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Abstract

In this work we propose a method for estimating dispar-

ity maps from very few measurements. Based on the the-

ory of Compressive Sensing, our algorithm accurately re-

constructs disparity maps only using about 5% of the en-

tire map. We propose a conjugate subgradient method for

the arising optimization problem that is applicable to large

scale systems and recovers the disparity map efficiently. Ex-

periments are provided that show the effectiveness of the

proposed approach and robust behavior under noisy condi-

tions.

1. Introduction

One of the oldest and also most important research topics

in computer vision is the stereo correspondence problem.

Given two or more images of the same scene but taken from

different viewpoints, the correspondence problem aims at

determining which image points in different images are pro-

jections of the same physical point in space. Essentially,

correspondences are found by comparing image intensities,

feature points, or certain shapes extracted from the images

at hand. A common simplification for this search is to

rectify the stereo images, as after this transformation cor-

responding points will lie on the same horizontal scanline

and therefore the search space is reduced by one dimension.

When correspondences for all points of an image have been

established, a dense disparity map of the observed scene

can be created. The term disparity denotes the difference

in coordinates of corresponding points within two images,

and is an inverse measurement of distance. Disparity maps

are essential for various applications like 3D-television, im-

age based rendering, or robotic navigation. In the following

we will shortly review the state-of-the-art concepts used for

disparity estimation.

The most basic tool needed for finding corresponding

points is a matching cost function that measures image

similarity. Most widely used are matching cost functions

that compare image intensities by their absolute or squared

differences, but there exist several other techniques [16].

Unfortunately, only considering a simple matching cost is

highly ambiguous due to occlusions, or either missing or

repetitive textures. To overcome these ambiguities, a vari-

ety of dense stereo methods have been proposed throughout

the last 40 years, see [25] for an excellent overview and per-

formance comparison. Generally, these approaches can be

divided into two groups: local methods that assign a dispar-

ity to each position individually, and global methods that

minimize an energy function either along a single scanline,

or over the entire disparity map.

Local methods aggregate the matching cost of all pix-

els lying in a support window surrounding a point q, and

assign the disparity to q that results in the lowest aggre-

gated cost. These methods assume constant disparity over

the support, which does not hold at disparity discontinuities

and leads to boundary fattening artifacts. Explicit occlusion

detection [11], multiple windowing [14], or adaptive local

support weighting [29] reduce this effect, but cannot avoid

it completely.

A further problem appears in regions showing no texture

or repetitive textures, due to many indistinguishable possi-

ble matches. Global methods tackle these ambiguities by

assuming that disparities vary smoothly in general. This

is enforced by minimizing an energy function consisting

of the matching cost and a discontinuity penalty. In that

way, global support is provided for local regions lacking

textures. Scanline methods minimize an energy function

along each horizontal scanline separately, using dynamic

programming [23, 25]. In regions fulfilling the smoothness

assumption, this approach results in accurate disparity es-

timation, but leads to horizontal streaking artifacts around

discontinuities. This problem is bypassed by methods that

enforce the smoothness constraint in both vertical and hori-

zontal direction. The most prominent stereo algorithms for

minimizing the 2D cost function are based on belief propa-

gation [13, 17, 26] and graph cuts [2, 18].

Besides the dense stereo methods reviewed above, al-

gorithms that explicitly produce reliable sparse disparity

maps have been proposed in the literature [24]. However,



to the best of our knowledge, no technique has been pro-

posed so far that aims at reconstructing a dense disparity

map from these sparse measurements, except simple inter-

polation which is prone to errors and creates bulky disparity

maps, especially at object boarders.

In this paper, we present a method that accurately recon-

structs dense disparity maps by only using a small set of

reliable support points. It is based upon the theory of Com-

pressive Sensing and incorporates prior knowledge about

both the general structure of disparity maps and the specific

image at hand into the optimization scheme. We propose

a conjugate subgradient method that abandons the use of a

smoothing parameter and thus leads to unbiased solutions.

