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Modelling Longitudinal Data using a Pair-Copula
Decomposition of Serial Dependence

Abstract

Copulas have proven to be very successful tools for the flexible modelling of cross-sectional

dependence. In this paper we express the dependence structure of continuous time series data

using a sequence of bivariate copulas. This corresponds to a type of decomposition recently

called a ‘vine’ in the graphical models literature, where each copula is entitled a ‘pair-copula’.

We propose a Bayesian approach for the estimation of this dependence structure for longitu-

dinal data. Bayesian selection ideas are used to identify any independence pair-copulas, with

the end result being a parsimonious representation of a time-inhomogeneous Markov process

of varying order. Estimates are Bayesian model averages over the distribution of the lag

structure of the Markov process. Overall, the pair-copula construction is very general and

the Bayesian approach generalises many previous methods for the analysis of longitudinal

data. Both the reliability of the proposed Bayesian methodology, and the advantages of the

pair-copula formulation, are demonstrated via simulation and two examples. The first is an

agricultural science example, while the second is an econometric model for the forecasting of

intraday electricity load. For both examples the Bayesian pair-copula model is substantially

more flexible than longitudinal models employed previously.

Keywords: Longitudinal Copulas; Covariance Selection; Inhomogeneous Markov Process; D-

vine; Bayesian Model Selection; Antedependent Model; Intraday Electricity Load



1 Introduction

Modelling multivariate distributions using copulas has proven to be increasingly popular.

This is largely due to the flexibility that copula models provide, whereby the marginal distri-

butions can be modelled arbitrarily, and any dependence captured by the copula. Joe (1997)

and Nelsen (2006) provide introductions to copula models and their properties. While there

are a large range of copulas from which to choose (Frees and Valdez, 1998), only a few are

readily applicable to high dimensional problems. Copula built from elliptical distributions,

such as the Gaussian (Song, 2000) or t copulas (Demarta and McNeil, 2005), are most pop-

ular in this case. However, these can prove restrictive and in the recent graphical models

literature alternative multivariate copulas have been proposed that are constructed from

series of bivariate copulas. There are a large number of permutations in which this can be

undertaken, and Bedford and Cooke (2002) were the first to organize the different decompo-

sitions in a systematic way. They label the resulting multivariate copulas ‘vines’, while Aas,

Czado, Frigessi and Bakken (2009) label the component bivariate copulas ‘pair-copulas’; see

Kurowicka and Cooke (2006) for a recent summary.

To date copula models have been employed largely to account for cross-sectional de-

pendence. Applications to serial dependence in time series and longitudinal data are rare,

although the potential is vast. For such data the marginal distribution of the process at

each point in time can be modelled arbitrarily, while dependence over time is captured by a

multivariate copula. This approach was suggested by Meester and MacKay (1994) in a low

dimensional setting, while more recent examples include Lambert and Vandenhende (2002),

Frees and Wang (2005) and Sun, Frees and Rosenberg (2008). However, all these authors

employ multivariate copulas that do not fully exploit the time ordering of the margins. In

this paper we aim to show that doing so results in a substantially more flexible representation

that is both more insightful and allows for more efficient inference for continuous data.

We decompose the distribution of a continuous process at a point in time, conditional
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upon the past, into the product of a sequence of bivariate copula densities and the marginal

density. We show that the resulting decomposition of the joint distribution is a D-vine

(Bedford and Cooke, 2002), where each bivariate copula is recognisable as a pair-copula.

Any mix of bivariate copula can be used to model the pair-copula densities, resulting in an

extremely flexible modelling framework. When the underlying process exhibits Markovian

properties, this can be accounted for by setting pair-copulas to the independence copula.

For longitudinal data this results in a time-inhomogeneous Markov process with order that

also varies over time. As we demonstrate here, not only does this produce greater insight

into the underlying process, in high-dimensional longitudinal applications it can also lead to

a substantial improvement in the quality of inference.

Bedford and Cooke (2002) give the theoretical construction of regular vines, however no

estimation of pair copula parameters is attempted. Kurowicka and Cooke (2006) estimate

Gaussian vine copula parameters by minimising the determinant of the correlation matrix.

Aas et al. (2009) estimate pair-copula using maximum likelihood for Gaussian and non-

Gaussian pair-copulas in both C-vine and D-vines. Min and Czado (2008) suggest a Bayesian

method for the estimation of D-vines using Markov chain Monte Carlo (MCMC). In all

cases cross-sectional dependence is examined, where the determination of an appropriate

ordering of the dimensions for the decomposition remains an open problem. However, for

time-ordered data this issue does not arise, and one of the insights of this paper is that a

pair-copula decomposition is arguably more appropriate.

We suggest a Bayesian approach for the estimation of a pair-copula decomposition for

longitudinal data. Indicator variables are introduced to identify which pair-copulas are

independence copula. By doing so, we extend the existing Gaussian covariance selection

methods to a flexible non-Gaussian framework, both in the longitudinal case (Pourahmadi,

1999; Smith and Kohn, 2002; Huang, Liu, Pourahmadi and Liu, 2006; Liu, Daniels and

Marcus 2009) and more generally (Dempster, 1972; Yuan and Lin 2007). We suggest a

Metropolis-Hastings scheme to generate both the indicator variable and dependence param-
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eter(s) of a pair-copula jointly, where the proposal is based on a latent variable representation

of the pair-copula parameter(s). Forming inference using Bayesian computational methods

allows for a stochastic search over the space of the indicators. The full spectrum of posterior

inference is available, including measures of dependency such as Kendall’s tau. We also pro-

pose a diagnostic related to the distribution of the sum of the process over the time points.

All estimates are model averages over the distribution of the order of the Markov process.

A simulation study using Gaussian, Gumbel and Clayton pair-copulas highlights the

accuracy and reliability of the Bayesian procedure for both the selection and estimation

of pair-copulas. The results show that selection can improve the estimated dependence

structure, and that pair-copulas can provide substantial improvements over the common

approach of using a multivariate Gaussian copula. We demonstrate the usefulness of the

approach using two real data examples. The first is a dataset on the liveweight of cows

which has been examined previously in the longitudinal literature, but where we consider

t and Gaussian pair-copula models. A high level of parsimony is identified, accounting

for which substantially perturbs the estimated dependence structure. The second example

is a longitudinal model for intraday electricity load in the Australian state of New South

Wales. Here, marginal Gaussian regressions are employed to account for day type, seasonal,

trend and temperature effects, as well as intraday heteroscedasticity. However, intraday

dependence is captured flexibly using Gaussian, Gumbel and Clayton pair-copulas. A time-

varying Markovian structure with varying order is identified, confirming the structure of

longitudinal models currently used in the energy forecasting literature (Cottet and Smith,

2003; Soares and Medeiros, 2008). We show that the choice of pair-copula type has a

substantial impact on the accuracy of intraday forecasts.

The rest of the paper is organised as follows. In Section 2 we outline the pair-copula

decomposition of the joint distribution of time-ordered data. As an illustration we show how

a familiar Gaussian AR(2) process can be written in this form. We then outline the likelihood

for longitudinal data with time dependence modelled using a pair-copula decomposition with
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selection. Section 3 discusses the priors employed and the computation of posterior inference.

Also discussed are measures of dependence and a diagnostic for the quality of fit. Section 4

contains the simulation study, while Section 5 contains the real data examples. Section 6

concludes the paper by placing it in the context of existing models and methods.

2 The Model

2.1 Pair-copula Construction for Time Series

Consider a univariate time series 𝑿 = {𝑋1, . . . , 𝑋𝑇} of continuously distributed data ob-

served at 𝑇 possibly unequally-spaced points in time. If the underlying process is Markovian,

then this can be exploited by selecting models for the conditionals in the decomposition of

the joint distribution of 𝑿:

𝑓(𝒙) =
𝑇∏
𝑡=2

𝑓(𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥1)𝑓(𝑥1) . (2.1)

For example, the assumption that 𝑋𝑡∣𝑋𝑡−1, . . . , 𝑋1 ∼ 𝑁(
∑𝑝

𝑗=1 𝜌𝑗𝑋𝑡−𝑗 , 𝜎
2) for 𝑡 > 𝑝 corre-

sponds to a simple Gaussian autoregression. However, copula modelling ideas can be used

to express each conditional more generally. For 𝑠 < 𝑡 there always exists a bivariate density

𝑐𝑡,𝑠 on [0, 1]2, such that

𝑓(𝑥𝑡, 𝑥𝑠∣𝑥𝑡−1, . . . , 𝑥𝑠+1) = 𝑐𝑡,𝑠(𝐹 (𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥𝑠+1), 𝐹 (𝑥𝑠∣𝑥𝑡−1, . . . , 𝑥𝑠+1))

× 𝑓(𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥𝑠+1)𝑓(𝑥𝑠∣𝑥𝑡−1, . . . , 𝑥𝑠+1) . (2.2)

Here, 𝐹 (𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥𝑠+1) and 𝐹 (𝑥𝑠∣𝑥𝑡−1, . . . , 𝑥𝑠+1) are the conditional distribution functions

of 𝑋𝑡 and 𝑋𝑠, respectively. Note that this is the theorem of Sklar (1959) with conditioning
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set {𝑋𝑡−1, . . . , 𝑋𝑠+1}. By setting 𝑠 = 1, application of equation (2.2) results in the expression

𝑓(𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥1) = 𝑐𝑡,1(𝐹 (𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥2), 𝐹 (𝑥1∣𝑥𝑡−1, . . . , 𝑥2))𝑓(𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥2) .

