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Abstract—In signal processing, system theory, an in informa-
tion theory signals are either complex valued waveforms or se-
quences of dimensionless complex numbers. The »power« of such
signals is usually said to be the squared magnitude of these com-
plex numbers. In an electrical circuit, power is always the product
of voltage and current, both present at a port, i.e., at a pair of
terminals. Here we ask the question: what is the relation between
signal power and physical power? There are special cases, where
the two notions of power are strictly proportional and, therefore,
no con�ict occurs. But in general, especially when we deal with
vector signals, the commonly used squared Euclidean norm of
the signal vector may not be a measure for the physical power
associated with the voltages and currents, which correspond to the
signal vector. In addition to the physically consistent computation
of signal power, physically consistent modeling of the noise is
crucial in all information processing systems. Again circuit the-
ory provides with a methodology to model how the noise comes
into the system. Modeling is one the most important tasks in
engineering and, therefore, physically consistent modeling is very
important for the education of electrical engineers. Circuit Theory
is the essential framework to ensure physical consistency across
several levels of abstraction.

I. Scalar Signals and One-ports

Scalar signals in information processing and communication
systems are usually either complex valued continuous func-
tions of time, x(t) ∈ CC, or sequences x[k] ∈ CC of complex
numbers. The instantaneous power is in most textbooks (e.g.,
[1]–[3]) de�ned as:

P(t) = ∣x(t)∣2 , P[k] = ∣x[k]∣2 . (1)

In case that x is a random variable, it is customary to ap-
ply the expectation operation to arrive at the average power
Pav = E[P[k]]. The physical power, which �ows into a one-
port is given by:

Pphy(t) = u(t) ⋅ i(t) = u2(t)/R = i2(t) ⋅ R, (2)

where we have assumed that the port is terminated by a pas-
sive linear resistor R > 0. In this speci�c case, the signal power
(1) is strictly proportional to the physical power (2) provided
that the assignment of signals to physical quantities is made
in one of the following ways:

x(t) ∼ u(t)
x(t) ∼ i(t)
x(t) ∼ (αu(t)+ βi(t))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⇒ P(t) ∼ Pphy(t). (3)

Therefore, the question »what does the signal x(t) mean phys-
ically?« is of secondary interest in this case. The standard text-
book de�nition of signal power and signal energy can be ap-
plied and there is no con�ict. The above reasoning is based on

instantaneous values. We could have used equally well com-
plex phasors, if the signals are mono-frequent, or at least nar-
row in their relative bandwidth. Note that for physical power
we always have �rst to deal with continuous-time voltages and
currents, before transforming them to discrete-time sequences
consistently.

II. Vector Signals and Multi-Ports

Let us consider a complex valued vector signal x(t) ∈ CCn, or
x[k] ∈ CCn, the instantaneous power of which is usually de�ned
as:

P(t) = ∣∣x(t)∣∣22 , P[k] = ∣∣x[k]∣∣22 . (4)

The physical power which �ows into a multi-port is equal to
the sum of the powers �owing through the ports and can be
computed as the dot-product of the vector containing the port
voltages and the vector containing the port currents:

Pphy(t) = uT(t)i(t) = iT(t)u(t). (5)

Let us show with a simple example with only two ports, that it
is not possible to have a simple assignment of signals to phys-
ical quantities, as was possible in the scalar case. The physical
power which �ows into the two-port in Figure 1, of course, de-
pends on the properties of the two-port, which are re�ected by
any of the existing two-port matrices. Either by inspection or
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Figure 1: Resistive, passive (R > 0) two-port.

formally with the aid of the impedance matrix of this twoport:

Z = R [ 2 1
1 2

] ,
we obtain for the physical power:

Pphy(t) = uT
i = i

T
Zi = u

T
Z
−1
u

= 2R (i21 + i22 + i1 i2) = 2⁄3 (u2
1 + u

2
2 − u1u2) /R. (6)

