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Abstract

Erhardt and Czado (2008) suggest an approximative method for sampling high-
dimensional count random variables with a specified Pearson correlation. They utilize
Gaussian copulae for the construction of multivariate discrete distributions. A major
task is to determine the appropriate copula parameters for the achievement of a spec-
ified target correlation. Erhardt and Czado (2008) develop an optimization routine to
determine these copula parameters sequentially. Thereby, they use pair-copula decom-
positions of n-dimensional distributions, i.e. a decomposition consisting only of bivariate
copula with one parameter each. C-vines, a graphical tool to organize such pair-copula
decompositions, are used to select a possible decomposition. In the paper mentioned,
the approach was compared to the NORTA method for discrete margins described in
Avramidis, Channouf, and L’Ecuyer (2008). Here we will compare it to a widely used
naive sampling approach for an even larger variety of marginal distributions such as the
Poisson, generalized Poisson, Negative Binomial and zero-inflated Generalized Poisson
distribution.

1 Introduction

Erhardt and Czado (2008) suggest a method for approximately sampling high-dimensional
count variables with prespecified Pearson correlation. The goal of this Chapter is to sample
from count random variables (rv’s) Y1, . . . , Yn with Yi ∼ Fi (e.g. Poisson), i = 1, . . . , n with
prespecified corr(Y ) = ΣY , with (i, j)th element ΣY

ij = ρij and ρii = 1. Genest and Neslehova
(2007) review several facts about copulae linked to discrete margins specifically for rank-based
dependence measures. Multivariate discrete distributions discussed in the literature have sev-
eral shortcomings which we discuss now. Kawamura (1979) defines a multivariate Poisson
distribution which can be obtained as a limiting case of a multivariate binomial distribution.
Since these multivariate Poisson models only allow for a single common correlation param-
eter ρij = ρ, Karlis and Meligkotsidou (2005) construct a model which allows for individual



correlations for each pair of variables. However, these pairwise correlations are required to be
positive. According to Tsiamyrtzis and Karlis (2004) the usefulness of multivariate discrete
models is limited since calculating the required probabilities is difficult. Therefore they suggest
algorithms calculating the joint probabilities in a more efficient way thus reducing the compu-
tational time. A multivariate negative binomial distribution has been discussed for example
by Kopociński (1999). A multivariate generalization of the generalized Poisson distribution
(see Consul and Jain (1970)) capable of modeling only exchangeable covariance structures has
been developed by Vernic (2000) and applied to the insurance field.

In the sampling approach of Erhardt and Czado (2008) dependency is modelled using a
pair-copula decomposition of a general multivariate distribution. A graphical tool for orga-
nizing such decompositions is called regular vine and goes back to the work on vines of Joe
(1996, Bedford and Cooke (2001a, Bedford and Cooke (2001b) and Bedford and Cooke (2002).
Aas, Czado, Frigessi, and Bakken (2009) propose a new method to perform inference of such
pair-copula decompositions. In particular, the approach of Erhardt and Czado (2008) is based
on the Gaussian copula and a C-vine decomposition. The idea is to use a conditional sampling
approach where conditional cdfs and quantiles are defined via a pair-copula construction. Here
the bivariate copulae have only one parameter each, therefore a root finding routine such as
bisection can be utilized to sequentially determine optimal parameters for each pair-copula.
They compare their approach to a widely used naive sampling approach.

