x%,) (247)

The mean value pz of the linearized performance @ can be calculated based on the ex-
pectation value of a linear transformation, or ”on foot”:

py = E{g}=FE{p.+g" (x—x4)}
= E{ga} +8" (E{x} - E{x.})

This finally leads to:

fs = o+ 8" - (X0 — Xq) (248)

Correspondingly, the variance 0% of the linearized performance % can be calculated based
on the variance of a linear transformation, or ”"on foot”:

- B{E-n} = P{ (a7 (x -0}
= E{e (xx0) (- x0) 8
= gT‘E{(X—Xo)'(X_XO)T}'g

ALY

Here, we have made use of transforming a product of two scalar products of vectors into
an inner dyadic product, multiplied to a scalar by multiplication of a row vector from
left and a column vector from right. The inner expectation value is the definition of the
covariance matrix of parameters, so we finally get:

o2=gl.C-g (249)

This is exactly the formula that we have used in the realistic worst-case analysis to derive
the interpretation of the level contour size S of the tolerance ellipsoid as multiple of the
standard deviation of the linearized performance.

Please note that this does not yet prove that the linearized performance is really normally
distributed. The proof will be given in the tutorial.

Mathematical Methods of Circuit Design 109

8.2 Estimation of expectation values

The formulation of the expectiation values is part of probability theory. In practice, these
values often have to be estimated based on a sample, the corresponding formulas are part
of statistics. In the following, estimators for the expectation value and the variance will
be given. Then, the accuracy of the estimation of an expectation value will be discussed.
Finally, the three laws from the previous section will be formulated for estimations.

The estimation is based on a sample of the population with n¢ sample elements x*,
w=1,...,nyc (i.e., a sample of sample size ny;¢), that are distributed according to the
distribution D defined by the probability density function:

x® ~ D (pdf (x)), p=1,...,nuc

The sample elements x™, 1 = 1,--- ,nye, are independently and identically dis-
tributed. It follows that all sample elements have the same variance and covariance and
the covariance among sample elements is zero:

E{h(x")} = E{h(x)}=m, (250)
V{h (x(“))} = V{h(x)}, cov{h (X(“)) .h (x(”))} =0,u#v (251)
We can in general call o (x) = & (x(l), o ,x(”MC)) an estimator function for ¢ (x).

The estimator bias describes how much the expectation value of the estimator deviates
from the true function:

b= E{¢(x)} - x) (252)
An unbiased estimator has a bias of zero:

E{&)(x)}:qb(x)(:)bquo (253)

A consistent estimator is obtained if the deviation of the estimator from the true
function is small enough for large sample size:

lim P {H¢ - ¢H < |e|} —1 (254)

nMC—00

A strongly consistent estimator is obtained if this deviation becomes zero:

€0 (255)

Mathematical Methods of Circuit Design 110

The integration becomes a summation in the discrete case of an estimation. Hence, we
obtain the following formulas for the estimators of expectation value and variance, which
correspond to the original expectation and variance formulas.

Expectation value estimator

E{h(x)} =m, = o Z h (x (256)
Variance estimator
V{h(x)} = ﬁ S (b (x) — 1) - (b (x*) — 1) " (257)

This formula provides an unbiased estimator in case that an estimated mean value my, is
available.

If the real mean value m; was available instead of the estimated mean value my, the
unbiased estimator would be:

npce

Vih(x)}=— Z m,) - (h (x*) —my)" (258)

Nyre

Mathematical Methods of Circuit Design 111

8.2.1 Variance of the expectation value estimator

Please note that an estimation is done for a specific sample. If the estimation is repeated,
another sample with different size and/or different sample elements will be used, which
leads to a different result. The estimation is therefore itself a statistical process, and the
first-order characterization of the estimation quality is the variance of the estimator. A
large variance means that the spread of possible outcomes of the estimation process is
large, which means a large interval of confidence, which in turn means that the true value
may be in a large interval of values, which is not what we want. A high quality of an
estimation corresponds to a small variance of the expectation value estimator.

Please note that the variance in the difference between estimator function and true func-
tion is also depending on the bias. If the bias is zero, as is the case in the formulas given
above, it is just the variance of the estimator itself that we have to look at:

E{(éb—qﬁ)-(&ﬁ—qﬁ)T}=V{q3}+b¢3.bg v e} (259)

In the following, the variance of the estimated expectation of a deterministic function of
a random variable h (x) is derived:

~ 1 nMC 1 nyc
Vi =V {E{h<x)}} =V {% D b (X(“))} ——V {Z L) ’h(“)}
p=1 p=1

e

Here, h® = h (x(”)), and Iy, n,) is the identity matrix of size n; of h®. To continue,

(B h(l) T)
1 h®)
Vv {mh} = n2_ -V [I<nh:”h> I(”h,nh> s I(”hmh)} ’ .
MC :
h(rame)
\ L P
¢ T) r =3
h) Loy nn)
(I242) 1 h(®) L mn)
- 2 [I<nh,nh) Lovmn) - - - I(munh)} -V . .
MC .
ul h(nMC’) 1) I I<nh7nh> |
I M1
' V{h} O I< h» h>
251)) 1 (nh,nn)
= n?wc ’ [I<nh:nh> I(”hvnh> I(”hvnh>:| ’)
0 V{h}
| Lo |
1
= —— nye-V{h}
ye

Mathematical Methods of Circuit Design 112

We finally obtain for the standard deviation of the estimated expectation value
of the deterministic function of the random variable h(x):

Vil = o VVIRG] ||V i = eV (heo) | 260

nyre

The second part holds for the estimated standard deviation of the estimated ex-
pectation value of the deterministic function of the random variable h(x). It is

obtained by replacing V {h} by V {h} and (242) by (262) in the derivation.

The formulas should be written with regard to the standard deviation, as this is the
variable with a physical unit and a technical interpretation, as mentioned before. (260)
tells us that a problem-inherent component of the estimation standard deviation is the
standard deviation of the original function. This is outside the influence of the estimation.

The original standard deviation is divided by the square root of the sample size to
obtain the standard deviation of the estimation.

The good news about this is that the estimation quality by sampling does NOT depend
on the dimension of the parameter space. It does not matter if we estimate a space with
10 parameters or a space with 10,000 parameters, the estimation accuracy is the same.

The bad news is that to obtain a 10 times better accuracy we need a 100 times more
sample elements. This is the disadvantage of estimation by sampling, we will see that it
leads to dramatic sample size in case of estimation of rare events, which is the case if very
high robustness of circuits/systems shall be evaluated.

In the following, the corresponding transformation formulas in case of estimation will be
given. The proofs are given in the tutorial.

8.2.2 Estimated expectation value of linear transformation

E{A -h(z)+b}=A-E{h(z)}+b (261)

8.2.3 Estimated variance of linear transformation

V{A -h(z)+b}=A-V{h(z)} AT (262)

8.2.4 Translation law of estimated variance

Vi{h(z)} = % [E{h(z)-h" (2)} — E{n(2)} - E{0" (2)}] (263)

Mathematical Methods of Circuit Design 113

Mathematical Methods of Circuit Design 114

9 Yield analysis

9.1 Problem formulation

In circuit/system design, it is roughly distinguished between catastrophic yield and para-
metric yield. Examples for catastropic yield are spot defects on wafers during integrated
circuit manufacturing, which lead to complete circuit failure. Parametric yield refers to
variations of circuit parameters that cause parametric variation in the performance, such
that in certain cases the performance specification is violated. In the following, we will
deal with parametric yield, leaving out the annotation of ”parametric”.

The yield is defined as the portion (between 0.0 and 1.0), or, percentage (between
0% and 100%), of circuits that fulfill the performance specification:

v [o) ax, (264)
XeAs

with the acceptance region in the parameter space, A,,

As=1{x: | p(x,) € Aw} (265)
the acceptance region in the performance space, A,
Ap={o | vL< @ <y} (266)

and the probability density function in the parameter space given as, or transformed into,
a normal distribution,

EN _ 1 - B%(xs)
pdfs (xs) = pdfn (xs) o i) e (267)
B2 (x,) = (x5 — Xa0)" - C7V - (x4 — X4 0) (268)

The statistical parameter distribution is due to the manufacturing process and describes
its inevitable variability. The performance specification is due to the customer, be it
inhouse or outside the company, and what has been promised as performance.

To compute the yield, a multiple integral has to be solved. An additional problem arises
from the fact that the integrand is defined in the statistical parameter space, but the
integration bounds are defined in the performance space. As mapping between param-
eter space and performance space, only an expensive, point-wise, numerical simulation
is available. Fig. illustrates the situation with two statistical parameters on the left
and two performance features on the right. The green ellipses on the left are the level
contours of the known parameter distribution. The blue lines marked with one to four
slashes on the right illustrate the four known bounds of the performance specification.
The known items are shown with solid lines in Fig. [33] the unknown items, i.e., the spec-
ification bounds in the parameter space and the statistical performance distribution in
the performance space, are shown with dashed lines. The yield analysis requires to model
either the statistical distribution in the performance space or the specification bounds in
the parameter space.

In the following, a statistical approach for yield estimation, and a deterministic approach
for yield approximation will be presented.

Mathematical Methods of Circuit Design 115

xSQA (pg A

)

-~ N
// N
- \
7
, \
// - \\ I
- _ \ I
/ -
- AN /
los ! /
’ /
/
s QO(XS’ / , 1,4%0
177 [] / y 7
b s , ’
| s s /
\ vz ,
\ -
\\\ P -
- _ -~ ~
~ -
X 7 R
-
YL, Yuil 1

Figure 33. Statistical distributions and specifications in the parameter and performance
space.

