
Prediction of action outcomes using an object model
Federico Ruiz-Ugalde, Gordon Cheng, Michael Beetz

Intelligent Autonomous Systems and Institute for Cognitive Systems, Technische Universität München
ruizf@cs.tum.edu, gordon@tum.de, beetz@cs.tum.edu

Abstract— When a robot wants to manipulate an object, it
needs to know what action to execute to obtain the desired
result. In most of the cases, the actions that can be applied
to an object consist of exerting forces to it. If a robot is able
to predict what will happen to an object when some force is
applied to it, then it’s possible to build a controller that solves
the inverse problem of what force needs to be applied in order
to get a desired result. To accomplish this, the first task is to
build an object model and second to get the right parameters
for it. The goals of this paper are 1) to demonstrate the use of
an object model to predict outcomes of actions, and 2) to adapt
this model to an specific object instance for a specific robot.

I. INTRODUCTION

The simple task of pushing an object can produce a very
rich set of different types of outcomes. An object will topple
or slide or both, depending on object characteristics like
shape, weight, friction coefficient(with other objects) and
also on the forces exerted on the object. The object can
also move for longer distances if pushed too hard. We can
think of the object as a system that takes the forces exerted
to it and produces outcomes, i.e. a control system. In the
context of robot manipulation it is desired that a robot is
able to accomplish a certain manipulation task where objects
are involved, therefore the robot needs to be able to control
the outcome of actions applied to this objects. The intent of
our work is to build a control system that is able to control
outcomes by exerting appropriate forces to the object.

Like with any other control problem, we need to describe
the system to control, i.e. the object. We call this description,
the object model. With this model the robot can predict
what will be the outcomes of the actions applied to this
object. Apart from only predicting the outcomes of actions,
the object model determines how can the object be fully
used, but the actual usefulness of the object is limited by
the possible different ways the robot can act on the object,
this is the input domain of actions to this object. This input
domain will define a output domain of outcomes, i.e. what
could possibly do the robot with this object. If the robot is
aware of this input domain and can predict the corresponding
outcomes, then we can say that the robot is aware of the
affordances of this object [1].

The inputs exerted to the object will be in general forces.
In case of a humanoid robot this forces can be produced
using pushing actions with the fingers, hands or arms, or by
grasping the object and then using the arm to exert the forces.
This actions can be produce by different types of controllers
in the robot, but from the object’s perspective this actions
will always be just some forces. This means that for object
control, the arm or hand controllers are not relevant as long
as it’s able to execute the object control commanded action,
although the arm and hand controllers will be part of the
factors that will define the input domain of actions, which in
turn is important for defining the affordances of the object.

As an example, if we want the robot to apply a static rotation
to the object, it may probably need to grab the object first
and then rotate, but for pushing the object, it’s enough to
apply some force with only one finger.

Strong evidence suggests that language and actions are
connected together [2], we believe that one way to make
this connection is by mapping the input and output domain
regions with words and sentences. Sentences like “push the
ice tea box away without toppling it”, “open the ice tea cup”
or “pour the contents of the ice tea into the mug” can give
an idea of how powerful for a robot a language can be.
We refer to this as a language-action-outcome association
This richness on how actions and outcomes can be expressed
is reflected on the richness of an action-outcome language.
(Fig. 1)

Verb

Adverb

Direct Object

Rest of predicate

Object Model

Parameters

Desired final state

Constraints

Fig. 1. Language-action-outcome association

Taking the first example sentence above one can find a
mapping between the words and the object controller and it’s
parameters, e.g. the verb “push” would translate to an input
domain region that uses a push controller to exert force, “ice
tea box” determines the object model to use, “away” gives
the desired outcome of the object (the object final position
must change to “away”), “ without toppling it” gives an extra
constraint to the object controller (optimization principle)
and partially defines the final outcome. (Fig. 2)

Push

Strong

Ice Tea

not rotate

box model

center of mass,

friction coefficient,

weight

Force notably higher

than Friction

Point of contact low

Fig. 2. Language-action-outcome association example

It’s important to notice, that the sentences that involve ac-
tions manipulating objects, refer directly to the manipulated
object and they usually don’t need to mention what the arms
or hands must do in order to accomplish the action. This
reinforces the idea that language helps to specify the object
controller parameters .