Repeated application with 𝑠 = 2, 3, . . . , 𝑡 − 1 leads to the following decomposition of the

conditional density

𝑓(𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥1) =
𝑡−2∏
𝑗=1

{𝑐𝑡,𝑗(𝐹 (𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥𝑗+1), 𝐹 (𝑥𝑗∣𝑥𝑡−1, . . . , 𝑥𝑗+1))}

× 𝑐𝑡,𝑡−1(𝐹 (𝑥𝑡), 𝐹 (𝑥𝑡−1))𝑓(𝑥𝑡) , (2.3)

where 𝐹 (𝑥𝑡) and 𝑓(𝑥𝑡) are the marginal distribution function and density of 𝑋𝑡, respectively.

For simplicity we denote 𝑢𝑡∣𝑗 ≡ 𝐹 (𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥𝑗) and 𝑢𝑗∣𝑡 ≡ 𝐹 (𝑥𝑗∣𝑥𝑡, . . . , 𝑥𝑗+1), where

𝑗 < 𝑡. They correspond to projections backwards and forwards 𝑡− 𝑗 steps, respectively. By

also denoting 𝑢𝑡∣𝑡 ≡ 𝐹 (𝑥𝑡), the joint density at equation (2.1) can be written as

𝑓(𝒙) =

𝑇∏
𝑡=2

{
𝑡−1∏
𝑗=1

{
𝑐𝑡,𝑗(𝑢𝑡∣𝑗+1, 𝑢𝑗∣𝑡−1; 𝜃𝑡,𝑗)

}
𝑓(𝑥𝑡)

}
𝑓(𝑥1) , (2.4)

which is a product of 𝑇 (𝑇 −1)/2 bivariate densities 𝑐𝑡,𝑗 , each with parameter vector 𝜃𝑡,𝑗 , and

the 𝑇 marginal densities.

Equation (2.4) can be recognised as a ‘D-vine’ and is one of a wider class of vine decom-

positions recently discussed in the context of graphical models by Bedford and Cooke (2002)

and others. In this literature, the bivariate densities 𝑐𝑡,𝑗, and corresponding distribution

functions 𝐶𝑡,𝑗, are called ‘pair-copulas’. The notation used makes the conditioning set ex-

plicit; for example, 𝑐𝑡,𝑗∣𝑡−1,𝑡−2,...,𝑗+1 would denote the copula density in equation (2.4). This is

essential for differentiating between vine decompositions of general vectors 𝑿. However, it

is not necessary to uniquely identify the pair-copulas of the D-vine decomposition when the

elements of 𝑿 are time-ordered. By adopting the shorter notation for the pair-copulas we
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are following the same notational convention used for partial correlations when measuring

conditional linear correlation.

The most challenging aspect of the D-vine representation is the evaluation of 𝑢𝑡∣𝑗+1 and

𝑢𝑗∣𝑡−1 in equation (2.4). The following property (Joe, 1996; p.125) proves useful in this

regard:

Lemma

Let 𝑢1 = 𝐹 (𝑥1∣𝑦) and 𝑢2 = 𝐹 (𝑥2∣𝑦) be conditional distribution functions, and 𝐹 (𝑥1, 𝑥2∣𝑦) =

𝐶(𝑢1, 𝑢2; 𝜃), where 𝐶 is a bivariate copula function with parameters 𝜃, then

𝐹 (𝑥1∣𝑥2, 𝑦) = ℎ(𝑢1∣𝑢2; 𝜃) , where ℎ(𝑢1∣𝑢2; 𝜃) ≡ ∂𝐶(𝑢1, 𝑢2; 𝜃)

∂𝑢2
.

Proof is given in Appendix A, while Aas et al. (2009) provide analytical expressions of ℎ

for a variety of popular bivariate copulas. For 𝑗 < 𝑡, direct application of the lemma results

in the following recursive relationships:

𝑢𝑡∣𝑗 = 𝐹 (𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥𝑗) = ℎ𝑡,𝑗(𝑢𝑡∣𝑗+1∣𝑢𝑗∣𝑡−1; 𝜃𝑡,𝑗) , (2.5)

𝑢𝑗∣𝑡 = 𝐹 (𝑥𝑗 ∣𝑥𝑡, . . . , 𝑥𝑗+1) = ℎ𝑡,𝑗(𝑢𝑗∣𝑡−1∣𝑢𝑡∣𝑗+1; 𝜃𝑡,𝑗), (2.6)

where ℎ𝑡,𝑗(𝑢1∣𝑢2; 𝜃𝑡,𝑗) = ∂
∂𝑢2

𝐶𝑡,𝑗(𝑢1, 𝑢2; 𝜃𝑡,𝑗) and 𝐶𝑡,𝑗 is the distribution function corresponding

to pair-copula density 𝑐𝑡,𝑗. We label equation (2.6) a forwards recursion and equation (2.5)

a backwards recursion, and from these it can be seen that 𝑢𝑡∣𝑗 and 𝑢𝑗∣𝑡 are functions not only

of 𝜃𝑡,𝑗 , but also of the parameters of other pair-copulas. The recursions give the following

algorithm for the evaluation of the values of 𝑢𝑡∣𝑗 and 𝑢𝑗∣𝑡 employed in equation (2.4):

Algorithm 1

Step (1): For 𝑡 = 1, . . . , 𝑇 set 𝑢𝑡∣𝑡 = 𝐹 (𝑥𝑡)

Step (2): For 𝑘 = 1, . . . , 𝑇 − 1 and 𝑖 = 𝑘 + 1, . . . , 𝑇

Backwards Step: 𝑢𝑖∣𝑖−𝑘 = ℎ𝑖,𝑖−𝑘(𝑢𝑖∣𝑖−𝑘+1∣𝑢𝑖−𝑘∣𝑖−1; 𝜃𝑖,𝑖−𝑘)
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Forwards Step: 𝑢𝑖−𝑘∣𝑖 = ℎ𝑖,𝑖−𝑘(𝑢𝑖−𝑘∣𝑖+1∣𝑢𝑖∣𝑖−𝑘+1; 𝜃𝑖,𝑖−𝑘)

Note that step (2) involves the evaluation of the 𝑇 (𝑇 − 1)/2 functions ℎ𝑡,𝑗 , for 𝑗 < 𝑡,

twice. Figure 1 depicts the dependencies between 𝑢𝑡∣𝑗 , 𝑢𝑗∣𝑡 resulting from the recursions in

Algorithm 1.

—–Figure 1 about here—–

2.1.1 Illustration: Stationary Gaussian AR(2)

To illustrate, consider the familiar stationary Gaussian AR(2) process where 𝑋𝑡∣𝑋𝑡−1, 𝑋𝑡−2 ∼
𝑁(𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2, 𝜎

2). Hamilton (1994; pp.56-58) outlines the properties of this series,

where the marginal distribution 𝑋𝑡 ∼ 𝑁(0, 𝜎2
0), Cov(𝑋𝑡, 𝑋𝑡−𝑗) = 𝜎2

0𝜌𝑗 , 𝜌1 = 𝜙1/(1 − 𝜙2),

𝜌2 = 𝜙1𝜌1+𝜙2 and 𝜌𝑗 = 𝜙1𝜌𝑗−1+𝜙2𝜌𝑗−2 for 3 ≤ 𝑗 ≤ 𝑇 . In the D-vine at equation (2.4) this lag

2 Markov process has pairwise copula densities 𝑐𝑡,𝑗(𝑢1, 𝑢2; 𝜃𝑡,𝑗) = 1, for 𝑡 ≥ 4 , 𝑗 = 1, . . . , 𝑡−3,

with the remaining being the bivariate Gaussian copula

𝑐𝐺𝑎(𝑢1, 𝑢2; 𝜃) = (1 − 𝜃2)−1/2 exp

{−𝜃2(𝑤2
1 + 𝑤2

2) − 2𝜃𝑤1𝑤2

2(1 − 𝜃2)

}
,

where 𝑤1 = Φ−1(𝑢1), 𝑤2 = Φ−1(𝑢2) and Φ is the standard normal distribution function

(Song, 2000).

