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Chapter 1

Bayesian Inference for D-vines: Estimation and Model
Selection

Claudia Czado and Aleksey Min

Technische Universitat Minchen, Zentrum Mathematik,
Boltzmannstr. 3, 85747 Garching, Germany
cczado@ma.tum.de*

During the last two decades the advent of fast computers has made
Bayesian inference based on Markov Chain Monte Carlo (MCMC) meth-
ods very popular in many fields of science. These Bayesian methods are
good alternatives to traditional maximum likelihood (ML) methods since
they often can estimate complicated statistical models for which a ML
approach fails. In this paper we review available MCMC estimation
and model selection algorithms as well as their possible extensions for a
D-vine pair copula constructions (PCC) based on bivariate ¢—copulas.
However the discussed methods can easily be extended for an arbitrary
regular vine PCC based on any bivariate copulas. A Bayesian inference
for Australian electricity loads demonstrates the addressed algorithms
at work.

1.1. Introduction

Pair copula constructions (PCC) for multivariate copulas have been suc-
cessful in extending the class of available multivariate copulas (see Fischer
et al. (2007) and Berg and Aas (2008)). Estimation of the corresponding
copula parameters has been done so far using maximum likelihood (ML).
However the number of parameters of a PCC model to be estimated can
be considerable. So far it is facilitated by numerical optimization of the log
likelihood to obtain ML estimates.

For inference purposes one needs to have reliable standard error esti-
mates for the estimated parameters. The standard approach for this is to
impose regularity conditions such that asymptotic normality of the param-
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eter estimates holds and to approximate the estimated standard errors by
evaluating numerically the Hessian matrix. However for large parameter
vectors this evaluation is time consuming and its reliability is unclear. In
addition numerical estimates of the Hessian matrix might result in non pos-
itive definite matrices yielding negative variance estimates. Out of these
reasons Min and Czado (2008) started to investigate Bayesian inference for
PCC models based on Markov Chain Monte Carlo (MCMC) methods (see
Metropolis et al. (1953) and Hastings (1970)). Bayesian inference has the
advantage of providing natural interval estimates based on the posterior
distribution and does not rely on asymptotic normality. In addition the
Bayesian approach is able to incorporate prior information which might be
available from the data context or previous data analyses.

Min and Czado (2008) developed and implemented Bayesian MCMC
algorithms for D-vines based on pair t—copulas. While this solved the
problem of obtaining reliable interval estimates for parameters needed for
inference purposes, the problem of model selection needed to be approached.
The gain of flexibility using PCC is huge, however the problem which PCC
model to choose becomes important. In particular Morales-Napoles et al.
(2008) have shown that the number of PCC models even in small dimensions
can be enormous, so it is impossible to fit all models and compare them.
Therefore efficient model selection strategies are needed. While Heinen
and Valdesogo (2008) approached this problem by using truncated PCC
constructions, Min and Czado (2009) approached the problem of reducing
a chosen PCC by using reversible jump (RJ) MCMC methods suggested
by Green (1995) and successfully applied to search large model spaces as
is needed in PCC’s. The purpose of this paper is to give an overview of
these Bayesian estimation and model selection procedures and illustrate
their usefulness in a data set involving Australian electricity loads from
Czado et al. (2009).

The proposed methodology is developed for data transformed to the
copula level, i.e. for data living on the multivariate unit cube. We will use
a parametric and nonparametric approach to create the copula data used
for illustration. We have chosen this data set to facilitate comparison of
two step estimation procedures to the joint estimation procedure of Czado
et al. (2009) and Gértner (2008). For this data set it turns out that two
step estimation procedures are nearly as efficient as the joint estimation
procedure, thus making the extra effort required for the joint estimation
less needed.