Figure 3 shows how the object controller fits into the
complete action-outcome language system.

This paper concentrates on the object control problem.
Specifically, we setup a simplified object model for a box,
we show how the robot explores the object to determine the
parameters of this object model for a specific box instance

Reasoning

Planning

Action Language

Association Map

Perception

Commands

Constraints

Model

Selection

Parameters

Object-Model

System

command

Sensor

input

Motor

Controller

(Arm,

Hand)

Sensor

input

command

Motor

Space

Object

Space

Object

Object

physical

variable

Fig. 3. Complete system

and we demonstrate the use of this object model to predict
action outcomes. The model works in the 3D case, i.e. it can
predict outcomes from forces in 3D space. Also instead of
using vision as feedback, we are able to predict outcomes by
only using the torque and position sensors from the fingers
to feel movement of the object.

II. RELATED WORK

A lot of work has been done in the direction of ac-
quiring human motion capabilities. The use of learning
from demonstration for acquiring movement primitives has
been well know to provide good results in the context of
imitation, and has given extraordinary motion capabilities to
robots [3]. Advancements in robot technology like the DLR-
III lightweight arms and DLR-HIT hands [4], allow robots
to interact in more flexible ways with the environment. Since
object control is more centered on the object, the arm and
hands motion systems are not the main concern, but more
central is the object and how to interact with it. This is much
related to the concept of affordances [5] [1].

Affordances are action possibilities that are perceivable by
an actor. The idea is that given an object and an actor, the
affordances suggests how this object can be used by this
actor. In this direction work has been done in providing
robots with affordances. In [6], a robot observes movements
executed by himself of pushing/pulling and poking of an
object, then it associates this actions with the corresponding
outcomes, and finally is able to execute commands to achieve
a desired outcome. Vision is used to feedback the information
of the generated movement, a histogram based learning
algorithm is used to learn the model.

Also building on top of the affordances concept, is the
notion of OAC (object-action-complexes) [7]. OACs state,
that objects are constantly suggesting actions (to be realized
with them or upon them) which will ultimately transform the
object to a new state. It can also be interpreted as that the
action transforms the usefulness of the object. One of the first
examples of OAC applied to a robot is shown in [8], where
a robot learns a pushing rule, i.e. how an object reacts if
its pushed, and also learns the inverse pushing rule, i.e. how
to push an object in order to accomplish some goal. They
build the pushing rule with an artificial neural network. The

problem is solved for the planar case (3 DOF), and also uses
vision as the outcome feedback.

Our contributions are focused on using mechanical models
to build the object models. This models are extremely
compact and require determining very few model parameters.
Also the exploration process for finding this parameters
requires very few experiments, and the robot could even
be able to initially just guess a value for this parameters
or retrieve one from a knowledge database, and start right
away to play with the object, already by touching once the
object the robot could get an update to the value that is good
enough to start predicting outcomes correctly.

III. OBJECT MODEL

The object model describes how the object reacts to certain
physical inputs. The inputs to the object are any physical
quantities that could change the state of the object over
time. For example forces on the object can change position,
orientation, speed, acceleration and shape. The outputs of the
object refer to physical values or properties of the object,
like current position, speed, acceleration and temperature.
The model describes the internal workings of the object, i.e.
how inputs affects outputs. The model will be always an
approximation of the real object behavior, how complete is
this model depends on how good we are in measuring the
outputs and producing inputs with our robot, or if we see it
from another perspective, how much do our robot needs to
model the object to fulfill some desired manipulation goals.

Building the model.

