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Abstract

Recently The ACD-ECOGARCH(1, 1) model was introduced in [7]. In their approach
they use an exponential autoregressive conditional duration model to describe the depend-
ence structure in durations of ultra-high-frequency financial data. The innovation process
of the ACD model then defines the interarrival times of a compound Poisson process.
This compound Poisson process is then the background driving Lévy process of an expo-
nential continuous time GARCH(1,1) process. The parameters of the latter process are
estimated by means of quasi maximum likelihood estimation. In this paper we analyse the
finite sample properties of this estimator. We conclude with an extended version of the
empirical application in [7].

1 Introduction

The fundamental characteristic of tick-by-tick, or also called ultra-high-frequency, data is the
irregular spacing of the observation times. This feature prevents the application of standard
discrete time econometric models to analyse such kind of data. The reason is of course that in
such models the durations between two observations are assumed to be constant. Thus new
econometric methods have to be developed for the analysis of ultra-high-frequency data. In
doing so one has to deal with several problems. One such problem is that the random dura-
tions seem not to be independent but show an autoregressive dependence structure given the
past observations. Therefore Engle and Russel [9] introduce the autoregressive conditional
duration model (ACD) to describe such a behaviour. Based on the ACD model there were
several extensions of the GARCH process developed to model irregularly sampled financial
time series. Here we have to mention the ACD-GARCH model of [11] and the work of [8].
Both approaches are summarised and compared in [20]. The authors also propose a further
specification of a GARCH model for irregularly spaced data, which incorporates the advant-
ages of the previous two models. Grammig and Wellner [13] extend the UHF-GARCH model
of [8] by modelling the interdependence of intraday volatility and trading intensity. All of
these models are based on the discrete time weak or strong GARCH process. A different
way to model tick-by-tick data is to assume the existence of an underlying continuous time
model. Such an approach was developed in [19]. They specify a discrete time approximation
of the continuous time GARCH(1,1) process (COGARCH) defined in [15], which is suitable
for irregularly spaced observation times. This idea can be extended to other continuous time
GARCH or stochastic volatility model as long as the approximation has a tractable form. We
refer to [17] and the references therein for an overview of continuous time approximations of
GARCH and stochastic volatility models.

Bollerslev et al. [4] report that a model, which is applied to high-frequency financial data, has
to be able to describe the so called leverage effect. A continuous time model with a tractable
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discretisation, which further incorporates a leverage effect, is the exponential COGARCH pro-
cess recently introduced by [14]. However the exponential COGARCH as well as the other
approaches based on continuous time models can not directly deal with a dependence struc-
ture in the durations between observations. Therefore Czado and Haug [7] combined the
ACD model and the exponential COGARCH(1, 1) process, abbreviated to ECOGARCH(1,1)
in the following, to address both problems, the dependence structure in the durations and
the leverage effect. They presented also a quasi maximum likelihood estimator (QMLE) for
the parameters of the ECOGARCH process. In this paper we will analyse the finite sample
properties of the proposed estimator.

The paper is now organised as follows. In Section 2 we recall ACD-ECOGARH(1,1)
model. The QMLE of [7] will be introduced in Section 3. The finite sample properties of
the QMLE are then analysed in Section 4 under different simulation scenarios. An illustrative
data example is presented in Section 5.

2 ACD-ECOGARCH(1,1) model

We assume to have ultra-high-frequency observations Pr,, ..., Pr, of an asset log-price at trans-
action times T;, i = 1,...,n. The observed durations AT; will be modelled by an exponential
ACD(p,q) model, p,q € NN, as introduced in [9], i.e.

AT; = Pidt;,

where ) ]
P = ]E(ATi‘ATi,l, e AT]) =w + ZIXJ'ATZ',]' + Z,B]l[)l,] .
=1 =1

We have to assume an exponential distribution for the innovations At; since they will be
the interarrival times of the driving compound Poisson process L of the ECOGARCH(1,1)
process, which is defined as follows:

