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Abstract

Recently an efficient fixed point algorithm for finding maximum likelihood estimates has found
its application in models based on Gaussian copulas. It requires a decomposition of a likelihood
function into two parts and their iterative maximization. Therefore, this algorithm is called max-
imization by parts (MBP). For copula-based models, the algorithm MBP improves the efficiency
of a two-step estimation approach called inference for margins (IFM) and is an promising alterna-
tive method to direct maximization of the likelihood function (DIR). For the first time, the MBP
algorithm is derived and applied to Student t-copula based models. A superiority of the proposed
algorithm over IFM and DIR methods is illustrated in a simulation study for data with small
sample sizes. This makes the proposed algorithm an excellent candidate for estimation in a rolling
window set up, which is able to account for time varying dependency structures. This approach is
followed by the analysis of swap rates demonstrating the necessity of time varying copula effects.

Key words: Copula, inference for margins, maximum likelihood estimation, maximization by
parts, meta-t distribution, rolling windows

1. Introduction

Due to Sklar’s theorem (see Sklar, 1959) copulas describe an invariant dependence structure
of multivariate distributions. Thus, using any monotone transformations, marginal variables of
a given multivariate distribution can arbitrarily be transformed but the corresponding copula
stays the same and does not change at all. Since Frees and Valdez (1998) and Embrechts et al.
(1999) copulas have been started to be widely used in economics, finance and risk management.
On the other hand, copulas have been used for the construction of flexible and more general
multivariate distributions (see e.g. Johnson and Kotz 1972; Dall’Aglio et al. 1991; Krzysztofowicz
and Kelly 1997). In particular, Fang et al. (2002) construct a class of meta-elliptical distributions
with specified univariate marginal distributions using copulas of multivariate elliptically contoured
distributions. For the theory and applications of elliptically contoured distributions we refer
readers to Cambanis et al. (1981), Fang et al. (1990) and Embrechts et al. (2003).

Recently Song et al. (2005) introduced a new fixed point algorithm for finding the maximum
likelihood estimates (MLE’s) iteratively. This method is called the maximization by parts (MBP)
algorithm since it requires a decomposition of a log likelihood function into two parts. The
first part should be easily optimized and is called the working model, while the second part is
called an error model. It involves additional variable over the ones in the working model. The
global maximization is then determined in an iterative way. The purpose of this algorithm is
to overcome optimization problems which can be encountered by using other known algorithms
such as directed maximization (DIR) or expectation maximization (EM) algorithms. However, it
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seems that the MBP method is most appropriate for copula based models, where log-likelihood
functions are already naturally decomposed into two parts. For copula based models, the working
model usually consists only of copula parameters, while the error model includes copula as well as
marginal parameters of the copula-based model.

Since Song et al. (2005) carried out the theory of maximization by parts many researchers have
scrutinized MBP algorithm in numerous applications. Liu and Luger (2009) applied the MBP
algorithm to copula-GARCH model based on a Gaussian copula and examined the performance
of their MBP algorithm compared to so-called inference for margins (IFM) method (see Shih and
Louis 1995; Joe and Xu 1996). They showed that the IFM strategy for estimating copula-GARCH
models can be improved using the MBP algorithm. Further, Song et al. (2007) investigated the
linear mixed-effects models using multivariate t-distributions by using the MBP algorithm to
maximize the corresponding likelihood. They found out that the MBP algorithm is recommended
to both high and low dimensional linear mixed-effects models. Fan et al. (2007) derived the
MBP algorithm of Song et al. (2005) for more general extremum estimates which include the
generalized method of moment (GMM) estimates and least absolute deviate estimates as well
as MLE’s. Further they investigated asymptotic properties of extremum estimates obtained via
MBP, illustrated efficiency of their algorithm over existing ones for MLE’s in the Merton’s credit
risk model and gave applications of the MBP algorithm for GMM estimates.

