
Parallel-Plate Electrochemical Reactor (PPER)
• Laminar convection (channel flow) acts perpendicular to the electric field.
• Concentration boundary layers develop near the electrode surfaces (see Fig. 5).
• Hydrodynamical conditions influence the concentration boundary layer thickness

and thus the normal current density along the electrode (see Fig. 6).

Rotating Cylinder Electrode (RCE) 
• Configuration with cylindrically-shaped rotating cathode
• Typical electrochemical laboratory device
• Fig. 7 depicts numerical results for a setup specified in [6].

Electrodeposition
• Widely-used technique for plating electrically

conductive objects with metal layers
• Process takes place in electrolytic cells (see Fig. 1) 

or in so-called galvanic baths at industrial scale.
• Part to be plated is immersed into an electrolyte

solution and acts as cathode of the electric circuit.

Electroforming
• enables deposit thicknesses ranging from 

millimeters to centimeters (see Fig. 2)
• Application: efficient realization of complex-shaped

single-piece components, e.g., in aerospace
industry
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Multi-Ion Transport Electrode-Surface Kinetics

Simulation Results

Electrolyte flow
• Movement of electrolyte solution is modeled using

the incompressible Navier-Stokes equations.

Multi-ion transport
• Transport of ions in an electrolyte is governed by 

three mechanisms (see, e.g., [3]):            
convection, diffusion and migration

• Mass conservation for each ionic species
concentration ck (k=1,…,nsp ):

• Migration term is nonlinear, since the electric
potential is an additional unknown.

Electroneutrality condition
• Common macroscopic approximation considering 

electrolyte solution to be electrically neutral
• Algebraic constraint:

The metal-solution interface
• Normal current density at an electrode is directly

proportional to the rate of electrochemical reaction
(i.e., the rate of deposition in this context)

• Driving force for deposition reaction is the so-called 
overpotential (see Fig. 3).

Phenomenological boundary condition
• Butler-Volmer law for normal current density: 

• Contains nonlinear dependencies on overpotential
and on concentration of reactive ionic species

Discretization
• Discretization in time is performed, e.g., with generalized trapezoidal rule

or BDF2.

• Stabilized finite element methods are used to discretize the governing equations
of all physical fields (for stabilization of electrochemical equations, see [4]).

• A convergence analysis for a diffusion-migration problem in 3D using trilinear
shape functions shows second order accuracy in the L2-norm for all unknown
electrochemical quantities (see Fig. 4).

One-way coupling fluid - electrochemistry
• In each time step, do:

Step 1: Solve nonlinear fluid equations for the
current velocity and pressure field.

Step 2: Transfer new velocity field. 
Step 3: Solve nonlinear electrochemistry

model for unknown ion concentrations
and electric potential (Newton‘s method, monolithic approach).

• Linear subproblems to be solved
in step 3 possess non-symmetric
saddle-point matrix structure due to
the electroneutrality condition.
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Fig. 1: Sketch of an electrolytic cell 
(adapted from [1])
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Fig. 2: Electrodeposition of 
copper [2]

Fig. 3: Schematic distribution of electric potential in an electro-
lytic cell with overpotential at the electrode-solution 
interfaces. The applied cell voltage is                       .

Fig. 7: Rotating cylinder electrode. Experimental setup (a), three-dimensional computational domain 
(b) and simulation results (c). The latter shows electric field lines and normal current density 
distribution at the surface of the cathode.

Fig. 5: PPER showing electric field lines, 
parabolic velocity profile and concen-
tration variations near the electrodes.

Fig. 6: Normal current density along the cathode. 
Comparison between simulation and 
experiment for a PPER-setup given in [5]. 
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Fig. 4: Convergence analysis for a 
3D diffusion-migration 
problem. The initial field of 
the cation concentration is 
depicted in a). The error plot 
in b) clearly shows second 
order accuracy in space.

10
2

10
1

10
0

10
4

10
3

10
2

10
1

10
0

characteristic element length h

ab
so

lu
te

 e
rr

or
 in

 L
2

no
rm

cation concentration
anion concentration
electric potential
slope 2

a) b)

anode

cathode
Φ(0)

VA

η = VA − Φ(0) > 0

VC

η = VC − Φ(L) < 0

Φ(L)