Let L be the compound Poisson process (CPP)

where (J;);>0 is an independent Poisson process with intensity A > 0 and (Zy)en is an i.i.d.
sequence independent of J. The jump sizes Z; are assumed to have a symmetric distribu-
tion function Fy;,, with mean 0 and variance 1/A. Then the ECOGARCH(1,1) process G is
defined as the stochastic process satisfying,

t Ji
G :/ oo dlo=)Y 0y Z, t>0, Gy=0,
0 k=1
where (t)rew are the jump times of L. The log-volatility process (log(c?));>0 is an Ornstein-
Uhlenbeck process with state space representation
log(0?) = p + b1 X;
ot
Xp=eXo+ [ en=am,, t>0,
0

nd parameters y,a;1,b; € R. Here Xj € R is independent of the driving CPP L and

Ji
M; =Y [0Zk + v|Z]] — YAKtL,
k=1
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with K = [i; |x|Fy1/a(dx), is a zero mean CPP with parameters (6,7) € R* \ {0}.
The above assumption implies that the observations G;, of the ECOGARCH(1,1) process
are given by Gy, := Pr,, i=1,...,n.

3 Estimation in the ACD-ECOGARCH(1,1) model

To estimate the parameters in our model we will follow a two step estimation strategy. In a
first step the MLE 9 of the parameter 9% € RP*9+1 of the ACD(p, q) model will be computed
as described in [9]. In our example in Section 5 we consider the casesp =g =1and p = q = 2.
Given the observed durations AT;, i = 1,...,n, and the MLE 5?1 we can compute the fitted
innovations

—~ AT
Atl‘:%, izl,...,i’l,

Pi
where ¥; = @, + Zle &; AT; j+ 2?21 ,BA]-ntﬁ-_j. In the following we will denote them by At;
for ease of notation. Hence after the first estimation step the data is given by the pairs
{(GY,AL), i=1,...,n},
where
G =Gy, — G, , .

Since we assume to observe G at n consecutive jump times 0 =ty < t; < --- < t,, the state
process X of the log-volatility process has the following autoregressive representation

Jt; ;
blxt; = ble*ulAt,-Xt[_l + Z bleful(ti*tk) [sz + ’)”ZkH _ ,Y/\/ bleful(t,-fs)de
=i 41 o
b MAt AK —a1At;
= bie Xi , + b10Z; + byy |Zi’ — 61_1(1 —e ) . (3.1)

Here we used the fact J;, | +1 = J;, = i. This implies that the left-hand limit log(afi_) of the
log-volatility process at the jump times 0 =ty < t; < --- < t; is given by

AK

log(07_) = p+bre”"MiX; | — bry——
1

" (1 —e MBhY (3.2)
In [14], Proposition 3.1, it is shown that the leverage effect depends on the sign of 6b;. To
identify 6 as the leverage parameter we will set b; equal to one in the following. The observa-
tions of the ECOGARCH process are then

Ji
Gy, =Y 04,-Zk =Gy, +01,_Z;,
k=1

which implies that the return at time ¢; is equal to Gét" = 0,-Zj.

Given the data {(GtAi fi At;), i=1,...,n}, we know aim at estimating the remaining un-
known parameters 98 := (a1,0,, 4, A, K) = (9, A, K) in our model. But equation (3.2) contains
an identifiability problem. The constant term in (3.2) is given by u* := u — ’y%. In the quasi
maximum likelihood approach, which we will take, only the constant term p* is identifiable
and not y, K and A. Because of that we will estimate the rate A given only the jump times
t1,...,t, of the compound Poisson process. K will either be approximated by 12,1 = (%/A\n) -1/2

which is motivated by the fact that K = (%A)*l/ 2 in case Fo1/) is a normal distribution or
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K and 9 are estimated simultaneously. The consequences of both strategies concerning the
estimators of y and K are analysed in Section 4.3.

To derive a contrast function, which we can maximise with respect to the unknown para-
meters, we followed [8] by assuming the joint density of the data conditional on past inform-
ation is given by

At; A _ GOt d Ati ~A
p(/\,t?)(<Gt,- )Gy Aisr) = Pf;\, (G ‘Atu Gl 1 Bi- 1)p/\(Ati‘Gt[ ,Gilq,8i1)
where G{ = (GtAltl, ey GAkt") 1 <k < n and Ay is defined analogously.

Since the durations At; are the interarrival times of the compound Poisson process L, their

distribution is independent of the current and past returns. Hence we write the log-likelihood
in the following form

n

logp(A,ﬂ)(Gﬁ, Atn’XO Z (logp GAt ’Gl 1,Atz‘) +10gp/d\(Ati’Ati_1)> ,
i=1
where Gf = (Gﬁtl, e, GAt" ), 1 <k <mn,and Aty is defined analogously.

