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Abstract

Motivated by recent developments in light of the sub-prime and subsequent financial crisis we
fit two different vector autoregressive generalized conditional heteroscedastic (VAR-GARCH)
models to three financial indices with the aim of understanding the development of dependency
structures between credit spreads and other macroeconomic variables. Our analysis includes
daily quotes from June 2004 to April 2009 of the iTraxx Europe index, the Dow Jones Euro
Stoxx 50 index, and the Dow Jones VStoxx index. We propose a robust, time-varying modeling
approach concerning the conditional mean, and a BEKK versus DCC-GARCH approach con-
cerning the conditional covariance. Furthermore we allow for a parsimonious model specification
by setting insignificant coefficients to zero. Our empirical results indicate that the autoregressive
coefficients vary strongly with time and even change their signs. Well-known interrelations, such
as the negative correlation between CDS’ and stocks are lost through the financial crisis. The
conditional covariance estimates in the BEKK and DCC model are fairly similar, given the dif-
ference in the number of model parameters. We found evidence of strongly varying conditional
variances and correlations, with dependencies increasing after the outbreak of the financial crisis.
This knowledge may help to improve decision tools in the financial industry, especially in areas
such as asset pricing, portfolio selection, and risk management.

Keywords: credit risk, credit default swaps, iTraxx index, vector autoregression, multivariate
GARCH, VAR-GARCH, BEKK, DCC.
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1 Introduction

Recent developments in light of the U.S. sub-prime and the subsequent financial crisis in 2008
have shown, that credit derivatives may be more closely related to other asset classes than
previously suspected. This has made the understanding of dependency structures a key issue in
business-oriented finance and subject to extensive research. In particular, many authors have
studied the relationship between financial derivatives and other asset classes, such as equities and
bonds, in order to understand the contamination of the global capital markets by the preceding
US sub-prime crisis. For this purpose, credit default swaps (CDS), which are understood to be at
the core of the sub-prime crisis, have been extensively investigated. Examples of empirical studies
of CDS’ and their relationship with other macroeconomic variables include Houweling and Vorst
(2005), Byström (2005, 2006), Alexander and Kaeck (2006), Sougné et al. (2008), Ericsson et al.
(2009) and Norden and Weber (2009). However, these authors concentrate on modeling the
conditional mean, e.g. by fitting regression type models, whereas our modeling approach goes
one step further by including the conditional covariance structure in the model. More precicely,
this paper presents an investigation into the dependency structure of equities, credit spreads and
volatilities in the European market by means of the three time series iTraxx Europe, Euro Stoxx
50, and VStoxx index. We fit a VAR-BEKK and a VAR-DCC model to our three dimensional
time series of daily quotes from June 2004 to April 2009. Main innovations of our approach are the
robust time-varying multivariate modeling approach as well as the combination of two different
models, namely the vector autoregressive (VAR) and the multivariate GARCH (MGARCH)
model.

It is worth mentioning that the starting point of our analysis was the data set of the iTraxx
Europe family itself, and the attempt to model dependencies between different classes of ag-
gregated credit spreads, e.g. between the iTraxx Senior Financials and Sub Financials. This
question could be addressed adequately by a co-integration type modeling approach. However,
the sub-indices of the iTraxx Family are far less liquid than the benchmark index iTraxx Eu-
rope. Therefore, due to long passages of missing values in the time series as a consequence of
the financial crisis and the subsequent drying-out of the CDS market, the data set is unsuitable
for an empirical study with this purpose.

In our paper we focus on modeling dependencies between aggregated credit spreads by means
of the iTraxx Europe index and other asset classes. In a first, preceding study, in addition to
stocks and stock market volatility, we also included long and short term interest rates by means
of the LIBOR three months interest rate and a European government bond index by Bloomberg
in our analysis, i.e. in a multivariate VAR-GARCH model with five time series. However, the
interest rates were found to deliver no additional explanatory information considering the condi-
tional mean structure. Moreover, with these five time series, the conditional covariance structure
was not able to be captured by the different MGARCH models.

The first part of our modeling framework is based on VAR models, which have proven very
useful to capture the evolution and the interdependencies of multiple time series. Introduced by
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Sims (1972, 1980), they have been used for a variety of purposes such as data description and
forecasting, as well as structural inference and policy analysis. The theoretical background on
VAR models has been extensively explored and discussed in the literature, see e.g. Hannan
(1970), Brockwell and Davis (1991), Lütkepohl (1991, 2005) and Hamilton (1994). For our
purpose we extend the classical VAR modeling approach by admitting time-varying coefficients
and by following a robust iteratively re-weighted least squares approach (see Huber, 1981),
thereby reducing the influence of outliers and enhancing the model adequacy.

When investigating financial time series, it is a well known fact that models based on the
homoscedasticity assumption are not sufficient to grasp stylized features such as volatility clus-
tering and time-varying correlations. The second part of our modeling approach therefore is
based MGARCH models, which in this context provide an ideal setting for investigating de-
pendency structures of different financial time series. The widespread use of MGARCH models
as an extension of the univariate ARCH and GARCH models by Engle (1982) and Bollerslev
(1986) dates back to the well known VEC or so called general MGARCH model, first proposed
by Bollerslev et al. (1988). From this starting point the theoretical development branches out,
and as a result a variety of different MGARCH models evolved over the past two decades (see
Li et al., 2002 and Bauwens et al., 2006, for recent reviews). As opposed to the univariate case,
a coherent theory valid for all MGARCH models has yet to be developed. To cover all models
therefore goes beyond the scope of this paper. In contrast, we deliberately focus on the two most
well known and frequently used models in practice, namely the BEKK and the DCC model,
which will be discussed here.