The paper is organized as follows. In Section 1.2 we briefly consider
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a general D-vine decomposition for a multivariate density. Section 1.3
presents the likelihood of D-vine PCC’s based on t—copulas. In Section
1.4 we survey MCMC estimation and model selection algorithms as well as
their possible extensions for a D-vine PCC based on t—copulas. Sections
1.5 and 1.6 illustrates the discussed MCMC methods in the Bayesian anal-
ysis of Australian electricity loads from Czado et al. (2009). In Section 1.7
we summarize our findings and discuss further open problems as well as
future research directions.

1.2. D-vine

Using Sklar’s theorem in d dimensions multivariate distributions on R¢ with
given margins can be easily constructed. However this general approach
does not provide a solution for the construction of flexible multivariate
distributions. In this section we give such a construction proposed first by
Joe (1996), organized by Bedford and Cooke (2002) and applied to Gaussian
copulas only. Later Aas et al. (2007) used bivariate Gaussian, ¢, Gumbel
and Clayton copulas as building blocks to increase model flexibility.

Let f(z1,...,2zq) be a d—dimensional density function and c(uy, ..., uq)
be the corresponding copula density function. For a pair of integers r and
s (1 <r <s<d) asetr:s denotes all integers between r and s, namely
r:s = {r...,s}. If r > s then r : s = @. Further let X,.; denote
the set of variables {X,,..., X} and U|r:s denote a conditional cumulative
distribution function (cdf) Fj,.s(us|u,.s). It is well known that the density
f(z1,...,24) can be factorized as

f(xy, .. za) = fa(za) - fam1ja(®a-1]Ta) - fa—2)(a—1)a(Ti—2|Ta—1,2aq)

X ...'f1|2...d($1|$2,...,.13d). (11)

The above factorization is a simple consequence from the definition of con-
ditional densities and is invariant with respect to permutation of the vari-
ables.

The second factor fg_1j4(24—1|r4) on the right hand side of (1.1) can
be represented as a product of a copula density and the marginal den-
sity fq(xq) in the following way. Consider the bivariate density function
Ja—1a(®q—1,2q) with marginal densities fy_1(zq—1) and fq(zq), respec-
tively. Using Sklar’s theorem for d = 2, we have that the conditional
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density fq_1ja(rq—1|rq) is given by

Ja—1ja(®a-1]zq) = f(d—l);d((xxdd)hxd)

= c(a-1ya(Fa-1(za-1), Fa(za)) - fa-1(za-1). (1.2)

Similarly, the conditional density fq_sj(a—1)a(Td—2|Ta—1,7q) is given by

Jia—2)(a—1)|d(Td—2, Ta—1]7q)
fd72\(d71)d(53d—2|53d—17xd) = fd—l\d(md71|xd)

= c(a-2)(d-1)d(Fa-2ja(Ta—2|2a), Fa—1ja(Ti-1]Ta))
Ja—21a(Ta—2|rq)

= C(d-2)(d—1)|d(Ud—2|d, Ya—1|d) - C(d—2)a(Td—2,Ta) - fa—2(Ta—2). (1.3)

X

The copula density c(q—2)(d—1)ja(-, ) is the conditional copula density corre-
sponding to the conditional distribution F(g_2)(a—1)|d(Td—2,Za—1|7aq). Fur-
ther Fy_;q(q—i|zq) is the conditional distribution function of z4_; given
xq for i = 1,2. Note that in general the conditional copula density
c(a—2)(d—1)|a(Fa—21a(za—2|7a), Fy_1)a(xa—1|T4)) depends on the given con-
ditioning value z4. By induction the jth factor (j = 4,...,d) in (1.1) is
given by

fing-n (@i x1-1))

= c1j)2:—1) (U12:(5-1) Uj2:(5-1)) * Ji12:5-1) (T [X2: (1))

j—2
= H Ctj|(t+1)¢(j*1)<ut|(t+1)i(j*1)7uﬂ(t+1)=(i*1))

t=1
x ey (wj—1,u5) - fi (@) (1.4)