Because of the above mentloned reasons the rate A of the Poisson process | is estimated by
maximising only Y/ ; log o4 (At;|A;_1). In particular this means that we perform in the second
step of our estimation procedure again a two-step estimation. In the first step the rate A can
be estimated given only the interarrival times A; of the Poisson process J. The MLE of A is
given by

~ n

A«n c: — . . -
To estimate the remaining parameter 9 in the second step we replace A by /A\n in p‘? A

Since the conditional distribution of the returns is unknown we will follow a quasi maximum
likelihood approach in the second estimation step. Therefore we will use instead of

n

l0gp(3,9)(Galdi, Xo) = ) _logpls (GG 4, Ay, Xo)
i=1 !
the Gaussian quasi log-likelihood

n

GAt2
-y <log 07/ An) — ;2 ) ) (3.3)
t

=1 ///{1’[

0,0)(GnlAi, Xo) = ——10g (271)

NI)—‘

as contrast function.

Since the volatility is unobservable, (3.3) can not be evaluated numerically. Therefore we
need an approximation of the state process X, which together with (3.2) gives estimates of
(thl e, ‘thn _. Based on equation (3.1) and given 9 and A, estimates of the state process X are

computed by

At; ’GAti ’

X (9,A,) = e @iX, (9,4,)+0—1 4 -
¢ ( J’Z) t;—l( n) b\—ti— (,'9, /\7’1) ,)/b\’ti_(ﬁ, )\n)

(1— e mbhy, (3.4)

i=1,...,n, where K, := (%7\”)_1/2.
The recursion needs a starting value )?0. We set }/ZO equal to the mean value of the station-
ary distribution of X, which is zero.
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Recursion (3.4) together with expression (3.2) provides then estimates of the volatility given
by

. ~ YVIPS ~ AK At .
Utz[,(ﬂ,/\n) = exp <y+e MmALXL (9, An) — ’; “(1—e “1At')> , i=1,...,n.
1

Based on the approximation of the volatility we define the quasi log-likelihood function for 9
given the data (G4, A,) and the MLE A, by

L19G LA A = 1 (Géti)z 3.5
(9| n ——_Z og (a7 _ (0 ))+m : (3.5)

Maximising the quasi log-likelihood function (3.5) with respect to ¥ over the parameter
space © := R, x R? yields QML estimates

Y, = argmax%@L(ﬁ]Gﬁ,?\n) (3.6)

of 9. As a byproduct we get a parametric estimator of the volatility. If we first determine the
QMLE ¥, in (3.6) then we can substitute 9, into (3.4) and get estimates

~ o~

o A, ALY (8 _ AuK P
mz_(ﬁg) = exp (yn+e alnAthtifl(ﬁn,)\n)_% ﬁnl "(1—e ulnAtz)>

of the volatility at the jump times #4,...,t, based on 19§ = (a1n s Vs Wy An, K n)-
The performance of the estimator 19g in small samples is now analysed in the following
section. The limiting properties of 19g are not available up to now.

4 Simulation study

In [9] it was shown that the ACD model can be estimated with standard GARCH software
by taking the square root of the durations as dependent variable. Hence there are a number
of results concerning the finite sample properties of maximum likelihood type estimators in
ACD models, like e.g. [12] and [16]. On the other hand there are rather few results about
finite sample properties of maximum likelihood type estimators in EGARCH models. We
like to mention the recent investigation of [21] who compared the performance of maximum
likelihood and Whittle estimators in EGARCH models. Therefore we will concentrate in our
simulation study on the QMLE of the ECOGARCH parameters. In all of the following sim-
ulation cases we will consider a compound Poisson ECOGARCH(1,1) observed at all jump
times ¢;. In each simulation we condition on the observed number of jumps n. This of course
implies that the observation time interval [0, t,] will be different for each simulation. The
estimates will be computed for 1000 independent replications in each case. We compare the
estimation results for n = 500, 1500, 3000 and 5000 jumps.

In all of the following cases we have taken the parameter a; equal to 0.1, the intensity A
equal to 1 and the mean yu of the log-volatility process will be equal to —3. An intensity of 1
is chosen, since in our applications in Section 5 we will take as durations between the jump
times the fitted innovations of an exponential ACD(p, q) model.