Engle and Kroner (1995) introduce the famous BEKK model as a special case of the VEC
model by Bollerslev et al. (1988), which entailed the development of various subclasses and sim-
ilar modeling approaches. The main advantage of this model is, that the BEKK parametrization
automatically guarantees the positive definiteness of Ht. Besides that, the number of parameters
in comparison with the general VEC model is remarkably reduced.

The key idea behind another class of MGARCH models is the nonlinear combination of uni-
variate GARCH models, thus enabling separate modeling of variances and correlations. Probably
the most popular model in practice is the well known dynamic conditional correlation (DCC)
model by Engle and Sheppard (2001), which was introduced as a generalization of the constant
conditional correlation (CCC) model by Bollerslev (1990). One reason why the DCC model
is very popular with practitioners is its parsimony, as the model enables keeping the number
of parameters relatively low (in comparison with both the VEC and BEKK model). Another
advantage of this model lies in its flexibility, i.e. the univariate GARCH equations for the con-
ditional variances may be specified by any kind of univariate GARCH parametrization, thereby
including special model classes such as nonlinear or exponential GARCH models (see Engle and
Sheppard, 2001, 2002).

The remainder of this paper is organized as follows: in Section 2 we briefly introduce the
necessary modeling framework. Section 3 is dedicated to a multivariate empirical study of the
iTraxx, Euro Stoxx 50 and VStoxx. Section 4 then concludes this paper with a brief summary



2 MODEL SPECIFICATION AND ESTIMATION 4

of the main steps and most important findings on the topic.

2 Model Specification and Estimation

2.1 Model

In this section we briefly introduce the necessary theory which we will apply to our data in
Section 3. All stochastic objects in this paper are defined on the probability space (Ω,F, P ).
Consider a vector stochastic process (yt)t∈Z, i.e. yt : Ω → RN . As usual, we condition on the
sigma field, denoted by Ft−1, generated by the past information until time t− 1. Note that we
will follow the convention of using lowercase letters to denote either a random variable or its
realization as a time series. In this paper we will consider the following vector autoregressive
generalized conditional heteroscedastic (VAR-GARCH) model:

yt = c+ Φ1yt−1 + · · ·+ Φpyt−p + εt, (1)

εt = H
1/2
t (θ)zt, zt ∼WN(0, IN ) i.i.d., (2)

where c ∈ RN denotes a vector of constants, Φ1, . . . ,Φp ∈ RN×N are matrices of autoregressive
coefficients and θ ∈ Θ contains all GARCH parameters. Furthermore, (zt)t∈Z is a multivariate
white noise process, IN ∈ RN×N as usual is the identity matrix and H

1/2
t (θ) ∈ RN×N is a

positive definite matrix, such that Ht is the conditional covariance matrix of yt, e.g. H1/2
t may

be obtained by the Cholesky factorization of Ht.
The conditional mean part of the model in (1) is given by a VAR model of order p, while

the conditional covariance matrix Ht in (2) is specified by an MGARCH model. As mentioned
above, in this work we focus on the two most prominent models, the BEKK and the DCC model,
which will be briefly discussed here.

Assume (yt), (εt) and (zt) to be vector stochastic processes as given by (1) and (2). The
BEKK(p,q)1 model by Engle and Kroner (1995) for the conditional covariance matrix Ht ∈
RN×N is defined as

Ht = C ′C +
q∑

i=1

A′iεt−iε
′
t−iAi +

p∑
j=1

B′
jHt−jBj , (3)

where Ai, Bj ,∈ RN×N are parameter matrices and C ∈ RN×N is an upper triangular matrix.
As mentioned above the main advantage of this model is, that the BEKK parametrization
automatically guarantees the positive definiteness ofHt. The number of parameters in the BEKK
model is N(N + 1)/2 + N2(p + q), i.e. O(N2). In order to reduce the number of parameters,
different simplifications of the model evolved, e. g. the diagonal BEKK model where Ai and
Bj in (3) are diagonal matrices or the scalar BEKK model where Ai and Bj are each replaced

1The acronym BEKK stands for Baba, Engle, Kraft & Kroner who wrote an earlier version of the paper by
Engle and Kroner (1995) (see Engle, Kroner, Baba, and Kraft, 1993).
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by a scalar times a matrix of ones. To ensure the uniqueness of the parametrization, certain
restrictions have to be imposed on the coefficient matrices. For instance, in the special case
of the BEKK(1,1) model with Ht = C ′C + A′εt−1ε

′
t−1A + B′Ht−1B and parameter matrices

A = (Aij)N
i,j=1, B = (Bij)N

i,j=1 Engle and Kroner (1995) show, that uniqueness is achieved by
requesting all diagonal elements of C to be positive, as well as A11, B11 > 0. These conditions
for the coefficient matrices can be extended to the general case when p, q > 1. Engle and Kroner
(1995) also show, that the BEKK model as defined in (1), (2) and (3) is stationary if and only
if all eigenvalues of the matrix

∑q
i=1A

′
i ⊗Ai +

∑p
j=1B

′
j ⊗Bj are less than one in modulus.