It is well known that economy has cycles and that the economic environment can change rapidly
due to unpredictable circumstances. For many practitioners and researchers estimation of a time
varying dependence structure in financial time series is of major interest. One easy approach to
identify the need for models with time varying structures is to employ a rolling window approach.
For example, Aussenegg and Cech (2008) applied a rolling windows technique to Eurostoxx 50 and
Dow Jones Industrial 30 stock indices in order to compare Gaussian and Student t-copulas. As it
is pointed out in Zivot and Wang (2003), this technique allows us to evaluate the model’s stability
over a time interval. If parameters of interest are truly constant over the entire sample, then the
estimates over the rolling windows should not differ from each other very much. If the parameters
change at some point during the sample significantly, it identifies the instability of the model and
therefore the need to choose a model with time varying dependency variables. They might be
slowly varying or rapidly varying. For rapidly varying structure Markov switching models might
be useful.

In this paper we first derive a MBP algorithm for multivariate meta t-distributions. They
are constructed by coupling a multivariate t-copula with arbitrarily specified univariate margins.
Here and in the sequel we fix margins of meta t-distributions as univariate t-distributions not
necessarily with the same degrees of freedom. The resulting multivariate distributions are rich
enough and cover multivariate t-distributions. The usefulness of meta t-distributions with t-
margins is illustrated in McNeil et al. (2005). We present our algorithm for bivariate meta t-
distributions. However, it can be easily generalized to the multivariate case d > 2. In an extensive
simulation study we demonstrate that the MBP algorithm is the most stable and efficient method
for small samples than DIR and IFM methods.

The rolling window technique is computational intensive and uses data samples which are
usually much smaller than an entire one. Therefore it requires a numerically stable estimation
method for small sample sizes. In this situation the MBP algorithm for meta t-distributions is
most suited. In contrast, the DIR method may often fail to find MLE’s since the log likelihood
functions are less peaked and smooth due to the small sample size. The two step IFM approach
gives generally estimates which are less efficient than MLE’s since marginal and copula parameter
estimates are determined separately (see Joe, 2005).

The rest of the paper is organized as follows. In Section 2 we discuss a multivariate t-copula
and a meta t-distribution. Section 3 presents the generic DIR, IFM and MBP algorithms for
copula based models. Section 4 describes the MBP algorithm for meta t-distributions. Section
5 contains the simulation study illustrating the superiority of our algorithm over the DIR and
IFM approaches. An application of the proposed MBP algorithm to rolling window analysis is
given in Section 6, including pointwise bootstrapped confidence limits to assess the significance of
time varying effects. Section 7 summarizes our findings and gives an outlook for further research.
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Derivatives of working and error models for our MBP algorithm are deferred to the Appendix.

2. Copulas and meta t-distributions

Meta t-distributions are flexible extensions of multivariate t-distributions (see Kotz and Nadara-
jah, 2004). In their simplest form they have univariate t-margins with arbitrary degrees of freedom
(df) parameter for each margin, but other margins are feasible as well. A comprehensive study
of meta t-distributions and more general meta-elliptical distributions can be found in Fang et al.
(2002) or Embrechts et al. (2003). Their construction is based on the concept of copulas (see
Sklar, 1959), which will be briefly be presented in the following.

Copulas are multivariate distributions with uniformly distributed marginals on [0,1]. Classical
textbook references on copulas are Joe (1997) and Nelsen (2006). Consider a d-variate random vari-
able X := (X1, . . . , Xd) with joint cumulative distribution function (cdf) F (⋅, ..., ⋅) and marginal
cdf’s Fi(⋅), i = 1, ..., d, respectively. Then Sklar’s Theorem states that there exists a d-variate
copula cdf C(⋅, ..., ⋅) on [0, 1]d with

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (1)

for all x ∈ ℝ̄d. If F1(⋅), . . . , Fd(⋅) are continuous, then C(⋅, ..., ⋅) is unique. Conversely, if C(⋅, ..., ⋅)
is a d-dimensional copula and F1(⋅), . . . , Fd(⋅) are distribution functions, then

C(u1, . . . , ud) = F (F−11 (u1), . . . , F−1d (ud)). (2)

Here F−1i (ui) denotes the inverse of the cdf Fi(⋅) for i = 1, . . . , d. Using (2) we can write the
corresponding copula density as

c(u1, . . . , ud) =
∂2C(u1, . . . , ud)