Thus we can represent each term on the right hand side of (1.1) as the
product of the corresponding marginal density and copula density terms.
Combining (1.2)—(1.4), expression (1.1) can be rewritten as

d j—1
f(we,... 2q) = H f(It)XH H C(t41):Gi—1) (Wt | (t41): G=1) > Uj | (£41):G—1) ) -
t=1 j=21t=1

(1.5)
The density f(x1,...,24) is the product of d marginal densities and
d(d — 1)/2 pair copula density terms. The pair copula density terms are
unconditional copulas evaluated at marginal distribution function values or
conditional copulas evaluated at univariate conditional distribution func-
tion values. The above construction was defined in Aas et al. (2007) and
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was called the D-vine pair copula construction (PCC) for multivariate dis-
tributions.

1.3. D-Vines PCC based on t—copulas

From now on, we use as building pair copulas of the PCC model (1.5)
bivariate t—copulas. However the estimation and model selection method-
ology is generic and applies much more widely. Further we assume that the
margins of X are uniform. This is motivated by the standard two step semi-
parametric copula estimation procedure suggested by Genest et al. (1995),
where approximate uniform margins are obtained by applying the empirical
probability integral transformation to standardized fitted residuals based on
specified marginal models.

The bivariate t—copula (see e.g. Embrechts et al. (2003)) has 2 parame-
ters: the association parameter p € (—1,1) and the df parameter v € (0, 00)
and its density is given by

v41

2 2 —
regre) (] es))
C(u17u2|l’>p): 1 2[F(V+1)}2 ’ 24072 ZE
— P — r{+xi—2pT172
? (1 )
where z; = t,1(u;) for i = 1,2 and ¢, !(-) is a quantile function of a

t—distribution with v degrees of freedom. Specifying the pair copulas and
assuming uniform margins, the conditional distribution function for a bi-
variate t—copula are needed. It is called the h—function for the t—copula
with parameters p and v, and Aas et al. (2007) derive it as

t, (ur) — pt,t (ug)

\/(u+(tyl(u2>)2)<1—p2>

v+1

h(uq|ug, p,v) = ty41 (1.6)

The D-Vine PCC (1.5) with building bivariate t—copulas depends now
on a d(d — 1) dimensional parameter vector 8 given by

0= (,0127 V12, P23,V23; - - - P1d|2:(d—1)> V1d|2:(d71))t7

where pgj|(141):(j—1) and Vjj41):(j—1) are parameters of the t—copula den-
Sity ¢t (t+1):i—1) (- ) for j = 2,...,dand t = 1,...,j—1. As already noted
in Min and Czado (2008) the likelihood ¢(u|@) of the D-vine copula for N
d—dimensional realizations u := (uy,...,uy) of U:= (Uy,...,Uy)t can be
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calculated as

N d-1
c(ul@) = H {HC(ui,nvui+1,n|pi(i+1)7Vi(i+1)) (1.7)
n=1 =1
d—1d—j
X H H c (Uj—l,Qi—l,n7Uj—l,Qi,n|Pi(i+j)\(i+1):(i+j—1)aVi(i+j)|(i+1):(i+j—1)) },
j=21i=1

where forn=1,...,N

V11,0 = h(U1n|ugn, p12, V12)

U1,2i,n = h(uz+2,n|ui+l,n; P(i+1)(i+2)> V(i+1)(i+2))a i=1,...,d—3,
V1 2i41,n = P(Wit1,n|Wit2,m, Pit1)(42)s Vit1)(i42)) T =1,...,d =3,
V1,2d—4,n = h(ualua—1, pa—1yas V(a—1)d)

Vi1 1= h(Uj—1,10[Vi- 1,20, P1(14) 125> VI )[25) T =250 d =2,

Vj,2i,n

= h(vj—1,21'+2,n|Uj—1,2i+1,n7 Pi(i+7)|(i+1):(i4+5—1)> Vi(i+j)|(i+1):(i+j—1))
for d>4,j7=2,...,d—3 and i=1,....,d—j—2

Vj,2i4+1,n

= h(Vj—1,2i+1,n|Vj—1,2i+2,n, Pi(i+5)|(i+1):(i45—1)> Vz‘(i+j)|(i+1):(i+jfl))
for d>4, j=2,...,d—3 and i=1,...,d—j—2

Vj,2d—25—-2,n

= h(Uj71,2d72j,n|'Uj71,2d72j71,na P(d—j)d|(d—j+1):(d—1)> V(dfj)d|(d7j+1):(d71))
for j=2,...,d—2.