Substituting these pairwise copula into the D-vine gives

𝑓(𝒙) =

𝑇∏
𝑡=2

{
𝑐𝐺𝑎(𝑢𝑡∣𝑡−1, 𝑢𝑡−2∣𝑡−1; 𝜃𝑡,𝑡−2)𝑓(𝑥𝑡∣𝑥𝑡−1)

}
𝑓(𝑥1)

=
𝑇∏
𝑡=2

{
𝑐𝐺𝑎(𝑢𝑡∣𝑡−1, 𝑢𝑡−2∣𝑡−1; 𝜃𝑡,𝑡−2)𝑐𝐺𝑎(𝑢𝑡∣𝑡, 𝑢𝑡−1∣𝑡−1; 𝜃𝑡,𝑡−1)𝑓(𝑥𝑡)

}
𝑓(𝑥1) .

Here 𝑋𝑡 ∼ 𝑁(0, 𝜎2
0), so that 𝑢𝑡∣𝑡 = 𝐹 (𝑥𝑡) = Φ−1(𝑥𝑡/𝜎0). The pairwise copula parameters are

(partial) correlation coefficients, with 𝜃𝑡,𝑡−2 = Corr(𝑋𝑡, 𝑋𝑡−2∣𝑋𝑡−1) = (𝜌2 − 𝜌21)/(1 − 𝜌21) and
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𝜃𝑡,𝑡−1 = Corr(𝑋𝑡, 𝑋𝑡−1) = 𝜌1.

To compute values of arguments of the copula densities, first note that ℎ𝑡,𝑗(𝑢1∣𝑢2; 𝜃𝑡,𝑗) =

𝑢1 when 𝑐𝑡,𝑗(𝑢1, 𝑢2; 𝜃𝑡,𝑗) = 1. Following Aas et al. (2009) for the Gaussian pair-copula

ℎ𝐺𝑎(𝑢1∣𝑢2; 𝜃) =
∂𝐶𝐺𝑎(𝑢1, 𝑢2; 𝜃)

∂𝑢2
= Φ

(
Φ−1(𝑢1) − 𝜃Φ−1(𝑢2)√

1 − 𝜃2

)
.

Starting with initial conditions 𝑢𝑡∣𝑡 = Φ(𝑥𝑡/𝜎0) for 𝑡 = 1, . . . , 𝑇 , the recursions in Algorithm 1

are run with ℎ𝑡,𝑗 as given above. For example, employing the recursions in this case gives

for 𝑡 ≥ 3:

𝑢𝑡∣𝑡−2 = ℎ𝐺𝑎(𝑢𝑡∣𝑡−1∣𝑢𝑡−2∣𝑡−1; 𝜃𝑡,𝑡−2) , where

𝑢𝑡∣𝑡−1 = ℎ𝐺𝑎(𝑢𝑡∣𝑡, 𝑢𝑡−1∣𝑡−1; 𝜃𝑡,𝑡−1) and

𝑢𝑡−2∣𝑡−1 = ℎ𝐺𝑎(𝑢𝑡−1∣𝑡−1∣𝑢𝑡−2∣𝑡−2; 𝜃𝑡−1,𝑡−2) .

Employing the initial conditional conditions and expressions for 𝜃𝑡,𝑡−1 and 𝜃𝑡−1,𝑡−2 above,

with some algebra 𝑢𝑡∣𝑡−2 can be expressed in terms of 𝜙1 and 𝜙2 as

𝑢𝑡∣𝑡−2 = Φ
(
(𝑥𝑡 − 𝜙1𝑥𝑡−1 − 𝜙2𝑥𝑡−2)/𝜎

2
)
,

which agrees with the conditional distribution function 𝐹 (𝑥𝑡∣𝑥𝑡−1, 𝑥𝑡−2) from the definition

of an AR(2).

2.2 Conditional Distributions and Simulation

From equation (2.5) 𝐹 (𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥1) = 𝑢𝑡∣1 = ℎ𝑡,1(𝑢𝑡∣2∣𝑢1∣𝑡−1; 𝜃𝑡,1), where 𝑢𝑡∣2 = 𝐹 (𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥2)

is a function of 𝑥𝑡, but 𝑢1∣𝑡−1 is not. Repeated use of equation (2.5) provides expressions for

𝑢𝑡∣2, . . . , 𝑢𝑡∣𝑡−1, and by noting that 𝑢𝑡∣𝑡 = 𝐹 (𝑥𝑡), the conditional distribution function can be
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expressed as

𝐹 (𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥1) = ℎ𝑡,1 ∘ ℎ𝑡,2 ∘ . . . ℎ𝑡,𝑡−1 ∘ 𝐹 (𝑥𝑡) . (2.7)

To evaluate ℎ𝑡,𝑗(⋅∣𝑢𝑗∣𝑡−1, 𝜃𝑡,𝑗), for 𝑗 = 𝑡 − 1, . . . , 1, the values 𝑢1∣𝑡−1, . . . , 𝑢𝑡−1∣𝑡−1 also need

computing, which can be obtained by running Algorithm 1, but with 𝑇 = 𝑡. The expression

at equation (2.7) can be used to provide the efficient algorithm below for simulating from the

multivariate copula via the method of composition. We simulate 𝑇 independent uniforms

𝑤1, . . . , 𝑤𝑇 , and compute 𝑥1 = 𝐹−1(𝑤1) and 𝑥𝑡 = 𝐹−1(𝑤𝑡∣𝑥𝑡−1, . . . , 𝑥1) for 𝑡 = 2, . . . , 𝑇 , so

that 𝒙 has density at (2.4).

Algorithm 2

For 𝑡 = 1, . . . , 𝑇 :

Step (1): Generate 𝑤𝑡 ∼ Uniform(0, 1)

Step (2): If 𝑡 = 1 set 𝑥1 = 𝐹−1(𝑤1), otherwise set 𝑥𝑡 = 𝐹−1 ∘ ℎ−1
𝑡,𝑡−1 ∘ . . . ∘ ℎ−1

𝑡,1 (𝑤𝑡)

Step (3): Set 𝑢𝑡∣𝑡 = 𝐹 (𝑥𝑡), and if 𝑡 > 1 compute:

𝑢𝑡∣𝑗 = ℎ𝑡,𝑗(𝑢𝑡∣𝑗+1∣𝑢𝑗∣𝑡−1; 𝜃𝑡,𝑗) for 𝑗 = 𝑡− 1, . . . , 1

𝑢𝑗∣𝑡 = ℎ𝑡,𝑗(𝑢𝑗∣𝑡−1∣𝑢𝑡∣𝑗+1; 𝜃𝑡,𝑗) for 𝑗 = 1, . . . , 𝑡− 1

We note that the functions ℎ−1
𝑡,𝑗 are easily computed analytically for all commonly used

bivariate copula. Moreover, Algorithm 2 can be adjusted to produce an iterate from the con-

ditional distribution 𝐹 (𝑥𝑇 , 𝑥𝑇−1, . . . , 𝑥𝑡0+1∣𝑥𝑡0 , . . . , 𝑥1) simply by skipping Steps (1) and (2)

for 𝑡 = 1, . . . , 𝑡0, but not Step (3). This can be useful in computing forecasts, particularly

when the vector is longitudinal as we demonstrate in Section 5.2. Both Kurowicka and

Cooke (2007) and Aas et al. (2009) give algorithms that are equivalent to Algorithm 2, al-

though the former do not provide an expression for the conditional distribution function,

while that of the latter is less succinct.
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2.3 Longitudinal Data and Pair-Copula Selection

While the decomposition at equation (2.4) provides a flexible representation for time series

data generally, we focus here on the longitudinal case. That is, where there are 𝑛 independent

observations 𝒙 = {𝒙1, . . . ,𝒙𝑛} on a dependent time series vector 𝒙𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑇 ). In

the case where the number of pair-copulas, 𝑇 (𝑇 − 1)/2, is large compared to the number

of scalar observations 𝑛𝑇 , it can prove hard to obtain reliable estimates without imposing

strong restrictions, and thus a data-driven method that allows for parsimony is useful. We

do so by following the Bayesian variable selection literature (see Clyde and George 2004

for a recent summary) and introduce indicator variables Λ = {𝛾𝑡,𝑠; (𝑡, 𝑠) ∈ ℐ}, where ℐ =

{(𝑡, 𝑠)∣𝑡 = 2, . . . , 𝑇 ; 𝑠 < 𝑡} and

𝑐𝑡,𝑠(𝑢1, 𝑢2; 𝜃𝑡,𝑠) = 1 iff 𝛾𝑡,𝑠 = 0

𝑐𝑡,𝑠(𝑢1, 𝑢2; 𝜃𝑡,𝑠) = 𝑐★𝑡,𝑠(𝑢1, 𝑢2; 𝜃𝑡,𝑠) iff 𝛾𝑡,𝑠 = 1.