An approximate method for sampling correlated continuous random variables from partially-
specified distributions has been introduced by Lurie and GoldbergLurie and Goldberg (1998).
This method is an enhancement of an approach by Li and Hammond (1975) and is based
on the multivariate normal distribution. Their approach optimizes the set of parameters such
that the empirical correlations come close to the target correlations according to some dis-
tance measure, therefore the empirical and target correlations will closely match, if not agree.
Whereas Erhardt and Czado (2008) compare their sampling approach to the NORTA method,
in this Chapter we will compare it to a ”naive” sampling method often used. The NORTA
method (’NORmal To Anything’, see Cario and Nelson (1996, Cario and Nelson (1997) and
Chen (2000)) is based on the work of Marida (1970) and Li and Hammond (1975). The naive
sampling method assumes that the Gaussian copula parameters specifying the underlying
multivariate distribution of the desired margins coincide with the target correlation parame-
ters. The contribution of this Chapter will be twofold. The simulation study by Erhardt and
Czado (2008) will be completed by considering also the generalized Poisson distribution and
the zero-inflated generalized Poisson distribution. Since the presence of zero-inflation causes
the margins to be even more discrete we are interested in investigating the influence of zero-
inflation on the sampling results. Secondly, investigating the results of the naive approach will
quantify the impact of this simplifying assumption.

This Chapter is organized as follows: In Section 2, we will review some basic properties of
multivariate distributions and copulae and also will review the concept of partial correlations,
which the approach is based on. We will summarize the naive sampling method in Section 3.
For generalized Poisson data in dimension 8 we will compare the C-vine sampling approach
to the naive sampling method. An extensive simulation study comparing the two approaches
is given in Section 4. We conclude with a summary and discussion in Section 5.



2 Copulae and Multivariate Distributions

Marginal distributions considered in this Chapter will be the Poisson, generalized Poisson
(GP), zero-inflated generalized Poisson (ZIGP) and the Negative-Binomial (NB) distribution.
Similar to the NB distribution, the GP distribution introduced by Consul and Jain (1970) can
model overdispersion with respect to the Poisson model. Its advantage over the NB distribution
is that the overdispersion factor in the GP case depends on one additional parameter ϕ whereas
in the NB case it depends on an additional parameter as well as the mean parameter. A second
advantage of the GP distribution is that for ϕ = 1 it reduces to the Poisson distribution. The
ZIGP distribution is obtained by a mixing between the zero and the GP distribution. The
probability of the mixing variable is an additional zero-inflation parameter ω, i.e. for ω = 0
the distribution simplifies to the GP distribution. Excess zeros can be regarded as a second
source of zero-inflation. In order to allow for a comparison between these two distributions, we
choose the mean parameterization for all of the distributions. Their probability mass function
(pmf) together with means and variances are given in Table 1.

P (Y = y)
Poisson µ

y!
e−µ

E(Y ) = µ, V ar(Y ) = µ

GP µ(µ+(ϕ−1)y)y−1

y!
ϕ−ye−

1

ϕ
(µ+(ϕ−1)y),

where ϕ > max(1
2
, 1− µ

m
) and m is the largest natural number

with µ+m(ϕ− 1) > 0, if ϕ < 1.
E(Y ) = µ, V ar(Y ) = E(Y )ϕ2

ZIGP 1{y=0}

[
ω + (1− ω)e−

µ
ϕ

]

+1{y>0}

[
(1− ω)µ(µ+(ϕ−1)y)y−1

y!
ϕ−ye−

1

ϕ
(µ+(ϕ−1)y)

]

where in the case for ϕ < 1 the same condition as in the GP
case must hold.
E(Y ) = (1− ω)µ, V ar(Y ) = E(Y ) (ϕ2 + µω)

NB Γ(y+Ψ)
Γ(Ψ)y!

(
Ψ

µ+Ψ

)Ψ (
µ

µ+Ψ

)y

E(Y ) = µ, V ar(Y ) = µ(1 + µ
Ψ
)

Table 1: Probability mass functions of the Poisson, GP, ZIGP and NB distribution together
with their means and variances

We will use copulae to obtain multivariate count distributions with marginal counts as
specified above. A n-dimensional copula Cn is a multivariate cdf Cn : [0, 1]n → [0, 1] whose
univariate margins are uniform on [0, 1], i.e. Cn(1, . . . , 1, ui, 1, . . . , 1) = ui ∀i ∈ {1, . . . , n}.
For n continuous rv’s Y := (Y1, . . . , Yn)

′ with marginal distributions F1, . . . , Fn, the rv Fi(Yi)
is uniform on [0, 1]. Sklar (1959) shows that while Fi reflects the marginal distribution of Yi,
Cn reflects the dependence, i.e.