Note that vj2; , and v; 9,41, in (1.7) are jth fold superpositions of the
h-function (1.6).

1.4. Bayesian inference for D-vine PCC based on t—copulas

Estimation of D-vine PCC’s in a MCMC framework is straightforward and
similar to estimation of any multivariate distribution with many parame-
ters. The nature of parameters defined by the specific choice of the copula
family should be taken into account. In contrast to multivariate density
functions the arguments in a conditional D-vine density term is a com-
plicated function of arguments and the parameters of earlier pair D-vine
densities. This makes the evaluation of the log likelihood time consum-
ing. Further the parameter update of PCC’s is usually performed by a

czado-min
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Metropolis-Hastings (MH) algorithm (see Metropolis et al. (1953) and Hast-
ings (1970)).

Min and Czado (2008) develop and implement one such MCMC algo-
rithm for the estimation of parameters of PCC’s. They use noninformative
priors for p’s and v’s. Since estimation of df v is unstable for large true v’s,
its support should be restricted to some finite interval (1,U). A noninfor-
mative prior for each p results in a uniform distribution on (—1,1). There
are several other possibilities for the choice of priors for v. Thus Czado
et al. (2009) use a Cauchy distribution while Dalla Valle (2007) utilizes a
truncated Poisson distribution. Joe (2006) developed a uniform prior on the
space of positive definite correlation matrices, which imply different beta
priors for corresponding partial correlations arising from a D-vine. This
alternative prior choice has been used in Czado et al. (2009).

There are also several choices of the proposal distributions needed for
the MH algorithm. Min and Czado (2008) use a modification of a ran-
dom normal walk proposal, which is a normal distribution truncated to
the support of parameters. Variances of normal distributions are tuned to
achieve acceptance rates between 20% and 80% as suggested by Besag et al.
(1995). Another choice is an independence proposal distribution which is
independent of the current value of the sampled parameter. A common
independence proposal is a normal distribution with the same mode and
inverse curvature at the mode as the target distribution described for exam-
ple in Gilks et al. (1996). This has been used in Czado et al. (2009) for the
joint MCMC estimation of marginal AR(1) and D-vine copula parameters.
Generalizations of the normal independence proposal using t—distribution
with low degrees of freedom v, say ¥ = 3 or v = 5, are also often used.

The number of pair copulas n., = d(d—1)/2 in (1.7) increases quadrati-
cally with dimension d of the data. However if independence or conditional
independence is present in data then the number of factors in (1.7), respec-
tively, may reduce drastically. This (conditional) independence is charac-
terized by a unit pair copula density. Therefore the first task on model
selection for D-vine PCC’s is to determine its non-unit pair copula terms.
Min and Czado (2009) derive and implement a reversible jump (RJ) MCMC
of Green (1995). The algorithm by Green (1995) allows to explore a huge
number of models since only visited models will be fitted. Therefore it is
well accepted by the Bayesian community though its derivation and imple-
mentation for a particular problem are not simple tasks. Another model
selection approach by Congdon (2006) is discussed and utilized in Min and
Czado (2008). The recent approach of Congdon (2006) is easy implement
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but it compares only among prespecified models.