∂u1 ⋅ ⋅ ⋅ ∂ud

=
∂F (F−11 (u1), . . . , F−1d (ud))

∂u1 ⋅ ⋅ ⋅ ∂ud
=

f(F−11 (u1), . . . , F−1d (ud))

f1(F−11 (u1)) ⋅ ⋅ ⋅ fd(F−1d (ud))
. (3)

The d-variate meta t-distribution is constructed by linking a d-variate t-copula with d arbitrary
marginal cdf’s. In this paper we focus on meta t-distributions with univariate t-distributed mar-
gins. Let t� denote the univariate t-distribution with df parameter � > 1 and t�,R the central
d-variate t-distribution with df � > 1 and a d × d symmetric and positive-definite scatter matrix
R := (�ij)1⩽i,j⩽d with unit diagonal entries and −1 < �ij < 1. The corresponding probability
density functions (pdf’s) are then given by

f(x ; �) :=
Γ(�+1

2 )
√
��Γ(�2 )

(
1 +

x2

�

)− �+1
2

, (4)

f(x ; �,R) :=
Γ[�+d2 ]

Γ[�2 ](��)
d
2

∣R∣− 1
2

[
1 +

1

�
xtR−1x

]− �+d2

,

where ∣ ⋅ ∣ denotes the determinant of a matrix and Γ(⋅) is the Gamma function. Finally we use
F (x ; �) and F (x ; �,R) to denote the corresponding cdf’s. From (3) it follows that the d-variate
t-copula pdf c(⋅ ; �,R) is given by

c(u ; �,R) =
f(t−1� (u1), . . . , t−1� (ud) ; �,R)∏d

j=1 f(t−1� (uj) ; �)
=

Γ(�+d2 )Γ(�2 )d−1
(
1 + ztR−1z

�

)− �+d2

Γ(�+1
2 )d∣R∣ 12

∏d
j=1(1 +

z2j
� )−

�+1
2

, (5)

where z := (z1, ..., zd)
t with zj := t−1� (uj) and t−1� is the quantile function of univariate t-

distribution. The d-variate t-copula distribution is abbreviated as Cd(�,R). If Xj ∼ t�j , j =
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1, ..., d, it follows that U := (U1, . . . , Ud) ∼ Cd(�,R), where Uj := F (Xj ; �j). The reversal holds
if U ∼ Cd(�,R), then Z := (t−1� (U1), . . . , t−1� (Ud))

t ∼ t�,R.
Let Θ := {�1, . . . , �d, �, R ∣ �1, . . . , �d, � ∈ [1,∞),−1 < �ij < 1, i = 1, ..., d, j < i} be the

parameter space of the d-variate meta t-distribution with univariate t-margins, abbreviated as
MTd(�), where � ∈ Θ. The parameters of the marginal distributions are df’s �1, . . . , �d while
� and R are the parameters of the copula. Using (3) with (4) and (5) we obtain the pdf of a
d-variate meta t-distributed random vector X := (X1, . . . , Xd) ∼MTd(�) as:

ℎ(x ;�) = c(F (x1 ; �1), . . . , F (xd ; �d) ; �,R)

d∏
j=1

f(xj ; �j)

=
Γ(�+d2 )Γ(�2 )d−1

(
1 + ztR−1z

�

)− �+d2

Γ(�+1
2 )d∣R∣ 12

∏d
j=1(1 +

z2j
� )−

�+1
2

d∏
j=1

Γ(
�j+1
2 )

√
�j�Γ(

�j
2 )

(
1 +

x2j
�j

)− �j+1

2

. (6)

Figure 1 illustrates contour plots of bivariate meta t pdf’s with � = 0.8 and different df values
for �1, �2 and �.