FY (y1, . . . , yn) = Cn(F1(y1 | θ1), . . . , Fn(yn | θn)|τ ), (1)

where τ are the corresponding copula parameters. Hence for a multivariate cdf of Y there



always is a copula Cn separating the dependence structure from the marginal distributions.
However, Cn is unique only for continuous margins. Vice versa, a multivariate cdf can be
constructed by virtue of (1) from n marginal distributions using a n-dimensional copula Cn.
The sampling approach by Erhardt and Czado (2008) is based on Gaussian copulae. For a
more detailed introduction to copulae including the Gaussian copula, see for instance Joe
(1997), Nelsen (2006) or Embrechts, Mcneil, and Straumann (2002). Copulae with discrete
margins are discussed for example by Song (2007).

Definition 1 (Gaussian copula). The n-dimensional Gaussian copula is a function Cn :
[0, 1]n → [0, 1] with

Cn(u1, . . . , un|ΣZ) := Φn

(
Φ−1(u1), . . . ,Φ

−1(un)|ΣZ
)
, (2)

where Φn(·|ΣZ) is the cdf of the n-dimensional normal distribution with mean µ = 0n and
covariance ΣZ and Φ−1(·) is the univariate standard normal quantile function.

In the special case of n = 2 we write C2(u1, u2|τ12) = Φ2(Φ
−1(u1),Φ

−1(u2)|τ12) instead of
(2). The n-dimensional Gaussian copula density is

cn(u1, . . . , un|ΣZ) = φn
(
Φ−1(u1), . . . ,Φ

−1(un)|ΣZ
) n∏

i=1

1

φ(Φ−1(ui))
,

with φn being the n-dimensional normal pdf with mean µ = 0n and covariance ΣZ .

Erhardt and Czado (2008) stress that for a joint distribution of count margins defined by
a Gaussian copula there are three levels of correlated random variables:

(i) Multivariate normal level: (Z1, . . . , Zn) ∼ Nn

(
0,ΣZ

)
, where the (i, j)th element of

ΣZ will be denoted by τij. We refer to τij as ”association parameter”.

(ii) Uniform level: U1, . . . , Un ∼ unif(0, 1), Ui := Φ(Zi), i = 1, . . . , n. The joint cdf
G(u1, . . . , un) = Cn(u1, . . . , un|ΣZ) is defined by the Gaussian copula cdf with asso-
ciation parameters ΣZ .

(iii) Count level: Y := (Y1, . . . , Yn)
′ are counts, where Yi := F−1

i (Ui|θi), i = 1, . . . , n and θi
are the parameters of margin i. Further, F−1

i (Ui|θi) is the pseudo-inverse of Fi at Ui. The
joint cdf is F

(
y1, . . . , yn|θ1, . . . ,θn) = Cn(F1(y1|θ1), . . . , Fn(yn|θn)|ΣZ

)
. For Y1, . . . , Yn

with Yi ∼ Fi, i = 1, . . . , n, corr(Y ) =: ΣY , where ΣY
ij = ρij and ρii = 1.

They argue that the main problem of sampling from such a copula specification is that
corr(Zi, Zj) 6= corr(Ui, Uj) 6= corr(Yi, Yj).

An important concept for the sampling approach of Erhardt and Czado (2008) are partial
correlations. Here we review an important property of partial correlations since it will be
needed in the simulation study in this Chapter. Partial correlation is the correlation between
two variables while controlling for a third or more other variables. Let W a standardized n
dimensional random vector, where we partitionW = (W1,W2,W

′
3)

′, andW 3 = (W3, . . . ,Wn)
′

is a (n−2)-dimensional random vector. Mean and correlation matrix are µ = (µ1, µ2,µ
′
3)

′ and



Σ =



σ11 σ12 σ′

13

σ12 σ22 σ′
23

σ13 σ23 Σ33


 , Σ−1 =:



σ11 σ12 σ13′

σ12 σ22 σ23′

σ13 σ23 Σ33


 .