9.2 Statistical yield estimation/Monte-Carlo analysis

The statistical approach for yield estimation uses a co-called acceptance function:

, X, € A, ”circuit functions”

I, ¢(xs) €A,

1

5 (x,) = (269)
0, p(xs) ¢ A, 0, xs¢ A 7circuit malfunctions”

The crux with the definition of an acceptance function is that the integration bounds
are transformed into a function inside the integral of yield estimation (264]),
with the effect that the outer integration can be formulated over the complete space of
real numbers,

vo— [[o (270)

= [6t). (271)
— E«{é (x)} (272)

which leads to the result that the yield can be formulated as the expectation value
of the acceptance function. This in turn opens the opportunity of a statistical yield
estimation, whose process is summarized in the following. This method is also called
Monte-Carlo analysis.

e Create a sample of statistical parameter vectors according to given distribution:

Xgu) ~ N(X&O)C)a n= 17"'7nMC (273>

Mathematical Methods of Circuit Design 116

e Perform (numerical) circuit simulation of each sample element (this can be inter-
preted as a simulation of the stochastic manufacturing process on the circuit/system
level):

xW s oW = (ng‘)) =1 nyc (274)

e Evaluate the acceptance function for each sample element (this can be interpreted
as a simulation of the production test on the circuit/system level):

1, e A
5 :5(xg“)) = It Yoo u=1,...,nuc (275)
0, W ¢ A,
e Estimate the yield using (256)):
1 nymc
Y = E{d(x)t=—) o® 276
o= (276)

number of functioning circuits
- - (277)
sample size

ne #{"+"}
/rl,MC #{77+77} + #{77_77}

(Fig. (278)

Fig. illustrates the process. The sample elements drawn from the given normal dis-
tribution will reflect this distribution, i.e., the density of sample elements is high in the
center, and lowers as the distance to the center grows according to the level contours.
After simulation, it is known whether each sample element fulfills or violates the perfor-
mance specification. The ”good” ones can be marked with a ”+”, the bad ones with a
77, The estimated yield is the percentage of ”good” samples in the sample size according

to and .

.’17372 A

Figure 34. Monte Carlo analysis.

We will now investigate the accuracy of the statistical yield estimation and will derive a
formula to determine the sample size to reach a required estimation accuracy.

Mathematical Methods of Circuit Design 117

9.3 Accuracy of statistical yield estimation

As described earlier, the accuracy of an estimator can be characterized by the variance
of the estimation. We can derive the following formula for the variance of the yield
estimator o2:

2 _ ’ 015 (x 22()# X
o2 = V{Y} - V{E{(S(s)}} VI (x)}
= LB x)) — (B {5 ()]
nyo N—— —
d(xs) :2
nye

Analogously, the following formula for the estimated variance of the yield estimator
&2 can be derived:

) o) o WA i g @) 1 o
52 = V{y} &9 V{E{5 (xs)}} &= n—MCV{5 (xs)}
LMW (x,)}— (B {5 (x,)}))
nyc nuc — 1 7(7’ —
Xs Y
b e
V(1-Y
52 = —<) (280)
Y nye—1

100 | 500 | 1000
6y | 11.9% | 5.1% | 3.6% | 1.6% | 1.1%

ne | 10|50

Figure 35. Estimated variance of yield estimator Y = 85%.

Mathematical Methods of Circuit Design 118

The quadratic form of (280]) leads to a maximum of the estimation’s standard deviation

at a yield value of 50%. This corresponds to the cumulative distribution function of

a normal distribution that has maximum sensitivity at that value. The estimation’s
. . . . 1 . .

standard deviation is decreasing by a factor of T The table in Fig. shows the

resulting estimation’s standard deviations of an estimated yield of Y = 85% for different
sample sizes. For a sample size of 1,000 for instance, the estimation’s standard deviation
is 1.1%.

The yield estimator Y is actually binomially distributed: it is the probability that n, of
npse circuits are functioning. According to the central limit theorem, Y becomes normally
distributed for ny;c — oco. In practice, a normal distribution can already be assumed for
ny >4, nyo —ny >4 and ny e > 10.

Let us from now on assume that these conditions are fulfilled and assume that Y is
normally distributed.

If the estimation is normally distributed, the probability ¢ that an estimated value is
within a certain interval, i.e., confidence interval, with a certain probability, i.e., con-
fidence level, can be calculated from the standardnormal distribution:

N ~ k¢ 1 2
(=PY €Y —ke-o¢,Y+k -&A]):/ e zdt (281)
! ¢ Yy ¢ %y] 71%\/%

-~
confidence interval ~ ~ -
confidence level

Here the confidence interval is given as ks-multiple of the standard deviation. The con-
fidence level (i.e., the probability to be within the confidence interval) then is
obtained from the cumulative distribution function of the standardnormal distribution.

For an estimation’s standard deviation of ¢y = 1.1% for an estimated yield of Y = 85%
with sample size of ny;c = 1,000, this means that the probability to be within an interval
of Y =+ 3¢, ie., ke = 3, is 99.7%: P(Y € [81.7%,88.3%]) = 99.7%. We can therefore
be sure with a Conﬁdence level of 99.7% that the yield will be between 81.7% and 88.3%,
which is quite a broad range for 1,000 expensive circuit simulations.

(281) can be reorganized to calculate the required sample size ny ¢ to have an esti-
mated yield Y with confidence level ¢ [%] in a confidence interval Y € [Y £ AY]:

From the confidence level, we calculate the interval width in k. of the standardnormal
distribution:

¢ = cdfny (Y + ke - @) — cdfy <f/ — ke - @) — k¢ (282)

Equating the interval width in AY with the interval width in k¢ times, i.e., AY = k.- 6y,
and using (280 we obtain:

. (1 _ff> (k)
AY?

Table [3[shows the resulting sample sizes n ;¢ for some confidence levels ¢ and confidence
intervals/estimated yield values.

Mathematical Methods of Circuit Design 119

VLAY ¢ 90% 95% 99% 99.9%
k¢ 1.645 1.960 2.576 3.291
85% + 10% 36 50 86 140
85% + 5% 140 197 340 554
85% + 1% 3,452 4,900 8,462 13,811
99.99% =+ 0.01% 66,352

Table 3: Sample size nye required for confidence interval Y + AY and confidence level C.

It requires more than 60,000 circuit/system simulations to verify that a circuit/system
has a yield of 99.99% + 0.01% with 99% confidence! This shows that the verification
of a robust design with a large yield value by statistical estimation with a Monte-Carlo
analysis requires a huge number of simulations!

Another approach to determine the required sample size that does not need the assump-
tion of a normal distribution is from hypothesis testing:

We require that the yield should be larger than a certain value Y ; Y nin with a significance
level a [%]. The null hypothesis H, Y < Yinin, is rejected if all circuits are functioning,
i.e., if ny = nye. Assuming that Hy holds, the probability of falsely (i.e., Y < Yonin)
rejecting Hy is

(test)
definition

P("rejection”) P("ny =npc”) (284)
binominal
(distri%ution) yne (fals<61Y) narc % N (285)
From that we obtain
log «
> 286
e log Ymin ()

Table 4| shows some numbers from (286]). We obtain a number of ny;c = 46,000 to verify
a yield of 99.99% with 1% significance level.

Yiin | a=5% a=1%

95% 60 92

99% 300 460
99.9% 3,000 4,600
99.99% | 30,000 46,000

Table 4: Sample size ny;¢ to verify a minimum yield Y,,;, with significance level a.

Mathematical Methods of Circuit Design 120

Importance sampling

Importace sampling aims at determining a specific sampling distribution pdf;s in order
to reduce the variance of the estimator. The yield estimation can be reformulated as:

y = / » / 5 (%) - pif (x,) - dx, (287)

_ - pdf (%) <) dx
- / /) L s) - i, (288)

_ {6<xs>-M}=E{a<xs>-w<x3>} (289)

pdfrs pdfrs (Xs)

Here, the sample is created according to a separate, specific importance sampling distri-
bution pdf;s.

Please note that any integration problem can be solved by means of a Monte-Carlo analysis
and by moving the integration bounds inside of the integral and introducing a sampling
distribution:

/--~/fmt(><)dx _ /.o.o./(s(x)fmt(x)dx with §(x) = { (1):1; IR

XelR
/ / st s

) () s ()
- ?{ pifis(x) } (290)

Mathematical Methods of Circuit Design 121

9.4 Geometric yield analysis for linearized performance feature

We will now present a deterministic method for yield analysis that is based on a geometric
concept. In a first step, we will use a linearized performance model. As described earlier,
the statistical parameters have eventually been transformed into a normal distribution.

Analogously to the realistic worst-case analysis that was formulated for a linear perfor-
mance model, we can name the geometric yield analysis with a linearized performance
feature realistic geometric yield analysis.

Please note that for the moment we will partition the yield analysis problem by inves-
tigating individual performance features. We will denote the resulting yield values for
individual performance features as yield partitions. Later on, we will collect the yield
partitions to the overall yield, following a ”divide-and-conquer” principle. In the following,
no index ¢ to indicate a peformance feature ; will be given.

The derivation will be given for a lower performance bound ¢ > ¢, and for a
linear performance model around a point x; ,, for which the lower performance bound is
obtained, i.e., p(Xsq) = QL

Y=L+ gT : (Xs - XS,a) (291)

The acceptance region Ay for one performance bound is a half of R™, in case of a linear
performance model, the boundary is a hyperplane defined by ®(xs) = . The yield
partition then is the percentage of circuits in the half-space linearly bounded by the
hyperplane.

Fig. [36]illustrates the situation for two statistical parameters.

ZL’SQA

)

Vﬁz (Xs,WL)

2 (x5) = (xs — xs7o)T .C7L. (xs — Xs,0) = const

Ls,1

Figure 36. Yield partition of a linearized performance feature is the integral of the pa-
rameters’ probability density function over the hatched area.

Mathematical Methods of Circuit Design 122

In realistic worst-case analysis, a distinct parameter hyperellipsoid is selected, and the
tangential hyperplane of the performance in the parameter space to that parameter hy-
perellipsoid is searched for.

In realistic geometric yield analysis, we vice versa select a specific performance value,
which refers to a specific performance hyperplane in the parameter space, and search for
the tangential parameter hyperellipsoid.

In realistic worst-case analysis, the size of the parameter hyperellipsoid was selected, i.e.,
the worst-case distance Sy, and we found out that the worst-case distance was also the
multiple of the performance standard deviation.

In the following realistic geometric yield analysis, we will vice versa define the worst-
case distance By in the performance space and find out that it refers to the size of the
tangential parameter hyperellipsoid. That means that a reverse path to the same yield
relation and yield approximation will be presented in the following that was established
while dealing with worst-case analysis .