There are three main options for making the object model:
1) learning, 2) system identification and 3) prior system
definition plus parameter identification. In 1) a robot explores
the object by exerting forces (inputs) to the object and
measures the corresponding changes in state (outputs), then
use an appropriate machine learning algorithm to learn the
model function. This is the approach used in [6][8]. In 2)
the object will be explored with different inputs, analyze the
outputs and based on this, generate a transfer function that
tries to imitate the registered behavior of the system as much
as possible (and as needed), using differential equations. And
3) makes use of known mechanical and physical equations
(equations of motion, rigid body, soft body) to model the
objects manually and then the robot can do a more narrow
search for the parameters of this models for each object
instance.

Advantage of 1) is that the robot could be able to learn
new models on the fly of novel objects, also the model
learnt is adjusted to the robot itself, i.e. the generated model
will never be more complicated than what can be described
with what the robot manipulators can sense or actuate, the
disadvantages are that the search space can be huge, which
in turn translates to slow learning. That is usually the reason
why is so difficult to scale this systems to 3D. In 2) the
disadvantages are that doing system identification in a multi-
variate system can be cumbersome specially when the system
has a lot of variables, also probably a lot of manual work

could be necessary to be done. In 3) the main disadvantage
is that the mathematical description of the object has to be
done manually, which can be time consuming and difficult
in some cases, on the other hand it is only done once for
a class of objects. The advantages are: That a well made
model can be general enough to apply to a large quantity of
types of objects and still be a very compact model with few
parameters. The exploration process is reduced to only search
the model parameters for the object instance, this exploration
could be in some cases automatically guided or encoded in
the model. The model can be easily associated with objects
in a knowledge database. Because of this advantages this is
the method we choose to build the object model. Because
this model requires that the robot explores the object to find
the parameters to the model, it allows the robot to best fit the
model and therefore the object to itself (to what he observes).
Our model is designed to simulate a box, with the most
popular instance: an ice tea box shown in Fig. 4.

For simplification, we make to following assumptions:
The box is always in contact with another object with some
associated friction coefficient (box-table) and with the robot
hand. The object is not deformable or if it is, the deformation
is negligible. We are constraining the robot to “pushing
actions”, but some other actions may be possible with the
current model. We suppose the object is not moving (static
case), we can predict if the box will slide or rotate and how
strong depending on the applied force, but this prediction is
only the instantaneous value, i.e. before any movement, this
is fine for slow movements where inertia doesn’t play such
an important role. The box model consists of three parts:
friction, contact and static equilibrium.

1) Friction: Between the object and the supporting ob-
ject(table) we apply the coulomb friction model (Eq. 1). The
relevant parameter for friction is static friction coefficient
between the object and the supporting object. Fig. 4 shows
the interacting forces during friction in the simplified 2d case
(the model executed on the robot works in 3D).

Ff ≤ µFn (1)

In the case of the box, Fn is the combined force (external
force plus weight) projected on the normal vector of the table
plane and µ is found out by robot exploration. Ff lies always
in the contact plane and with direction against the applied
force. Since we are dealing only with the static case our µ
is static (µs).

Fig. 4. Friction forces.

2) Contact: This models how the object could rotate with
an axis along the supporting object surface, if it rotates at all.
The important parameter here is the contact surface shape.

The axis where the object will rotate depends on the shape
of the supporting base of the object and on the applied
torques. What needs to be found is in which vertices of the
base of the object there can be a rotation which involves
no vertical movement. For each vertex of the supporting
base of the object a range of rotations that will produce
vertical translation is computed using the other vertices. If
a torque that is applied around the current vertex, produces
a counteracting force from another point (that is part of the
supporting base of the object), because this point is in contact
with the table, then is said that this torque will produce
a vertical movement on this vertex, and then we can add
this torque to the set of torques that produces rotation with
vertical movement. There is a continuous range of torques
because there is a continuous set of points along the object
that can cause counteracting forces. To find this continuous
range, the normalized torques produced by arbitrary forces
at every other vertex of the base of the object is calculated,
then the biggest angle smaller than 180◦ between all the
possible combinations of pair of angles gives the required
range. Then this range is calculated for every vertex of the
supporting base plane of the object and stored as part of
the object model. This algorithm is shown in pseudocode 1.
Chapter 27 of [9] contains more elaborate information on
contact forces.