The leverage parameter 6 and v will vary over the examples. In most of the cases 6 will
be —0.1 and <y will be equal to 0.4, i.e. we model the leverage effect as observed in stock
price data. If —y < 6 < 0, this corresponds to the case where a positive shock in the return
data increases the log-volatility process less than a negative one of the same magnitude. The



6 Czado and Haug

last example will illustrate the case where a positive shock in the log-price process increases
the log-volatility process more than a negative one of the same size and we denote it as non
leverage case. For a more detailed discussion of the leverage effect see also Section 3.1 in [14].
The innovations Z; will be t-distributed with v degrees of freedom. The influence of the
heavy-tailedness of the distribution of the innovations on the estimation results will also be
analysed. Therefore we will consider the three cases v = 6,v =9 and v = co.
Since we assume [E(Z;) = 0 and Var(Z;) = 1/A the innovations are defined as

v—2

Zi =
! VA

&,

where (&;)ic(i,. n ~ idd. ty.
We compute the empirical mean (mean), relative bias (1%?5), and root mean square error
(RMSE) for all parameter estimates based on 1000 independent replications.

4.1 Estimation results for different sample sizes

First we want to analyse the influence of an increasing sample size. Therefore we estimated
the parameters based on n = 500,1500,3000 and 5000 jumps. In each case the underlying t-
distribution of the innovations had 6 degrees of freedom. Boxplots of the parameter estimates

1,60y, 7n and j1;; are shown in Figure 1. The corresponding statistics are summarised in Table
2 in the Appendix.
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Figure 1: Boxplots of parameter estimates &gﬁ),aqk),’%(qk) and ﬁ;‘lw, k=1,...,1000, forv = 6

and sample sizes n = 500, 1500, 3000 and 5000.

The relative bias of @; and 8 decreases with an increasing sample size, whereas for the
remaining parameters the relative bias does not change over the different sample sizes. As
expected the RMSE of all estimates decreases with the increasing sample size, which can
also be seen in Figure 1. From the boxplot of ji;, we recognise that #* can indeed be estimated
without a systematic bias. This is not the case for y, which can be seen from the corresponding
statistics in Table 2.
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For the last example we take a sample size n of 3000 and chose the parameter 6 and -y such
that 0 < 0 < 7. In particular we set 6 = 0.1 and <y = 0.2. This means that a positive shock in
the return data increases the log-volatility process more than a negative one. The remaining
parameters are the same as before. We obtain similar results as in the leverage case. The
corresponding statistics are shown in the last four rows of Table 2.

The goodness of fit of our estimation method is further investigated by an analysis of
the fitted innovations for the case of n = 3000 jumps. The fitted innovations are given by
Zi = Gﬁ b /Gy,—, 1=1,...,n. Since our innovations are ¢-distributed with a standard deviation

of 1/+/A, we expect the empirical mean Z := 1y Z; of the fitted innovations to be close
~ — 12
to zero, the empirical standard deviation (% Yiqi(Zi— Z)2> close to 1/+/A = 1 and the

empirical skewness close to zero. For all three quantities we computed mean and RMSE over
all 1000 replications. The results are reported in Table 1 and indicate an adequate fit.

v==~6 mean(Z;) std(Z;) skewness(Z;)
mean 0.0002 0.9998 -0.0017
RMSE 0.0179 0.0091 0.2271

Table 1: Estimated mean and RMSE for the mean, standard deviation and skewness of the
fitted innovations based on 1000 replications.

Under the assumption of a correctly estimated volatility the fitted innovations are a white
noise series, in particular the innovations and also the squared innovations should be uncor-
related. The correlation of the squared innovations was checked by performing a Ljung-Box
test (cf. [18]). The test statistic is given by

N

n(n+2) ip

where p5, (k) is the empirical autocorrelation function of the the squared fitted innovations at
lag k for one replication, and asymptotically x2-distributed with m degrees of freedom under
the null hypothesis of no correlation. The number of lags m taken into account to compute
the statistic was set equal to /1 (cf. Section 9.4 in [5]). The null hypothesis of no correlation
was rejected 83 times out of 1000 simulations at the 0.05 level, which is higher than expected.
The empirical mean of the 1000 p-values was equal to 0.60, which shows that a majority of
the test statistics has a rather large p-value confirming the hypothesis of no correlation. In
the next section we will consider the case of normally distributed innovations. There the null
hypothesis was rejected 45 times out of 1000 simulations, which is in line with the 0.05 level
of test.