Our experiments show, that only about five percent of the

entire disparities are necessary for our method to produce

very accurate results. Hence, the proposed algorithm is suit-

able for a combined approach in creating and compressing

disparity maps.

The paper is organized as follows. In the next section,

we shortly recall the basics of Compressive Sensing and in-

troduce the required mathematical notation. In Section 3,

we explain the shortcomings of random sampling and how

to overcome them. A conjugate subgradient method is pre-

sented in Section 4 that efficiently solves the arising non-

smooth optimization problem, and in Section 5 we provide

numerical simulations that show our algorithm’s capability.

2. Compressive Sensing

A common ground to many interesting signals is that

they have a sparse representation or are compressible in

some transform domain, which means that many transform

coefficient are zero or close to zero. For example, the stan-

dard representation of an image of a natural scene by its in-

tensities is dense, whereas the wavelet basis admits a sparse

representation. The important information is contained in

only a few dominant coefficients. To reconstruct the en-

tire image without severe loss of quality, it is sufficient to

know these large wavelet coefficients together with their re-

spective positions. If we could directly sample the impor-

tant coefficients in the sparse domain, we could bypass the

inefficient process of first sampling densely, then calculate

the sparse representation to afterwards compress. The con-

cept of Compressive Sensing (CS) [4, 8] offers a joint sam-

pling and compression mechanism, which exploits a sig-

nal’s sparsity to perfectly reconstruct it from a small number

of acquired measurements.

Let s ∈ R
n be a column vector that represents a dis-

crete n-dimensional none-sparse real-valued signal. We de-

note its k-sparse representation by x ∈ R
n, where k-sparse

means that only k < n entries of x are nonzero. We write

the corresponding linear transformation as

s = Ψx, (1)

where Ψ ∈ R
n×n is an orthonormal basis of R

n, called

representation basis. Furthermore, let Φ ∈ R
m×n be the

sampling basis that transforms s into the vector y ∈ R
m

that contains m < n linear measurements

y = Φs = ΦΨx. (2)

We aim to reconstruct s given only the measurements y

by computing x from equation (2) and exploiting the fact

that x is sparse. Informally speaking, we are seeking the

sparsest vector x that is compatible with the acquired mea-

surements. Formally, this leads to the following minimiza-

tion problem

minimize
x∈Rn

‖x‖0

subject to y = ΦΨx, (3)

where ‖x‖0 is the ℓ0-pseudo norm of x, i.e. the number of

nonzero entries.

Unfortunately, solving (3) is computationally intractable

as it is a combinatorial NP-hard problem [20]. Instead, it

has been shown in [9] that under some generic assumptions

on the matrix ΦΨ it is equivalent to replace the ℓ0-pseudo

norm by the ℓ1-norm ‖x‖1 :=
∑

i |x(i)|, which leads to the

so called Basis Pursuit [7]

minimize
x∈Rn

‖x‖1

subject to y = ΦΨx. (4)

This is a convex optimization problem that can be recast

into a linear program, which is solved in polynomial time.

The theory of CS says that if the number of measurements

m is high enough compared to the sparsity factor k, the so-

lution to equation (4) is exact [5], and consequently the sig-

nal is perfectly reconstructed by solving equation (1), using

the computed x.

When the signal is sampled in the same basis in which

it is sparse, a lot of samples are required for reconstruction

(since most of the samples would be zero). Hence, it is

intuitively clear that sampling and representation basis have

to be as disjoint as possible. This is measured by the mutual

coherence between Φ and Ψ

µ(Φ,Ψ) =
√
nmax

i,j
|(ΦΨ)(i, j)|, (5)

where X(i, j) denotes the (i, j)-entry of the matrix X . The

smaller the value µ(Φ,Ψ) the higher the incoherence and

the more favorable is the pair of bases [10]. The relation

between the number m of required random samples for per-

fect reconstruction, the coherence, the sparsity of x, and the

dimensionn of the signal is provided by the famous formula

[3]

m ≥ Cµ2(Φ,Ψ)‖x‖0 logn, (6)



where C is some positive constant. Interestingly, randomly

drawn sampling matrices provide a low coherence with high

probability, [10]. A slightly modified coherence measure is

introduced in [12], which is used to find optimized sam-

pling matrices. We emphasize, that this concept is not ap-

plicable to our problem at hand, since our sampling space is

restricted to the pixel basis.