For d-variate i.i.d. observations x := (x1, ...,xn)t ∈ ℝn×d of size n with xi := (xi1, ..., xid)
t for

i = 1, . . . , n from MTd(�) the corresponding log likelihood function based on the observations x
is given by

ℓ(� ;x) :=

n∑
i=1

ln c(F (xi1 ; �1), . . . , F (xid ; �d) ; �,R) +

d∑
j=1

n∑
i=1

ln f(xij ; �j) (7)

= n ln Γ(
� + d

2
) + n(d− 1) ln(

�

2
)− n ln Γ(

� + 1

2
)− n

2
ln(∣R∣)

− � + d

2

n∑
i=1

ln
(
1 +

ztiR
−1zi
�

)
+
� + 1

2

n∑
i=1

d∑
j=1

ln
(
1 +

z2ij
�

)
+

d∑
j=1

(
n ln Γ(

�j + 1

2
)− n

2
ln(�j�)− n ln Γ(

�j
2

)− �j + 1

2

n∑
i=1

ln
(
1 +

x2ij
�j

))
.

In addition for the parameter vectors �1 := (�1, . . . , �d)
t and �2 := (�,�)t where � := (�ij : i =

1, ..., d, j < i) we define

ℓc(�1,�2 ;x) :=

n∑
i=1

ln c(F (xi1 ; �1), . . . , F (xid ; �d) ; �,R), (8)

ℓm(�1 ;x) :=

d∑
j=1

n∑
i=1

ln f(xij ; �j), (9)

so that (7) can be rewritten as ℓ(� ;x) = ℓc(�1,�2 ;x) + ℓm(�1 ;x).
Lindskog et al. (2003) show that Kendall’s � transformation estimator for the linear correlation

of a pair of random variables, i.e.

�̂ = sin
(�

2
�̂
)
, (10)

is more robust than the sample correlation estimator when estimating the bivariate correlation
coefficient �. The association measure Kendall’s � for a bivariate random variable X = (X1, X2)
is defined as

� := P ((X1 − Y1)(X2 − Y2) > 0)− P ((X1 − Y1)(X2 − Y2) < 0),

where Y = (Y1, Y2) are independent copies of X. Kendall’s � is invariant under monotone trans-
formations, thus it does not change for X = (X1, X2) ∼MT2(�) (see Nelsen, 2006).

In many financial applications the tail dependence plays a crucial role when examining the im-
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Figure 1: Contour plots of bivariate meta t pdf’s with � = 0.8 and different degrees of freedom parameters �1, �2
and �
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pact of extremal events. According to Embrechts et al. (2003), the upper and lower tail dependence
coefficients of symmetric copulas are equal. For the bivariate t-copula they showed that

�(�, �) := 2t�+1

(
−
√
� + 1

√
1− �
1 + �

)
. (11)

3. Likelihood based estimation methods

Without loss of generality we assume that we have a log likelihood ℓ(�,x), given by (7), for
parameter vector � ∈ ℝp and data x ∈ ℝn×d available.

3.1. Direct maximization method (DIR)

A standard method to estimate the MLE is direct maximization (DIR). In the DIR method we

conduct a p-dimensional maximization of ℓ(� ;x) in (7) with respect to � where p = d(d+1)
2 + 1.

We use numerical methods such as L-BFGS-B or BFGS to solve constrained or non-constrained
nonlinear optimization problems by approximating the Hessian matrix. (see Lu et al., 1994).
The algorithms are often not stable and computationally difficult for high dimensional parameter
estimations or small sample size.

3.2. Inference for margins

The IFM method requires a partition of the log likelihood in (7) into two components - a
marginal and a copula component, i.e. ℓ(� ;x) = ℓm(�1 ;x) + ℓc(�1,�2 ;x). Here ℓm(⋅ ; ⋅) and
ℓc(⋅ ; ⋅) are given in (8) and (9). The parameter vector � consists of �1 and �2, i.e. � = (�t1,�

t
2)t,

where �1 ∈ ℝd represents the parameters of the marginal distributions and �2 ∈ ℝ(d2−d)/2+1

includes the parameters of the copula. The IFM method proceeds as follows:

STEP 1. Find �̂1 = arg max of ℓm(�1 ;x) = 0.

STEP 2. Find �̂2 = arg max of ℓc(�̂1,�2 ;x) = 0.
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Joe (2005) proved that under some regularity conditions the IFM estimators are consistent and
asymptotically normal. However, the major disadvantage of this approach is the loss of efficiency
in estimation since STEP 1 does not consider the dependence between the marginal distributions.