t o r q u e r a n g e s = []
f o r p i v o t v e r t e x in b o x v e r t i c e s :

t o r q u e s = []
f o r v e r t e x != p i v o t v e r t e x in b o x v e r t i c e s :

t o r q u e = v e r t e x t o p i v o t v e r t e x t o r q u e (v e r t e x ,
p i v o t v e r t e x)

t o r q u e s . append (t o r q u e)
r a n g e = m a x a n g l e s m a l l e r t h a n 1 8 0 (t o r q u e s)
t o r q u e r a n g e s . append (r a n g e)

re turn (t o r q u e r a n g e s)

Pseudocode 1. Calculation of range of torques for each vertex of the base
of the box that produce rotations with vertical translation

3) Static equilibrium (Eq 2): This equation states that
all forces and torques should sum up to zero. It helps to
determine if the object will slide and/or rotate depending on
the applied forces, the friction model and the contact model.
Here the relevant parameter is the weight of the object.∑

F = 0∑
p× F = 0

(2)

Fig. 5 shows the interacting forces, contact points and
possible axis of rotation in the simplified 2d case, A and
B are the contact points with the supporting object and also
are the possible axis of rotation. Again the robot runs the 3d
case.

Prediction using the model.

Using equation 1 and the force balance part of equation 2,
the robot can determine if the box will slide or not. If the
combined force (external force and weight) projected on the

Fig. 5. Contact Model.

table plane, is bigger than the maximum friction force µFn,
then the object will slide. On the other hand, if this projected
force is smaller or equal than the maximum friction force,
then the object will not slide.

Apart from sliding, the object can also topple (or rotate
in the vertical plane). This rotation can be around an axis
defined by two of the four box base vertices, can be around
an axis defined by a single vertex from the base and the
produced total torque (external torque plus weight induced
torque) around this point or no rotation at all. For finding
this out, first the robot must compute the total applied
torque (using the torque part of equation 2) projected on the
table plane on each of the supporting vertices, then it must
compare this torques against the torque ranges calculated
using pseudo-code 1. If for one of the vertices, the applied
torque lies inside of the torque range of such vertex, then
this vertex will translate vertically. For the vertices where the
applied torque lies outside of the torque range, then a score is
given to this vertices. The score is high if the angular distance
from the applied torque to the torque range area is high, the
score will be lower as the distance turns smaller. The first
two vertices with the highest scores are the vertices where
rotation without vertical translation will occur. This means,
that this two vertices will define the axis on the table where
the object will rotate. If two of the three vertices have the
same score, then it means that the object will rotate around
the axis with the direction defined by the applied torque and
passing through the the vertex that has the highest score.
Rotation will not occur if the applied torque, lie inside of
the torque range for all the vertices.

IV. EXPLORING FOR THE PARAMETERS

In order to find the value of the parameters for the object
model, the robot must do some exploration with the object,
that is, the robot has to play with the object for a while.
The fastest way to determine this parameters, is to have a
formula that solves for this parameter directly taken from
the object model, and then give the necessary inputs to the
object and measure the corresponding outputs to calculate
the parameter using such formula. One important thing is,
that when we solve for this formula, we must try as much
as possible to not depend on other unknown parameters.
If we can solve the formula and still only depend on one
unknown variable, then the experiment will be a simplified
usage of the object which shows only a part if its behavior.

Unfortunately this is not possible in most of the cases, what
could be possible, is to perform first one experiment where
only one parameter will be determined, and afterwards other
experiments that depend in previews (but already discovered)
parameters except for one. What becomes important is to find
out the right order of experiments to find all the parameters
one by one. Another more sophisticated way of finding the
parameters is starting with a guess of all the parameters and
then depending on the prediction errors adjust this parameters
until all of them predict correctly the behavior of the object.
This has the advantage that one doesn’t have to compute
the closed form solution for the model and that it can find
the parameters even in situations where multiple parameters
are tightly coupled together and the experiments to find this
parameters will not provide each parameter alone. On another
hand some parameters can be measured by other means, e.g.
using vision to find out shape.