Step 1:

We will start by using the fact that a linear function maps a normal distribution into a
normal distribution , . Hence, we can formulate the mean value $, and the
variance a% of the linearized performance, and we can formulate the yield partition Y,
for a lower bound of a single performance feature in the performance space:

T~N éoL—l—gT-(xs,o—xs,WL), g -C-g (292)
@(F%EXS,O) E
o\
Y, = /---/pdi (%,)-dx, :/ pdf 5 ()-dp = /w;.e‘é(w) dz (293)
e, >0 oL \/%'05

This formula says that the yield partition Y is obtained from integration over the (ana-
Iytically calculatable) Gaussian probability density function pdfs of the linearized perfor-
mance feature ¥ from ¢y, to co. This is illustrated in Fig.

pdfw‘

=y

PL

Figure 37. Yield partition of linearized performance feature .

Mathematical Methods of Circuit Design 123

Step 2:

We now define the worst-case distance [y as the difference between nominal
performance and specification bound as multiple of standard deviation o5 of
the linearized performance feature:

_ +BwrL 05 Py > YL ”circuit functions”
Po—wr = { o (204)

—Bwr -0z, Py <¢r ’circuit malfunctions”

Step 3:

The worst-case distance defined in this way is used for a variable substition in (293)):

, _ 7B dp
— =0y
0’@ dt
" 0L =%y | —Bwr, Vo> oL
[= - Y0 _
0% +Bwr, Py <@L

Y /OO L % dt /_Oo L e dt’ (t’ t dt 1) (295)
L: .e 2 . [r— _‘6 2 . = — s —_— = —
Fhwr V2T +Bwy V2T dt’

This means that the yield partition can be calculated as a function of the worst-
case distance [y, and the standardnormal distribution:

(296)

says that the yield partition of a single performance specification that depends
on a multivariate stastistical distribution of parameters can be determined by a
univariate standardnormal distribution without any Monte-Carlo analysis with the ac-
curacy of the underlying statistical table of the standardnormal distribution

with By, computed by |) and using p, and O’% from (|292)).

(296) also says that the yield partition is determined by the worst-case distance
in the sense of a [y -sigma design.

Mathematical Methods of Circuit Design 124

Step 4:

We will now take a look at the worst-case distance in the statistical parameter space. Let
us insert a specific point of the level contour ¥ = ¢, into the linear performance model.
This specific point is X, in Fig. 36, We obtain

P (xewi) = ¢1 &) g (Xswr —Xq) =0 (297)
As the right term in (297)) is zero, it can be added to the linear model to obtain:
P(xs) = @r+g (X —Xea) — 8 (Xewr — Xoa)
= prt+g (% —Xowe) (298)
That means that x;, in can be replaced with any point of level set © = ¢y.

From visual inspection of Fig. [36| we can see that the gradient of the tolerance ellipsoid
and the gradient of the linearized performance in x; 7, have same or opposite direction,
depending on whether the nominal parameter set x;(is inside or outside the acceptance
regiorﬂ

—A\wL -8, P> QL

o , Awr >0 (299)
+Awr -8, Po < ¥L

VB (xewr) =2-C1 - (Xewr — Xs0) = {

From this we obtain

A
(e = %s0) = F5--Cog (300)
A 299) _ @9
=g (XewrL —Xs0) = ?% . U% YL — $Po Fbwr - 0% (301)
which gives the following relation
A
WL _ Bwi (302)
2 O‘@
Substituting (302)) in (300]) leads to
(Kows — Xe0) = FVL . C. g (303)
7
1
(Xs,WL - Xs,o)T -C (XS,WL - Xs,O) = ﬁxszL : UT ' gT -C-g (304>
T 7
and finally to:
(Xswr —Xs0)" - C™ (Xowr — Xs0) = By, (305)

This means the worst-case distance [y, which has been defined in the performance
space as performance safety margin in multiples of the standard deviation of the lin-
earized performance, at the same time defines the hyperellipsoid that touches the
performance level hyperplane p = ;.

IThis corresponds to the KKT condition of a related optimization problem.

Mathematical Methods of Circuit Design 125

9.4.1 Upper performance bound v < ¢y

In case of an upper performance bound, (294)) becomes

_ +0wu - 0z, Py < YU ”circuit functions”
ou =B = o N o (306)
—Bwu - 05, Yy > YU circuit malfunctions
(296) becomes
2
Eva + _t
Vo= [e
Do < v +Bwu (307)
Po > vt —Pwu

Mathematical Methods of Circuit Design 126

9.5 General geometric yield analysis

In general, the geometric yield analysis deals with a nonlinear performance feature. Now,
the level contour that divides the parameter space into ”good” and "bad” circuits/systems
is nonlinear. Fig.[38|illustrates the situation for a lower bound. The nonlinear level contour
of parameter sets with ¢ = ¢, is curved.

ZTs2h B2 (xs) = = const

Figure 38. Geometric yield analysis with general nonlinear performance feature, which
has a lower bound.

If you imagine the probability density function, i.e., the Gaussian bell curve, growing out
of the figure towards you, there is a characteristic point, x, y;, among all points on the
lower right half of the space, i.e.; the side with "bad” circuits. It is characterized in that
it has the highest probability (density) among all "bad” points.

This is a general deterministic approach to the statistical problem of discrimant analy-
sis: The worst-case parameter set is the point with highest probability (density) to fail
the specification. The linear model of the performance at the worst-case parameter set
gives a linear approximation of the corresponding discriminant analysis problem.

In geometric yield analysis, we have to dinstinguish four cases, which arise from having
a lower or upper bound that is either fulfilled or violated in the nominal point. We can
summarize the four cases to two cases, which are described as find the point of highest
probability on the other side of the separating contour curve from the nominal
point. This leads to the following two optimization problems.

For a lower bound that is nominally fulfilled, or, for an upper bound that is nominally
violated, the geometric yield analysis is the solution of this optimization problem:

¢ (Xs0) > QLU - max pdfn (xs) s.t. (%) < @ru (308)
For a lower bound that is nominally violated, or, for an upper bound that is nominally
fulfilled, the geometric yield analysis is the solution of this optimization problem:

¢ (X50) < YLy - max pdfn (xs) s.t. ¢ (Xs) > @ru (309)

Mathematical Methods of Circuit Design 127

Considering the quadratic level contours of the probability density function with de-
creasing density values for increasing size of the level hyperellipsoids, we can reformulate
the geometric yield analysis as the point with smallest distance to the level contour.
The distance is weighted according to the quadratic form of the tolerance hyperellipsoids
(”Mahalanobis norm”).

For a lower bound that is nominally fulfilled, or, for an upper bound that is nominally
violated, the geometric yield analysis is the solution of this minimization problem:

¢ (Xs0) > oL - H}l{in B (x5) s.t. @(x,) < oL/ (310)

For a lower bound that is nominally violated, or, for an upper bound that is nominally
fulfilled, the geometric yield analysis is the solution of this minimization problem:

@ (X50) < Pryu - n)l{in B (xs) s.t. @(xs) > oL/ (311)

Geometric yield analysis according to (310) and (311) is a specific form of a nonlinear
programming problem with a quadratic objective function and one nonlinear inequality
constraint.

It can be visualized as ”blowing into a balloon of the shape of an ellipsoid until it touches
the level contour”. It can also be visualized as "pulling in (pulling is skewed according to
the ellipsoids) a fishing line (the other side is the water) until it hits the bank”.

Please compare the problem formulations of geometric yield analysis and general worst-
case analysis. They have the same structure with the difference that objective and con-
straint have been exchanged. Fig. |39 illustrates it.

geometric yield analysis: general worst-case analysis:

Bwrui / Y v S Bw | Yw

min 3?(x;) s.t.

Xs

min/maxp;(X;)

©i(x5) "on the other side” st (x,) < B2

PL/Ui = PWL/U:

Figure 39. Geometric yield analysis and worst-case analysis in comparison.

Mathematical Methods of Circuit Design 128

9.6 Accuracy of geometric yield approximation

The yield value obtained by a general geometric yield analysis is based on the worst-case
distance to the general worst-case parameter vector obtained by solving the nonlinear
minimization problems (310 and (311]). The obtained yield is exact for the linear hyper-
plane in the worst-case parameter vector. The error is a systematic one, it depends on
the difference from the linear hyperplane to the exact separating hypercurve. The (red)
hatched area in Fig. [3§] is the area where the linear model misses to add volume of the
probability function. In this case, the yield is underestimated. Had the curvature been
to the other side, the yield would have been overestimated.

Here are a few considerations why this error is negligible.

First, the error that is made in the yield estimation for a given infinitesimal dz is the
larger, the larger the corresponding value of the probability density function is. Looking
at the definition of the worst-case parameter set, the separating hyperplane is exact where
the pdf value is maximum. The more the deviation of the linear hyperplane to the exact
separating curve, the smaller the pdf value and the smaller the error is. The geometric
yield estimation therefore inherently fits the accuracy of the separation approximation to
the required accuracy of the yield estimation.

Second, let us consider the duality principle in minimum-norm problems. It says that the
minimum distance between a point and a convex set is equal to the maximum distance
between the point and any separating hyperplane. Fig. illustrates this. The convex
set indicated by the hatches represents the failure/non-acceptance region. The worst-case
point is the point with smallest distance to the acceptance region. And it is the one with
maximum distance to any hyperplane that separates the nominal point from the convex
set. As we determine the largest possible worst-case distance in this case, we also obtain
the largest possible yield value for any separating hyperplane. At the same time, we
underestimate the true yield. Hence, we obtain a greatest lower bound for all possible

separating hyperplanes.

A A,

Figure 40. Yield estimation Y (A’) is the greatest lower bound of Y (A,) concerning any
tangent hyperplane of the acceptance region.

Mathematical Methods of Circuit Design 129

Figure 41. Yield estimation Y (A’) is the least upper bound of Y (A,) concerning any
tangent hyperplane of the acceptance region.

Another situation is that the curvature of the separating curve is towards the nominal
point. Here, we obtain the smallest possible worst-case distance to all tangential hyper-
planes of the acceptance region, while overestimating the true yield value. Hence, we
obtain a least upper bound.