4.2 Estimation results for different jump distributions

In all the previous examples the degrees of freedom of the jump distribution were equal to
six. Now we want to analyse the influence of an increasing number of degrees of freedom.
We consider the three cases v = 6,v = 9 and v = co. The parameter ¥ is set equal to

(0.1,—0.1,0.4, —3) and we observe n = 1500 jumps. Boxplots of the estimated f’\,(qk), =
1,...,1000, can be seen in Figure 2. In contrast to the last section we plotted here a boxplot
of iy, since the relative bias of ji,, for an increasing number of degrees of freedom should be
analysed. As expected the relative bias as well as the RMSE of 9 decrease with increasing
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Figure 2: Boxplots of parameter estimates 5,(1](), k=1,...,n,forv=6,v=9and v = co.

degrees of freedom. The relative bias of i for example reduces to 0.0039 in the normal case
compared to a value of —0.0616 in the case of six degrees of freedom. This effect is also
expected since for the normal case there is no bias introduced in the estimation of K through
( %”/{n )—1/2‘

4.3 Joint QMLE of all parameters

In this simulation example the parameter K is estimated along with ¥ by means of quasi
maximum likelihood estimation. The parameter ¥ is the same as in the first example in
Section 4.1. The estimation is based on n = 1500 jumps and the jump distribution has six
degrees of freedom. Therefore the parameter K is equal to 0.75. The estimation results are
compared with those from Section 4.1. Therefore we plotted in Figure 3 boxplots of 3,(1](),
k=1,...,1000,

for both cases. In the bottom row of Figure 3 one can also see the boxplot of I?Slk) along
with the boxplot of our previous estimate (%/A\n)*l/ 2. When we estimate 9 and K by QML we
observe a slight increase in the relative bias and RMSE of 9. For i,, the two statistics take on
values of 0.1004 and 0.6349. The corresponding values for K, are —0.0999 and 0.1475. On the
right hand side of the bottom row boxplots of the estimators y* of y* = p — —K are shown
for both estimation strategies. In this example p* is equal to —6. One can observe that the
constant term p* in equation (3.2) can be estimated without bias in each case. Identification
of 1 and K in u* nevertheless is not possible. Therefore we will set in the following K, again

equal to (%Xn)*l/z.

4.4 Empirical characteristics

Finally some empirical characteristics of the volatility process will be presented. In particular

we computed for each set of parameters the empirical mean ¢2, variance s*(¢?) and 99%
quantile of the volatility process. Further we estimated the correlation Corr(AG;,, ‘th,-) , which
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Figure 3: Boxplots of parameter estimates 1/9\,(71() and 12,(]‘), k=1,...,1000, for both estimation

strategies for K.

should be negative in the leverage case (see also Section 3.1 in [14] for details). This is done
for v = 6 and v = oo degrees of freedom of the jump distribution. The results are shown in
Table 3.

The estimated correlation is negative in all of the leverage cases and positive for the non-
leverage case (6 = 0.1,y = 0.2). We further observe a slightly increased variance and greater
quantiles in case of v = 6, which seems reasonable.

5 An illustrative example

As an illustration of the potential usefulness of the ACD-ECOGARCH model we present an
extended version of the data example in [7]. The model will be applied to General Motors
tick-by-tick data, which was extracted from the Trade and Quote database released by the
NYSE. The time period under consideration spans four weeks starting form 6th of May 2002
until the 31st of May. Due to the Memorial Day there was no trading on the 27th of May at
the NYSE. Only transaction between 9:30am and 4:00pm are considered. If equal transaction
times T; occurred, the corresponding trades are combined to a single trade at an average price.
We omitted consecutive zero returns if they occurred at the beginning or end of the trading
day. On average we have about 1960 observations per day.