A. Box dimensions and contact points (base shape).

Instead of letting the robot explore the shape of the object
(which would be a more complicated precedure), the robot
takes the shape of the object from a CAD model that is
also used by the vision system [10] to detect the position
of the object. In this way the object model gets the base
shape parameters from the CAD model and the position and
orientation of this base shape from the vision system. The
center of mass is infered from the dimensions of the box
assuming that the box is resting in one of the sides of the
box.

B. Weight

Weight is necessary for the friction and force/torque bal-
ance part of the model. There are two ways to find the weight
of the object. 1) A practical approach is to grab the object
then lift it and then measure the force in the force sensing
robotic hand/arm. 2) Another way to find the weight is to
touch the object with the robot hand in a point that will
most likely tilt the box but not slide it and then measure the
necessary force to start tilting to box (detect the starting of
tilting with movement detection from the hand/arm and/or
with vision), then use the contact and force/torque model
to calculate the weight. Because there is water in the box,
the box must be lying in one of its sides to let us use a
simple calculation for the center of mass and there can’t be
any suddent movement which would cause force oscilations.
Method 2 is used because our robotic hand was not strong
enough to lift the ice tea box with 1 liter of water inside.
One of the fingers of our robot is used as the force sensing
device. Since the same force sensing device is used in all
the experiments involving force sensing, then we avoided the
problem of calibration between different sensing devices.

C. Friction coefficient.

From equation 1 one can easily solve for the friction
coefficient: µ = Ff/Fn. Once the weight is known we
can find out the static friction coefficient by applying an
increasing force until the object starts sliding, the force just

before this happens is the maximum static friction force. In
order to detect this precisely we can use the hand/arm to
measure when the object starts to move. It is important that
the object has low deformation to forces and that no tilting
occurs. To assure that the object will only slide and not rotate,
the robot pushes the object on a very low point of the object
height.

V. EXPERIMENTAL SETUP

Our experimental scenario is the assistive kitchen [11].
Our manipulation platform (Fig. 6) consists of a robot with
an omni-directional base, two 7 DOF Kuka-DLR light-
weight arms, two DLR-HIT-Schunk hands and two cameras.
The hands and arms are equipped with torque sensors in all
the actuated joints, and impedance control in joint space is
used along all the experiments. The hands have 4 fingers each
with 4 joints and 3 independent DOF and 3 torque sensors.

Fig. 6. Assistive kitchen robot

The Object.

We use an ice tea box that can hold up to 2 liters of liquid
but during the experiments it was half full. We have a 3D
CAD model of this ice tea box, but for the object model we
only take the 8 vertices that represent the main box of the
ice tea. This approximation will introduce some errors in our
results, but as we will show they are not big. See Fig. 4

Motor Control.

In our motor control system we use the fingers as the
torque sensing devices and the arms as the actuator devices.
To move the hand to a specific location before touching the
object, we use a point attractor system, where the arm is
pulled by a velocity vector that is calculated in each control
cycle. The hand is moved to a position before applying
force to the object. From this position we start moving the
arm using a force controlled system where a movement
vector, a force magnitude and a maximum speed is given
to the controller. The hand starts to accelerate in the given
movement vector direction until the force magnitude or the
maximum speed is reached.

Weight µs
Mean 0.9952 kg 0.3780
Std. Dev. 0.0375 kg1/2 0.0689
Std. Dev. % 3.7721% 18.219%
Min 0.9367 kg 0.3127
Max 1.0583 kg 0.5533

TABLE I
PARAMETERS TABLE

Experiments.