Key points of the RJ MCMC algorithm of Min and Czado (2009) are
an introduction of a model indicator vector of dimension n. and the RJ
mechanism for a model change. They associate models with subdecompo-
sitions of (1.7) consisting of k (1 < k < n) pair copula terms. To specify
the model indicator pair copulas in the full decomposition (1.7) has to be
ordered. Otherwise an identifiability problem occurs since PCC’s are in-
variant with respect to permutation of factors. According to the labeling of
Min and Czado (2009), for d = 4 the full decomposition for a multivariate
copula density is given as follows

c(ur, ug, us, U4) = (12€23C34C13|2C24|3C14|23;

where we omit arguments and parameters of pair copulas for brevity. The
model indicator my is given by a six dimensional vector (1,1,1,1,1,1),
where 1 indicates the presence of the corresponding pair copula term. If
now some pair copula terms are not present in the decomposition then the
corresponding ones are replaced by zeros. For example a model indicator
m = (1,1,1,1,1,0) corresponds to the subdecomposition c(uy, ug, ug, uyg) =
C12€23C€34C13)2C24)3 Without the last pair copula ci423.

Any RJ MCMC algorithm consists of so-called birth and death moves.
For birth moves the dimension of the model parameter increases while for
death moves the dimension decreases. Min and Czado (2009) derives accep-
tance probabilities for both moves in detail. As a proposal distribution for
the parameters of the sth pair copula they use a bivariate normal distribu-
tion Ng(éZILE, ¥s) truncated to (—1,1) x (1,U). Here éI:LE = (pie, ey
denotes the corresponding two dimensional sub-vector of the maximum
likelihood estimate (MLE) éML}E in the full model my. Note that there are
n. covariance matrices >4’s, which govern the reversible jump mechanism.
They are taken of the form X, = diag(o? ,,02 ), where diag(a,b) denotes

a diagonal matrix with a and b on the main diagonal.

m

1.5. Application: Australian electricity loads

In this section we illustrate the above discussed estimation algorithms for
the Australian electricity loads from Czado et al. (2009). We are solely in-
terested in estimating the dependence structure and therefore first marginal
AR(1)’s are fitted to extract independent i.i.d. residuals. Now copula data
for the Australian electricity loads can be obtained using empirical prob-
ability integral transformations or corresponding univariate normal cdf’s.
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Here we study both the nonparametric and parametric copula data. To
facilitate comparison to the models considered in Czado et al. (2009) we
now investigate the following PCC here and in the sequel:

c(uQ, un,uy,us) = CQN * CNV * CVS - CQV|N - CNS|V - cQs|Nv,  (1.8)

where the parameter dependence of each bivariate t—copula and their ar-
guments are dropped to keep the expression short. The subindexes @, N,V
and S correspond to Queensland, New South Wales, Victoria and South
Australia, respectively.

For both copula data we run the MH algorithm specified in Min
and Czado (2008) for 10000 iterations using Cauchy priors truncated to
(1,100) for the df parameter of each pair as in Gértner (2008), namely
7(v) < 1/[1 + (v —1)?/4]. The first 500 iterations are considered as burn-
in. Proposal variances were determined in pilot runs and resulted in ac-
ceptance rates between 23%-77% for all parameters after 10000 iterations.
Autocorrelations among the MCMC iterates suggested sub-sampling to re-
duce these correlations and every 10-th iteration was recorded. Table 1.1
summarizes the estimated posterior distributions for all parameters based
on the recorded iterations for both copula data. For comparison we also in-
clude the corresponding maximum likelihood estimates (MLE) given in the
last column of Table 1.1 as well as results of joint estimation using AR(1)
margins and the D-vine PCC model (1.8). In the joint MCMC estimation
of Czado et al. (2009) a slightly different prior for the p parameter has been
used.