The second model for the conditional covariance matrix in (2) which we will consider in this
paper is the dynamic conditional correlation (DCC) model by Engle (2002). The key idea of this
model is to specify the conditional covariance matrix Ht in two steps. First, a univariate GARCH
model is chosen for each individual conditional variance Hii,t, i = 1, . . . , N . Second, based on the
individual conditional variances the conditional correlation matrix is specified, thereby imposing
its positive definiteness. The DCC(p,q) model for the conditional covariance matrix Ht ∈ RN×N

is defined as

Ht = DtRtDt, with Dt = diag(H1/2
11,t, . . . ,H

1/2
NN,t). (4)

The elements of Dt are defined as univariate GARCH models, i.e. ∀ i = 1, . . . , N we define

Hii,t = ωi +
qi∑

q=1

αiqε
2
i,t−q +

pi∑
p=1

βipHii,t−p, (5)

with the usual restrictions for non-negativity and stationarity being imposed ∀ i = 1, . . . , N :

(i) ωi > 0,

(ii) ∀ p = 1, . . . , pi, ∀ q = 1, . . . , qi : αiq, βip are such that Hii,t will be positive with proba-
bility one,

(iii)
∑qi

q=1 αiq +
∑pi

p=1 βip < 1.

The dynamic correlation structure is given by

Qt = (1−
M∑

m=1

am −
N∑

n=1

bn)Q+
M∑

m=1

am(νt−mν
′
t−m) +

N∑
n=1

bnQt−n, (6)

Rt = diag(Q1/2
11,t, . . . , Q

1/2
NN,t)

−1Qt diag(Q1/2
11,t, . . . , Q

1/2
NN,t)

−1, (7)

with νt := D−1
t εt, and Q being the unconditional covariance matrix of νt : νt ∼ N (0, Q). We

refer to Engle and Sheppard (2001, Proposition 2) for sufficient conditions regarding the positive
definiteness of Ht.
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2.2 Estimation Method

Regarding the estimation of the model parameters in (1), (2) and (3), (4)–(5), respectively, we
follow a two step approach, where in the first step the parameters of the VAR model, and in the
second step the GARCH parameters are estimated.

Concerning the VAR model coefficients we pursue the robust iteratively re-weighted least
squares (RLS) approach of Huber (1981). Assume that the sample size is T and that we are
given p pre-sample values y−p+1, . . . , y0. We define:

Y := (y1, . . . , yT ) ∈ RN×T ,

Π := (c,Φ1, . . . ,Φp) ∈ RN×(Np+1), π := vec(Π) ∈ RN(Np+1),

xt := (1, y′t−1, . . . , y
′
t−p)

′ ∈ RNp+1, X := (x1, . . . , xT ) ∈ R(Np+1)×T ,

E := (ε1, . . . , εT ) ∈ RN×T ,

where vec(·) is the column stacking operator that stacks the columns of a m × n matrix as a
vector of dimension mn. Using this notation we may then rewrite (1) as a linear model

Y = ΠX + E, or equivalently vec(Y ) = (X ′ ⊗ IN )π + vec(E), (8)

where ⊗ denotes the Kronecker product or direct product of two matrices. Note that as opposed
to classical linear modeling, the matrix of covariables contains lagged dependent variables.
The unknown parameters of the VAR model contained in π in (8) are then estimated by the
RLS approach of Huber (1981), who introduces the class of M-estimates, in order to reduce
the influence of outliers and achieve distributional robustness. We investigate the problem∑NT

i=1 ρ(xi ; π) = min!, or equivalently
∑NT

i=1 ψ(xi ; π) =
∑NT

i=1wixi = 0, where xi is the i-th
residual of the NT -dimensional linear model in (8), ρ(x ; π) is a weighting function, ψ(x) :=
(∂/∂θ)ρ(x ; π) and wi := ψ(xi ; π)/xi. The weighting function ρ(x ; π) is assumed to be twice
continuously differentiable in x almost everywhere, with nonnegative second derivative wherever
defined. Huber (1981) proposes

ρ(x) =

{
x2/2 : |x| ≤ c,

c|x| − c2/2 : |x| > c,
(9)

which implies weights wi = 1 if |xi| ≤ c and wi = c/xi if |xi| > c. In the context of VAR models
strong consistency of the RLS estimator is e.g. shown by Campbell (1982), while asymptotic
normality is derived by Li and Hui (1989).

We now briefly discuss estimation procedures for the BEKK and DCC-GARCH model. In the
case of the BEKK model given by (2) and (3) we perform maximum likelihood (ML) estimation.
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Assume we have a given sample size of t = 1, . . . , T . The log likelihood function is then given by

L(θ) = −1
2

T∑
t=1

(N ln(2π) + ln |Ht(θ)|+ ε′tHt(θ)−1εt), (10)

where θ := vec(C,A1, . . . , Aq, B1, . . . , Bp) ∈ Θ ⊂ RN(N+1)/2+N2(p+q) contains all unknown
GARCH parameters. The likelihood function is maximized with respect to θ by using numerical
methods. A closed form solution does not necessarily exist, due to the nonlinearity of the like-
lihood function. For asymptotic properties of the ML estimator, see e.g. Comte and Lieberman
(2003), who derive strong consistency and asymptotic normality.