3. Sampling and Representing Disparity Maps

Let D ∈ R
h×w be a disparity map having n = hw en-

tries and assume that m ≪ n disparities are known. In con-

trast to methods that rely on particular camera set-ups, these

disparities can be computed by any method. The accuracy

of our recovery algorithm only depends on the sampling po-

sitions.

In general, disparity maps mainly consist of large ho-

mogenous regions of equal disparity with only a few dis-

continuities at the transitions between those regions. Re-

garding the wavelet transform, large homogenous regions

are represented by only a small number of wavelet coeffi-

cients, while the important coefficients cluster around dis-

continuities. For this, we can assume the wavelet transform

of disparity maps to be sparse, and use the wavelet domain

as the representation domain.

Let s ∈ R
n be the vectorized unknown disparity map D,

and let y ∈ R
m denote the disparity measurements. More-

over, let Ψ denote a Daubechies Wavelet basis, then s = Ψx

with x ∈ R
n is the sparse vector of wavelet coefficients.

To each measurement yi there corresponds a standard basis

vector ei ∈ R
n such that

yi = e⊤i s = e⊤i Ψx, (7)

where (·)⊤ denotes transpose. Generally, we denote by v(i)
the i-th entry of the vector v. Let p ∈ N

m be a vector con-

taining the indices of the measured disparities, the sampling

basis for our problem reads as

Φ = [ep(1), . . . , ep(m)]
⊤. (8)

Unfortunately, the mutual coherence between the canonical

basis and the wavelet basis is high. According to equation

(6), this requires a high number of random measurements.

However, by selecting particular sampling positions, we can

achieve accurate reconstruction results using only a small

number of measurements, even though the bases do not ful-

fill the low coherence requirement.

Motivated by the property of the wavelet transform that

the relevant coefficients coincide with discontinuities, the

particular sampling positions are precisely those disparities

lying at the discontinuities. As we do not know the po-

sitions of the discontinuities before knowing the disparity

map, we use the assumption that disparity discontinues co-

incide with image intensity edges. Therefore, we apply the

Figure 1: Sampling pattern covering 5% of the image.

Canny filter [6] to the reference image, and take the posi-

tions of the detected edges as the sampling positions. Note,

that also other edge detectors are thinkable. Furthermore,

to control the minimum sampling density, we divide the im-

age into non-overlapping tiles and select one sampling po-

sition inside each tile where no edge has been previously

detected, see Figure 1 for an exemplarily sampling pattern.

For these selected positions, we calculate the respective dis-

parities, which are the input to the reconstruction algorithm

described in the next section.

4. Reconstructing Dense Disparity Maps

Various generic solvers based on second-order methods

[15], and algorithms based on first-order methods [1, 21]

to tackle problem (4) have been proposed in the litera-

ture. Second-order methods are very accurate but require

too much computational resources to solve the problem at

hand. Due to its large scale, we suggest a first-order method,

which roughly follows the ideas in [19], but uses a new sub-

gradient method. In order to enhance legibility, we stick to

the matrix vector notation. However, regarding the imple-

mentation, we want to mention that it is not possible to sim-

ply use these matrix vector multiplications, due to the large

size of the involved matrices. Fortunately, all matrix op-

erations we are performing can be efficiently implemented

without explicitly creating the matrices by using image fil-

tering. A Matlab-code of the algorithm is available at the

author’s webpage1.