According to Srivastava and Khatri (1979, p. 53f), the partial correlation between W1

and W2 while controlling W 3 denoted by ρ12;3:T is defined as the correlation between W1 −
σ′

13Σ
−1
33W 3 andW2−σ′

23Σ
−1
33W 3, which is the correlation betweenW1 andW2 after eliminating

the best linear effects of W 3 from both variables. It can be calculated as ρ12;3:n = −σ12√
σ11σ22

.

An important property of partial correlations is a recursive formula (Pearson (1916)): for
I := {1, . . . , n} and for any subset I∗ ⊆ I, which contains at least i, j and k,

ρij;I∗\{i,j} =
ρij;I∗\{i,j,k} − ρik;I∗\{i,j,k} · ρjk;I∗\{i,j,k}√

(1− ρ2ik;I∗\{i,j,k})(1− ρ2jk;I∗\{i,j,k})
, (3)

i.e. partial correlations of order (n− 2) can be calculated from those of order (n− 3).

3 Naive Sampling with Illustration to GP count data

In this Section we will compare our sampling approach to a naive approach of sampling count
random variables. The naive approach is to use our desired target correlation ΣY and generate
for a sample of N subjects n-dimensional multivariate normal random vectors with covariance
ΣY , i.e. Zk ∼ Nn(0,Σ

Y ), k = 1, . . . , N. Next we transform the sample zk = (zk1, . . . , zkn)
′ to

the uniform level uk := (Φ(zk1), . . . ,Φ(zkn))
′, k = 1, . . . , N and determine the sample correla-

tion Σ̂
U
of {uk, k = 1, . . . , N}. Then we generate outcomes according to the generalized Pois-

son distribution (see Table 1) with cdf Fi by determining the quantiles of the GP distribution
with mean µi and variance µiϕ

2
i at uki, k = 1, . . . , N , i = 1, . . . , n, i.e. ynaiveki := F−1

i (uki|µi, ϕi),
and ynaivek := (ynaivek1 , . . . , ynaivekn )′. The sample correlation of {ynaivek , k = 1, . . . , N} will be de-

noted by Σ̂
Y naive

.
For n = 8 and N = 100 000, we use as a target correlation matrix an exchangeable

structure, i.e. ΣY = (ρij) with ρij = 0.6 ∀i 6= j and ρii = 1. Marginal means of the eight-
dimensional GP distribution were set to µ := (4, 25, 120, 2, 28, 7, 27, 5)′, dispersion parameters

to ϕ := (1.5, 3.5, 2, 2.5, 2, 3, 1.5, 2.5)′. The empirical correlation matrix Σ̂
U
is determined to be

Σ̂
U

=























1.0000, 0.5814, 0.5836, 0.5799, 0.5812, 0.5815, 0.5821, 0.5807
0.5814, 1.0000, 0.5849, 0.5841, 0.5837, 0.5855, 0.5837, 0.5821
0.5836, 0.5849, 1.0000, 0.5839, 0.5840, 0.5819, 0.5832, 0.5853
0.5799, 0.5841, 0.5839, 1.0000, 0.5809, 0.5829, 0.5842, 0.5831
0.5812, 0.5837, 0.5840, 0.5809, 1.0000, 0.5827, 0.5804, 0.5818
0.5815, 0.5855, 0.5819, 0.5829, 0.5827, 1.0000, 0.5839, 0.5822
0.5821, 0.5837, 0.5832, 0.5842, 0.5804, 0.5839, 1.0000, 0.5848
0.5807, 0.5821, 0.5853, 0.5831, 0.5818, 0.5822, 0.5848, 1.0000























,

where the average absolute deviation of all off-diagonal elements from ΣY is 0.0172. Naively
transforming the obtained uniform variables to the count level gives us a sample of count
variables whose empirical correlation matrix is calculated to be