According to Engle and Sheppard (2001), the DCC model as defined in (4)–(7) was designed
to allow for a two-stage estimation procedure. They suggest decomposing the parameter vector θ
into two disjoint parts, one for the individual conditional volatilities and one for the conditional
correlations. Then in the first stage univariate GARCH models for each component of εt =
(ε1t, . . . , εNt) are estimated. In the second stage, using transformed residuals resulting from the
first stage, an estimator for the conditional correlations is derived. As Ht = DtRtDt in the DCC
model according to (4), the likelihood function in (10) may be rewritten in the following way:

L(θ) = −1
2

T∑
t=1

(N ln(2π) + ln |DtRtDt|+ ε′tD
−1
t R−1

t D−1
t εt)

= −1
2

T∑
t=1

(N ln(2π) + 2 ln |Dt|+ ε′tD
−1
t D−1

t εt − ν ′tνt + ln |Rt|+ ν ′tR
−1
t νt). (11)

Let θ = (θ1, θ2) denote the parameters for the conditional volatilities and conditional correla-
tions, as given in (4)–(5) and (6)–(7), respectively. The likelihood in (11) is decomposed into
two disjoint parts:

L(θ) = L(θ1, θ2) = LV (θ1) + LC(θ2),

with a volatility part LV (θ1) := −1
2

∑T
t=1(N ln(2π) + 2 ln |Dt|+ ε′tD

−1
t D−1

t εt) and a correlation
part LC(θ2) := −1

2

∑T
t=1(−ν ′tνt + ln |Rt|+ ν ′tR

−1
t νt). The volatility part then corresponds to the

sum of the likelihood functions of N univariate GARCH models

LV (θ1) := −1
2

T∑
t=1

N∑
i=1

(
ln(2π) + ln(Hii,t) +

ε2it
Hii,t

)
.

Now first solve θ̂1 = arg maxLV (θ1), and then subsequently θ̂2 = arg maxLC(θ̂1, θ2). Note that
Engle and Sheppard (2001) argue, that consistency and asymptotic normality of θ̂1 and θ̂2 hold
due to results given by Newey and McFadden (1994) concerning consistency of an estimator in a
two-step general method of moments problem, usually resulting in a loss of efficiency. However,
this argumentation is recently being questioned by e.g. Caporin and McAleer (2008, 2009), who



3 EMPIRICAL ANALYSIS 8

conclude that the properties of the DCC estimates as claimed by Engle and Sheppard (2001)
cannot be derived by their course of argumentation.

3 Empirical Analysis

3.1 Data Set

Our data set consists of three time series, the Dow Jones Euro Stoxx 50 index, the Dow Jones
VStoxx index, a volatility index based on options on the Euro Stoxx 50 and the CDS index iTraxx
Europe. In our analysis we focus on the iTraxx Europe benchmark index with a maturity of five
years, as this is the most liquid index within the iTraxx Europe index family. As the membership
of the iTraxx is adjusted every six months by issuing a new index series, we construct a time
series that contains the most recent series at any point in time. In this way we ensure that
our analysis is always built on the most liquid names. The data period starts on June 23, 2004
and ends on April 30, 2009, i.e. the data set covers 1230 daily quotes for each of the time
series. Basic characteristics of the data are summarized in Table 1. The data was transformed to
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Figure 1: Daily quotes of the iTraxx Europe, the Euro Stoxx 50 and the VStoxx index between
2004-06-23 and 2009-04-30.
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2004-06-23 to 2009-04-30 2004-06-23 to 2007-08-15 2007-08-16 to 2009-04-30
itraxx eurost. vstoxx itraxx eurost. vstoxx itraxx eurost. vstoxx

min. 20.09 1809.98 11.60 20.09 2580.04 11.60 29.10 1809.98 17.24
1st qu. 31.00 2980.13 14.85 27.78 3055.85 14.03 68.28 2451.58 22.56
median 37.12 3524.58 17.72 35.20 3544.58 15.67 101.38 3429.58 27.32
mean 59.72 3463.51 22.13 33.38 3537.33 16.15 108.71 3326.18 33.26
3rd qu. 74.37 3987.13 24.00 37.19 3988.04 17.58 154.42 3881.09 42.05
max. 215.92 4557.57 87.51 68.20 4557.57 30.74 215.92 4489.79 87.51
std. 46.43 654.60 11.85 7.41 540.75 2.96 48.71 808.63 13.97
skewn. 1.57 -0.31 2.20 0.42 0.10 1.34 0.21 -0.24 1.18
kurt. 4.26 2.28 8.03 3.65 1.88 5.52 1.89 1.70 3.82

Table 1: Basic characteristics of the data set. Left: whole period, middle: first “tranquil” period,
right: last “volatile” period.

logarithmic differences multiplied by one hundred (see Figure 1). Evidence of simple trends and
seasonality was not found. Note, that on the whole iTraxx and Euro Stoxx show counter trends,
whereas iTraxx and VStoxx indicate a positive interrelation. The three time series display typical
stylized features such as volatility clustering and at least one structural break, which e.g. in mid
2007 is related to the rise of the sub-prime crisis. The characteristics of the time series, e.g. in
terms of mean and volatility levels, change significantly before and after the outbreak of the
crisis (see Table 1), thereby the biggest structural changes are visible in the iTraxx index. The
estimated corresponding autocorrelation functions of the data and the squared data, as well as
the corresponding cross correlations between the time series can be found in Figure 2. We see
some autocorrelation in the time series, especially within the iTraxx at lag one, however the
values are rather small. Cross correlations are perceivable only at lag zero. The autocorrelations
and cross correlations in the squared data give rise to the hypothesis of stochastic volatility.