In the above 𝑐★𝑡,𝑠 is a pre-specified bivariate copula density, such as a Gaussian, t, Gumbel

or Clayton; see Frees and Valdez (1998; p.25) for a list of common choices. While there is

no reason why the pair-copula cannot vary with (𝑡, 𝑠), for simplicity we assume 𝑐★𝑡,𝑠 are all of

the same form in our empirical work and therefore drop the subscripts of the copula density

𝑐★ and corresponding distribution function 𝐶★.

When 𝛾𝑡,𝑠 = 0 the copula is the independence copula 𝐶𝑡,𝑠(𝑢1, 𝑢2; 𝜃𝑡,𝑠) = 𝑢1𝑢2, and im-

plies that ℎ𝑡,𝑠(𝑢1∣𝑢2; 𝜃𝑡,𝑠) = 𝑢1. Therefore, the parameter 𝛾 determines the form of the

time series dependency. For example, if 𝛾𝑡,𝑠 = 0 for all 𝑠 ≤ 𝑡 − 𝑝, then 𝑓(𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥1) =

𝑓(𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥𝑡−𝑝) and the process is Markov of order 𝑝. In general, 𝛾 determines a parsimo-

nious dependence structure that can vary with time 𝑡, extending antedependent models for

longitudinal data (Gabriel, 1962; Pourahmadi, 1999; Smith and Kohn, 2002) and covariance

selection for Gaussian copulas (Pitt, Chan and Kohn 2006).
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The likelihood 𝑓(𝒙∣Θ,Λ) =
∏𝑛

𝑖=1 𝑓(𝒙𝑖∣Θ,Λ), where Θ = {𝜃𝑡,𝑠; (𝑡, 𝑠) ∈ ℐ} and

𝑓(𝒙𝑖∣Θ,Λ) =

𝑇∏
𝑡=2

{
𝑡−1∏
𝑗=1

{(
𝑐★(𝑢𝑖,𝑡∣𝑗+1, 𝑢𝑖,𝑗∣𝑡−1; 𝜃𝑡,𝑗)

)𝛾𝑡,𝑗} 𝑓(𝑥𝑖,𝑡)

}
𝑓(𝑥𝑖,1) .

Here, the conditional copula data

𝑢𝑖,𝑡∣𝑗+1 = 𝐹 (𝑥𝑖,𝑡∣𝑥𝑖,𝑡−1, . . . , 𝑥𝑖,𝑗+1) and

𝑢𝑖,𝑗∣𝑡−1 = 𝐹 (𝑥𝑖,𝑗∣𝑥𝑖,𝑡, . . . , 𝑥𝑖,𝑗+1) , (2.8)

are computed using Algorithm 1 applied separately to each observation 𝒙𝑖. To speed the

computation the following adjustment to Step (2) of Algorithm 1 can be employed:

ℎ𝑖,𝑖−𝑘(𝑢1∣𝑢2; 𝜃𝑖,𝑖−𝑘) = 𝑢1 if 𝛾𝑖,𝑖−𝑘 = 0

ℎ𝑖,𝑖−𝑘(𝑢1∣𝑢2; 𝜃𝑖,𝑖−𝑘) = ℎ★(𝑢1∣𝑢2; 𝜃𝑖,𝑖−𝑘) ≡ ∂
∂𝑢2

𝐶★(𝑢1, 𝑢2; 𝜃𝑖,𝑖−𝑘) if 𝛾𝑖,𝑖−𝑘 = 1 .

Exploiting this observation in Algorithm 1 substantially increases execution speed when the

proportion of zeros in 𝛾 is high; something that is likely to be the case in many longitudinal

studies.

When the marginal distributions are Gaussian, the framework nests a wide range of

longitudinal models. When 𝑐★ is a bivariate Gaussian copula, then the longitudinal vector

follows a Gaussian AR(𝑝) when 𝛾𝑡,𝑗 = 0 for 𝑡 > 𝑝 and 𝑗 > 𝑡 − 𝑝, while 𝛾𝑡,𝑗 = 1 otherwise.

When the Gaussian pair-copula parameters {𝜃𝑡,𝑗 ∣𝑡 > 𝑝, 𝑗 > 𝑡−𝑝} vary with 𝑡, a time-varying

parameter autoregressive model is obtained. If the elements of 𝛾 vary, then the model is

further extended to an antedependent model. However, by choosing non-Gaussian pair-

copula densities 𝑐★, the approach allows for more complex models of dependence; which is

something we show can have a considerable impact in our empirical work.
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3 Bayesian Inference

3.1 Priors

The prior on Λ can be chosen to represent a preference for shorter Markov orders by setting

the marginal priors 𝜋(𝛾𝑡,𝑠 = 1) ∝ 𝛿(𝑡−𝑠), for 0 < 𝛿 < 1. Similarly, an informative prior can

be used to ensure that 𝛾𝑡,𝑠 = 0 if 𝛾𝑡,𝑠−1 = 0. However, in our empirical work we do neither

and simply place equal marginal prior weight upon each indicator. As observed by Kohn

et al. (2001) such a prior can still prove highly informative when 𝑁 = 𝑇 (𝑇 − 1)/2 is large.

For example, if 𝐾Λ =
∑

(𝑡,𝑠)∈ℐ 𝛾𝑡,𝑠 is the number of non-zero elements of Λ, then assuming

the flat prior 𝜋(Λ) = 2−𝑁 puts very high prior weight on values of Λ which have 𝐾Λ ≈ 𝑁/2.

To avoid this, beta priors can be employed (see, for example, Liu et al. 2009), although we

adopt the prior

𝜋(Λ) =
1

𝑁 + 1

⎛
⎜⎝ 𝑁

𝐾Λ

⎞
⎟⎠

−1

.

which has been used successfully in the component selection literature (Cripps et al., 2005).

It results in equal marginal priors, uniform prior weight on 𝜋(𝐾Λ) = 1/(1 + 𝑁), and the

conditional prior

𝜋(𝛾𝑡,𝑠∣{Λ∖𝛾𝑡,𝑠}) ∝ Γ(𝑁 −𝐾Λ + 1)Γ(𝐾Λ + 1)

Γ(𝑁 + 1)
. (3.1)

The priors of the dependence parameters 𝜃𝑡,𝑠 vary according to choice of copula function 𝐶★.

When Gaussian pair-copulas are employed, the 𝜃𝑡,𝑠 are partial correlations, and independent

beta priors adopted as suggested by Daniels and Pourahmadi (2009) or volume based priors

as in Pitt, Chan and Kohn (2006). When non-Gaussian pair-copulas are used, following

equation (2.3), the parameters 𝜃𝑡,𝑠 capture conditional dependence more generally. Unless

mentioned otherwise, we employ independent flat priors on the domain of these dependence

parameters. This extends the approaches suggested by Joe (2006) and Daniels and Pourah-

madi (2009) for modeling covariance matrices, and we show that this is an effective strategy
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for a range of copula functions in our empirical work.

3.2 Sampling Scheme

Given the margins, we generate iterates from the joint posterior 𝑓(Λ,Θ∣𝒙) by introducing

latent variables 𝜃𝑡,𝑠, for (𝑡, 𝑠) ∈ ℐ, such that

𝜃𝑡,𝑠 =

⎧⎨
⎩

𝜃𝑡,𝑠 if 𝛾𝑡,𝑠 = 1

𝜃† if 𝛾𝑡,𝑠 = 0 .

Here, 𝜃† is the bivariate copula parameter value that corresponds to the independence copula

𝑐★(𝑢1, 𝑢2; 𝜃
†) = 1. For example, for the Gaussian copula this is the correlation coefficient and

𝜃† = 0, for the Gumbel 𝜃† = 1 and for the t copula with correlation 𝜌 and degrees of freedom

𝜈, 𝜃† = (𝜌 = 0, 𝜈), with 𝜈 → ∞.

Note that (𝜃𝑡,𝑠, 𝛾𝑡,𝑠) is known exactly from (𝜃𝑡,𝑠, 𝛾𝑡,𝑠), and that 𝜋(𝜃𝑡,𝑠∣𝛾𝑡,𝑠 = 1) ∝ 𝜋(𝜃𝑡,𝑠∣𝛾𝑡,𝑠 =

1). We also assume prior independence between the latent and indicator variables, so that

𝜋(Θ̃,Λ) = 𝜋(Λ)
∏

(𝑡,𝑠)∈ℐ 𝜋(𝜃𝑡,𝑠), with Θ̃ = {𝜃𝑡,𝑠; (𝑡, 𝑠) ∈ ℐ}. We evaluate the posterior dis-

tribution using MCMC. The sampling scheme consists of Metropolis-Hastings (MH) steps

that traverse the latent and indicator variable space by generating sequentially each pair

(𝜃𝑡,𝑠, 𝛾𝑡,𝑠) for 𝑡 = 2, . . . , 𝑇 and 𝑠 = 1, . . . , 𝑡− 1.