4.1. Prerequisites

The local variation of the disparity map D at entry (i, j)
is measured by

∇D(i, j) := [D(i, j)−D(i, j + 1),D(i, j)−D(i + 1, j)].
(9)

From this, we define the total variation (TV) norm of D as

‖D‖TV =

h−1
∑

i=1

w−1
∑

j=1

‖∇D(i, j)‖2. (10)

1http://www.gol.ei.tum.de/index.php?id=25



The TV-norm is commonly used by various image recon-

struction algorithms as a discontinuity preserving smooth-

ness prior, and we also employ it here. It is easily seen that

by means of two suitable matrices Gx,Gy ∈ R
n×n we have

‖s‖TV : = ‖D‖TV =
n
∑

j=1

√

(e⊤j Gxs)2 + (e⊤j Gys)2. (11)

Another extension to problem (4) is that we introduce

the square diagonal weighting matrix W ∈ R
n×n for the

wavelet coefficients. Recall, that wavelet coefficients can

be divided into approximation coefficients representing the

low frequency parts, and detail coefficients representing the

high frequency parts. Generally, the approximation coeffi-

cients are dense and the sparsity is present within the detail

coefficients. We explicitly enforce this, by setting all the di-

agonal entries of W , which coincide with detail coefficients

to one, and all the others to zero. This weighting scheme al-

lows to further reduce the number of measurements required

for wavelet based Compressive Sensing [27]. Additionally,

to increase the algorithm’s robustness we relax the data fi-

delity term for the constraints to account for noisy disparity

measurements. Putting all this together, we end up with the

optimization problem

minimize
x∈Rn

‖Wx‖1 + γ‖Ψx‖TV

subject to ‖Ax− y‖22 < ǫ. (12)

with A = ΦΨ. The parameter ǫ ≥ 0 can be interpreted as

a bound of the noise energy contained in the measurements

and γ ≥ 0 is a weighing parameter. In order to incorpo-

rate the constraints into the objective, we follow a common

approach and reformulate (12) in unconstrained Lagrangian

form

minimize
x∈Rn

1
2‖Ax− y‖22 + λ(‖Wx‖1 + γ‖Ψx‖TV).

(13)

The Lagrange multiplier λ weighs between the contribution

of the objective and the constraint.

4.2. Conjugate Subgradient

Minimizing the objective of (13) by a first-order method

requires to compute its gradient. A common procedure to

overcome its non-smoothness is to approximate the abso-

lute value with the smooth differentiable function |x| ≈√
x2 + ν, with ν > 0 being a smoothing factor, [19]. This

approach, however, biases the sparse solution, in particular

if ‖x‖1 is small. Therefore, we propose a conjugate sub-

gradient method that does not require an approximation of

‖Wx‖1 and consequently yields an unbiased solution. This

is in accordance to our experiments. Moreover, we observed

that the subgradient method requires less iterations. Hence,

it is computationally cheaper and more accurate compared

to using the smoothing term.

In contrast to smooth objectives where a unique gradi-

ent exists, the set of subgradients of (13) in general consists

of infinitely many elements. We follow the approach pro-

posed in [28] where it is shown that the optimal subgradient

for optimization purposes is the one with smallest Euclidian

norm.

As W is diagonal and consequently W⊤ = W , the sub-

differential of ‖Wx‖1 is the set ∂‖Wx‖1 ⊂ R
n with

∂‖Wx‖1(i) =
{

(Wx)(i)
|(Wx)(i)| if (Wx)(i) 6= 0

[−1, 1] otherwise.
(14)

An implementation of a subgradient for the prior

‖Ψx‖TV is computationally unfeasible due to the compu-

tation of the subgradient with smallest Euclidean norm.

Therefore, we use the Huber functional

hν(x) =

{ |x| − ν
2 if |x| ≥ ν

x2

2ν otherwise,
(15)

for a smooth approximation of the TV-norm

‖s‖TV ≈ ‖s‖ν,TV :=

n
∑

j=1

hν

(
√

(e⊤j Gxs)2 + (e⊤j Gys)2
)

.

(16)

Note, that smoothing the prior does not bias the sparse so-

lution in ‖Wx‖1. With the shorthand notation

r := Ψ⊤
n
∑

j=1

G⊤
x eje

⊤
j Gxs+ G⊤

y eje
⊤
j Gys

√

(e⊤j Gxs)2 + (e⊤j Gys)2
, (17)

the gradient of ‖Ψx‖ν,TV is given by ∇‖Ψx‖ν,TV with en-

tries

∇‖Ψx‖ν,TV(i) =

{

r(i), if |r(i)| ≥ ν
r(i)2/ν otherwise.