Σ̂
Y naive

=























1.0000, 0.5711, 0.5788, 0.5036, 0.5791, 0.5386, 0.5808, 0.5473
0.5711, 1.0000, 0.5717, 0.5062, 0.5777, 0.5497, 0.5727, 0.5491
0.5788, 0.5717, 1.0000, 0.4781, 0.5956, 0.5298, 0.5979, 0.5400
0.5036, 0.5062, 0.4781, 1.0000, 0.4909, 0.5007, 0.4850, 0.5069
0.5791, 0.5777, 0.5956, 0.4909, 1.0000, 0.5402, 0.5919, 0.5452
0.5386, 0.5497, 0.5298, 0.5007, 0.5402, 1.0000, 0.5361, 0.5360
0.5808, 0.5727, 0.5979, 0.4850, 0.5919, 0.5361, 1.0000, 0.5429
0.5473, 0.5491, 0.5400, 0.5069, 0.5452, 0.5360, 0.5429, 1.0000























.

The off-diagonal average absolute deviation is 0.0556. If we however use our approach for
sampling correlated GP variables we get

Σ̂
Y

=























1.0000, 0.5938, 0.5984, 0.6022, 0.5992, 0.5921, 0.5975, 0.5953
0.5938, 1.0000, 0.5977, 0.6019, 0.6030, 0.5989, 0.6012, 0.6072
0.5984, 0.5977, 1.0000, 0.5589, 0.6161, 0.5828, 0.6243, 0.5898
0.6022, 0.6019, 0.5589, 1.0000, 0.5721, 0.6317, 0.5632, 0.6405
0.5992, 0.6030, 0.6161, 0.5721, 1.0000, 0.5948, 0.6249, 0.5985
0.5921, 0.5989, 0.5828, 0.6317, 0.5948, 1.0000, 0.5930, 0.6301
0.5975, 0.6012, 0.6243, 0.5632, 0.6249, 0.5930, 1.0000, 0.6065
0.5953, 0.6072, 0.5898, 0.6405, 0.5985, 0.6301, 0.6065, 1.0000























,

where the off-diagonal absolute deviations have an average value of 0.0130.

4 Simulation Study

In this Section we want to perform a systematic comparison of the small sample performance
of the two sampling approaches for a correlated count random vector Y = (Y1, . . . , Yn) with
target correlation ρij = corr(Yi, Yj), 1 ≤ i < j ≤ n. We consider two methods for measuring
the performance of the approaches. The description of these measures and of the specification
of the simulation settings are given in detail in Erhardt and Czado (2008, Section 6).

Relative bias with respect to target correlation
In R independent replications we generate an N dimensional i.i.d. sample of Y . For yri :=
(yr1i, . . . , y

r
Ni)

′, i = 1, . . . , n, r = 1, . . . , R, let ρ̂rij the empirical correlation coefficient based

on yri and yrj . Then the estimated relative bias is r̂bij := 1
R

∑R
r=1

ρ̂rij
ρij

− 1, where ρij is the

target correlation. These estimated biases will be dependent, therefore we will consider the
maximal estimated relative bias MAXRB := max1≤i<j≤n r̂bij as an overall measure for all
1 ≤ i < j ≤ n.

Average number of acceptance of specified correlation
We would like to test

H0 : ρij = ρ0ij ∀ 1 ≤ i < j ≤ n versus H1 : not H0, (4)

where ρ0ij is the target correlation. This composite test consists of n(n−1)
2

individual tests, i.e.
we reject H0 if for some (i, j)

H ij
0 : ρij 6= ρ0ij versus H

ij
1 : ρij = ρ0ij, (5)

cannot be rejected. Thus we are dealing with a multiple testing problem. The classic way to
account for this is using the Bonferroni correction (see Shaffer (1995)) where the overall α



level test for (4) is obtained by performing n(n−1)
2

individual tests (5) based on level αc with
αc =

α
n(n−1)/2

. Further, since the distribution of ρ̂rij is unknown, we use the Fisher z-transform

to R by defining ẑrij := tanh−1(ρ̂rij) and z0ij := tanh−1(ρ0ij). Then according to Fisher (1921)
an asymptotic αc-level test for (5) is given by