Overall, we obtain the best solution of all possible tangential hyperplanes.

Third, and most important, we should be aware that yield analysis in technical problems
is aiming for very robust system with worst-case distances beyond 3, rather 6, 9 or more.
The yield value in these cases is beyond 99.9%. Neither does it change much any more,
so the area approximation error is negligible. Nor is the yield value of any relevance
any more, as its sensitivity to changes in the design is close to zero. It is the worst-case
distance that gives a sensitive robustness measure with regard to design changes and for
design centering.

Mathematical Methods of Circuit Design 130

9.7 Overall yield from geometric yield analysis

The overall yield is obtained from collecting the worst-case points, the linearizations in
those points, and the corresponding worst-case distances for all performance specifications.
Fig. illustrates this for two parameters and four specification bounds, e.g., a lower
bound and an upper bound for each of the two performance features.

.T&Q A

Figure 42. Combine the yield analysis results of four specification bounds.

With the four linear performance models in the four respective worst-case points, an
approximation A’ of the acceptance region in the parameter space is available. Using A%, a
Monte-Carlo analysis can be conducted without any expensive circuit/system simulation,
just on the linear equations. These can be evaluated at very low computational cost, so
that thousands or millions of function evaluations can be conducted.

An approximation of the overall yield can be done solely based on the worst-case distances
without considering worst-case points and linear performance models in the worst-case
points:

An upper bound of the overall yield is given by the smallest worst-case distance:

Y <min Yy,p; (312)

The overall yield cannot be larger, as every further specification leads to cutting away
another piece of the "production cake” represented by the normal probability density
function.

On the other hand, an upper bound of the overall yield is obtained from summing up all
yield losses from individual specification bounds and subtracting that from 100%:

V>1-> (1-Yu) (313)

It is an upper bound as we count overlapping regions of cuts of individual specification
bounds several times and therefore add up too much yield loss.

Mathematical Methods of Circuit Design 131

9.8 Consideration of range parameters

Up to here, we have not considered range parameters in the yield estimation. Range pa-
rameters have no distribution. They are part of the specification in that the performance
of a circuit/system has to be guaranteed for the complete range of those parameters.

Fig. illustrates three sample points of statistical parameters, Xgl), xf), 23) and the
interval of values for one performance feature @ that each of these pomts covers over
the tolerance range T,. It is clear that x{¥) fails the specification and x{" fulfills the
specificaiton. But what about xP? 1t fulfills the specifiation for some sets of range
parameters and fails it for others. The answer is clear if you take the example of a
mobile phone that works in summer (high temperature) and does not work in winter (low

temperature), and when bought, it was promised to work all year round.

1 — A S B

Figure 43. Three statistical sample points with performance interval due to range param-
eter tolerances.

We therefore have an extended definition of the acceptance region A, as the set of sta-
tistical parameter sets that satisfy the specification for all range parameters
in their given tolerance intervals. And the region of failure A, is obtained when
a range parameter vector exists at a statistical parameter sample element that fails the
specification:

Ast - {Xs‘ v 901 (X37XT) > @Ll} (314)

v Pi Xsaxr <90Uz} (315)

xr €T}

sUz{
_st:{Xs| 3 2 Xsyxr <(pLz} (316>

Xs| = 2 X57Xr) > SOUz} (317)

with: B B
AsriNAsri=¢ and A, ;UA ; =R™ (318)

Mathematical Methods of Circuit Design 132

The problem formulation of geometric yield analysis now starts with this extended defi-
nition of acceptance regions:

¢ (x50) € As i maxpdfy (x5) s.t. X5 € Z&L’i (319)
¢ (x50) € ZS,LJ cmax pdfn (xs) s.t. xg € As s (320)

From (314) to (317)) we obtain the following definitions of statistical parameter set being
inside or outside of acceptance:

Xs € As 1 r; smallest value still inside”

<)
Xs € Ay = maxy; (X5, %X,) <y, "largest value still inside”
S)

(321)

(322)

X, € Agp L “smallest value already outside” (323)
(324)

X, € z&w < maxy; (Xs,X,) > ppy; largest value already outside”
This means we have to look for the extreme values of performance within the tolerance
intervals of range parameters for each statistical parameter set. If this value is still
acceptable, the corresponding statistical parameter set is ”good”, because it satisfies the
specification for the whole tolerance range of range parameters. If the extreme value is
not acceptable, the corresponding statistical parameter set is "bad”, because it does not
satisfy the specification for the whole tolerance range of range parameters.

And for the geometric yield analysis we insert this into (319)), (320]) to obtain:

Xs0 € As ¢ II)I(ISD B (xs) s.t. gei%gp (xs,%;) < r "nominal inside” (325)
Xe0 € Agp rr)lclsn B (xs) s.t.)frneuTlrgp (xs,X,) > ¢ "nominal outside” (326)
Xs0 € Asy n)l(m B (xs) s.t.)r(lrlea%go (x5,X,) > @y "nominal inside” (327)
X, 0 € Ay rr)1{1n B (xs) s.t. glea%go (x5,%,) < @y "nominal outside” (328)

Geometric yield analysis now is a constrained optimization problem with another con-
strained optimization problem, which is a worst-case analysis problem, in fact, as con-
straint.

In practice, worst-case range parameters often do not change over the relevant region of
statistical parameters (and deterministic design parameters), so that they can be deter-
mined once in the beginning of the optimization process, then kept constant, and just
verified by another analysis at the end. Only if they changed, the optimization process
has to be restarted.

Mathematical Methods of Circuit Design 133

9.9 Another interpretation of the worst-case distance and prepar-
ing its gradient

As done for the general worst-case analysis, a formula for the worst-case parameter set
that is based on its linearization after solving the general yield analysis problem will be
derived in the following. This formula will be used for a different formulation of the
worst-case distance that leads to another interpretation of the worst-distance. It will also
be used to get a gradient of the worst-case distance with regard to deterministic design
parameters in the next chapter.

The Lagrange function and first-order optimality conditions of problem (310]) are:

L(x,N) = B2 (%) = X+ (91 — ¢ (x)) (329)
VL(x:)=0: 2-C" (xqwr — Xs0) + Az - Vo (Xewr) = 0 (330)
Awr - (or — ¢ (Xsw)) =0 (331)

BI%VL = (Xs,wr — Xs,o)T -C7h- (Xs,wL — Xs0) (332)

If we assume that Ay, = 0, the constraint is inactive or just active and ¢ > ¢ (x5 wr)
according to (310f). From we would then obtain x,w; = x50. But from ,
the nominal point was inside the acceptance region and ¢ (x5 wr) = ¢ (Xs0) > ¢r, which
contradicts the assumption. Therefore it holds:

)\WL >0 (333)
¢ (Xswr) = o1 (334)
From ([330)), we get:
A
XsWL — Xs50 = —% -C-Vop (Xs,WL) (335)
Substituting (335]) in (332)) leads to:
A\ 2
(%) Ve (xawr)' - C- Vo (xewr) = By (336)
Awr Bwr
337
: (337)

\/Vw (xswr)' - C- Vo (Xowe)

Substituting (337)) in (335]) finally results in:

—bBwi

Xs WL — Xs50 = -C-Vop (XS,WL) (338>
\/V<P (xsw1)" - C- Vo (xowr)
corresponds to from worst-case analysis.
The second-order optimality condition of problem is:
V2L (xewr) =2 - C '+ Ay - Vo (Xewr) (339)

Mathematical Methods of Circuit Design 134

It describes that the curvature of 5% has to be stronger than the curvature of ¢ in the
solution.

Similarly, we obtain for the problem (|311])

L (x5, A) = B (x5) = A+ (¢ (x5) — 1) (340)

Then, (338) becomes
o +Pwr
70 -
\/W) (%) - C- Ve (Xowr)

-C- VQD (Xs,WL) (341)

Xs, WL — Xs

Worst-case distance combines performance safety margin and performance
sensitivity

Let us insert the nominal point of statistical parameters x;(into the performance lin-
earization

_ T
WU (x,) = o+ Vo (XS,WL/U) : (Xs - Xs,WL/U) (342)
at the worst-case parameter set Xs,WL/U"
_ T
QO(WL/U) (XS,O) _ QOL/U = VSO (X&WL/U) . (Xs,O - XS,WL/U) (343>

Substituting (338) and (341)) in (343)), we obtain the following formula for the worst-case
distance for a nominally fulfilled lower bound, or a nominally violated upper bound:

”performance safety margin”
7\

~

Bwru = P (x00) — prp _ Vo (XS,WL/U>T (%50 — Xewrv)
\/VSO (XSJ/VL/U)T - C- Vo (xewrw) Tp(WL/U)

?performance variability”

(344)
Analogously for a nominally violated lower bound, or a nominally fulfilled upper bound:

”performance safety margin”
7\

=(WL/U) (Xs50)

- Ve (Xs,WL/U)T

3 . YLy — ¢ : (Xs,WL/U - Xs,o)
WL/U = T N O—(WL/U)
\/VSO (XswL/U) -C-Vop (Xs,WL/U) N

?performance variability”

(345)

(344) and show that the worst-case distance includes two aspects of improving
the robustness. Improving the robustness, i.e., maximizing the yield, is obtained by
maximizing the worst-case distances of a circuit/system. This includes a combination
of maximizing the performance safety margin, which is visible in the numerator of the
worst-case distance. This part refers to the difference in the performance values at the
nominal point and at the worst-case point. On the other hand, the robustness and yield

Mathematical Methods of Circuit Design 135

is maximized by minimizing the sensitivity of a performance with regard to statistical
variation. This part is included in the denominator of the worst-case distance.

Fig. illustrates this for a single performance feature. It shows an initial probability
density function of the performance with parts cut away left of the lower bound ¢y,
as yield loss. The yield can be increased by either moving the nominal performance
value away from the bound and thus increasing the performance safety margin. This is
illustrated by the green pdf moved to the right. The yield can also be increased by reducing
the sensitivity with regard to statistical parameters. This is reducing the performance
variability, as seen in the denominator of the worst-case distance and the blue pdf in the
figure. Both aspects are not independent of each other in a circuit, and both aspects are
considered in the worst-case distance objective.