(18)

Therefore, the subdifferential of the modified objective

f(x) = 1
2‖Ax− y‖22 + λ(‖Wx‖1 + γ‖Ψx‖ν,TV) (19)

is the set

∂f(x) = A⊤(Ax− y) + λ (∂‖Wx‖1 + γ∇‖Ψx‖ν,TV) .
(20)

Let us denote

b = λ−1A⊤(Ax− y) + γ∇‖Ψx‖ν,TV. (21)

It is easily verified that the final subgradient with smallest

Euclidean norm is given by

g(x) = A⊤(Ax− y) + λ (∇‖Wx‖1 + γ∇‖Ψx‖ν,TV) ,
(22)



Tsukuba Venus Teddy Cones

HS 295 179 248 337

PR 705 500 639 874

FR 607 374 465 701

Table 1: Number of iterations until convergence for differ-

ent update formulas.

where

∇‖Wx‖1(i) :=
{

(Wx)(i)
|(Wx)(i)| if (Wx)(i) 6= 0

−sign(b(i))min{|b(i)|, 1} otherwise.

(23)

The descent method is initiated with x0 = A⊤y and

iteratively updates

xi+1 = xi + αihi. (24)

The scalar αi ≥ 0 is the line-search parameter or the step

length, and hi is the descent direction at the ith iteration.

Various line-search techniques for computing αi exist from

which we choose backtracking line-search [22] as it is con-

ceptually simple and computationally cheap. Regarding the

descent direction, we tested our method with several up-

date formulas for hi [22]. Our experiments showed that

Hestenes-Stiefel (HS), Polak-Ribière (PR), and Fletcher-

Reeves (FR, used in [19]) led to the best reconstruction re-

sults. In terms of the convergence speed, HS outperformed

all other techniques, see Table 1 for a comparison on our

test data. Moreover, we noticed that the rate of convergence

of the method with HS is nearly independent from the cho-

sen line-search parameters, whereas all other methods suf-

fer from requiring a cumbersome parameter tuning. These

observations led us to implement the HS descent direction

update

hi+1 = −gi+1 +
g⊤
i+1(gi+1 − gi)

h⊤
i (gi+1 − gi)

hi, (25)

where gi := g(xi) and initial value h0 = −g0.

Equations (24) and (25) are iterated either until conver-

gence is achieved, or a maximum number of iterations has

been reached. As a stopping criterion we choose the norm

of gi. Usually, conjugate gradient methods use a reset af-

ter n iterations, i.e. hi := −gi if i mod n = 0. Since

our algorithm converges in relatively few steps compared

to the dimension n, we do not stress the issue of resetting.

The output of this algorithm are the reconstructed wavelet

coefficients x from which we finally compute the dense dis-

parity map using equation (1).

5. Results

In this section we evaluate the accuracy of our recon-

struction algorithm on the standard Middlebury dataset

[25], which provides stereo images together with the respec-

tive ground truth disparity maps. As usual, the disparity is

given in units between 0 and 255. We measure the recon-

struction quality in two ways:

• the amount of defective pixels, i.e. the percentage of

pixels whose reconstructed value differs by more than

one from its true value

• the mean absolute disparity error over the entire dis-

parity map.

All experiments were performed with the same parame-

ter setting. We used Daubechies four tap wavelets (db2-

wavelets) due to their low computational cost and their qual-

itatively high results. In contrast, the usage of Haar wavelets

led to pronged edges in the reconstructed disparity map. We

chose the wavelet decomposition level one, since higher de-

composition levels did not improve the reconstruction qual-

ity. The scaling factors from equation (19) were experimen-

tally determined to λ = 0.01, γ = 10, and ν = 0.01.

We compare reconstruction by interpolation via Delau-

nay triangulation (RDT) with:

1. our Compressive Sensing based reconstruction algo-

rithm using Canny Edge (CSC) detector as explained

in Section 3

2. our Compressive Sensing based reconstruction algo-

rithm using random samplings (CSR).