Reject H ij
0 : ρij 6= ρ0ij ⇔

|ẑrij − z0ij|
1/
√
N − 3

≤ qαc
,

where qαc
is the (1 − αc) quantile of a standard normal distribution. If an i < j exists such

that H ij
0 : ρij 6= ρ0ij is not rejected on level αc, reject H0 : ρij = ρ0ij ∀ 1 ≤ i < j ≤ n at level

α. We set ACCα as the percentage of acceptances of H0 at level α among the R replications.
The number of replications in our simulation study is R = 1000, N was now chosen to be

500. We consider the four distributions introduced in Section 2. Marginal parameters θi are
µi in the Poisson case, (µi, ϕi) in the GP case, (µi, ϕi, ωi) in the ZIGP case and (µi, ψi) in the
NB case. Variances V ar(Y r

ki) will be equal in the GP and NB case if we set ϕ2
i = 1 + µi

ψi
or

equivalently ψi =
µi

ϕ2

i−1
. According to Table 1, a high ψi corresponds to low overdispersion and

vice versa.

(i) First we investigate the influence the dimension n and the size of the correlation in an ex-
changeable target correlation structure, i.e. ρij = ρ. The settings were ρ ∈ {0.1, 0.5, 0.9},
n ∈ {2, 5, 10}. Medium sized marginal parameters according to Table 2 were used. Re-
sults are summarized in Table 4.

(ii) For the exchangeable target correlation structure, we looked at the influence of the
marginal parameters. Here, ρ = 0.5 and n = 5 were fixed. For µ, ϕ and ω, sets of small
values (S) were compared to sets of larger (L) values. Again, for ψS := (ψS1 , . . . , ψ

S
n )

and ψL := (ψL1 , . . . , ψ
L
n ), the entries were calculated according to ψSi (µi) =

µi
(ϕS

i )
2−1

and

ψLi (µi) =
µi

(ϕL
i )

2−1
, respectively, where µi could either be µSi or µLi (see Table 3). Results

can be found in Table 5.

(iii) Finally, AR(1) and unstructured target correlations were investigated (Table 6).



T Parameters
Poi 2 µ := (10, 15)′

5 µ := (10, 15, 12, 20, 28)′

10 µ := (10, 15, 12, 20, 28, 17, 27, 13, 19, 25)′

GP µ as in Poisson case
2 ϕ := (1.5, 3.5)′

5 ϕ := (1.5, 3.5, 1.5, 2, 2.5)′

10 ϕ := (1.5, 3.5, 1.5, 2, 2.5, 2, 3, 1.5, 1.5, 2.5)′

ZIGP µ and ϕ as in GP case
2 ω := (0.25, 0.15)′

5 ω := (0.25, 0.15, 0.10, 0.3, 0.2)′

10 ω := (0.25, 0.15, 0.10, 0.3, 0.2, 0.17, 0.24, 0.24, 0.2, 0.15)′

NB µ as in Poisson case
2 ψ := (8, 1 1

3
)′

5 ψ := (8, 1 1

3
, 9.6, 6 2

3
, 5 1

3
)′

10 ψ := (8, 1 1

3
, 9.6, 6 2

3
, 5 1

3
, 5 2

3
, 3.375, 10.4, 15.2, 4.762)′

Table 2: Marginal parameter choices for n = 2, 5 and 10 and exchangeable correlation structure
for different marginal distributions (marginal variances for GP and NB margins are chosen to
be equal)

small large
µS := (1, 3, 2, 2, 1.5)′ µL := (30, 20, 35, 50, 25)′

ϕS := (1.1, 2.5, 1.5, 3, 2)′ ϕL := (6, 5, 3, 4, 4.5)′

ωS := (0.05, 0.1, 0.05, 0.08, 0.07)′ ωL := (0.25, 0.2, 0.35, 0.15, 0.4)′

ψS(µS) := (4.76, 0.57, 1.6, 0.25, 0.5)′ ψL(µS) := (0.03, 0.13, 0.25, 0.13, 0.08)′