Figure 44. Moving the nominal point and reducing the standard deviation of a perfor-
mance increase the yield partition.

Mathematical Methods of Circuit Design 136

10 Yield optimization/design centering/nominal de-
sign

10.1 Optimization objectives

While nominal design aims at optimizing the values of the performance features ;,7 =
1,...,ny, yield optimization and design centering (we use the two terms as synonyms)
aims at optimizing either the yield Y, or the worst-case distances:

|¢(WL/U,1') (Xs,o)

— PL/U

Bwrvi = - (346)
\/V%’ (Xs,WL/U,i) -C -V, (Xs,WL/U,i)
T
_ Vi (Xs,WL/U,i) : (Xs,o - Xs,WL/U,i) + Vo, (Xd,o)T - (xq — Xd,()) | (347)
0¢(WL/U,1‘)
1= 17-"7nPSF (348)

Fig. [45|illustrates the task of maximizing the yield. It consists in maximizing the volume
of the probability density function that is not cut away by the performance specification.
In Fig. [45] this is achieved by moving the mean value of the statistical parameters.

Acceptable design

parameter values Contour ellipses
4 T, ofparameter pdf

Contour ellipses

7 % i £ 3 H{A
oLparameter p Y’.\\I
|

(R¥, C*)

Acceptable design
parameter values

Figure 45. Maximizing the yield by moving the probability density function within the
specification bounds.

Please note that we have extended the linear performance model in to include a
term for the deterministic parameters x4. It is the deterministic parameters that are the
design parameters, not the statistical parameters. Designers are usually not tuning man-
ufacturing process parameters, like threshold voltage or oxid thickness. In the statistical

Mathematical Methods of Circuit Design 137

parameter space this leads to another picture than the one in Fig. 45l As the mean val-
ues of statistical parameters are not the design parameters, the maximization of the pdf
volume is achieved by moving the bounds. Fig. [46|illustrates this. In addition to the two
statistical parameters, a deterministic design parameter pointing to the reader illustrates
the third dimension in the overall parameter space of this example. There is a gradient
of the worst-case distance with regard to this deterministic parameter that guides how
to move the specification bound in the statistical parameter space away from the center
of the probability density function, in order to maximize the remaining volume of the
probability density function after having been truncated by the specification.

Xe,o

—.ka.

(Xd?"'AXd Vi X) qu

G0 y _&): @,

i
CVBm (3e0)

= Xs, |

Figure 46. Maximizing the yield by moving the specification bound away from the center
of the probability density function.

An illustration of yield optimization of five performance features of an operational am-
plifier is given in Fig. 47} The left axis shows the values of the Worst case distances, the
right side the correspondmg yield partition values according to and (| -

Worst- Yield
case 8- partition
distance 7 1 4 1
61 99.99%
57 v
4_
34 97.70%
2_
1 4
0. 50.00%
Initial Optimized
0 Gain HE Transit frequency [0 Phase margin
O Slew rate B DC power

Figure 47. Maximizing five performance specification features of an operational amplifier.

The initial situation on the left shows strongly differing worst-case distances. The smallest
worst-case distance is that of the power consumption with a value around 1. The initial

Mathematical Methods of Circuit Design 138

design is therefore not more than a one-sigma design. On the right, the optimized design
is shown. The minimum worst-case distances are now close to 4. This means that a
four-sigma design has been achieved for the corresponding circuit structure and given
process technology. The minimum worst-case distances are obtained for phase margin
and slew rate. A further improvement in one of these two worst-case distances would lead
to a decrease in the worst-case distance of the other one and hence reduce the overall
robustness, which cannot be better than the minimum of all worst-case distances. The
optimum can be seen as a center betwen competing worst-case distances and corresponding
specification bounds. This explains the synonymous term ”design centering” for yield
optimization. In this example, the design center is a tradeoff in the robustness with
regard to speed (slew rate) and stability (phase margin).

As a side comment, please note that the worst-case performance features gy ,u;, @ =
1,...,n, can also be objective of an optimization.

In case that there are no statistical parameters, the concept of the worst-case distance
as performance safety margin divided by performance variability can be used to define a
corresponding objective for nominal design, called performance distance:

@i (X4,0) — Yr/ul "performance safety margin”

aWL/Ui = ’ ’ ., o (349)
\/V% (Xd,o)T - A2 -V (xq0) sensitivity
with
i (xa) = @i (xa0) + Vi (xa0)" - (Xa = Xa0) (350)
a/zd71 O
A, = (scahpg of individual) (351)
design parameters
0 awd,nzd

Mathematical Methods of Circuit Design 139

10.2 Derivatives of optimization objectives

Derivatives of the statistically estimated yield

For a yield that is estimated with a Monte-Carlo analysis, both the first-order derivative
and the second-order derivative with regard to the mean values of statistical parameters
can be calculated. They are given in the following. For the derivation, please see App.[l|

VY (x50) =Y - C7' - (X405 — Xs0) (352)
1
Xs06 = B {xs}, pdfs(xs) = - 0 (%) - pdf (xs) (353)
pdfs Y
V2Y (%40) =V - €71+ |Gy (Ko = Xe0) - (Ks05 = X50)" = C|-C1 (354)
C(5 = E {(Xs - Xs,0,5) : (Xs - XS,O,(S)} (355)
pdfs

Please note the variables with an index §. These are calculated for the probability density
function that results after truncation by the performance specification. Fig. |48 illustrates
the truncation of the original probability density function by the performance specifica-
tion.

q’?)(p!

7

Kook P AR 2 Jh iy) 0

Figure 48. Center of gravity of truncated probability density function.

The truncated probability density function pdfs is the rest of the original pdf that is
obtained over the area shaded in red. According to (352, the stationary point of the
yield maximization problem is where the mean values of truncated pdf and original pdf
coincide. The mean value of a pdf is also representing the center of gravity of the pdf.
That means for a maximum yield that the centers of gravity of pdf and truncated pdf are
identical, i.e., if you balance the optimal mean value of a two-dimensional pdf on the tip
of your finger, it does not tilt if you truncate it according to the performance specification.

Statistical yield optimization methods are therefore also called ”center-of-gravity” ap-
proaches.

Please note that a yield gradient VY (x4) with regard to design parameters cannot be
determined based on a Monte-Carlo analysis. Some type of finite-difference approach with

Mathematical Methods of Circuit Design 140

additional Monte-Carlo sampling is required in this case. This makes yield optimization
based on Monte-Carlo analysis extremely expensive.

First-order derivative of the worst-case distance

In contrast to the statistical yield estimate, a second-order derivative of the worst-case
distance is not known. But on the other hand, the first-order derivative of the worst-
case distance can be determined for both deterministic and statistical parameters.
Based on (347)) we obtain:

+1
VBwrvi (Xs0) = ———— Vi (Xswr/v,) (356)
O'¢(WL/U,Z)
. +1 i
Vi (<i7) = 5 v () @)
? K

The worst-case distance considers both its change by moving the center x; o away from the
specification curve in the parameter space and its change by moving away this specification
curve from the center through changes in design parameters x4, as illustrated in Fig. [46]

As a side comment, the analogous derivative of the performance distance is:
+1
\/VQO Xd() TA2 V(,D(Xdp)

VaWL/Uz Xd,0) Vip(xa,0) (358)

Mathematical Methods of Circuit Design 141

10.3 Problem formulations of analog optimization

Nominal design

The nominal design problem can be formulated as a constrained optimization problem
with performance features or performance distances as objective:

min +¢; (xq),i =1,--- ,n, st. c(xqg) >0 (359)
xq
maxy, Towru (Xa) ,i=1,--- ,npsp st. c(xq) >0 (360)
“nominal inside” T+

“nominal outside” : —

This is a multicriteria optimization problem (MCO), which has to be scalarized to apply
optimization methods as presented before.

Design centering/yield optimization

Yield optimization can be formulated as a constrained optimization problem with yield

as objective:
maxY (x4) s.t. c(x4) >0 (361)

Xd

or with worst-case distances as objectives (”geometric yield optimization”):

maXx, :i:BWL/U,i (Xd) ,i = 1, ..., NpsSF s.t. ¢ (Xd) > 0 (362)
“nominal inside” D+

“nominal outside” : —

Yield optimization based on worst-case distances is a multicriteria optimization problem
(MCO), which has to be scalarized to apply optimization methods as presented before.

Scalarization of multicriteria optimization problems

The task is to map a multicriteria optimization problem with multiple objectives o;,
1=1,...,n, onto a scalar optimization problem with objective f:

min o;(Xg4),i = 1,...,m, — min f(xq) (363)

The following typical scalarization approaches are based on vector norms:

weighted sum: fj;(x) = Z w; - 0;(X) (364)
i=1
. 2
weighted least squares: fi(x) = Z w; - (0i(X) — 0i target) (365)
weighted min/max: fio(x) = maxw; - o; (366)
wi>0,i=1,...,n5, » wj=1 (367)
i=1

Mathematical Methods of Circuit Design 142

The weighted sum approach corresponds to the /;-norm, the least-squares approach cor-
responds to the lo-norm, and the min/max approach corresponds to the [, -norm.

A popular geometric approach for yield optimization inscribes a maximum hyperellipsoid
into the parameter acceptance region. If worst-case distances are applied, an inner itera-
tion step k of optimization can be to inscribe a largest hyperellipsoid into the linearized
acceptance region by linear programming:

max fz s.t. Bgﬁz + Vﬂg,i(xgﬁ)) - (%q — XEP) > fg,i=1,...,npsp (368)

fB:xd

[E(“) (xq) > O}

An exponential cost function over worst-case distances is also possible, but adds strong
nonlinearity to the objective function:

maxhyrvix) - min e (E) (369)

7

10.4 Input/output of yield optimization with worst-case dis-
tances

As an overview, Fig. 49| shows how yield optimization based on worst-case distances calls
geometric yield analysis. As yield optimization is a nonlinear optimization problem it will
call yield analysis in each of its n; ,, iteration steps to obtain the values and gradients
of the npgr worst-case distances of the npgr performance specification features. That
means it has to call a geometric yield analysis for each performance specification feature.
Getting the worst-case distance for one performance specification feature in turn is an
own nonlinear optimization problem, which is solved iteratively. In each of the nj g4
iteration steps of its iterative optimization process, a sensitivity analysis is called to get
the performance sensitivity with regard to statistical parameters. Once, the worst-case
distance has been determined, a sensitivity analysis with regard to deterministic (design)
parameters is performed to determine the gradient of the worst-case distance with regard
to these deterministic (design) parameters. The worst-case range parameters are usually
determined only once at the beginning of the overall optimization process, and then kept
for the rest of the yield optimization process. At the end of the optimization process, their
validity is re-checked, only if they changed (their worst-case parameter set), the whole
process is re-started.