In the case where the pair-copula has a single dependency parameter, we adopt a MH

proposal that is independent in 𝛾𝑡,𝑠 and 𝜃𝑡,𝑠, so that 𝑞(𝜃, 𝛾) = 𝑞1(𝛾)𝑞2(𝜃). When there

are multiple dependency parameters for a pair-copula, we simply generate each parameter

independently in the same manner. Kohn, Smith and Chan (2001) compare the relative

efficiency of a number of choices for 𝑞1 in the regression variable selection problem, while

Nott and Kohn (2005) look at the efficiency of adaptive sampling methods. In this paper

we consider two choices for 𝑞1. The first corresponds to the simple proposal 𝑞1(𝛾 = 1) =

𝑞1(𝛾 = 0) = 1/2, while the second is Sampling Scheme 2 proposed by Kohn et al. (2001).
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This was the most computationally efficient scheme suggested by the authors, and employs

the conditional prior as the proposal. For clarity, we label these two sampling schemes SS1

and SS2, respectively, and we examine their relative computational efficiency empirically in

Section 5.1. In both cases we use a random walk proposal for 𝑞2, with 𝜃𝑡,𝑠 generated using

a t-distribution with 𝑑 degrees of freedom and scale 𝜏 2. Appendix B outlines the sampling

steps in more detail.

Because the likelihood can be computed in closed form, it is straightforward to estimate

any marginal parameters, joint with the copula parameters, by appending additional MH

steps as outlined by Pitt, Chan and Kohn (2006) for Gaussian copula. However, in practise

it is well known that joint estimation does not meaningfully affect the estimated dependence

structure; see Silva and Lopes (2008) for an empirical demonstration with bivariate copulas.

In our empirical work we condition on any marginal estimates and focus on studying inference

for the serial dependence structure on [0, 1]𝑇 .

3.3 Posterior Inference and Diagnostics

The sampling schemes are run for a burnin period, and then 𝐽 iterates {Θ[𝑗],Λ[𝑗]} ∼
𝑓(Θ,Λ∣𝒙) collected. From these posterior inference is computed, including posterior means

which we use in our empirical work as point estimates. Of particular interest here is

pr(𝛾𝑡,𝑠 = 0∣𝒙) ≈ 1
𝐽

∑
𝑗(1 − 𝛾

[𝑗]
𝑡,𝑠), which is the estimate of the marginal probability that

the (𝑡, 𝑠)th pair-copula is the independence copula.

Because in our analysis we consider different pair-copula families it is important to mea-

sure dependence on a common metric. There is an extensive literature on measures of

concordence, with an comprehensive summary given by Nelsen (2006; Chapter 5). We focus

on Kendall’s tau, which is defined for each pair (𝑡, 𝑠) ∈ ℐ as

𝜏𝑡,𝑠 = pr
(
(𝑋1

𝑡 −𝑋2
𝑡 )(𝑋

1
𝑠 −𝑋2

𝑠 ) > 0
)− pr

(
(𝑋1

𝑡 −𝑋2
𝑡 )(𝑋

1
𝑠 −𝑋2

𝑠 ) < 0
)
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where (𝑋 𝑖
𝑡 , 𝑋

𝑖
𝑠) are independent copies of (𝑋𝑡, 𝑋𝑠) for 𝑖 = 1, 2. For a bivariate copula

𝜏𝑡,𝑠 = 4

∫ 1

0

∫ 1

0

𝐶𝑡,𝑠(𝑢1, 𝑢2; 𝜃𝑡,𝑠)d𝐶𝑡,𝑠(𝑢1, 𝑢2; 𝜃𝑡,𝑠) − 1 .

For the independence copula 𝜏𝑡,𝑠 = 0, while Kendall’s tau can be expressed as a function

of 𝜃𝑡,𝑠 for numerous common bivariate copula (Lindskog, McNeil and Schmock, 2003). For

Gaussian and t copulas 𝜏𝑡,𝑠 = arcsin
(
2
𝜋
𝜃𝑡,𝑠

)
, for the Clayton 𝜏𝑡,𝑠 = 𝜃𝑡,𝑠/(𝜃𝑡,𝑠 + 2) and for the

Gumbel 𝜏𝑡,𝑠 = 1 − 𝜃−1
𝑡,𝑠 . In these cases we can write Kendall’s tau as 𝜏𝑡,𝑠(𝜃𝑡,𝑠) and compute

it’s posterior mean as

𝐸(𝜏𝑡,𝑠∣𝒙) =

∫
𝜏𝑡,𝑠(𝜃𝑡,𝑠)𝑓(𝜃𝑡,𝑠∣𝒙)d𝜃𝑡,𝑠

=

∫
𝜏𝑡,𝑠(𝜃𝑡,𝑠)𝑓(𝜃𝑡,𝑠, 𝛾𝑡,𝑠 = 1∣𝒙)d𝜃𝑡,𝑠 ≈ 1

𝐽

𝐽∑
𝑗=1

𝜏𝑡,𝑠(𝜃
[𝑗]
𝑡,𝑠)𝛾

[𝑗]
𝑡,𝑠 .

This expression makes it clear that the posterior mean is a model average over the model

indicator 𝛾𝑡,𝑠.

To judge the adequacy of the parametric copula fit we employ a diagnostic tool based on

the sum of the transformed marginal variables and constructed in a Monte Carlo manner as

follows. First, simulate iterates of 𝑼 = (𝑈1, . . . , 𝑈𝑇 ), where 𝑈𝑡 = 𝐹𝑡(𝑋𝑡), using Algorithm 2

appended to the end of each sweep of the sampling scheme. After convergence we select every

twentieth iterate to obtain an approximately independent sample {𝑼 [1], . . . ,𝑼 [𝐾]} from the

fitted pair-copula. For each of these iterates we compute the sum 𝑆 =
∑𝑇

𝑗=1 Φ−1(𝑈𝑗). This

sum is both is highly sensitive to the dependence structure of the fitted pair-copula model

and, like Kendall’s tau, comparable across different pair-copula families.

The iterates {𝑆 [1], . . . , 𝑆 [𝐾]} form a sample from the density 𝑓(𝑆∣𝒙) that is approximately

independent and from which a kernel density estimate (KDE) can be computed. This can

be compared to two different benchmarks. The first is where the elements of 𝑿 are assumed

independent, so that 𝑈1, . . . , 𝑈𝑇 are independent uniforms and 𝑆 ∼ 𝑁(0, 𝑇 ). The second is
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the empirically observed distribution of 𝑆. This is given as the KDE based on the sample

𝑆𝑖 =
∑𝑇

𝑡=1 Φ−1(𝑢obs
𝑖,𝑡 ), for 𝑖 = 1, . . . , 𝑛, where 𝑢obs

𝑖,𝑡 = 𝐹𝑡(𝑥𝑖𝑡) and 𝐹𝑡(𝑥𝑖𝑡) is the empirical

distribution function of the data {𝑥1,𝑡, . . . , 𝑥𝑛,𝑡}. A parametric model that more adequately

fits the observed dependence in the data will have 𝑓(𝑆∣𝒙) closer to this second benchmark

distribution.

4 Simulation Study

We study the performance of the selection approach using a small simulation study. We

consider the Gaussian, Clayton and Gumbel bivariate copulas, where the latter two have

copula densities:

𝑐𝐶𝑙𝑎𝑦(𝑢1, 𝑢2; 𝜃) = (1 + 𝜃)(𝑢1𝑢2)
(−1−𝜃)

(
𝑢−𝜃
1 + 𝑢−𝜃

2 − 1
)−1/𝜃−2

, for 𝜃 > 0 , and

𝑐𝐺𝑢𝑚(𝑢1, 𝑢2; 𝜃) =
𝜅(−2+2/𝜃) (log 𝑢1 log 𝑢2)

(𝜃−1) [1 + (𝜃 − 1)𝜅−1/𝜃
]

𝑢1𝑢2 exp (𝜅1/𝜃)
, for 𝜃 ≥ 1 ,

and 𝜅 = (− log 𝑢1)
𝜃 + (− log 𝑢2)

𝜃; see Nelsen (2006) for an introduction to the properties

of these two copula. We assume the marginal distributions are known, and focus on the

effectiveness of the approach to estimate the dependency structure on [0, 1]𝑇 . We simulate

from the following three models, each with 𝑇 = 7 margins and 𝑛 = 100 observations on the

longitudinal vector:

Model A: Zero mean Gaussian AR(1) with autoregressive coefficient 0.85 and unit vari-

ance disturbances. The margins are therefore (known) 𝑁(0, 1/(1−0.852)) distributions,

𝛾𝑡,𝑡−1 = 1 and 𝛾𝑡,𝑠 = 0 for 𝑡 − 𝑠 > 1 and 𝜃𝑡,𝑡−1 = 𝜌. Figure 2(a) depicts the resulting

values of Kendall’s tau for each pair-copula.

Model B: Clayton pair-copula model with 𝛾𝑡,𝑠 = 1 for all 𝑡− 𝑠 ≤ 2, and zero otherwise.