For both copula data the Bayesian estimates of pov|n,pnsjv and
pos|nv are not credible at 5% level since the corresponding credible in-
tervals contain 0. They are also not credible at 10% level except for pov|n
when the parametric copula data is used. Posterior mode estimates of v’s
are larger than 10 only for pgy|n and pgg ny while it is smaller than 10
for vngy. At 95% credibility we conclude for both copula data that condi-
tional independence between loads of Queensland and Victoria given loads
of New South Wales as well as between loads of New South Wales and South
Australia given loads of Victoria are present. Therefore the decomposition
(1.8) can be reduced by pair copulas coy |y and cggnv. However it is dif-
ficult to decide from the above results, whether loads of New South Wales
and South Australia are conditionally independent given loads of Victoria.
More sophisticated Bayesian model selection procedures discussed in the
next section address this problem. For the parametric copula data pos-
terior mode estimates for df’s are usually higher then the corresponding
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Table 1.1. Estimated posterior mean, mode and quantiles of MCMC as well as
MLE of copula parameters for the copula data obtained from the preprocessed
Australian load data using Cauchy prior for v’s truncated to (1, 100).

[ Copula [ 2.5% 5%  50%  95% 97.5% mean mode | MLE |
Nonparametric copula data
VoN 327 339 446 618  6.75 459 430 | 4.46
VNV 261 268 331 432 458 337 327 | 3.26
vvs 427 453 604 865 934 624 579 | 624
vovinN || 10.29 1150 2838 79.72 8849 34.31 22.33 | 51.80
UNS|V 4.96 527 756 1263 1464 813 692 | 7.73
VQS|NV 8.74 10.01 21.62 73.13 83.50 2841 17.61 | 32.18
pQN 024 025 030 035 036 030 031 | 031
PNV 028 029 035 040 041 035 035 | 035
PV s 053 053 057 060  0.61 057 057 | 0.57
povin || —0.02 —0.01  0.03 008  0.09 003 003 | 0.03
pNs|v || —0.04 —0.03  0.03 0.8 009 003 0.03 | 0.03

PQS|INV -0.03 —0.02 0.03 0.08 0.08 0.03 0.03 | 0.03

Parametric copula data

voN 504 531 724 1048 1143 748 692 | 7.32
YNV 408 424 550 7.62  7.96 566 533 | 552
vvs 6.79 7.6 1072 18.03 2022 1143  9.99 | 11.17

VQVIN 13.71 1525 31.13 7832 86.09 36.77 26.50 | 38.55

VNSV 573 615 841 13.34 1555 897  7.92 | 834

vosinv || 1249 1407 3011 7918  87.96  35.91  24.58 | 58.07
PON 027 028 033 038 038 033 033 | 033
PNV 032 033 038 043 044 038 038 | 0.39
pvs 053 054 057 060 061 057 057 | 057

poviN | —0.00 001 006 012 013 006  0.07 | 0.06

pnsiv || —0.03 —0.02 003 009 010 003 003 | 0.04

PQS|INV -0.03 —0.02 0.03 0.08 0.09 0.03 0.03 | 0.03

Joint estimation of marginal and copula parameters

VQN 5.17 5.45 7.37  11.72 12.71 7.80 6.92 | 7.32
UNV 4.11 4.26 5.57 7.65 8.60 5.76 5.36 | 5.52
vy s 7.08 7.69 11.45 24.29 29.68 12.89 10.23 | 11.17
VQV|N 15.01 16.28 36.89  84.56 91.77 41.44  29.80 | 38.55
VNS|V 4.20 4.73  14.25 78.22 93.44 22.84 11.60 | 8.34
VQSINV 12.32 14.58 34.43 78.22 86.81 38.94  29.00 | 58.07
PQN 0.27 0.28 0.34 0.38 0.39 0.34 0.34 | 0.33
PNV 0.33 0.35 0.40 0.45 0.45 0.40 0.40 | 0.39
PVS 0.54 0.55 0.59 0.62 0.63 0.59 0.59 | 0.57
PQV|N -0.01 -0.00 0.05 0.10 0.11 0.05 0.05 | 0.06
PNS|V —0.01 0.00 0.05 0.11 0.12 0.06 0.05 | 0.04

PQS|INV —-0.04 —0.03 0.02 0.07 0.08 0.02 0.03 | 0.03

one for the nonparametric copula data. Difference in estimates of p’s is
here negligible. Further we observe that the joint estimation of AR(1) mar-
gins and copula parameters gives results similar to ones for the parametric

czado-min
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copula data.