Mathematical Methods of Circuit Design 143

%W’gﬁl avd soudraiut valuec
for ﬁhﬂ—/l&,f/ ; C= // - ek

| T ophuaal desr— %
SCBNG couckaidt | Yield opptiwizaton {msn?bu obre” \(d
P éx)>0_"” wokh worde cA 12 b frcwm:
=T (WQ\L&&WQ}\[&(on}wv%,a_ﬁ-ak S/A‘Eguﬂzzbg;; ﬂ
0 -~
pY C&WJ , drctonnt ¢ W/l [

Mt yo jﬁwz./a,,v
C)'(d bwer | TP (34)
[sadh tpee = it > o (A o

g;ffiwzﬁ?ﬁg‘" oo wetng yield amalysy i X4
[/ (e (wﬂxf’;ﬂ"w&*ﬁﬁdf =18
’L’ q;;,we’kf /‘” un~ MfJ\a—:ﬁ_}/‘.)\ fWL/U'.
m'ger 4/{ 1 s rw«xA V‘tf (x‘d) T
mg@?[&MW | -* Wit s Vgﬂ(\’
¢ 0 X &(,\jya; _
P -«() y Xr %wﬂ
2 eu@l}- w)j
| E 49@5

* gaye cPU hung: - a‘%f _X;/NL/“ / —__r’wi./ﬂ

;z;:;ze;“ﬂ”fi:i;; ool & oprlinin

ot @ &f M Al e 144 é\’d)
cQﬁvgng r}f/vé’ﬂ#)’!
0/3@\%%?;?-.@%

Figure 49. Yield optimization calls yield analysis for each performance specification fea-
ture in each iteration step of its iterative solution process. Yield analysis in turn calls
sensitivity analysis for the performance features in each iteration step of its iterative so-
lution process.

Mathematical Methods of Circuit Design 144

11 Sizing rules for analog circuit optimization

e Design constraints for geometries and currents/voltages of transistors
e Ensure function and robustness
e Automatic construction for given circuit netlist

— hierarchical library of transistor groups

— structural analysis of netlist

[Graeb, Zizala, Eckmueller, Antreich: The Sizing Rules Method for Analog Integrated
Circuit Design, IEEE International Conference on Computer-Aided Design (ICCAD),
2001]

[Massier, Graeb, Schlichtmann: The Sizing Rules Method for CMOS and Bipolar Analog
Inetgrated Clircuit Synthesis, IEEE TCAD 2008|

Mathematical Methods of Circuit Design 145

11.1 Library of NMOS transistor groups

Function

Schematic Sub-Library

Voltage-Controlled Resistor (vcres)

Volt.-Contr. Current Source (vees)

I Lo

Voltage Reference 1 (vrl)

Voltage Reference 2 (vr2)

T T

Current Mirror Load (cml) gﬂm
@ I,
. Fm
Cascode Pair (cp)
F@
Simple Current Mirror (cm) (1;@(2)
Level Shifter (Is) (I)PF—EQ)
Cross-Coupled Pair (cc) M
o) @
Differential Pair (dp) olf o
Wilson Current Mirror (WCM) "
Cascode Current Mirror (CCM) E
4-Transistor Current Mirror (4TCM) N
—— I
2
Improved Wilson Current Mirror (IWCM) ‘ME
Wide Swing Cascode Current Mirror (WSCCM) B
——
Differential Stage (DS) e I
’

Mathematical Methods of Circuit Design 146

Differential Stage (DS) ‘\

Current Mirror

N

/

Wide Swing Cascode Improved Wilson 4-Transistor

Cascode Current Wilson Current Current Current

Current Mirror Mirror Mirror Mirror Mirror

(WSCCM) (CCM) (IWCM) (WCM) (4TCM)

= = 1
Voltage Simple Voltage Current Cross—

Differential Cascode Reference 2 Current Level Reference 1 Mirror Coupled
Pair (dp) Pair (cp) (vr2) Mirror (cm) Shifter (Is) (vrl) Logd (cml Pair (cc)

"rules out if
grey transistor
is in both"

vr2

"

vrl

T T /> MOS Transistor \
"isa" "consists of" vees veres
Figure 50.
M \ : WCM WSCCM
cC

cp

Figure 51. Ambiguity Arbitration Rules

Mathematical Methods of Circuit Design 147

11.2 Single (NMOS) transistor

iDS
A

D
JiDS
e o—| | v

DS

triode region
B

saturation region
—>

(370)

(371)

g vaGs
UGS\ /
S 7
Figure 52.
drain-source current (simple model)
07 Ups < 0
ips =1 p-Co- ¥ (vas—Vin—88) -vps- (1+ X vps), 0<vps<wvgs— Vi
o Cop - W (vas — Vin)? - (1 4+ X vps), vas — Vin < Ups
W, L[m] : transistor width and length
L, [V—Z] : electron mobility in silicon
Cos Cf; 2} . capacitance per area due to oxide
Vin [V] : threshold voltage
Al : channel length modulation factor

saturation region, no channel length modulation:

iDS:K.%vaS—Vth)? with K:%-un.coz
derivatives:
Vips (K) ips/K
Vips (W) = ips/W
Vips (L) —ips/L
Vips (Vin) = _’UGSQ—V;Sh “ips
variances: on 2 A
(?) WL
(o) = s

(372)

(373)

(374)

(375)

area law: Lakshmikumar et al. IEEFE Journal of solid-state circuits SC-21, Dec.1986

Mathematical Methods of Circuit Design 148

ips variance, assumptions: K, W, L, V,, variations statistically independent, saturation
region, no channel length modulation, linear transformation of variances

O'?DS ~ Z [Vips ()] - o2 (376)

z€{K,W,L,Vyp}

(377)

W, Lt WLt = o

larger transistor geometries reduce ipg variance due to manufacturing variations in K, W, L, V,

11.2.1 Sizing rules for single transistor that acts as a voltage-controlled cur-
rent source (vccs)

type origin
(1) wvps >0 electrical (DC) transistor
(2) wvgs— Vi >0 function in saturation
(3) wps — (vas = Vin) 2 Vi min
4) W>Wr., geometry manufacturing
(5) L>1Lr,, robustness variations affect ipg
(6) W-L> Az,

* technology—specific value

11.2.2 Sizing rules for single transistor that acts as a voltage-controlled re-
sistor (vcres)

type origin
(1) wps >0 electrical (DC) transistor
(2) wvgs— Vi >0 function in linear region
(3) (vas — Vin) — vps = Vi, mmin

* technology—specific value

Mathematical Methods of Circuit Design 149

11.3 Transistor pairs (NMOS)

11.3.1 Simple current mirror
function: Iy = x - I;
assumptions: K; = Ko; A = Xy = 0; Vip1 = Vipe; L1 = Lo; T4, 15 in saturation

Iy Wy (vas — Vina)” 14+ X - vps2

rT=—==—— 378
L Wi (vas — Vthl)2 1+ A1 -vpsi (378)
Sizing rules for simple current mirror
in addition to sec. [11.2.1] (1) — (6):
type origin
(1) Ly = Lo geometric current ratio
2) z=% function /robustness layout (matching
W1
(3) |vpsi —vps2] < AVEgmas electrical influence of channel
function length modulation
(4) vas — Vinrz = Vigmin electrical influence of local variations
robustness in threshold voltages
* technology-specific value
11.3.2 Level shifter
type origin
(1) Ly = Lo geometric/function systematic mismatch
(2) |vas = Vinyol < Vismin electrical influence of local variations
in threshold voltages

* technology-specific value

Mathematical Methods of Circuit Design 150

11.3.3 Differential pair

type origin

(1) Ly =Ls geometric/function symmetry

(2) Wy =W,

(3) |vps, — vpsi| £ AVEg niay | €lectrical/function linear behaviour

(4) |vas, — vas,| < AVismas electrical /robustness | influence of local variaions
* technology-specific value
11.3.4 Cross-coupled pair

type origin

(1) Ly = Ly | geometric/function | symmetry
(2) Wy =W,

11.4 Transistor pair groups

11.4.1 Cascode current mirror

type origin

(1) Lisy = Lisiz) | geometric/function | same voltage at

(2) Wiy = Wige) source pins of Is

11.4.2 4-Transistor current mirror

type origin
(1) Wiyna)y = Wari(e) geometric/function same voltage at
(2) Wanm) = Wene) source pins of upper pair
(3) vDSy10 = VDSumiin] £ AVDsmawaronn | electrical/function linear behaviour

* technology-specific value

Mathematical Methods of Circuit Design 151

11.4.3 Wide swing cascode current mirror

upper pair: level shifter constraints
lower pair: simple current mirror constraints

11.4.4 Wilson current mirror

upper transistor: vcres constraints
lower pair: simple current mirror constraints

11.4.5 Improved Wilson current mirror

upper pair: level shifter constraints
lower pair: simple current mirror constraints

Mathematical Methods of Circuit Design 152

Appendix A Matrix and vector notations

A.1 Vector
_) .
by ’
b
b: column vector
b” =[-- b ---] transposed vector (380)
bT: row vector
A.2 Matrix
@11 A2 -+ Qin
a a e Aoy,
N o= a; |, a; ER, AER™T A (381)
Am1 Am2 - Amn

1: row index, 7: column index

A=la, an - A (382)
T
Ao
T
a
20
A=] (383)
T
am()
e AT
transposed matrix: Al <
_ - S
ay;p Q21 - Aml Ay
iz Q22 -+ (m2 a’.
T m 02
A= 7T T =T | = [aas A (384)
T
Aip G2n, " Omn Ay,