3.2 A VAR Model for the Conditional Mean

In a first step, in order to capture the weak autocorrelation in the data as seen in Figure 2, we
model the conditional mean of the time series by fitting a VAR model as given by (1) to the
data. In order to determine the model order p, we fit different models up to order p = 10 via ML
estimation and calculate the associated information criteria AIC, HQ and SC (see Akaike 1973,
1974, Hannan and Quinn, 1979 and Schwarz, 1978). As displayed in Table 2, AIC suggests p = 4,
whereas HQ and SC both recommend model order p = 1. We therefore fit a VAR(1) model to
our data. When conducting ML estimation of the coefficient matrix Φ we find that six out of
nine coefficients are insignificant. Precisely only the coefficients Φ11, Φ21 and Φ33 are significant
at a 90 % confidence level. We also observe, that the coefficient matrix contains mostly very
small values. In order to gain deeper insight into the vector autoregressive structure of our data
set we therefore conduct a rolling window analysis of the coefficient matrix. We use different
windows from 25 to 300 days, finding that all coefficients vary over time, some very strongly
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Figure 2: Autocorrelations and cross correlations of the data set with 95% confidence bounds.

and even changing their signs. This explains the large number of insignificant close to zero
coefficients which we observed in the first place. Additionally we observe that the coefficients
react sensitively to apparent outliers in the original data. For this reason we decide in favor of
the RLS estimation procedure by Huber (1981), with the Huber weighting function as defined
in (9).

We again conduct a rolling window analysis, this time estimating robustly (see Figure 3).
In comparison with the ML estimates, the influence of outliers is remarkably reduced, however
we find that both with ML and RLS estimation, the coefficients are time-varying and often
change their signs. Consequently we will follow a robustly estimated VAR(1) approach with a
time-varying coefficient matrix.

In the following we assess the question of which entries of the coefficient matrix in Figure 3
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p 1 2 3 4 5 6 7 8 9 10
AIC(p) 5.735 5.737 5.735 5.723 5.730 5.731 5.736 5.736 5.741 5.746
HQ(p) 5.754 5.770 5.782 5.784 5.806 5.821 5.840 5.854 5.873 5.893
SC(p) 5.785 5.825 5.860 5.886 5.931 5.970 6.012 6.050 6.092 6.135

Table 2: Order selection criteria AIC, HQ and SC for our data set.

weighted LS estimation
(2004-06-23 to 2009-04-30) (2004-06-23 to 2007-08-15) (2007-08-16 to 2009-04-30)

est. std.error t-stat. est. std.error t-stat. est. std.error t-stat.
c1 0.077 0.112 0.688 0.041 0.151 0.272 0.165 0.092 1.793
c2 -0.015 0.042 -0.357 0.055 0.041 1.341 -0.126 0.093 -1.355
c3 0.052 0.151 0.344 0.034 0.161 0.211 0.022 0.199 0.111
Φ11 0.190 0.022 8.832 0.141 0.019 7.495 0.309 0.058 5.303
Φ12 -0.032 0.073 -0.435 -0.390 0.104 -3.755 0.064 0.169 0.380
Φ13 0.021 0.019 1.109 0.001 0.018 0.038 -0.063 0.055 -1.143
Φ21 -0.002 0.009 -0.208 0.014 0.010 1.362 -0.033 0.021 -1.566
Φ22 -0.010 0.031 -0.324 -0.078 0.056 -1.404 -0.002 0.061 -0.027
Φ23 0.006 0.008 0.767 -0.010 0.010 -1.096 0.030 0.020 1.501
Φ31 0.084 0.044 1.899 -0.069 0.059 -1.175 0.194 0.072 2.689
Φ32 0.008 0.151 0.053 0.461 0.324 1.421 0.045 0.209 0.217
Φ33 -0.074 0.039 -1.924 -0.020 0.055 -0.359 -0.076 0.068 -1.109

Table 3: RLS estimation of the coefficients of the VAR(1) model for different time periods.
Left: whole period, middle: “tranquil” period, right: “volatile” period.

may be set to zero and, as a consequence, will not be included in the further analysis. For this
purpose, we simultaneously follow two criteria. For the first criterion we split the time series into
two disjoint parts, namely the first 800 data points (2004-06-23 to 2007-08-15) and the last 430
data points (2007-08-16 to 2009-04-30). This partition splits our time series into a “tranquil”
period preceding the sub-prime crisis, and a “volatile” period starting mid of 2007. Separately
analyzing these two periods is self-evident given the apparent structural breaks in the original
data (see Figure 1) and the coefficient matrix structure (see Figure 3). We then perform RLS
estimation for each period separately. The results are displayed in Table 3. For the tranquil
period, Φ11 and Φ12 are significant, whereas for the volatile period, Φ11 and Φ31 are significant
on a 90% confidence level. As a first criterion for which coefficients to include in the analysis we
follow the convention of admitting all coefficients that are significant on a 90% level at least in one
of the two periods. According to this criterion Φ11, Φ12, Φ31, Φ33 are included in our analysis.
However, this criterion has the drawback that it excludes coefficients that are strongly time-
varying and thus may only be significant for certain short time periods. As a second criterion for
which coefficients to admit for the analysis we therefore decide to admit strongly time-varying
coefficients, in addition to those being significant according to the first criterion. This means that
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Figure 3: Robust weighted LS estimation of Φ, using 100 day rolling windows. 95% confidence
bounds.