Since the high dimensional parameter estimation of a copula function in STEP 2 is often
computationally challenging we calculate the IFM estimators following ideas in Lindskog (2000)
and Demarta and McNeil (2005). The method uses the relationship (10) to estimate the correlation
coefficients of bivariate margins. To obtain a positive definite matrix we can adapt the eigenvalue
method suggested by Rousseeuw and Molenberghs (1993). Finally we estimate the remaining
parameter � by holding the correlation matrix fix. According to Mashal et al. (2003), this partial
ML estimation approach gives very similar estimates to the full maximum likelihood procedure
and has been widely used in practice.

3.3. MBP approach for maximum likelihood estimation

The multi-step fixed point algorithm MBP proposed by Song et al. (2005) requires a decom-
position of the likelihood into two parts - a working model and an error model. In this paper we
adapt a modified version of the maximization by parts (MBP) decomposition technique presented
in Song et al. (2005). The modified version of MBP decomposition requires that the error model
contains all parameters of the log likelihood while the working model only includes parts of them.
In particular, consider a general likelihood function ℓ(� ;x) where � ∈ ℝp is the parameter vector
to be estimated and data x = (x1, ...,xn)t. We partition � = (�t1,�

t
2)t for �1 ∈ ℝp1 and �1 ∈ ℝp2 .

Here �1 denotes the parameter vector of the working model with log likelihood ℓw(�1 ;x) while the
log likelihood of the error model is written as ℓe(� ;x). The decomposition of the full log likelihood
is then ℓ(� ;x) = ℓw(�1 ;x) + ℓe(� ;x) and its corresponding score functions are therefore given by

∂

∂�
ℓ(�,x) =

⎛⎜⎝ ∂

∂�1
ℓw(�1 ;x) +

∂

∂�1
ℓe(�1,�2 ;x)

∂

∂�2
ℓe(�1,�2 ;x)

⎞⎟⎠ = 0.

The general MBP algorithm of Song et al. (2005) can now be formulated as follows:

STEP 0. Find �01, which solves
∂

∂�1
ℓw(�1 ;x) = 0.

Find �02, which solves
∂

∂�2
ℓe(�

1
1,�2 ;x) = 0.

STEP k. Find �k1 , which solves
∂

∂�1
ℓw(�1 ;x) = − ∂

∂�1
ℓe(�

k−1
1 ,�k−12 ;x).

k=1,2,... Find �k2 , which solves
∂

∂�2
ℓe(�

k−1
1 ,�2 ;x) = 0.

For each STEP k with k = 1, 2, ..., we use estimates from the previous step to update the
estimates of the working and error models in the current step. Song et al. (2005) showed in
Theorem 1, if �0 = (�01,�

0
2) is a consistent estimator of �, then �k = (�k1 ,�

k
2) for each k, k = 1, 2, ...

is consistent as well. Under regularity conditions, �k converges to the MLE �̂ as k → ∞ in
probability. In Theorem 3 Song et al. (2005) showed the asymptotic normality of the estimator

�k arising from the MBP algorithm and derived an expression for the asymptotic variance of �̂
k
.

4. MBP algorithm for meta t-distributions

For the meta t-distribution we start with the decomposition � := (�t1,�
t
2)t where �1 =

(�1, . . . , �d)
t ∈ ℝd are the parameters of the marginal distributions and �2 = (�,�)t ∈ ℝ(d2−d)/2+1

with � := (�ij , i = 1, ..., d, j < i) are the parameters of the copula. As pointed out in Song et al.
(2005), the convergence of the MBP algorithm strongly depends on the choice of the working
and error models. A choice of a independence working model which only contains the univariate
marginals would lead to a failure of the MBP algorithm, since it does not give no information
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about their dependence. In order to achieve the convergence we need to include additional infor-
mation to the independence working model that accounts for some degree of correlation between
the marginal distributions. Following Song et al. (2005), we decompose the log likelihood (7) of
the meta t-distribution for data x = (x1, ...,xn)t ∈ ℝn×d and some known copula parameters
�2,0 := (�0,�0)t as