The data will be analysed on a daily basis to get insight about varying parameter values
over the observation period. Since durations in ultra-high-frequency data are characterised
by an intraday seasonality, as e.g. reported in [3], [9] or [22], we diurnally adjusted them
at first. For that purpose we fitted a cubic smoothing spline to the durations of each day of
the week. The diurnally adjusted durations are then computed by dividing each durations
with the corresponding smoothing spline value. If we would aim at estimating one model for
the whole data set, then the overnight durations have to be adjusted as e.g. explained in [2].
Typically the volatility also shows a deterministic time-of-day effect, see e.g. [8]. We therefore
computed diurnally adjusted returns by dividing each returns with the corresponding value
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of a cubic smoothing spline fitted to the absolute returns. The resulting smoothing splines
are shown in Figure 4. The volatility smoothing splines for Wednesday and Thursday show

45
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(51 o (4]
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. . . . 0.4 . . . .
0 0.5 1 1.5 2 2.5 0o 500 1000 1500 2000 2500

time (in seconds after 9:30am) x 10 adjusted time (in seconds)

Figure 4: Cubic smoothing splines of durations (left) and absolute returns (right).

a rather atypical behaviour of slightly increasing during the first half of the trading day and
decreasing afterwards. The shapes of the remaining splines are conform with results reported
in the literature. Further we have to take into account a market microstructure noise on this
fine level. To address this problem we will follow [8], by considering mid quotes, which are
the average of the last bid and ask quote just before the trade, as our price data. In particular
this means, if we have observation points Tj, ..., T;, then the log-price Pr, is given by

1 ,
Pr, = 3 (log(br,—) +log(ar,—)) , i=1,...,n,

where br,_ (a7,—) denotes the last bid (ask) quote just before or at time T;.

However one has to be aware that this choice of price measure reduces the econometric
issues of bid ask bounce and price discreteness but it does not eliminate these problems as
mentioned by [8]. More sophisticated models or approaches in dealing with market micro-
structure noise can be found e.g. in [1] or [10] and references therein.

Autocorrelation in the diurnally adjusted durations was tested through a Ljung-Box test
with 15 degrees of freedom. The hypothesis of no correlation is rejected for all 19 days.
An ACD model was estimated for each day. We just considered the cases p,q € {1,2} and
chose p and g such that the test statistic of the Ljung-Box test with 15 degrees of freedom

applied to the fitted innovations Zti = % , i =1,...,n, was minimal. The hypothesis of

no correlation in the fitted innovations could not be rejected at the 0.05 significance level on
each of the 19 days. Except for two days, where we fitted an ACD(1,1) model, an ACD(2,2)
model was utilised. The sums over the estimated coefficients vary mainly between 0.6 and
0.9, but significantly smaller values such as 0.18 are also obtained for two of the days. The
full set of estimated parameters is given in Table 4. Given the fitted innovations we define
through to = 0,t; = t;_1 + Eti ,1=1,...,n, the observations of the ECOGARCH process as
Gt,- :PTi, i = 1,...,1’1.

The parameter 98 of the ECOGARCH(1,1) process is then estimated as explained in Sec-
tion 3. The estimated parameter values suggest that we have a leverage effect, which is the
case if B, < 0, on 9 of the 19 days. On these days we observe different types of leverage effects.

All calculations are done using MATLAB 7.6
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We have the case that a positive jump to the log-price increases the log-volatility less than a
negative one (—7, < 0, < 0), the case that a negative jump in the price process decreases the
log-volatility less than a positive one (7, < 6, < 0) and also the case that a negative jump in
the log-price processes increases while a positive one decreases the log-volatility O < —|7ul)-
From equation (3.2) we see that mostly long durations will decrease the volatility as long as
Y is positive, which is the case for 17 of the 19 days. The parameter a; reflects strong depend-
ence in the log-volatility process for most of the days by taking on values between 0.0074 and
0.1577. However we also have two days with almost no correlation since 47 ,, is equal to 3.9915
and 4.9336 on those days. The estimated parameters (é\ln,gn,'/y\n) along with bootstrapped
standard errors on days with strong persistence in the log-volatility are shown in Figure 5.
Due to the assumptions in the exponential ACD model the jump rate A should be one, which
is confirmed by estimates /A\n being close to one. Estimated parameter values for p can be
found in Table 5 along with the other estimated parameters.
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Figure 5: Estimated parameters (a1,,6,, 7,) together with bootstrapped standard errors on
those days with strong persistence in the log-volatility.

Given the parameter estimate f@ﬁ we are able to estimate the volatility, which allows us to
compute the fitted innovations Z; = Géti /0t—. Due to our assumptions there should be no
correlation in the squared fitted innovations. Therefore we performed a Ljung-Box test for the
squared fitted innovations 212 on each day. The hypothesis of no correlation is rejected at the
0.05 significance level only on May 15th. Over the remaining days the average p value is equal
to 0.76. The degrees of freedom df were chosen such that df ~ \/n.