additionally Φ32 is included as well. Therefore, as a final model regarding the conditional mean,
we propose a VAR(1) modeling approach with robustly estimated, time-varying coefficients and
with Φ13 = Φ21 = Φ22 = Φ23 set to zero. Due to the fact that we set some coefficients to zero, the
five non-zero entries in the coefficient matrix have slightly different values from those displayed
in Figure 3, yet the overall structure of the of the coefficients remains unchanged.

We find evidence of negative dependencies between the CDS spreads and the stock markets
in terms of Φ12 during the tranquil period (see Table 3). Consequently, the stock market tends
to lead the CDS market, our results being consistent with previous empirical studies, see e.g.
(Byström, 2005, 2006) and Alexander and Kaeck (2006). However, from Figure 3 we observe,
that the coefficients Φ12 and Φ32 vary strongly and even change their signs, while the other
coefficients display less or no variations. We find, that Φ12 displays irregular variations, with
several structural breaks which may be explained by credit events such as the downgrading of
General Motors and Ford in May 2005 or the outbreak of the sub-prime crisis in July 2007. In
contrast, Φ32 displays strong cyclical variations during the whole time period.

We now proceed with deriving the model residuals. The time-varying coefficient matrix Φt

is estimated by the data points t, t − 1, . . . , t − 99. Following a forecasting perspective we set
εt = yt−Φtyt−1, t = 101, . . . , T , i.e. we have a new time series of residuals εt, with t = 101, . . . , T .
In our case (T = 1230) we obtain a residual time series of 1130 data points. We find no evidence
of remaining autocorrelation in the residuals. As this was the objective of our analysis so far,
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in this respect the model fit is very good. Cross correlations at lag zero are still perceivable, as
they evidently cannot be captured by the VAR model. However, we still observe characteristic
patterns and structural changes in the residuals, and thus the residual time series is obviously
not generated by a white noise process. Furthermore, the autocorrelation and cross correlations
plots of the squared residuals on the whole still resemble the ones in Figure 2, which emphasizes
the need for an additional modeling of the covariance structure of our time series.

3.3 A BEKK Model for the Conditional Covariance

After fitting a VAR(1) model to our data we now proceed with the modeling of the conditional
covariance structure. Portmanteau and Lagrange multiplier tests for potential ARCH effects (see
e.g. Lütkepohl, 1991, 2005) in the residuals of the VAR model show strong evidence of ARCH
effects and confirm the heteroscedasticity assumption. We therefore fit a BEKK-GARCH model
as given by (3) to the residuals obtained from the VAR(1) model. The BEKK model is particu-
larly compelling due to its parametrization that by definition guarantees the positive definiteness
of the covariance matrix. Besides that, the number of parameters is notably reduced in com-
parison with the general MGARCH model. Furthermore, in comparison with other MGARCH

BEKK(1,1) BEKK(1,2) BEKK(2,1) BEKK(2,2)
AIC 6221.836 6189.417 6192.885 6187.527

Table 4: AIC criterion for the model order selection in the BEKK model.

est. std.error t-stat.

C
0.358 0.000 0.816 0.076 0.000 0.236 4.692 − 3.456
0.000 0.252 -2.376 0.000 0.071 0.419 − 3.523 -5.671
0.000 0.000 0.232 0.000 0.000 0.111 − − 2.090

A1

0.678 -0.033 0.215 0.043 0.011 0.061 15.741 -3.007 3.521
0.000 0.133 0.000 0.000 0.028 0.000 − 4.766 −
0.000 0.000 0.000 0.000 0.000 0.000 − − −

A2

0.000 -0.015 0.157 0.000 0.009 0.052 − -1.732 3.030
0.000 0.381 0.000 0.000 0.034 0.000 − 11.055 −
0.000 0.031 0.000 0.000 0.006 0.000 − 5.119 −

B1

0.241 -0.026 0.000 0.073 0.012 0.000 3.294 -2.201 −
0.686 -0.820 0.959 0.111 0.099 0.244 6.156 -8.307 3.927
0.000 -0.082 0.000 0.000 0.014 0.000 − -5.949 −

B2

0.806 -0.079 0.271 0.028 0.017 0.077 28.887 -4.725 3.511
0.971 -0.935 3.152 0.160 0.111 0.324 6.063 -8.410 9.719
0.084 -0.183 1.110 0.021 0.018 0.071 4.003 -10.407 15.744

eigenvalues 14.817 3.003 2.895 0.874 0.781 0.341 0.105 0.092 0.021

Table 5: Coefficients and eigenvalues of the reduced BEKK(2,2) model. 28/28 significant param-
eters.
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Figure 4: Conditional volatilities and correlations of the BEKK(2,2) model. Left side: individual
conditional volatilities of the iTraxx, Euro Stoxx and VStoxx. Right side: correlations.