ℓ(� ;x) = ℓ(�1,�2 ;x) = ℓw(�1 ;�2,0 ;x) + ℓe(�1,�2 ;�2,0 ;x),

where

ℓw(�1 ;�2,0 ;x) := ℓm(�1 ;x) + ℓ(�1,�2,0 ;x), (12)

ℓe(�1,�2 ;�2,0 ;x) := ℓc(�1,�2 ;x)− ℓ(�1,�2,0 ;x). (13)

Here ℓc(�1,�2 ;x) and ℓm(�1 ;x) are as specified in (8) and (9). For the MBP algorithm specified
in Section 3.3 we need to derive (12) and (13). We give the explicit form of these derivatives for
d = 2 in the appendix.

In the algorithm we can set the known copula parameters �2,0 = (�0,�0)t in two ways - non-
adaptive and adaptive. The non-adaptive method keeps �2,0 fixed for all MBP iterations, while
the other one changes the value of �2,0 in each iteration, yielding two versions of the MBP algo-
rithm. To determine the initial values in STEP 0 in the MBP algorithm we use the IFM method
as described in Section 3.2.

Non-adaptive MBP (MBP1)
In the non-adaptive MBP method we hold �2,0 fixed during the entire MBP iterations.
STEP 0: Generate initial values (�01 , . . . , �

0
d , �

0,�0) using the IFM method

STEP k.1: Choose the fixed copula parameter vector �2,0 = (�0,�0)t and find �k1 = (�k1 , . . . , �
k
d )t

which solves the following equation

∂

∂�1
ℓw(�1 ;�2,0 ;x) +

∂

∂�1
ℓe(�

k−1
1 ,�k−12 ;�2,0 ;x) = 0.

STEP k.2: Find the solution �k2 = (�k,�k)t of the equation

∂

∂�2
ℓe(�

k−1
1 ,�2 ;�2,0 ;x) = 0.

Adaptive MBP (MBP2)

In the adaptive method we update the parameter �2,0 = (�k−1,�k−1)t in each MBP steps with
the estimated parameters from previous step.
STEP 0: Generate initial values (�01 , . . . , �

0
d , �

0,�0) using the IFM method

STEP k.1: Choose new copula parameter vector in each step k, i.e. �2,0 = �k−12 = (�k−1,�k−1)t

and find �k1 = (�k1 , . . . , �
k
2 )t which solves the following equation

∂

∂�1
ℓw(�1 ;�k−12 ;x)− ∂

∂�1
ℓm(�k−11 ;x) = 0.

STEP k.2: Find the solution �k2 = (�k,�k)t of the equation

∂

∂�2
ℓe(�

k−1
1 ,�2 ;�k−12 ;x) = 0.

We also investigated a mixed strategy for the choice of �2,0 = (�k−1,�0)t and �2,0 = (�0,�k−1)t.
However, these algorithms fail to converge after few iteration steps.

In the implementation of the algorithm we apply the R function optim using Quasi-Newton
with box constraints (L-BFGS-B) or Quasi-Newton without box constraints (BFGS). For the L-
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BFGS-B method the parameter space for degrees of freedom is limited to [1,100]. If the optim

function using L-BFGS-B fails to converge we apply the BFGS method which requires the Fisher’s
z-transformation for the parameters. The parameter space for degrees of freedom is then uncon-
strained. For more details we refer to Lu et al. (1994).

5. Small sample properties of MBP estimators

Here we demonstrate our findings in bivariate case. To evaluate the performance of the MBP
estimators and its competitors DIR and IFM estimators we use robust estimates of bias and mean
squared error (MSE). More precisely, let �̂1, ..., �̂r be independent estimates of the true parameter

�tr, then the median absolute deviation (mad) of estimator �̂ is given by

mad(�̂) := median(∣�̂i −median(�̂1, ..., �̂r)∣), i = 1...r, (14)

and the MSE of �̂ is robustly estimated by

r̂mse(�̂) := (median(�̂1, ..., �̂r)− �tr)2 +

(
mad(�̂1, ..., �̂r)