We now compare the two step estimation procedures (estimate mar-
gins first, then form standardized residuals and then transform to copula
data, either using nonparametric or parametric transformations) to the one
step estimation procedure using joint MCMC. For this comparison we see
that the credible intervals are similar for the two step parametric and joint
estimation procedure except for VNS|V- For the nonparametric two step
estimation procedure the posterior means and modes for the df parameters
are lower than for the parametric and joint estimation procedure, thus in-
dicating more heavy tailedness in the data than what is present. Here we
consider the joint estimation method as the most appropriate estimation
method, since the marginal residuals do not violate the marginal AR(1)
model assumption. Overall we see that the loss in efficiency is not huge if
one uses a two step estimation procedure compared to a joint estimation
procedure for this data set.

1.6. Bayesian model selection for the Australian electricity
loads

Based on simulations studies, Min and Czado (2009) have advocated to
use U = 20 as the upper limit of the prior distribution for v’s. Then the
model selection performance of RJ MCMC for PCC’s based on t—copulas
significantly increases. Here we follow their approach.

We run the MH algorithm Min and Czado (2008) to tune proposal
variances for the full PCC in (1.8). These tuned variances are used in
the stay move to update the corresponding new parameter values. For

the birth move we propose new values for 0y,,, s = 1,...,6 according to
the normal Ng(é:ZE, Y)) distribution truncated to (—1,1) x (1,U), where
érlzfem = (p¥=, M) denotes the corresponding two dimensional sub-

~MLE

vector of the ML estimate éiLfE in the full model my. The MLE 6, is
determined under the constraints —1 < p < 1 for p's and 1 < v < 20
for v’s. We consider two birth proposal covariance matrices X’s, namely
1 = diag(10%,100%) and ¥y = diag(0.12,3?) to investigate robustness of
the procedure. Further we use éiLfE and my as initial values for € and m,
respectively.

Note that there are 6 copula terms in (1.8) which can be present or
not in a model. Disregarding the model of complete independence this
gives that there are 63 = 26 — 1 models to be explored by the RJ MCMC
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Table 1.2. Estimated posterior model probabilities P, = ﬁ(Mk\data) of all 63
models for the nonparametric copula data obtained from the preprocessed Aus-
tralian load data using an empirical cdf’s. The model probabilities in the third and
fourth columns, and in the last fifth column are obtained using RJ MCMC and Con-
gdon’s approach, respectively. In parentheses the corresponding model probability
estimates for the parametric copula data obtained from the preprocessed Australian
load data are given. Further U = 20, 1 = diag(102,100%) and $2 = diag(0.12, 32).

Model Formula Pk
P! 3o Cong.
Mes: CQNCNVCVSCQV|N 0.001 0.000 0.002
m=(1,1,1,1,1,1) XCNS|VEQS|NV (0.000) | (0.000) (0.009)
Meo: CQNCNVCVSCQV|N 0.013 0.014 0.062
m=(1,1,1,1,1,0) XCcNs|v (0.054) | (0.065) (0.185)
Mego: CQNCNVCVSCQV|N 0.001 0.001 0.004
m=(1,1,1,1,0,0) (0) (0.000) (0.001)
Msg: CQNCNVCVS 0.022 0.025 0.090
m=(1,1,1,0,1,1) XCNS|VEQS|NV (0.012) | (0.011) (0.070)
Mps: CQNCNVCVS 0.923 0.933 0.710
m=(1,1,1,0,1,0) XCNS|V (0.933) | (0.923) | ( 0.726)
Ms7: CQNCNVCVSCQS|NV 0.001 0.000 0.003
m=(1,1,1,0,0,1) (0) (0.000) (0.000)
Msg: CQNCNVCVS 0.039 0.026 0.129
m=(1,1,1,0,0,0) (0.000) | (0.001) (0.009)
M;: 0 0 —
for ¢ # 63,62,60,...,56 (0) (0) =)

algorithm. We enumerate models by the binary representation. Thus the
full decomposition m = (1,1,1,1,1,1) in (1.8) corresponds to 63. If the
pair copulas cqy |y and cggyv are set equal to 1 then the corresponding
model vector is given by m = (1,1,1,0,1,0). This binary representation
corresponds to 58.