models (e.g. the DCC model), as mentioned above, the theoretical background regarding model
characteristics and properties of estimators is rather sound. We use the AIC criterion for model
order selection and compare orders of p, q = 1, 2 (see Table 4). The BEKK(1,1) model is clearly
outperformed by the other three choices, which are very close to each other. As the model order
p = q = 2 is best in terms of AIC, we decide in favor of the BEKK(2,2) model. We estimate the
coefficients of the BEKK parametrization of Ht in (3) via ML estimation and obtain only 29
out of 42 significant coefficients at a confidence level of 90%. Following a consecutive multiple
testing scheme we successively set insignificant coefficients to zero and finally obtain a model
within which all remaining 28 coefficients are significant (see Table 5). The spectral radius of
the estimated matrix

∑2
i=1A

′
i ⊗ Ai +

∑2
j=1B

′
j ⊗ Bj ∈ R9×9 is larger than one, therefore the

process Ht is not stationary (see Engle and Kroner, 1995). Figure 4 displays the coefficients of
Ht. We observe strongly varying conditional volatility and conditional correlations for all three
time series. The volatility range is especially large for the iTraxx, with the lowest values close
to zero and the peaks at 200. The structural break visible in the original time series (see Figure
1) at about mid of 2007 after the outbreak of the sub-prime crisis is clearly visible here as well.
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Figure 5: Residuals after fitting a BEKK(2,2) model to the residuals of the VAR(1) model.

After the break all three volatilities have a higher level on the whole, and vary more strongly.
This, again, is particularly evident in the case of the iTraxx index. The correlation between
the iTraxx and the Euro Stoxx as well as the Euro Stoxx and the VStoxx is negative, while the
correlation between the iTraxx and the VStoxx is positive. The conditional correlations between
the three time series fluctuate strongly over time. While the correlation between the iTraxx and
the other two indices is stronger after the structural break, the correlation between the Euro
Stoxx and the VStoxx stays on the same level, which is not surprising, as the values of the
VStoxx are calculated on the basis of options on the Euro Stoxx. By its nature the VStoxx is
therefore closely linked to the development of the Euro Stoxx.

Figure 5 shows the residuals after fitting the BEKK(2,2) model. In comparison with the
original data in Figure 1, we can see that much of the previous volatility patterns have vanished,
this implies that the BEKK model was able to capture the volatility structure of the data set. The
autocorrelations and cross correlations of the residuals and the squared residuals are displayed
in Figure 6. There are no significant auto- and cross correlations left. We conduct portmanteau
and Lagrange multiplier tests and find no evidence of remaining ARCH effects. Overall, when
considering the test results and the autocorrelations and cross correlations plots of all three time
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Figure 6: Autocorrelations and cross correlations with 95% confidence bounds of the residuals
and the squared residuals after fitting a BEKK(2,2) model to residuals of the VAR(1) model.

series, the evidence that our model captures the structure in the second order moments of the
time series well is very strong. When conducting the Jarque-Bera test for normality (see Jarque
and Bera, 1987), the null hypothesis of normally distributed residuals is clearly rejected. Note,
that this alone should not be viewed as a drawback of this modeling approach, as the model
in (1) and (2) is based on white noise in contrast to normal innovations. However, in order to
obtain consistency and asymptotic normality of the coefficient estimators strong requirements
such as the existence of the eighth moments of the error distribution (Comte and Lieberman,
2003) are necessary. This limitation is obviously undesirable for financial time series, where the
existence of higher order moments is regarded as problematic. When considering alternative
heavy tailed error distributions such as the t-distribution these restrictions should be kept in
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est. std.error t-stat. est. std.error t-stat.
ω1 0.141 0.084 1.679 α1 0.270 0.013 20.769
ω2 0.027 0.087 0.310 α2 0.133 0.037 3.595
ω3 0.914 0.040 22.850 α3 0.065 0.031 2.097
a 0.024 0.019 1.263 β1 0.780 0.422 1.848
b 0.956 0.031 30.839 β2 0.858 0.025 34.320

β3 0.909 0.032 28.406

Table 6: Coefficients of the DCC model with pi = qi = 1∀ i = 1, . . . , N in (5) and M = N = 1
in (6).

mind. When the residuals are found to be skewed, the relevance of the Student distribution
may be questioned. Therefore in this case, skewed distributions with fat tails, such as mixtures
of multivariate normal densities or the generalized hyperbolic distribution are more suitable
alternative error distributions.

3.4 A DCC Model for the Conditional Covariance

As an alternative modeling approach and comparison to the BEKK model we now fit the DCC
model by Engle (2002) as given by (4)–(7) to the residuals of the VAR(1) model. As mentioned
before, this model has become increasingly popular among practitioners, due to its flexibility
and parsimony in combination with the simple estimation procedure. For our purpose we chose
a relatively simple parametrization in (5) and (6) with a univariate GARCH(1,1) model for the
individual conditional variances and the equivalent for the DCC parameters. The estimates are
displayed in Table 6. In comparison to the BEKK model with 42 parameters in its non-reduced
form, the DCC model only needs eleven parameters, which evidently simplifies matters a lot.
The conditional covariance process is not stationary, as α1+β1 = 1.050 (see Engle and Sheppard,
2001).