Clearly, even in this simple case, the signal power (4) is not
proportional to the physical power (6), no matter which of
the following assignments for the vector signal x(t) and the
physical quantities u(t) or i(t) we choose:

x(t) ∼ u(t)
x(t) ∼ i(t)
x(t) ∼ (αu(t)+ βi(t))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⇒ P(t) ≁ Pphy(t). (7)
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Thus, in the vector case, the question »what does the signal
x(t) mean physically?« is of essential importance, because the
physical power is a quadratic form and not simply a squared
norm. Only if the impedance matrix is a scaled identity, i.e., if
the multiport is not really a multiport but rather an assembly
of identical but decoupled one-ports, then the quadratic form
(6) reduces to a scaled squared norm of either the current or
the voltage vector. Again, the above reasoning, based on in-
stantaneous values, can easily be extended to average power by
taking expectations and to narrow-band situations by working
with complex phasors.

III. How does the Noise Come into the System?

Since in almost all systems signal-to-noise-ratio (snr) is of
paramount importance, it is not only signal power which we
have to model consistently. How does the noise come into the
system has to be addressed with equal rigor. In most textbooks
on communication systems we will �nd a block diagram as
given in Figure 2.
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Figure 2: An additive white Gaußian noise channel with input
signal x, output signal y, channel coe�cient h, and additive,
zero-mean, white Gaußian noise ϑ with variance σ 2ϑ .

The snr at the output is given by:

snr =
E[∣y∣2 ∣ ϑ = 0]
E[∣y∣2 ∣ x = 0] = E[∣x∣

2] ⋅ ∣h∣
2

σ 2
ϑ

. (8)

If the magnitude of the channel coe�cient h is reduced by a
factor of 2, we would expect a reduction of snr by a factor
of 4, as predicted by (8). But that would only be true, if σ 2ϑ is
independent of h. It turns out, however, that consistent mod-
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Figure 3: The channel, an ideal transformer, that is driven by
a voltage source uG with source impedance R, and terminated
with a load impedance R, both impedances subject to thermal
noise represented by the two current sources with zero mean
and variance of 4kTB/R, and uncorrelated with each other.

eling of a physical system may enforce certain dependencies
between h and σ 2ϑ . Let us investigate this with a simple exam-
ple system shown in Figure 3. Basic circuit analysis reveals:

uL = uG
ü

1 + ü2
+ Rü

iN,1 + üiN,2

1 + ü2
. (9)

By assigning x = uG, and y = uL, we have established the cor-
respondence between the abstract model from Figure 2, and

the circuit from Figure 3, which leads to the implications:

h =
ü

1 + ü2
≤
1

2
, σ 2ϑ = σ

2
0 (1 −

√
1 − 4h2 ) , (10)

where σ 20 = 2kBTR, and 0 < ü ≤ 1. These equations show that
the channel coe�cient h and the noise variance σ 2ϑ are not
independent, and therefore, our conjecture, that the snr will
go down by a factor of 4 when the channel coe�cient h is
reduced by a factor of 2, is completely wrong. The snr as
a function of h is depicted in Figure 4 where we observe a
monotonic increase of snr as h is reduced from its maximum
value of 0.5 down to smaller values. The noise comes into the
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Figure 4: The snr of the awgn-channel from Figure 2 of the
communication system from Figure 3, as function of h.

system through noise sources associated with noisy circuit ele-
ments and possibly external sources of noise and interference.
In general, there is not one abstract adder through which the
noise is injected, but there are Kirchho! ’s current and voltage
laws (kcl and kvl) superimposing the noise to the signal.
As such simple a circuit as given in Figure 3 leads to this

unexpected results, we may encounter complicated dependen-
cies between the channel matrix of multi-input multi-output
(mimo) systems and the noise covariance matrix [4].

IV. Conclusions

We have shown that common mathematical models, used
deliberately in system theory and in modeling communication
systems, may not always be consistent with the basic physical
laws which govern the behavior of technical system implemen-
tations. Such inconsistencies can be overcome by using circuit
theory as a frame work providing physical consistency along
di!erent layers of abstraction: from electromagnetics down to
circuits, signal processing algorithms and information theory.
It is important that electrical engineering and information

technology students are made aware of these problems. Oth-
erwise the unre'ected use of mathematical models without
taking care of their physical consistency may lead to subop-
timal or even erroneous designs. Therefore, circuit theory –
and we stress theory – has to be an indispensable part of ee
curricula.
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