Mentionable is now that we obtained a suitable fit for most of the days although there is no
direct dependence between the volatility and the observed durations in our model. The log-
volatility process (3.1) depends only on the i.i.d. sequence of innovations (At;);—1 . , and not
on the observed or conditions durations. Therefore the dependence structure in the durations
does not influence the volatility process, which is in contrast to the results in [8], [11] and [20].
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~ ~

@ 0 5 i A
9, A 0.1000 -0.1000 0.3000 -3.0000 1.0000
n=500
mean 0.1121 -0.1084 0.3998 -2.83791; 3 1.0007
median 0.1060 -0.1070 0.3973 -2.8377i; 1 1.0009
rbias 0.1207 0.0837 -0.0004 -0.0540 0.0007
RMSE 0.0462 0.0691 0.0775 0.3621 0.0463
n = 1500
mean 0.1037 -0.1011 0.4012 -2.8151 1.0006
median 0.1021 -0.0997 0.3988 -2.8231 1.0003
rbias -0.0369 0.0109 0.0029 -0.0616 0.0006
RMSE 0.0215 0.0368 0.0469 0.2668 0.0263
n=3000
mean 0.1008 -0.0999 0.3992 -2.8144 1.0001
median 0.1001 -0.0989 0.3984 -2.8220 1.0002
rbias 0.0077 -0.0010 -0.0020 -0.0619 0.0001
RMSE 0.0148 0.0278 0.0339 0.2313 0.0185
n=5000
mean 0.1006 -0.0995 0.3996 -2.8125 0.9997
median 0.1001 -0.0992 0.3986 -2.8138 0.9995
rbias 0.0059 -0.0047 -0.0011 -0.0625 -0.0003
RMSE 0.0115 0.0200 0.0255 0.2141 0.0144
9, A 0.1000 0.1000 0.2000 -3.0000 1.0000
n=3000
mean 0.1030 0.1017 0.2000 -2.9063 1.0006
median 0.1005 0.1008 0.2004 -2.9068 1.0006
rbias 0.0302 0.0167 0.0001 -0.0312 0.0006
RMSE 0.0221 0.0245 0.0280 0.1273 0.0176

Table 2: Estimated mean, median, relative bias and RMSE for 9 and A based on 1000 replica-
tions, where the jump distribution has 6 degrees of freedom.
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v==6 0,y o2 s2(0?) 70.99 @(AGt,.,afi)
-0.10, 0.2 0.0636 0.0163 0.2193 -0.1485
-0.18, 0.2 0.0681 0.0044 0.3005 -0.2120
-0.30, 0.2 0.0831 0.1933 0.5338 -0.2615
-0.10, 0.4 0.1022 0.0594 0.7977 -0.0937
-0.18, 0.4 0.1109 0.0849 0.9216 -0.1569
-0.30, 0.4 0.1442 0.9888 1.5152 -0.2151
0.10, 0.2 0.0632 0.0017 0.2157 0.1476

V=00 0, o2 s2(0?) 70.99 @(AGt,.,afi)
-0.10, 0.2 0.0633 0.0015 0.2084 -0.1441
-0.18, 0.2 0.0680 0.0031 0.2822 -0.2085
-0.30, 0.2 0.0815 0.0116 0.4952 -0.2597
-0.10, 0.4 0.0999 0.0244 0.7055 -0.0902
-0.18, 0.4 0.1083 0.0433 0.8415 -0.1459
-0.30, 0.4 0.1368 0.2569 1.3444 -0.2073
0.10, 0.2 0.0633 0.0015 0.2076 0.1449

Table 3: Empirical mean, variance and 99% quantile of the volatility process with parameters
ap = 01,4 = =3 and A = 2. The empirical correlation between the current jump in the
log-price process and future volatility is given in the last column.