The conditional volatilities and correlations in the DCC model are shown in Figure 7. The
parameters of Ht resemble smooth versions of the ones in the BEKK model (see Figure 4). One
reason for this can be seen in the significantly lower number of estimated parameters, which
makes it difficult for the DCC model to capture all the variance in the data. The correlations of
the iTraxx with the other two time series in the DCC model display a trend, while in the case
of the BEKK model the correlations could be interpreted as local stationary time series with at
least one structural break, e. g. in July 2007.

The residuals strongly resemble the residuals in the BEKK model (Figure 5), i.e. fat tailed
white noise residuals. However, the autocorrelations and cross correlations in the DCC model
(see Figure 8) differ slightly from those in the BEKK model. We observe that there is still
some weak cross correlation at lag zero perceivable in the residuals, which contradicts the model
assumption of white noise. Furthermore we see some cross correlations in the squared residuals,
which implies that the model is a less good fit four our data set, when comparing with the BEKK
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Figure 7: Conditional volatilities and correlations of the DCC model. Left side: individual con-
ditional volatilities of the iTraxx, Euro Stoxx and VStoxx. Right side: correlations.

model in Figure 4. On the other hand the BEKK model has a total number of 42 parameters or
28 parameters in its reduced form, which by far exceeds the number of parameters of the DCC
model. The portmanteau and Lagrange multiplier tests for remaining ARCH effects, as well as
the tests for normality yield the same results as in the case of the BEKK model. Considering our
empirical results when comparing the BEKK with the DCC model we find that the DCC model
in its simplest form produces quite similar variance and correlation estimates, while having only
one fourth of the parameters the BEKK model has. It is therefore not surprising that the DCC
model enjoys widespread popularity with practitioners. The parsimony of the DCC approach
is particularly compelling when high dimensional vector time series are involved, for instance
when analyzing stock portfolios with many assets.

It is worth mentioning, that in our empirical study we also compared our VAR-GARCH
modeling approach with a simple MGARCH model, where in a first step we subtracted the
mean from the original time series, and then in a second step fitted a BEKK versus DCC model
to the data. We found that this model clearly is a less good fit when comparing autocorrelations
and cross correlations of the residuals with Figure 6 and Figure 8. This confirms our time-varying,
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Figure 8: Autocorrelations and cross correlations with 95% confidence bounds of the residuals
and the squared residuals after fitting the DCC-GARCH model to residuals of the VAR(1)
model.

robustly estimated and combined VAR-GARCH modeling approach.

4 Conclusion

In our analysis we fitted two different VAR-GARCH models to a three-dimensional financial
time series of daily quotes from June 2004 to April 2009, the iTraxx Europe index, the Euro
Stoxx 50 index and the volatility index VStoxx. In an initial exploratory investigation we found
evidence of weak autocorrelation in the time series, especially in the iTraxx and the Euro Stoxx
index. Therefore, in order to capture the structure in the conditional mean, we fitted a VAR
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model to the data. We selected order one as recommended by the HQ and SC information
criteria. In order to account for the apparent outliers in the data, and the strongly varying
entries of the coefficient matrix, we robustly estimated a VAR(1) model with time-dependent
coefficients using RLS estimation. By establishing two criteria for setting insignificant coefficients
to zero we achieved a parsimonious model specification. Our empirical results indicate that the
autoregressive coefficients vary strongly with time and even change their signs. Well-known
interrelations, such as the negative correlation between CDS’ and stocks are lost through the
financial crisis. We found the model adequate in terms of the conditional mean, however most
of the dependency structure of the time series was captured by the MGARCH models, which
were fitted to the residuals subsequently.

From the variety of MGARCH modeling approaches developed up to date we chose the
well known BEKK model, which is particularly compelling due to its parametrization that by
definition guarantees the positive definiteness of the covariance matrix. We fitted a BEKK(2,2)
model to the data, the model order being determined by AIC. As a model comparison we chose
to fit a DCC model to the data, motivated by its widespread popularity among practitioners.
For our purpose we chose a simple model class with a GARCH(1,1) model for the individual
conditional variances and the equivalent for the DCC parameters.

We found that the conditional variances and correlations vary strongly with time. The corre-
lations between the iTraxx and the Euro Stoxx and the Euro Stoxx and the VStoxx are negative,
whereas the correlation between the iTraxx and the VStoxx is positive. The correlations increase
significantly in absolute values after the outbreak of the financial crisis. The main difference be-
tween the two models lies in the smoother variance and correlation estimates in the DCC model.
Besides that, the correlations in the DCC model display a trend, whereas in the BEKK model
the correlations could be interpreted as local stationary time series. Both series of residuals are
white noise yet not normally distributed.

In terms of the conditional mean, our results extend previous empirical studies, allowing
for robustly estimated, time-varying coefficients. However, to the best of our knowledge, there
are no existing studies of aggregated credit spreads, stocks and stock market volatility in which
the conditional covariance structure is considered. Therefore our findings offer some of the first
insights regarding the variance and correlation structure of this data set. We found evidence
of strongly varying conditional variances and correlations, with dependencies increasing after
the outbreak of the financial crisis. This knowledge opens the door to better decision tools in
various areas, such as asset pricing, portfolio selection, and risk management. The dynamics of
the financial crisis particularly with regard to the correlations between different asset classes
may hence be understood from a new and more thorough view point.
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