ψS(µL) := (142.9, 3.810, 28, 6.25, 8.33)′ ψL(µL) := (0.86, 0.83, 4.38, 3.33, 1.30)′

Table 3: Marginal parameter choices for investigating the influence of marginal parameter sizes
(ψS(µ) corresponds to large overdispersion, ψL(µ) small overdispersion)



Poisson GP ZIGP NB
ρ n MAXRB ACC0.05 MAXRB ACC0.05 MAXRB ACC0.05 MAXRB ACC0.05

0.1 2 0.0018 1.000 0.0036 1.000 0.0011 1.000 0.0004 1.000

0 .0236 0 .938 0 .0859 0 .935 0 .1275 0 .929 0 .0905 0 .944

5 0.0372 1.000 0.0191 1.000 0.0299 1.000 0.0279 1.000

0 .0338 0 .959 0 .1446 0 .933 0 .1511 0 .936 0 .1037 0 .937

10 0.1068 1.000 0.0659 1.000 0.0703 1.000 0.0735 1.000

0 .0350 0 .940 0 .1295 0 .932 0 .1311 0 .937 0 .1091 0 .947

0.5 2 0.0002 1.000 0.0001 1.000 0.0005 1.000 0.0000 1.000

0 .0119 0 .951 0 .0776 0 .770 0 .0939 0 .708 0 .0619 0 .826

5 0.0191 0.995 0.0110 0.992 0.0176 0.998 0.0083 0.996

0 .0114 0 .952 0 .0774 0 .764 0 .1004 0 .709 0 .0589 0 .836

10 0.0309 1.000 0.0119 0.998 0.0231 0.998 0.0091 0.999

0 .0093 0 .955 0 .0748 0 .792 0 .1242 0 .731 0 .0615 0 .850

0.9 2 0.0006 1.000 0.0006 1.000 0.0003 1.000 0.0004 1.000

0 .0077 0 .877 0 .0456 0 .038 0 .0699 0 .000 0 .0323 0 .162

5 0.0093 0.764 0.0191 0.766 0.0326 0.322 0.0124 0.873

0 .0081 0 .923 0 .0476 0 .035 0 .0811 0 .000 0 .0354 0 .170

10 0.0086 0.769 0.0254 0.613 0.0717 0.000 0.0176 0.836

0 .0082 0 .934 0 .0562 0 .011 0 .1250 0 .000 0 .0415 0 .135

Table 4: Maximal estimated relative bias (MAXRB) and proportion of tests which accepted target correlation (ACC0.05) based
on R = 1000 replications of N = 500 samples of size n for exchangeable target correlation ρ and different count margins and
parameters as in Table 2 (bold: C-vine sampling, italics: naive sampling)



µ ϕ ω MAXRB ACC0.05 MAXRB ACC0.05

Poisson S 1 0 0.0335 0.999 0 .1014 0 .672

L 1 0 0.0241 0.995 0 .0052 0 .950

GP S S 0 0.1323 0.516 0 .2456 0 .034

S L 0 0.3822 0.010 0 .5107 0 .000

L S 0 0.0146 0.993 0 .0329 0 .913

L L 0 0.0868 0.914 0 .1423 0 .307

ZIGP S S S 0.1377 0.492 0 .2603 0 .020

S S L 0.1875 0.297 0 .2850 0 .007

S L S 0.3937 0.005 0 .5230 0 .000

S L L 0.4023 0.004 0 .5682 0 .000

L S S 0.0570 0.999 0 .1069 0 .790

L S L 0.0794 0.990 0 .1528 0 .460

L L S 0.0931 0.924 0 .1479 0 .304

L L L 0.0988 0.906 0 .1514 0 .222

NB S S 0 0.1228 0.615 0 .2348 0 .035

S L 0 0.3719 0.012 0 .5146 0 .001

L S 0 0.0150 0.994 0 .0280 0 .928

L L 0 0.0582 0.997 0 .1061 0 .544

Table 5: Maximal estimated relative bias (MAXRB) and proportion of tests which accepted
target correlation (ACC0.05) based on R = 1000 replications of N = 500 samples of size n = 5
for exchangeable target correlation ρ and different count margins and parameters as in Table
3 (bold: C-vine sampling, italics: naive sampling)