Determining the object model parameters: The robot
starts by pushing the ice tea box applying a force with the
moving direction normal to one of the lateral sides of the
box. This force is applied in a high position (1cm below
the height of the box) to assure that the ice tea will always
tilt. The robot starts moving until the finger touches the ice
tea, the robot detects this situation by calculating the speed
of its hand and comparing it with a low threshold speed.
Once the hand is not moving anymore, the robot proceeds
to inspect its speed again and constantly stores the observed
forces from the finger. Then the robot starts to gradually
increase the applied force. When the robot detects movement
again, meaning that the ice tea started to topple, then the
robot stores the last force value before moving and restarts
the experiment. This experiment is repeated ten times, and
the goal is to estimate the weight of the ice tea box by solving
Eq. 2 for the weight torque given the external torque. The
second experiment is exactly the same as the first one, only
that the force is applied in the lowest height possible to be
sure that the ice tea will only slide and not rotate. By solving
Eq. 1 for µ and using the resulting weight calculated from
the last experiment, the robot is able to estimate the static
friction coefficient. This experiment also runs 10 times.

Action outcomes: In order to demonstrate the object model
prediction, the robot starts to apply forces along one whole
lateral side surface of the ice tea. In every point where
force is applied, this force is started low, to be sure there
is no sliding or rotation and then this force is gradually
incremented until movement is detected by the robot. This
is the only moment where an external observer intervenes to
give feedback to the robot about the outcome. The robot can
detect automatically if the ice tea is not moving or moving
(using the hands/arms position sensors) but it can not tell if
the object is sliding or toppling (there is work in progress in
this direction to get this system integrated with vision using
the system described in [10]).

VI. RESULTS.

Table I shows the results for 10 repetitions of the experi-
ments for finding the parameters µs and the weight.

The ice tea was previously filled with approximately one
liter of water. The estimated value is also near to one liter of
water (1kg). The standard deviation is low, which indicates
that the procedure to find this parameter is very stable.
The same can not be said about the friction coefficient.
It shows a lot of variability. The reason for this may be,
because of not modeled complicated behavior of the friction

surface (deformation), also the surface of the table is not
completely regular and it may have regions with different
friction coefficients. Its important to notice that with our box
model the similarity of the estimated weight value compared
to the value measured with a calibrated scale is not of such
importance as the repeatability of the values measured. The
reason of this is that we want the robot to be able to predict
outcomes and is not our main concern to get exact physical
quantities. If all the model parameters and constants are given
under the same scaling factor (because they are measured by
the same sensors) then this model should be able to correctly
predict qualitative outcomes.

A comparison between the model predictions and actual
action execution is shown in Fig. 7. The Figures show in
colors the different outcomes when the box is pushed hard
enough to produce a movement. As the figures show the
object model is very good in predicting correct outcomes,
so it’s easy for the robot to determine which regions are
highly possible to get the desired outcome, but it’s not so
accurate about the minimum forces needed in order to slide
it. Most probably this is related to the fact that the static
friction coefficient showed great variability, posibly because
of not modeled complicated phenomena, but nevertheless this
prediction is still useful if the robot want to work away from
the threshold point between sliding and not sliding, which
for most of the applications it’s the case.

�0.03�0.02�0.01 0.00 0.01 0.02 0.03 0.04
Box base

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Bo
x

he
ig

ht

�0.03 �0.02 �0.01 0.00 0.01 0.02 0.03
Box base

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Bo
x

he
ig

ht

Box base

�0.02
�0.01

0.00
0.01

0.02
0.03

Box
 he

igh
t

0.04
0.06

0.08
0.10

0.12
0.14

0.16
0.18

Ex
te

rn
al

 fo
rc

e

1

2

3

4

Box base

�0.02
�0.01

0.00
0.01

0.02
0.03

Box
 he

igh
t

0.04
0.06

0.08
0.10

0.12
0.14

0.16
0.18

Ex
te

rn
al

 fo
rc

e

1

2

3

4

Fig. 7. Points of contact where the box slides or rotates if a force high
enough is applied. Right: prediction model, left: experimentation. In the
2D pictures, the circle area indicate the force magnitude, while in the 3D
pictures this force is indicated by the third coordinate. Red, green and blue
indicate slide, rotation and sliding/rotation respectivaly.