Φ−1( 3
4 )

)2

(15)

(see Brown, 1982; Ripley and Venables, 2002).
We are interested in investigating the performance in small samples, since we want to apply our

estimation method in a rolling window setup to capture time effects in financial data. Therefore
we use a sample size of n = 100. For this small sample size it is more appropriate to use the robust
performance measures introduced above than the classical estimates based on empirical means and
variances. This allows to reduce the effects of outliers. We chose 12 parameter combinations for
�1, �2, � and � specified in column 2 to 5 in Table 1. For each scenario we generate an i.i.d.
sample of size n = 100 from MT2(�) where � = (�1, �2, �, �)t is specified by the scenario. Finally
we estimated � using MBP1, MBP2 as well as DIR and IFM methods.

Table 1 gives the estimated performance measures for each parameter component of � and
for each scenario based on converged replications. From this we see that most of the times the

lowest values for m̂ad(�̂) agrees with the lowest value of r̂mse(�̂) for all components of �, thus
indicating no bias-variance trade-off between the different estimation methods. MBP1, MBP2 and
DIR behave quite similar, while IFM tends to differ. Pattern differ from parameter component to
parameter component. For the marginal parameter �1 and the copula component � IFM performs
better than MBP1, MBP2 or DIR, while the opposite is true for parameter components �2 and �.

To get a clearer overall picture we apply the average rank method implemented in R by the
function rank(,ties.method=average). This means that for each parameter we rank the results
of the four estimation methods. Then we add up the ranks over all components and groups
of scenarios involved for each estimation methods. These four sums corresponding to different
estimation methods are finally ranked again. Table 2 gives these overall rank for different copula
parameter combinations. From this we see that MBP1 outperforms IFM for a small copula df
(� = 3) regardless of a smaller or larger value of the association parameter �. For large df (� = 10),
MBP1 is still a good performer. Overall MBP1 is the best performer followed by IFM.

As we mentioned above the estimated mad and rmse values are only based on those replications
out of 100, which converged. For scenarios with � = 3 (� = 10) the percentage of non-converged
estimates ranges between 2% to 22% (24% to 42%) for the IFM method, while the DIR method
converged always. For both MBP1 and MBP2 most scenarios had no convergence problems. At
most 1% of non-converged estimates was observed for MBP1 and MBP2.

Our overall conclusion is that the non-adaptive maximization by parts methods is the best
performing estimation method with respect to bias and MSE as well as with respect to lowest
occurrence of convergence problems. The price for this good performance is a substantial increase
in computing time. MBP requires often 10 to 50 times more than IFM and DIR.
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Table 1: Small sample performance in terms of m̂ad(�̂) and r̂mse(�̂) for each parameter component of � over 12
scenarios based on 100 data sets of size 100 from MT2(�)

# �1 �2 � � Method
m̂ad r̂mse

�̂1 �̂2 �̂ �̂ �̂1 �̂2 �̂ �̂

MBP1 0.868 0.700 1.436 0.119 1.656 1.077 4.572 0.031
01 3 3 3 0.3 MBP2 0.868 0.700 1.436 0.119 1.656 1.078 4.572 0.031

DIR 0.868 0.700 1.437 0.119 1.657 1.078 4.574 0.031
IFM 0.733 0.714 1.541 0.109 1.181 1.123 5.258 0.026
MBP1 0.805 0.694 1.653 0.037 1.426 1.068 6.011 0.003

02 3 3 3 0.8 MBP2 0.806 0.694 1.653 0.037 1.428 1.069 6.009 0.003
DIR 0.808 0.693 1.645 0.037 1.434 1.065 5.955 0.003
IFM 0.800 0.701 1.749 0.041 1.414 1.094 6.792 0.004
MBP1 5.918 6.453 6.757 0.080 76.984 92.362 100.791 0.014

03 10 10 10 0.3 MBP2 5.964 6.473 6.725 0.081 78.185 92.975 99.883 0.015
DIR 6.029 6.525 6.899 0.079 79.904 94.514 105.040 0.014
IFM 5.615 7.132 5.397 0.064 69.349 113.274 67.870 0.010
MBP1 6.888 7.163 8.297 0.036 104.746 118.531 151.356 0.003