Mathematical Methods of Circuit Design 153

A.3 Addition

A<m><n> + B<m><n> = C<m><n>

Cij = CLij + bij

A.4 Multiplication

A<m><n> : B<n><p> = C<m><p>

n
Cij = g ik + br;
k=1

1 J
1
n
1 n 1 Y
1 1
1 > (]
m m
A
Cij = a, be;
~— ~~
i-th row j-th column
in A (387) in B (387)

(385)
(386)

(387)

(388)

(389)

Mathematical Methods of Circuit Design 154

A.5 Special cases

a=A_,>
T _
a =Aiums
T
a = A<1><1> = ac1> = Ay

al . -b_,~ = c scalar product

T
<n>

ac,s-b = C_uxn> dyadic product
A rixn> bans = Cops

T T
b<m> ' A<m><n> = Cp>

T _
b<m> : A<m><n> Con> = d

1 0
identity matrix I, xm> =
0 1
aq 0
a2
diagonal matrix diag (a.,,>) =
0 Am,

<mXxXm>

(399)

Mathematical Methods of Circuit Design 155

A.6 Determinant of a quadratic matrix

det (A<m><m>) = |A’ = Zaij © g, 1€ 1, e,
j=1

= Zaij‘ozij, jEl,...,m (400)
i=1
adjugate matrix adj (A)
T

minor determinant (row ¢, column j deleted):

Qij = (‘Uiﬂ)

A.7 Inverse of a quadratic non-singular matrix

A;inxm> ’ A<m><m> =A-A'=1 (402)
1

Al = -adj (A 403

det (A) AUA) (403)

Mathematical Methods of Circuit Design 156

A.8 Some properties

(A-B)-C=A-(B-Q)
A-B+C)=A-B+A-C
(A-B) =BT . AT
(AT)" = A
(A+B)" = AT+ BT
A symmetric <= A =A"

A positive (semi)definite = z’OXT “A-x>(>)0

A negative (semi)definite <= zOXT A x<(£)0

I'=1
AI=1T-A=A
A -adj(A) = det (A)-I=adj(A)- A
det (A") = det (A)
agy -+ b-ay; -+ Agy| =b-det (A)
det (b- AT) = b - det (A)
aq oy 7 oj T3,
|ass Ao1 Aoz Aom| = —det (A)
a,; = ao, (A rank deficient) : det (A) =0
ag -+ Ayt b-ag o Agy| = det (A)
det (A - B) =det (A) - det (B)
(A-B)'=B71.A!
(A7) = (a7’
(A1) -
- 1
det (A)

A™' = AT < A orthogonal

det (A_l)

- Ao |+ a0 - aij | = A - al+a® .

Ao

Mathematical Methods of Circuit Design 157

Mathematical Methods of Circuit Design 158

Appendix B Notations and abbreviations for first-
and second-order derivatives

Gradient vector: vector of first partial derivatives

of
85175,1
of
of B)
V. f (%) = =1 7 (428)
X <Ngs> axs
of Xd
O0Ts mys x=| X,
XT’
.. / 8f /
Abbreviation: Vi f (x}) = =V/f(x)) (429)
aXs X4
x=| X
X
Hessian matrix: matrix of second partial derivatives
0 f
2 _
VxSf (XS><7L15><7L15> - 8xs . aXz X, (430>
x=| X,
X
[2 _of __f
8:1:31 0x5,1-0%s 2 0%s.1:0% s,y
0f o°f ey
— 8905’2-815,1 85632 8%372-6.%5”@8 (431)
0% f 0%f 0% f Xd
L 8x5,nzs'8x571 8335,7115'8-735,2 81’%,71,15 x=| X
XT’
Abbreviation: V2 f (x)) = _OF =V?f(x (432)
xs s 0xg - OxT Xy
X= X;
XT‘
Mathematical Methods of Circuit Design 159

8% f 8% f
2 Oxq-0xT Oxq-0xT
de,xsf (X::bX;><(nxd+nz5)><(nm+nzs)> = ngfxd xg2fx x! (433)
Oxs-0xL Oxs-0xT d
x= X;
Xy
82
_ | V) e
= 927) . (434)
axs-axdT v f<XS) Xd
xX= X;
Xy
= V?f(x),x.) (abbreviation) (435)

If no index of V or V2 is given then the corresponding derivative V f(-) refers to the

(sub)set of parameters in the argument (-).

The parameter vector may be for a subset, e.g. for statistical parameters x;. Then, the
remaining parameters are at a value that is not considered at this point.

Jacobian matrix, sensitivity matrix

of
Vo f <x{f> - = (436)
<N g XNgs> aXS Xd
x=| x/
X,
[on Oh _ofr]
6xs,1 8I372 8935,7115
dfa df2 Of2
_ 81'5,1 a$'s,2 8$S,nxs (437)
Ofn; Ofny Ofn ;s Xd
| 8335,1 6333,2 81‘3,7Lg;5 _ X;
X,
= Vf (xf) (abbreviation) (438)

The Jacobian (or, sensitivity) matrix is the matrix of the partial derivatives of all perfor-
mance features with regard to all parameters or a subset of parameters.

In row ¢ is the partial derivative of performance feature f; with regard to all considered
parameters.

In column j is the partial derivative of all performance features with regard to parameter
Xj.

Mathematical Methods of Circuit Design 160

Appendix C Partial derivatives of linear, quadratic

terms in matrix/vector notation

0 d
ox oxT
al - x a al
xT . a a al
r T T T T
Xens “ Acnxn> * Xan> A-x+A"-x x' AT +x' A
A = AT (symmetric): A = AT.
2 . A - X 2 XT . AT
XT - X 2.x 2. XT
A sins - Xens
=, " T1 T A2 Tt ...+t Ao Tp al, al,
T T
a1<> "X aQO a2<>
T A — :
| A X :
T
a a
T mo <mn> mo
a”’LO : X
T T
Xen> © A<n><m>
= al, z T T — T T T
=ay, ‘¥ tay-Tot+...+tay T, Al = [alo Ay - amo] [alo al, - am<>]<mn>

_ [aT T
—[alo-xa%-x -+- o a

Mathematical Methods of Circuit Design 161

L 4 <mn>
| ®
<m> _ 8®
8[]<n> g Jen>
<mXn>
<n> L <n> 4 <nXm>
8 []<n> a[]<n> <mn>

(439)

(440)

(441)

(442)

Mathematical Methods of Circuit Design 162

Appendix D Norms

Vector norm

li-norm ||x|; =

lo-morm ||x|ls =

lo-norm ||X[|oe = max |z;]
K3

Ny %
lp-norm [|x[, :<Z|$i|p)

Matrix norm

max norm ||Ally = n, - max |a;|
i.j

row norm ||Allz = maxz |aij]
b

column norm ||Alls = maXZ |agj]
i s
(2

Euclidean norm ||A|lg = ZZ |aj|?
(N
spectral norm ||A|lx = V/ Amax (AT - A)

(443)

(444)

(445)

(446)

(447)

(448)

(449)
(450)
(451)

(452)

Mathematical Methods of Circuit Design 163

Mathematical Methods of Circuit Design 164

Appendix E Pseudo-inverse, singular value decom-
position (SVD)

E.1 Moore-Penrose conditions

For every matrix A _,,,>, there always exists a unique matrix AY, ., . that satisfies the
following conditions.

A-A"-A = A, A-A" maps each column of A to itself (453)
AT A-A" = AT, AT.A maps each column of AT to itself (454)
(A-A*)" = A-A* A A" is symmetric (455)
(A*- A)T = A"-A, AT.A is symmetric (456)

Mathematical Methods of Circuit Design 165

E.2 Singular value decomposition

Every matrix A x> with rank(A) = r < min(m, n) has a singular value decomposition

A T
A<m><n> = V<m><m> . A<m><n> : U<n><’n,>

V: matrix of the m left singular vectors (eigenvectors of A - AT)
U: matrix of the n right singular vectors (eigenvectors of AT - A)
U,V orthogonal: U~ =U? V-1 =V7T

N [D<r><7“> O

A=] , 7 =rank (A)
0 <mxn>

D = diag(dy,--- ,d,)

1 singular values

= U<n><n> ' A-+ ' VT

<nXm> <mXxXm>

+
A<n><m>

A+ — D;}"xr> 0
0 0
<nXm>

1 1
D! = di — e,
la'g <d17 ’d,,,.)

singular values: positive roots of eigenvalues of AT - A

columns of V : basis for R™
columns 1,...,r of V : basis for column space of A
columns (r +1),...,m of V : basis for kernel/null-space of AT
columns of U : basis for R™
columns 1,...,r of U: basis for row space of A
columns (r +1),...,nof U: basis for kernel/null-space of A
A) A+ _ I<r><r> 0
0 0
- - <mxm>
AJr A = Iiyxrs O
0 0
- = <nXn>
A . A+ _ I<7"><7“> 0
0 0
- - <mxm>
A+ . A _ I<r><r> 0
0 0
- - <nXxXn>

(457)

(458)

(459)

(460)

(461)

(462)

Mathematical Methods of Circuit Design 166

Appendix F Linear equation system, rectangular sys-
tem matrix with full rank

A<m><n> *Xan> = Cam> (463)

rank(A) = min(m,n)

F.1 m < n, rank(A) = m, underdetermined system of equations

A - AT s invertible

Ax=c —- AAT.w=c = w=A A")"c
X

x=AT.(A-A")"'.c minimum length solution

A"
Solving (463]) by SVD
A - V : [D<m><m> 0}<m><n> : UT
V. DO0]-U"-x=c¢
——
W//

" T " ”g
[D|0] - w'=V".c w'= <m>
1
Wi
<n>

element-wise
" T divisi "
D-w,=V'.c e w,

W//
x=U-| °
0
Solving (463]) by QR-decomposition

R
T 1 <mxXm>
A<n><m> = [Q<n><m> Q]<n><n_m>‘ [0
orthogonal, i.e.,

Q"-Q =0
At =AT . (A-A"HY'=Q-R 7T

forward

bstituti
RT'QT'X:C susgulon W/// N X:Q'WW
——
W//l

(464)