AR(1)
Poisson GP ZIGP NB

MAXRB 0.0220 0.0218 0.0219 0.0219

0 .0736 0 .0741 0 .0740 0 .0738

ACC0.05 0.806 0.807 0.807 0.807

0 .760 0 .760 0 .759 0 .760

unstructured
Poisson GP ZIGP NB

MAXRB 0.0244 0.0244 0.0245 0.0245

0 .0932 0 .0923 0 .0937 0 .0928

ACC0.05 0.862 0.862 0.862 0.861

0 .778 0 .778 0 .777 0 .778

Table 6: Maximal estimated relative bias (MAXRB) and proportion of tests which accepted
target correlation (ACC0.05) based on R = 1000 replications of N = 500 samples of size n = 5
for AR(1) and unstructured correlation structures and different count margins (bold: C-vine
sampling, italics: naive sampling)

AR(1) and unstructured correlation matrices:

For R = 1000 replications, N = 500 and n = 5, we investigated as target correlation also
AR(1) and unstructured correlation matrices, i.e. for the AR(1) case we used ΣY = (ρij) with
ρij = 0.7|i−j| ∀i 6= j and ρii = 1. In order to obtain unstructured correlation matrices, we



generated a sample of R = 1000 unstructured partial correlations fully specifying a C-vine
decomposition. Then we calculated the corresponding correlation matrix from them using the
recursive expression (3). Note that not all correlations can be sampled. For very high and
very low target correlations and especially for low marginal means in i and / or j, τij(Σ

Y |θ)
might not exist. We did not discard the simulation in these replications but used the result
generated from the closest association parameters obtained in the bisection step when no
further optimization could be archived. We briefly interpret the obtained results.

Influence of the choice of ρ:
According to Table 4, the higher the target correlation was chosen, the smaller ACC0.05 and
hence the worse the approximations became. The maximal estimated relative bias, however,
shrinks. This is due to the standardization by the true correlation parameters.

Influence of T :
As one would expect, the higher the dimension T , the worse the approximation gets. The
reason is simply error propagation.

Influence of the distribution family:
Overdispersed settings perform worse than equidispersed ones, zero-inflation additionally in-
creases overdispersion and hence worsens the results.

Influence of the range of parameters µ:
According to MAXRB and ACC0.05 in Table 5, small means produce worse approximations.
Small means generate more discrete data with linear correlation harder to optimize.

Influence of the range of parameters ϕ and ω:
Small dispersion and zero-inflation parameters result in dramatically better approximations
than large ones. Both large ϕ and ω increase heterogeneity in the data and therefore also in
the empirical correlations calculated.

Also for the AR(1) and unstructured correlation matrices in Table 6, the results are equally
good as in the five-dimensional exchangeable settings.

5 Summary and Discussion

Erhardt and Czado (2008) suggest an iterative method for sampling correlated count random
variables. Positive definiteness of the resulting association parameters is ensured by the C-vine
framework the approach is embedded in. The price for this is that some of the correlations
between margins are only approximated via partial correlations. The comparison carried out
in this Chapter illustrates that the performance of the two approaches strongly depends on
the simulation setting chosen.

There are two questions raised in this Chapter: first of all, how wrong can one be when
using the simplified (naive) approach? The simulation study illustrates that the desired target
correlations might be clearly missed especially when the dimension, the degree of discreteness
and overdispersion of the margins are high. The other question is how much better the sug-
gested C-vine approach performs. We illustrated that even if it tends to be less precise in the
same setting the naive approach fails, there is a substantial improvement of accuracy.
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