This corresponds to a second order time-inhomogenous Markov process, with pair-
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copula dependence parameters set so that the values of Kendall’s tau are as depicted

in Figure 2(b).

Model C: Gumbel pair-copula model with dependency structure as depicted in Fig-

ure 2(c), which specifies a time-inhomogenous Markov process with varying order.

—–Figure 2 about here—–

We simulate 50 datasets from the three models and fit each with the following estimators:

Estimator E1: Estimation with selection and correctly specified pair-copula type.

Estimator E2: Estimation without selection (so that 𝛾𝑡,𝑠 = 1 for (𝑡, 𝑠) ∈ ℐ) and

correctly specified pair-copula type.

Estimator E3: Estimation with selection and incorrectly specified pair-copula type

(Clayton for Model A; Gumbel for Model B; and Gaussian for Model C).

Estimator E4: Estimation with a Gaussian copula without selection.

Estimator E1 is our proposed method, while estimators E2, E3 & E4 are for comparison.

We note that estimators E2 and E4 are the same for model A only. Figure 2 provides a

summary of the reliability of the pair-copula selection procedure of estimator E1. To quantify

this, for each pair-copula we compute the mean posterior probability of being dependent

over the simulation 𝑃𝑡,𝑠 = 1
50

∑50
𝑖=1 𝑃𝑡,𝑠(𝑖), where 𝑃𝑡,𝑠(𝑖) is the posterior probability that

𝛾𝑡,𝑠 = 1 in the 𝑖th dataset. Panels (d)-(f) plot these values for all pair-copulas and the

three models, indicating that the Bayesian selection approach appears highly accurate. To

confirm this, we also examine the performance of the approach for classification using a simple

threshold. For each replicated dataset we classify each pair-copula as being dependent when

pr(𝛾𝑡,𝑠 = 1∣𝒙) > 0.5, or the independence copula otherwise. Over the three models, all
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pair-copula and all simulations, 99.5% of dependent pair-copula and 98.8% of independence

pair-copula were correctly classified by estimator E1.

To show that the method also produces reliable estimates of the dependence structure,

for each pair-copula we estimate the bias �̂�(𝜏𝑡,𝑠) = 1
50

∑50
𝑖=1

(
𝜏𝑡,𝑠(𝑖) − 𝜏 ∗𝑡,𝑠

)
, where 𝜏 ∗𝑡,𝑠 is the

true value and 𝜏𝑡,𝑠(𝑖) the posterior mean for the 𝑖th dataset of Kendall’s tau for pair-copula

𝑐𝑡,𝑠. Figure 2(g)-(i) reports these estimated biases, with most being zero to two decimal

places.

—–Table 1 about here—–

For comparison, Table 1 reports the mean bias �̂�(𝜏𝑡,𝑠) for all combinations of the 3 models

and 4 estimators, both for dependent and independence pair-copula. Estimator E1 exhibits

a substantially lower bias than the other estimators in every case. Table 1 also reports the

width �̂�(𝜏𝑡,𝑠) of the posterior probability interval for 𝜏𝑡,𝑠, defined for each dataset as follows.

Order the iterates {𝜏𝑡,𝑠(𝜃[1]𝑡,𝑠), . . . , 𝜏𝑡,𝑠(𝜃
[𝐽 ]
𝑡,𝑠 )} from smallest to largest, and then compute the

Monte Carlo estimate of the 90% posterior probability interval by counting off the lower and

upper 5% of the iterates. The mean width, computed across all pair-copula and simulation

replicates, is reported for all cases and for dependent and independence pair-copulas. Again,

estimator E1 has substantially lower widths than the other estimators, and by at least an

order of magnitude for the independence pair-copulas. Overall, the simulation suggests that

the selection approach works well, and can improve the estimated dependence structure. In

every case, pair-copulas with selection out-performed by an order of magnitude the simple

alternative of fitting a Gaussian copula.
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5 Empirical Applications

5.1 Cow Liveweight

We use our method to identify the time series dependence structure of the liveweight of

𝑛 = 25 cows measured at 𝑚 = 23 unequally-spaced points in time. The data are discussed

by Diggle, Liang and Zeger (1994, p.100) and Smith and Kohn (2002), and are the result

of a longitudinal study with a 2 × 2 factorial design. In both studies the logarithm of

the liveweight is modelled as having a quadratic time trend for each of the four treatment

groups, which we also assume here. Diagnostics indicate that a Gaussian distribution fits

the marginal data particularly well, and with this choice of parametric distribution for the

margins we estimate a pair-copula decomposition assuming independence in the copula data

across cows, but not across time.

Bivariate t copulas are used, so that

𝑐★(𝑢1, 𝑢2; 𝜃) =
Γ
(
𝜈+2
2

)
/Γ

(
𝜈
2

)
𝑡7(𝑥1)𝑡7(𝑥2)𝜈𝜋(1 − 𝜌2)1/2

(
1 +

𝑥21 + 𝑥22 − 2𝜌𝑥1𝑥2
𝜈(1 − 𝜌2)

)−(𝜈+1)/2

,

where 𝜃 = (𝜌, 𝜈), 𝑥1 = 𝑇−1
𝜈 (𝑢1), 𝑥2 = 𝑇−1

𝜈 (𝑢2) and 𝑡𝜈 and 𝑇𝜈 are the density and distribution

functions of a univariate student t with 𝜈 degrees of freedom. Given the sample size, it is

difficult to estimate the degrees of freedom for each of the pair-copula, and we first fix 𝜈 = 7.

Table 2 reports the posterior means 𝐸(𝜌𝑡,𝑠∣𝒙), but only for pair-copulas where the posterior

probabilities pr(𝛾𝑡,𝑠 = 1∣𝒙) > 0.5. The resulting pattern is sparse, indicating a Markovian

structure with varying order; for example, at time 𝑡 = 22 the order is 1, while at 𝑡 = 21 the

order is 6. However, even when the order is longer, serial dependence is still specified in a

parsimonious fashion. For example, even though at time 𝑡 = 15 the order is 14, there are

only 4 previous periods that affect the value of 𝑋15, conditional upon the previous values.

At all times of the day 𝐸(𝜌𝑡,𝑡−1∣𝒙) > 0, capturing strong positive dependence between 𝑋𝑡

and 𝑋𝑡−1; something that has been noted in previous analyses.
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—–Tables 2 and 3 about here—–

Table 3 shows the proportion of times different transitioning occured for all indicators

during estimation via both SS1 and SS2. Ignoring minor computations, SS2 involves 1.45

times as many evalutions of the likelihood as SS1. This transfers directly into increased

execution speed, as confirmed in Table 3, with SS2 taking 1.47 times as long to complete

1000 sweeps the sampling scheme as SS1.

The sample size of this data are moderate relative to the length of the longitudinal

vector. It this situation pair-copula selection has the potential to impact substantially on

the estimated dependence structure. To study this, we estimate the same longitudinal model,

but without selection. Figure 3 plots the difference between the posterior means 𝐸(𝜏𝑡,𝑠∣𝒙)

obtained with no selection, and those obtained with selection. The differences are substantial,

and the impact on the estimated dependence structure of selection is considerable in this

case.

—–Figure 3 about here—–

We also relax the t copula specification, and allow the degrees of freedom 𝜈𝑡,𝑠 for each

pair-copula to vary. Uninformative priors lead to wide posterior distributions for 𝜈𝑡,𝑠, with

the sample size here being insufficient to yield tight intervals. Therefore, we assume an

informative prior 𝜈𝑡,𝑠 ∼ 𝑁(9.5, 1.52), constrained so that 𝜈𝑡,𝑠 > 5. As before pr(𝛾𝑡,𝑡−1 =

1∣𝒙) ≈ 1 throughout, and the other pair-copulas that are identified as dependent is largely

unchanged. Figure 4 plots the posterior means 𝐸(𝜈𝑡,𝑠∣𝛾𝑡,𝑠 = 1,𝒙) for those pair-copula that

are likely to be dependent with pr(𝛾𝑡,𝑠 = 1∣𝒙) > 0.5.

—–Figure 4 above here—–

For comparison, we also estimate the dependence structure using Gaussian pair-copulas.

A similarly sparse structure is determined, with 57 indicators with posterior probabilities
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pr(𝛾𝑡,𝑠 = 1∣𝒙) > 0.5, compared to 52 for the 𝑡7 pair-copula model. Again, pr(𝛾𝑡,𝑡−1 = 1∣𝒙) ≈ 1

throughout.

The pair-copula analysis is more flexible than that by Diggle et al. (1994), who assume a

parametric time series model, and also that by Smith and Kohn (2002). The latter authors

assume a normalilty, where selection is considered for the non-fixed elements of the Cholesky

factor of the disturbance precision matrix. When Gaussian pair-copulas are employed, a zero

at the (𝑡, 𝑠)th element of the Cholesky factor corresponds to an independence copula 𝑐𝑡,𝑠 = 1

in the decomposition at (2.4). However, for a Gaussian analysis of the cow liveweight data,

the pattern found in the Cholesky factor does not match exactly that found using Gaussian

pair-copulas because of the different prior structures employed in the two approaches.