VII. DISCUSSION AND FUTURE WORK

We were able to demonstrate the use of an object model to
predict different types of outcomes when forces are exerted
to an object. Our setup takes forces in 3D and is able to

calculate outcomes without the continuous need of visual
feedback. Also the task of determining the parameters using
the robot itself proved to be very successful. It also showed
us that there are some parameters that are specially difficult
to estimate precisely, in our case the friction coefficient
showed to have a high variance between measurements,
indicating that possibly small variations in other physical
variables could be changing the behavior of the object during
parameter estimation, ultimately affecting the estimation
process. Nevertheless, the robot is able to predict outcomes
correctly under this circumstances, and it should be able
to give useful results even having a minimal quantity of
parameter estimation repetitions. While the object and the
task of pushing seem to be simple, it proved to be challenging
specially in the quality of the force signals from the robot and
also in dealing with situations that the object model didn’t
consider completely. Expanding the system to allow the robot
to interact with more objects, giving the robot the capability
to find out the parameters without a closed solution to them,
and then coupling this object manipulation capabilities with
an action-outcome language are our next research goals.

REFERENCES

[1] D. A. Norman, “Affordance, conventions, and design,” Interactions,
vol. 6, no. 3, pp. 38–43, 1999.

[2] R. J. Porter and J. F. Lubker, “Rapid reproduction of vowelvowel
sequences: evidence for a fast and direct acousticmotoric linkage in
speech,” Journal of Speech and Hearing Research, 1980.

[3] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in Pro-
ceedings of the International Conference on Robotics and Automation
(icra2009), 2009.

[4] H. Liu, P. Meusel, G. Hirzinger, M. Jin, Y. Liu, and Z. Xie, “The mod-
ular multisensory dlr-hit-hand: Hardware and software architecture,”
in IEEE Transactions on Mechatronics, 2008.

[5] J. J. Gibson, The Theory of Affordances. John Wiley & Sons, 1977.
[6] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, G. Sandini, and G. S,

“Learning about objects through action - initial steps towards artificial
cognition,” in In Proceedings of the 2003 IEEE International Confer-
ence on Robotics and Automation (ICRA, 2003, pp. 3140–3145.

[7] F. Wrgtter, A. Agostini, N. Krger, N. Shylo, and B. Porr, “Cognitive
agents - a procedural perspective relying on the predictability of object-
action-complexes (oacs),” Robotics and Autonomous Systems, vol. 57,
no. 4, pp. 420–432, 2009.

[8] D. Omrcen, C. Bge, T. Asfour, A. Ude, and R. Dillmann, “Autonomous
acquisition of pushing actions to support object grasping with a
humanoid robot,” in IEEE/RAS International Conference on Humanoid
Robots (Humanoids), 2009.

[9] B. Siciliano and O. Khatib, Eds., Springer Handbook of
Robotics. Berlin, Heidelberg: Springer, 2008. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30301-5

[10] U. Klank, D. Pangercic, R. B. Rusu, and M. Beetz, “Real-time cad
model matching for mobile manipulation and grasping,” in 9th IEEE-
RAS International Conference on Humanoid Robots, Paris, France,
December 7-10 2009.

[11] M. Beetz, F. Stulp, B. Radig, J. Bandouch, N. Blodow, M. Dolha,
A. Fedrizzi, D. Jain, U. Klank, I. Kresse, A. Maldonado, Z. Marton,
L. Mösenlechner, F. Ruiz, R. B. Rusu, and M. Tenorth, “The assistive
kitchen — a demonstration scenario for cognitive technical systems,”
in IEEE 17th International Symposium on Robot and Human Interac-
tive Communication (RO-MAN), Muenchen, Germany, 2008, invited
paper.