] <n—mxXm>

Mathematical Methods of Circuit Design 167

F.2 m > n, rank(A) = n, overdetermined system of equations

AT - A s invertible
Ax=c — AT -A-x=AT.c
x= (AT A1 ATc least squares solution

A

Solving (463) by SVD

A _ V . D<n><n>] . UT
0 <mxXn>

[D] . W// — "\ rT .c = [Va <n>]
0 Vi
<m>

element-wise
" divisjion "
D -w'=v, = W

x=U-w"

Solving (463) by QR-decomposition

0

A s = [Qemsns Q] s - [RW’”] =Q'R
h orthogonal <mxmn>
At =(AT AT AT=R'Q"
backward

Q.RX:C@R'X:QTC substigltion x

Mathematical Methods of Circuit Design 168

F.3 m =n, rank(A) =m = n, determined system of equations

A is invertible

At = A1
Solving (463) by SVD
A=V.-D.-UT
V-D-U'.x=c¢
N——
W//

element-wise
D. W// _ VT .c di@on W//

x=U-w
Solving (463) by QR-decomposition

A=Q R
A+ — R—l . QT
backward

Q‘R'X:C@R'X:QT-C substigltion x
Solving (463)) by LU-decomposition

L : lower left triangular matrix

A=L-U _ _ .
U : upper right triangular matrix
L-U.x=c
~—~
W////
forward
L- W//// —c substgution W////
backward
U CxX = W//// Substi<ion x

A orthogonal: AT -A=A-AT =1
A-‘r — A—l — AT

: : +_ 1
A diagonal: Ai =4

(rank deficient, i.e. 3;4; = 0, then A} =0)

Mathematical Methods of Circuit Design 169

Mathematical Methods of Circuit Design 170

Appendix G Probability space

event B: e.g., performance value f is less than or equal fy, i.e., B={f|f < fu}

probability P: e.g., P(B) =P ({f|f < fu}) = edfs (fu) = [7° pdf; (f) - df

event B C (): subset of sample set of possible outcomes of probabilistic experiment €2

elementary event: event with one element (if event sets are countable)

event set BB: system of subsets of sample set, B € B

definitions:
QeB (465)
BeB = BeB (466)
B,eB,ie N = UB,eB (467)
event set B: "o-algebra”
Kolmogorov axioms:
P(B) >0 forall BeB (468)
P(Q) =1 7Q: certain event” (469)
B,NB;={},B;; € B=P(B;UB;)=P(B;)+ P(B)) (470)
corollaries:
P({}) =0 "{}: impossible event” (471)
B, C B; = P(B;) < P(By) (472)
P (B) =1-P (B) (473)
0<P(B)< (474)

/ - / ot (475)

Mathematical Methods of Circuit Design 171

Mathematical Methods of Circuit Design 172

Appendix H Convexity

H.1 Convex set K ¢ R"

paé(l—a)-po—l—a-plef((476)
po,p1€K,a€(0,1]

Figure 53. (a) convex set, (b) non-convex set

H.2 Convex function

V2f is positive definite

v J(Pa) (1 —a)- f(po) +a-f(p1) (477)
Po, P1 c K,& c [O, 1]

Po=(l1—a) po+a-p:

Figure 54. convex function

¢ (p) is a concave function <= {p | ¢(p) > ¢} is a convex function
convex optimization problem: local minima are global minima
strict convexity: unique global solution

Mathematical Methods of Circuit Design 173

Mathematical Methods of Circuit Design 174

Appendix I Derivatives of the statistically estimated
yield

Mathematical Methods of Circuit Design 175

ldAtas

r=ef (r(ygw f/cm» Y AL

F/r()!
;o) /ff/.‘,{,) deﬁ[) ﬂfJVLM/ﬂ/_y—a‘
%0 Vd—Q};a)-"O

I N
PAE0) s ko T AU Gy ¥eo)

gﬁpdﬁéxf,,) = pAllx)- (—i) .2 c'f(g{jﬂa) L)
= Pdf(x) C (_,yo
‘VV ‘?‘7 -)
X:,é (fsﬁo) . f:”f,g (X('}’,o) JO,(J) Pd‘/’[ﬁJ dyj
¢/
e
= T, (X PRV k IX,)-pdFs) A

1T i el ot Pd/ Pdccf (X >
it Gyl 8 JF it 2t

meaw value of /mmm»{r&/ /m__/ﬂ

i

-1
Xsaéxf,p)" \(C (,od’" —-/'Y(o>
*..

ceuley of Gravty A N
Adesga ¢ o dor 5}4}\9%(})am,\,lL XJ,O,J" =)_(;‘D

Mathematical Methods of Circuit Design 176

2 tes _ f“}}Zj‘“"‘
VKI,}/(A:&,’()) 7 /\/J— (EJ> : Vzpﬂ{g(_)_(sio)i d)(\ i Nmi
=

._,; -
i éad (3('5’) EEARL gm)' VPdﬁ[is,a)l
- & pdfly,

o
|4 |
ol O x, %0) (X)

Vi

£ paeh) 2 iy

g /('cf %) G,) - 5] - /M/Mx)
r Y(J@) }/5 g /\/{ -aaf/'*(:o;,,a)][] : jPM

W :.f —JnJ (\fg ‘_,%J)

5 C P
[TF a2 5 = /,XS'o N '.ra)(_‘a/()ﬁ' .
e N |
9 {2{ (af (-(a) ﬁ:’.»,D)

X R
@%k A/ i ("j,g‘, ¢ ;\:!Laf> 5/9/ %Dea)

- -
YC AFE N & Jpy Xi0) e T,‘d,{

.2

Mathematical Methods of Circuit Design 177

Mathematical Methods of Circuit Design 178

	Introduction
	Parameters, performance, simulation
	Performance specification
	Design flow
	Organization of the presentation

	Some basics of optimization
	Maximization, minimization, minimum, unconstrained optimization
	Constrained optimization
	Classification of optimization problems
	Multivariate Taylor series
	Structure of an iterative optimization process

	Optimality conditions
	Optimality conditions – unconstrained optimization
	First-order condition for a local minimum of an unconstrained optimization problem
	Second-order condition for a local minimum of an unconstrained optimization problem

	Optimality conditions – constrained optimization
	Feasible descent direction r
	First-order conditions for a local minimum of a constrained optimization problem (Karush-Kuhn-Tucker (KKT) conditions)
	Second-order condition for a local minimum of a constrained optimization problem
	Sensitivity of the optimum objective value with regard to a change in an active constraint

	Worst-case analysis
	Task
	Typical tolerance regions
	Linear performance model
	Classical worst-case analysis
	Classical worst-case analysis, lower worst case
	Classical worst-case analysis, upper worst case

	Realistic worst-case analysis
	Realistic worst-case analysis, lower worst case
	Realistic worst-case analysis, upper worst case

	General worst-case analysis
	General worst-case analysis, lower worst case, tolerance hyperellipsoid
	General worst-case analysis, upper worst case, tolerance hyperellisoid
	General worst-case analysis, tolerance hyperrectangle

	Input/output of worst-case analysis

	Unconstrained optimization
	Line search
	Golden sectioning
	Line search by quadratic model
	Backtracking line search
	Coordinate search for multivariate unconstrained optimization without derivatives
	Polytope method (Nelder-Mead simplex method) for multivariate unconstrained optimization without derivatives
	Newton approach for multivariate unconstrained optimization with derivatives
	Quasi-Newton approach for multivariate unconstrained optimization with derivatives
	Levenberg-Marquardt approach (Newton direction plus trust region) for multivariate unconstrained optimization with derivatives
	Least-squares (plus trust-region) approach for multivariate unconstrained optimization with derivatives
	Conjugate-gradient (CG) approach for multivariate unconstrained optimization with derivatives

	Constrained optimization
	Quadratic Programming (QP) – linear equality constraints
	Quadratic Programming – inequality constraints
	Sequential Quadratic Programming (SQP), Lagrange–Newton

	Statistical parameter tolerances
	Univariate Gaussian distribution (univariate normal distribution)
	Multivariate Gaussian distribution (multivariate normal distribution
	Transformation of statistical distributions

	Expectation values and their estimation
	Expectation values
	Definitions
	Expectation value of linear transformation
	Variance of linear transformation
	Translation law of variances
	Normalizing a random variable
	Linear transformation of a normal distribution

	Estimation of expectation values
	Variance of the expectation value estimator
	Estimated expectation value of linear transformation
	Estimated variance of linear transformation
	Translation law of estimated variance

	Yield analysis
	Problem formulation
	Statistical yield estimation/Monte-Carlo analysis
	Accuracy of statistical yield estimation
	Geometric yield analysis for linearized performance feature
	Upper performance bound U

	General geometric yield analysis
	Accuracy of geometric yield approximation
	Overall yield from geometric yield analysis
	Consideration of range parameters
	Another interpretation of the worst-case distance and preparing its gradient

	Yield optimization/design centering/nominal design
	Optimization objectives
	Derivatives of optimization objectives
	Problem formulations of analog optimization
	Input/output of yield optimization with worst-case distances

	Sizing rules for analog circuit optimization
	Library of NMOS transistor groups
	Single (NMOS) transistor
	Sizing rules for single transistor that acts as a voltage-controlled current source (vccs)
	Sizing rules for single transistor that acts as a voltage-controlled resistor (vcres)

	Transistor pairs (NMOS)
	Simple current mirror
	Level shifter
	Differential pair
	Cross-coupled pair

	Transistor pair groups
	Cascode current mirror
	4-Transistor current mirror
	Wide swing cascode current mirror
	Wilson current mirror
	Improved Wilson current mirror

	Matrix and vector notations
	Vector
	Matrix
	Addition
	Multiplication
	Special cases
	Determinant of a quadratic matrix
	Inverse of a quadratic non-singular matrix
	Some properties

	Notations and abbreviations for first- and second-order derivatives
	Partial derivatives of linear, quadratic terms in matrix/vector notation
	Norms
	Pseudo-inverse, singular value decomposition (SVD)
	Moore-Penrose conditions
	Singular value decomposition

	Linear equation system, rectangular system matrix with full rank
	underdetermined system of equations
	overdetermined system of equations
	determined system of equations

	Probability space
	Convexity
	Convex set K Rn
	Convex function

	Derivatives of the statistically estimated yield