5.2 New South Wales Intraday Electricity Load

Modelling and forecasting electricity load at an intraday resolution is an important problem

faced by all electricity utilities; see Soares and Medeiros (2008) for a recent discussion.

When observed intraday, load has strong daily, weekly, and yearly periodic behaviour, along

with meteorologically induced variation (Harvey and Koopman, 1993). Numerous models

have been proposed for intraday load, but some of the most successful are longitudinal

(Ramananthan et al. 1997; Cottet and Smith, 2003). We model electricity load in the

Australian state of New South Wales (NSW) observed every two hours between 2 January

2002 and 27 June 2005. The data were used previously by Panagiotelis and Smith (2008),

who employ a longitudinal model with multivariate Gaussian disturbances over the day.1

We also use a longitudinal model, but where the intraday dependence is captured by a more

flexible pair-copula formulation.

For every two hour period (𝑡 = 1, . . . , 12) electricity load 𝐿𝑖,𝑡 on day 𝑖 is modelled with

1The data are currently available at URL works.bepress.com/michael smith/
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the marginal Gaussian regression

𝐿𝑖,𝑡 = 𝛼1
𝑡 + 𝛼2

𝑡 𝑖 + 𝛽 ′
𝑡𝑍𝑖,𝑡 + 𝛼3

𝑡 ∣𝑇𝑖,𝑡 − 18.3∣ + 𝜖𝑖,𝑡 , 𝜖𝑖,𝑡 ∼ 𝑁(0, 𝜎2
𝑡 ) . (5.1)

Here, 𝛼1
𝑡 and 𝛼2

𝑡 measure level and linear time trend and 𝑍𝑖,𝑡 is a design matrix for the 12 sea-

sonal polynomials and 14 day type dummy variables listed in Panagiotelis and Smith (2008).

The effect of air temperature2 𝑇𝑖,𝑡 is nonlinear with a minimum at 18.3C (65F), which is a

commonly employed functional form in the demand modelling literature (Pardo, Meneu and

Valor, 2002). Each marginal model is estimated using using maximum likelihood. Residual

plots show that the marginal models remove the strong signal in the load data and quantile

plots indicate that the marginal Gaussian assumption in equation (5.1) is appropriate.

To account for the strong intraday correlation a pair-copula decomposition with 𝒙𝑖 =

(𝐿𝑖,1, . . . , 𝐿𝑖,12)
′ is used, where the first element corresponds to load at 03:30, which is the

approximate time of the overnight low in demand. Figure 5 contains the results when

Gaussian pair-copulas are employed with Bayesian selection. Panels (a) and (b) contain

the Monte Carlo estimates of pr(𝛾𝑡,𝑠 = 1∣𝒙) and corresponding posterior means 𝐸(𝜏𝑡,𝑠∣𝒙),

for (𝑡, 𝑠) ∈ ℐ. The results show that there is strong positive dependency between load at

time 𝑡 and the previous time 𝑡 − 1, with pr(𝛾𝑡,𝑡−1 = 1∣𝒙) ≈ 1 throughout. Nevertheless,

the dependence structure is sparse, with pr(𝛾𝑡,𝑠 = 1∣𝒙) < 0.75 for 33 of the 66 pair-copulas.

Panel (c) depicts the differences in posterior means 𝐸(𝜏𝑡,𝑠∣𝒙) with and without selection.

While selection perturbs the dependence structure, it does not do so as substantially as for

the liveweight data. This is because the sample size 𝑛 = 1096 is large relative to the length

of the longitudinal vector.

—–Figures 5 and 6 about here—–

Only four pair-copula in Figure 5(b) capture negative dependence, which is only minor

2The temperature 𝑇𝑖,𝑡 is ambient air temperature in degree centigrade at Bankstown airport in western
Sydney, which is the considered the centroid of demand in NSW by regulators.

22



with 𝐸(𝜏3,1∣𝒙) = −0.03, 𝐸(𝜏6,4∣𝒙) = −0.13, 𝐸(𝜏9,1∣𝒙) = −0.03 and 𝐸(𝜏12,8∣𝒙) = −0.04.

Therefore, we also employ the Gumbel and Clayton pair-copulas, which restrict dependence

to be positive. We compute posterior inference in both cases, and Figure 6 contains the

equivalent plots as those produced for the Gaussian pair-copula. As before, strong depen-

dencies between loads at time 𝑡 and 𝑡−1 are captured with these two pair-copulas, although

the dependence structure is more sparse in both cases than with the Gaussian pair-copula.

To judge the adequacy of the different parametric copula fit we employ the diagnostic

based on the distribution of the sum discussed in Section 3.3. However, as our empirical

benchmark we employ the copula data 𝑢𝑖,𝑡 = Φ((𝐿𝑖,𝑡 − �̂�𝑖,𝑡)/𝜎𝑡), computed over a 210 day

long forecast period 3 January to 31 June 2005, so that 𝑖 = 𝑛, . . . , (𝑛+ 210). These are the

marginal predictive distributions with parameter values estimated from the in-sample data,

but evaluted at the out-of-sample data points.

Figure 7 plots KDEs constructed from the thinned Monte Carlo samples of 𝑆 for each of

the three different pair-copulas considered. For comparison, also plotted is the distribution

of 𝑆 based on an assumption of independence and also that observed empirically over the

forecast period. Ignoring the intraday dependence in the data leads to substantial under-

statement of future variation in the sum. This translates directly into an under-statement

in the variation of future daily total load, a quantity that is also important to electricity

utilities. All three pair-copula models improve substantially on this benchmark. However,

the Gaussian and Gumbel pair-copula models provide better forecasts than the Clayton

pair-copula, which results in forecasts of the sum that are biased upwards markedly.

—–Figures 7 and 8 about here—–

Intraday forecasts of electricity load are essential for effective system management by

electricity utilities. Forecasts for peak periods are made at mid-morning, and are typically

much more accurate than those made prior to 06:00. Such forecasts can be constructed

using a longitudinal model by evaluating the distribution 𝐹 (𝐿𝑖,12, . . . , 𝐿𝑖,ℎ+1∣𝐿𝑖,ℎ, . . . , 𝐿𝑖,1)
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for a horizon ℎ in the mid-morning. Here, we select ℎ = 4, which corresponds to 09:30,

and evaluate the conditional distribution with the model parameters integrated out with

respect to their posterior by appending Algorithm 2 to the end of the sampling scheme,

but skipping Steps (1) and (2) for 𝑡 ≤ ℎ. Figure 8 provides plots of the estimated marginal

predictive densities 𝑓(𝐿𝑖,𝑡∣𝐿𝑖,4, . . . , 𝐿𝑖,1) for 𝑡 = 6 (13:30) and 𝑡 = 8 (17:30) on 3 January 2008,

which correspond to peak demand times. Unlike the earlier examples, selection has only a

small impact, although pair-copula choice makes a great deal of difference, highlighting the

importance of the type of pair-copula construction in longitudinal models.

6 Discussion

We argue in this paper that pair-copula constructions, and in particular the D-vine, are

particularly suitable for the modeling of longitudinal data. This is unlike the more gen-

eral graphical models case, where an ordering of the margins is required for a pair-copula

decomposition. Our approach extends the current literature on covariance modeling for lon-

gitudinal data from the Gaussian case (Smith and Kohn, 2002; Huang, Liu, Pourahmadi

and Liu 2006; Levina, Rothman and Zhu, 2008) to a wide range of non-Gaussian situations.

Moreover, it extends the approach where general multivariate copula are employed to model

longitudinal data (Meester and MacKay, 1994; Lambert and Vandenhende, 2002; Sun, Frees

and Rosenberg, 2008) to fully exploit the time-ordering of the data. A paper close to ours in

objective is Ibragimov and Lentzas (2008), who also develop multivariate copulas for time

series data from a sequence of bivariate copulas for a Markov process. However, the copula

constructed is not recognisable as a D-vine, and it is not clear how to compute inference for

the resulting multivariate copula.

A Bayesian formulation is particularly appropriate for computing inference when the data

have the potential to exhibit Markovian properties, by allowing rapid exploration of the high

dimensional model space. Nevertheless, penalised maximum likelihood (Huang et al., 2006)

24



or LASSO style estimators (Levina et al., 2008) are alternative shrinkage and covariance

selection methods that also have potential for the efficient computation of inference for the

pair-copula decomposition. Last, Pitt, Chan and Kohn (2006) suggest a Bayesian approach

for covariance selection when using a Gaussian copula. Our approach extends Bayesian

analysis to the more flexible pair-copula family when the data are longitudinal.
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Appendix A

To prove the Lemma in Section 2, note that

𝐹 (𝑥1∣𝑥2, 𝑦) =

∫ 𝑥1

0

𝑓(𝑧1∣𝑥2, 𝑦)d𝑧1

=

∫ 𝑥1

0

∂2

∂𝑧1∂𝑥2
𝐹 (𝑧1, 𝑥2∣𝑦)d𝑧1 1

𝑓(𝑥2∣𝑦) .