For RDT we use the same sampling positions as for CSC.

The two quality criteria are plotted against the number of

measurements m in Figure 2. The results were gathered

from reconstructing the standard images Tsukuba, Venus,

Teddy, and Cones [25]. The plots in each row correspond to

the reconstruction of the respective disparity map shown in

the first column.

To show the effectiveness of our method, we first discuss

the reconstruction accuracy using ideal disparity measure-

ments extracted from the ground truth disparity maps, cf.

column (b) and (d) of Figure 2. It can be seen that all three

algorithms perform reasonably well if the number of mea-

surements is high, and that CSC always performs best. The

advantage of CSC over the other methods becomes signifi-

cantly high when few measurements are used.

There is another very important advantage of the CSC

method. While RDT leads to fringy reconstruction results in

the neighborhood of discontinuities, CSC does not yield this

highly unwanted effect and produces very accurate disparity

maps, in particular in the neighborhood of edges, cf. Figure

3.

To evaluate the influence of corrupted measurements on

the reconstruction results, we use the same sampling po-

sitions as for the ideal case and add uniformly distributed



noise drawn from the interval [−15, 15] to randomly cho-

sen 25% of the data. Columns (c) and (e) of Figure 2 il-

lustrate the performance of the tested methods. While CSC

and CSR are very robust to corrupted measurements, the

performance of RDT dramatically drops if corrupted mea-

surements are present. From column (c) it can be noticed

that the reconstruction error slightly increases once a cer-

tain number of measurements has been reached. The reason

for this is that the total number of corrupted measurements

increases, which consequently leads to a higher percentage

of badly reconstructed disparities.

Finally, we evaluate our method using real estimated dis-

parities. To compute the disparities, we used the adaptive

support window approach combined with a left right con-

sistency check [29]. The last column of Figure 3 shows

the reconstructed disparity maps with computed disparities.

Our results are compared with the dense approach from [29]

and RDT using the Middlebury criteria, cf. Table 2. The

results of our algorithm are comparable to the dense ref-

erence method, while RDT is significantly worse. Recall,

that we did not implement a specific sparse algorithm. By

improving the quality of the disparity measurements for ex-

ample by incorporating accurate feature matchers like SIFT,

the accuracy of the measurements will increase and conse-

quently, the reconstruction quality will also improve.

6. Conclusion and Outlook

In this paper we present an algorithm for dense dispar-

ity map reconstruction using sparse reliable disparity mea-

surements. Based on the theory of Compressive Sensing,

we perform the reconstruction by exploiting the sparsity of

disparity maps in the Wavelet domain and a particular sam-

pling strategy. To efficiently solve the arising large scale

optimization problem, we introduce a conjugate subgradi-

ent method. Our numerical results show that we achieve

accurate disparity map reconstruction by using only 5% of

the disparity information. Moreover, they illustrate the al-

gorithm’s robustness to corrupted measurements.

Yet, we have not optimized the computation time of

our algorithm. Our Matlab implementation reconstructs

a 640 × 480 disparity map in approximately one minute

on a standard desktop computer. As the computationally

most demanding part is the wavelet transform which has to

be performed at each iteration, a massive speedup can be

achieved when parallelizing the computations within each

iteration.

Subject matter of future research is to investigate if the

reconstruction can be improved by further incorporating

weights based on confidence measurements of the com-

puted disparities into the data fidelity term. Furthermore,

we currently develop a disparity estimator explicitly de-

signed for sparse estimation which also delivers confidence

measurements. As we do not pose any requirements on how

the disparities are computed, applications like single image

2D-3D conversion where disparity cues are sparsely spread

over an image could benefit from our approach.
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[29] 42.00 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.30 18.60 3.97 9.79 8.26

CSC 43.20 1.64 2.18 8.84 0.31 0.68 4.32 7.22 12.60 19.40 4.33 10.40 11.60

RDT 84.60 4.57 5.52 24.1 1.18 1.70 16.0 10.9 16.50 29.70 9.27 15.60 24.40

Table 2: Excerpt of the Middleburry evaluation table, comparing our algorithm (CSC) with [29] and RDT.
D

is
p

ar
it

y
E

rr
o

r
≥

1
(i

n
%

)