Table 1.2 displays estimated posterior probabilities for all possible 63
PCC models and for both copula data obtained from the preprocessed Aus-
tralian electricity loads based on 100000 iterations with burn-in of 10000.
For comparison the last column of Table 1.2 gives approximations to poste-
rior probabilities for the seven models based on the approach by Congdon
(2006). The implementation of Congdon’s algorithm is similar as presented
in Czado et al. (2009). Thus our RJ MCMC algorithm with U = 20 shows
that the PCC model without pairs cj;pjr and cgr|p has the highest esti-
mated posterior probability for both choices of ¥ independent of the trans-
formation used to obtain copula data. Congdon’s approach also supports
the above model though with less confidence. However Robert and Marin
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(2008) note that there might be considerable bias in Congdon’s method.

1.7. Summary and discussion

This paper review methods on Bayesian inference for D-vine PCC’s and
illustrates their use for a specific data set. The methodology can easily
be extended to cover any regular vine PCC model. Since the classical ML
approach to PCC’s will give only reliable point estimates but not reliable
standard error estimates a Bayesian approach is followed here.

To assess the influence of prior distributions we have run the original MH
algorithm specified in Min and Czado (2008) for the Australian load data
for 10000 iterations using uniform priors on (1, 100) for each df parameter.
This means a median value of 50.5 for each df parameter while the truncated
Cauchy prior in Czado et al. (2009) has its median at 3. This results as
expected in a considerable increase of posterior means for v’s which are
> 20, while the p parameters are not affected. We observe differences
in Bayesian estimates only for df’s if the corresponding MLE or posterior
mode estimates are larger than 20. For small estimated v’s the influence
of the prior for v is negligible. In contrast Bayesian estimates for p’s are
robust with respect to prior distributions for p.

Min and Czado (2008) report that numerically evaluated Hessian matrix
and bootstrap methods are good alternative for getting reliable standard er-
rors if dimension of data d < 4. The estimated Hessian matrix can often fail
to give reliable standard estimates since negative variance estimates might
occur. Further for high dimensional data of d > 4 with thousands multivari-
ate observations the bootstrap and Hessian approach becomes much more
time consuming in contrast to MCMC methods as Min and Czado (2008)
find. In a simulation study Min and Czado (2009) show that for model se-
lection purposes the upper limit for v should be set to 20. Then the model
performance of their RJ MCMC algorithm is significantly improved. The
results of the RJ MCMC analysis for the Australian load data are robust
with regard to the choice of proposal distribution for the birth move as Min
and Czado (2009) notice. In the next step we plan to derive and implement
a RJ MCMC algorithm when the copula family of pair-copulas is not fixed
anymore and it can vary within a catalogue of bivariate copulas including
the independence copula.

In some problems joint estimation of marginal and copula parameters
has recently been found to be important. Thus Kim et al. (2007) have
shown that a separate estimation of the marginal parameters may have
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an essential influence on the parameter estimation of multivariate copu-
las. Therefore inference based on joint estimates might be lead to quite
different results compared to the inference ignoring estimation errors in
the marginal parameters. In financial applications marginal time series
usually follow ARMA or GARCH models. Here our future research will
concentrate on joint estimation of marginal (ARMA) GARCH and PCC
parameters. Finally this all can be generalized to PCC models with time
varying parameters since financial data usually shows that the dependence
structure changes over time (s. for example Patton (2004)).
S.
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