Now because 𝐹 (𝑧1, 𝑥2∣𝑦) = 𝐶(𝐹 (𝑧1∣𝑦), 𝐹 (𝑥2∣𝑦); 𝜃),

∫ 𝑥1

0

∂2

∂𝑧1∂𝑥2
𝐹 (𝑧1, 𝑥2∣𝑦)d𝑧1 =

∂

∂𝑥2
𝐶(𝐹 (𝑥1∣𝑦), 𝐹 (𝑥2∣𝑦); 𝜃) ,

so that:

𝐹 (𝑥1∣𝑥2, 𝑦) =
∂

∂𝑢2
𝐶(𝐹 (𝑥1∣𝑦), 𝐹 (𝑥2∣𝑦); 𝜃) ∂

∂𝑥2
𝐹 (𝑥2∣𝑦) 1

𝑓(𝑥2∣𝑦)
=

∂

∂𝑢2
𝐶(𝑢1, 𝑢2; 𝜃) .

Appendix B

Dropping the subscripts for notational convenience, each pair (𝜃, 𝛾) is generated using a

MH step in Section 3.2. The new iterate (𝜃new, 𝛾new) is accepted over the old (𝜃old, 𝛾old) with

probability min(1, 𝛼𝑅), where 𝑅 is an adjustment due to any bounds on the domain of

𝜃. Denoting the conditional prior at equation (3.1) for the case when 𝛾 = 1 as 𝜋1, and

𝜋0 = 1− 𝜋1. If the likelihood in Section 2.3 is denoted as a function of the element (𝜃, 𝛾) as
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𝐿(𝜃, 𝛾) then 𝛼 can be computed in four different cases as:

𝛼00 ≡ 𝛼
(
(𝛾old = 0, 𝜃old) → (𝛾new = 0, 𝜃new)

)
=

𝜋(𝜃new)

𝜋(𝜃old)

𝛼01 ≡ 𝛼
(
(𝛾old = 0, 𝜃old) → (𝛾new = 1, 𝜃new)

)
=

𝐿(𝜃new, 𝛾new = 1)𝜋(𝜃new)𝜋1

𝐿(𝛾old = 0)𝜋(𝜃old)𝜋0
× 𝑞1(0)

𝑞1(1)

𝛼10 ≡ 𝛼
(
(𝛾old = 1, 𝜃old) → (𝛾new = 0, 𝜃new)

)
=

𝐿(𝛾new = 0)𝜋(𝜃new)𝜋0

𝐿(𝜃old, 𝛾old = 1)𝜋(𝜃old)𝜋1
× 𝑞1(1)

𝑞1(0)

𝛼11 ≡ 𝛼
(
(𝛾old = 1, 𝜃old) → (𝛾new = 1, 𝜃new)

)
=

𝐿(𝜃new, 𝛾new = 1)𝜋(𝜃new)

𝐿(𝜃old, 𝛾old = 1)𝜋(𝜃old)
.

The likelihood 𝐿 is not a function of 𝜃 when 𝛾 = 0, while 𝐿(𝜃, 𝛾 = 1) = 𝐿(𝜃, 𝛾 = 1). If the

prior for 𝜃 is uniform, as is the case in much of our empirical work, 𝜋(𝜃new)/𝜋(𝜃old) = 1. If 𝜃

is constrained to the domain (𝑎, 𝑏), the factor

𝑅 =
𝑇𝑑((𝑏− 𝜃old)/𝜏) − 𝑇𝑑((𝑎− 𝜃old)/𝜏)

𝑇𝑑((𝑏− 𝜃new)/𝜏) − 𝑇𝑑((𝑎− 𝜃new)/𝜏)
,

where 𝑇𝑑 is the distribution function of a standard t𝑑 distribution. Note that the likelihood

is not computed in the evaluation of 𝛼00, and that with this proposal 𝛼00 = 1. Therefore, the

more frequently this case arises, the faster the estimation. For SS1, the choice of 𝑞1 further

simplifies 𝛼01 = 𝐿(𝜃new, 𝛾new = 1)𝜋1/𝐿(𝛾old = 0)𝜋0, while 𝛼10 = 𝐿(𝛾new = 0)𝜋0/𝐿(𝜃old, 𝛾old =

1)𝜋1. For the choice of 𝑞1 in SS2, 𝛼01 = 𝐿(𝜃new, 𝛾new = 1)/𝐿(𝛾old = 0) and 𝛼10 = 𝐿(𝛾new =

0)/𝐿(𝜃old, 𝛾old = 1).
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Transition SS1 SS2
𝛾old = 0 → 𝛾new = 0 64.3% 49.7%
𝛾old = 0 → 𝛾new = 1 4.3% 4.2%
𝛾old = 1 → 𝛾new = 0 4.3% 4.2%
𝛾old = 1 → 𝛾new = 1 27.1% 41.9%

Execution Time 180 mins 264 mins
per 1000 Sweeps

Table 3: Percentage of times the four possible transitions occured in all the Metropolis-
Hastings steps for the cow liveweight data. Results are reported for the differing proposal
densities given by SS1 and SS2. Execution time (in serial on a standard Intel chip) per 1000
sweeps of the sampling scheme is also given.
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𝑢2∣1
𝑢1∣2

} {
𝑢3∣2
𝑢2∣3

} {
𝑢4∣3
𝑢3∣4

}
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

{
𝑢𝑇−2∣𝑇−3

𝑢𝑇−3∣𝑇−2

} {
𝑢𝑇−1∣𝑇−2

𝑢𝑇−2∣𝑇−1

} {
𝑢𝑇 ∣𝑇−1

𝑢𝑇−1∣𝑇

}
↓ ↙ ↓ ↙ ↓ ↙ ↓ ↙ ↓ ↙{

𝑢3∣1
𝑢1∣3

} {
𝑢4∣2
𝑢2∣4

} {
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}
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𝑢𝑇−2∣𝑇

}
↓ ↙ ↓ ↙ ↓ ↙ ↓ ↙{

𝑢4∣1
𝑢1∣4

} {
𝑢5∣2
𝑢2∣5
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}
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

{
𝑢𝑇 ∣𝑇−3

𝑢𝑇−3∣𝑇

}
↓ ↙ ↓ ↙ ↓ ↙
...

...

↓ ↙{
𝑢𝑇 ∣1
𝑢1∣𝑇

}

Figure 1: The dependencies between {𝑢𝑡∣𝑗, 𝑢𝑗∣𝑡} values resulting from both the forward and
backwards recursions of Algorithm 1. Directed arcs indicate that perturbing the values at
the origin node affects the values at the terminal node.
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Figure 2: Simulation design and results for estimator E1, with the three columns of panels
corresponding to models A, B and C, respectively. Panels (a)-(c) plot the true values of 𝜏𝑡,𝑠
for the models in each row 𝑡 and column 𝑠 of each panel. Panels (d)-(f) plot the values of 𝑃𝑡,𝑠

defined in Section 4 in row 𝑡 and column 𝑠 of each panel. Panels (g)-(i) plot the estimated
bias values �̂�(𝜏𝑡,𝑠) in row 𝑡 and column 𝑠 of each panel.
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Figure 3: Difference in the posterior means of Kendall’s tau measure under the full model
minus the model with selection for the cow liveweight data fit with t7 pair-copula. The
number in row 𝑡 and column 𝑠 corresponds to pair-copula 𝐶𝑡,𝑠.
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Figure 4: The posterior means 𝐸(𝜈𝑡,𝑠∣𝛾𝑡,𝑠 = 1,𝒙) for the t pair-copula with varying degrees
of freedom fitted to the cow liveweight data. Only those posteriors with pr(𝛾𝑡,𝑠 = 1∣𝒙) > 0.5
are reported, indicating the likely pattern of serial dependence. The number in row 𝑡 and
column 𝑠 corresponds to pair-copula 𝐶𝑡,𝑠.
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Figure 7: Distributions of 𝑆 for the NSW electricity load example. The solid line corre-
sponds to an assumption of intraday independence, while the distribution of the empirically
observed data is given by the dashed (red) line. The distributions corresponding to the three
parametric pair-copula models are also shown with line types (colours) as indicated.
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Figure 8: Intraday forecasts for electricity load on 3 January 2008. Panel (a) is for load
at 13:30, while panel (b) is for load at 17:30, with both forecasts made conditional on load
observed up to 09:30. Three different pair copulas were employed, and solid lines correspond
to forecasts with selection and dashed lines without. The horizontal lines mark the actual
load observed.