Measurements (in %)

CSC
CSR
RDT

M
ea

n
ab

so
lu

te
d

is
p

ar
it

y
er

ro
r

Measurements (in %)

CSC
CSR
RDT

D
is

p
ar

it
y

E
rr

o
r
≥

1
(i

n
%

)
Measurements (in %)

CSC
CSR
RDT

M
ea

n
ab

so
lu

te
d

is
p

ar
it

y
er

ro
r

Measurements (in %)

CSC
CSR
RDT

10 15 20 2510 15 20 25 10 15 20 2510 15 20 25

1

2

3

4

5

5

10

15

20

25

30

35

0.5

1

1.5

2

2.5

3

3.5

4

2

4

6

8

10

12

14

16

D
is

p
ar

it
y

E
rr

o
r
≥

1
(i

n
%

)

Measurements (in %)

CSC
CSR
RDT

M
ea

n
ab

so
lu

te
d

is
p

ar
it

y
er

ro
r

Measurements (in %)

CSC
CSR
RDT

D
is

p
ar

it
y

E
rr

o
r
≥

1
(i

n
%

)

Measurements (in %)

CSC
CSR
RDT

M
ea

n
ab

so
lu

te
d

is
p

ar
it

y
er

ro
r

Measurements (in %)

CSC
CSR
RDT

5 10 15 205 10 15 20 5 10 15 205 10 15 20

0.4

0.6

0.8

1

1.2

1.4

1.6

5

10

15

20

25

0.1

0.2

0.3

0.4

0.5

0.6

1

2

3

4

5

6

D
is

p
ar

it
y

E
rr

o
r
≥

1
(i

n
%

)

Measurements (in %)

CSC
CSR
RDT

M
ea

n
ab

so
lu

te
d

is
p

ar
it

y
er

ro
r

Measurements (in %)

CSC
CSR
RDT

D
is

p
ar

it
y

E
rr

o
r
≥

1
(i

n
%

)

Measurements (in %)

CSC
CSR
RDT

M
ea

n
ab

so
lu

te
d

is
p

ar
it

y
er

ro
r

Measurements (in %)

CSC
CSR
RDT

10 15 20 2510 15 20 25 10 15 20 2510 15 20 25

1

1.5

2

2.5

3

3.5

10

15

20

25

30

1

1.5

2

2.5

3

3.5

2

4

6

8

10

12

D
is

p
ar

it
y

E
rr

o
r
≥

1
(i

n
%

)

Measurements (in %)

CSC
CSR
RDT

M
ea

n
ab

so
lu

te
d

is
p

ar
it

y
er

ro
r

Measurements (in %)

CSC
CSR
RDT

D
is

p
ar

it
y

E
rr

o
r
≥

1
(i

n
%

)

Measurements (in %)

CSC
CSR
RDT

M
ea

n
ab

so
lu

te
d

is
p

ar
it

y
er

ro
r

Measurements (in %)

CSC
CSR
RDT

10 15 20 2510 15 20 25 10 15 20 2510 15 20 25

1

1.5

2

2.5

3

3.5

4

10

15

20

25

30

35

0.5

1

1.5

2

2.5

3

3.5

2

4

6

8

10

12

14

(a) Ground truth Maps (b) Ideal measurements (c) Corrupted measurements (d) Ideal measurements (e) Corrupted measurements

Figure 2: Comparison of reconstruction by interpolation via Delaunay triangulation (RDT) with our CS based reconstruction

algorithm using Canny Edge detector (CSC) and our CS based reconstruction algorithm using random sampling (CSR). In

column (a): ground truth images; (b) and (c): the percentage of pixels whose reconstructed value differs by more than one

from its true value, (b) with ground truth samplings and (c) from corrupted measurements; (d) and (e): the mean absolute

disparity error over the entire disparity map, (d) with ground truth samplings and (e) from corrupted measurements.
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