Date w (3] (%) ,/3\1 ,/3\2
06.05.02 0.1283 -0.0017 0.0210 1.5040 -0.8127
07.05.02 0.1440 0.0911 0.0407 -0.0170 0.5835
08.05.02 0.0529 0.1306 0.7378

09.05.02 0.4184 0.1317 0.1107 -0.4870 0.3426
10.05.02 0.0505 0.0692 0.0241 0.1434 0.6404
13.05.02 0.3247 0.0514 0.0490 0.5774 -0.4942
14.05.02 0.1321 0.0892 0.1038 -0.1713 0.6794
15.05.02 0.0405 0.0524 0.0931 -0.0119 0.7729
16.05.02 0.1131 0.0905 0.1082 -0.1923 0.7434
17.05.02 0.0716 0.0494 0.0239 0.9628 -0.197
20.05.02 0.0905 0.0345 0.0420 0.6706 0.0728
21.05.02 0.0888 0.0462 0.0893 -0.0273 0.7013
22.05.02 0.0694 0.0920 0.0105 0.5491 0.2100
23.05.02 0.1768 0.0724 0.0616 -0.2586 0.7525
24.05.02 0.1434 0.0725 0.0965 -0.0582 0.6242
28.05.02 0.1191 0.0076 0.0987 0.5600 0.0713
29.05.02 0.1362 0.0889 0.1451 0.1449 0.3085
30.05.02 0.1777 0.1006 0.1149 -0.2278 0.5433
31.05.02 0.0964 0.0590 0.7065

Table 4: Estimated parameters of the ACD model for the GM data over the time span 06.05.02-

31.05.02.
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Date

@

~

6

~

Y

~

H

o~

A

06.05.02
07.05.02
08.05.02
09.05.02
10.05.02
13.05.02
14.05.02
15.05.02
16.05.02
17.05.02
20.05.02
21.05.02
22.05.02
23.05.02
24.05.02
28.05.02
29.05.02
30.05.02
31.05.02

0.0971 (0.0527)
0.0139 (0.0807)
0.0377 (0.0507)
0.0520 (0.0381)
0.1024 (0.0633)
3.9915 (1.8212)
0.0868 (0.0575)
0.0549 (0.0445)
0.0715 (0.0562)
0.2818 (0.0724)
0.1204 (0.0648)
0.0098 (0.0483)
0.0074 (0.0770)
0.1024 (0.0566)
4.9336 (2.1456)
0.0738 (0.0593)
0.1559 (0.0778)
0.1577 (0.0757)
0.1167 (0.0705)

-0.1525 (0.0607)
-0.0152 (0.0369)
0.0338 (0.0466)
-0.0297 (0.0343)
-0.0516 (0.0496)
-0.8347 (0.5182)
-0.0633 (0.0581)
0.0233 (0.0428)
0.0157 (0.0604)
-0.0809 (0.0776)
0.0261 (0.0570)
-0.0426 (0.0236)
0.0022 (0.0404)
0.0231 (0.0572)
0.8747 (0.4857)
0.0480 (0.0498)
-0.0401 (0.0663)
0.0116 (0.0861)
0.0194 (0.0590)

0.1041 (0.0553)
0.0156 (0.0359)
0.0766 (0.0467)
0.1142 (0.0379)
0.1151 (0.0565)
-0.9002 (0.6043)
0.1327 (0.0640)
0.1225 (0.0464)
0.1442 (0.0678)
0.1951 (0.0739)
0.1633 (0.0619)
0.0078 (0.0247)
0.0316 (0.0383)
0.2031 (0.0621)
-0.5814 (0.4403)
0.1078 (0.0516)
0.0957 (0.0672)
0.1909 (0.0895)
0.1014 (0.0584)

1.8894 (0.2358)
2.0372 (0.3730)
2.6524 (0.4785)
2.1216 (0.2727)
1.9692 (0.2500)
1.1546 (0.1016)
0.8511 (0.3453)
1.9026 (0.4311)
2.0433 (0.4352)
1.9266 (0.2432)
2.0354 (0.2546)
1.5622 (0.3508)
2.4512 (0.6781)
2.2063 (0.2914)
1.4882 (0.1053)
2.2197 (0.2848)
1.5319 (0.2994)
2.0133 (0.3712)
1.5649 (0.2560)

1.0002
0.9963
1.0000
0.9988
1.0018
1.0002
0.9996
0.9753
1.0011
0.9976
0.9918
1.001
0.9984
1.0005
0.9959
0.9984
0.9999
0.9999
0.9996

Table 5: Estimated parameters of the ECOGARCH(1, 1) process for the GM data over the time
span 06.05.02-31.05.02 with bootstrapped standard errors in parenthesis.
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