04 10 10 10 0.8 MBP2 6.888 7.413 8.263 0.036 104.732 126.678 150.120 0.003
DIR 6.353 7.768 8.668 0.036 89.336 137.242 165.255 0.003
IFM 6.928 6.960 7.541 0.026 105.939 107.582 125.048 0.002
MBP1 0.877 0.808 6.286 0.073 1.691 1.442 88.262 0.012

05 3 3 10 0.3 MBP2 0.877 0.808 6.286 0.073 1.691 1.442 88.267 0.012
DIR 0.880 0.806 6.342 0.073 1.703 1.434 89.490 0.012
IFM 0.878 0.856 4.917 0.062 1.696 1.614 58.533 0.009
MBP1 0.867 0.761 7.451 0.035 1.680 1.344 122.682 0.003

06 3 3 10 0.8 MBP2 0.865 0.762 7.454 0.033 1.675 1.347 122.785 0.002
DIR 0.890 0.795 7.452 0.035 1.747 1.423 122.211 0.003
IFM 0.752 0.776 6.658 0.026 1.249 1.323 97.673 0.002
MBP1 0.832 4.885 1.318 0.118 1.524 52.459 3.846 0.031

07 3 10 3 0.3 MBP2 0.832 4.872 1.322 0.119 1.523 52.180 3.870 0.031
DIR 0.828 4.910 1.300 0.119 1.508 52.996 3.741 0.031
IFM 0.733 5.548 1.375 0.109 1.181 68.136 4.170 0.026
MBP1 0.746 5.819 1.655 0.041 1.224 75.192 6.051 0.004

08 3 10 3 0.8 MBP2 0.762 5.823 1.646 0.041 1.279 75.273 5.989 0.004
DIR 0.752 4.607 1.513 0.036 1.247 46.720 5.036 0.003
IFM 0.800 5.676 1.607 0.041 1.414 72.347 5.718 0.004
MBP1 0.863 7.473 5.889 0.075 1.639 125.897 78.255 0.013

09 3 10 10 0.3 MBP2 0.861 7.466 5.889 0.077 1.630 125.639 78.242 0.013
DIR 0.886 7.454 5.985 0.078 1.726 125.235 80.759 0.013
IFM 0.866 6.724 5.044 0.061 1.648 100.138 60.416 0.009
MBP1 0.933 6.811 7.010 0.035 1.923 106.115 109.422 0.003

10 3 10 10 0.8 MBP2 0.900 6.829 7.128 0.036 1.789 105.692 113.109 0.003
DIR 0.858 6.975 6.450 0.034 1.623 109.896 93.406 0.002
IFM 0.827 5.578 6.099 0.027 1.504 68.416 84.020 0.002
MBP1 6.158 4.849 1.352 0.120 83.937 51.684 4.044 0.032

11 10 10 3 0.3 MBP2 6.160 4.847 1.353 0.120 84.000 51.634 4.050 0.032
DIR 6.320 4.927 1.362 0.120 88.558 53.358 4.114 0.032
IFM 5.862 5.016 1.409 0.110 75.543 55.333 4.387 0.027
MBP1 7.140 5.076 1.621 0.040 113.923 56.917 5.778 0.004

12 10 10 3 0.8 MBP2 7.107 5.053 1.625 0.040 112.860 56.314 5.806 0.003
DIR 7.020 5.438 1.619 0.039 110.269 65.631 5.763 0.003
IFM 6.441 5.484 1.664 0.041 91.587 67.329 6.146 0.004

Table 2: Average ranks of lowest r̂mse(�̂) over different copula parameter combinations for each estimation method

true copula averaged
MBP1 MBP2 DIR IFM

parameters over scenario
� = 3, � = 0.3 1, 7, 11 1.0 2.0 4.0 3.0
� = 3, � = 0.8 2, 8, 12 2.0 3.0 1.0 4.0
� = 10, � = 0.3 3, 5, 9 2.5 2.5 4.0 1.0
� = 10, � = 0.8 4, 6, 10 2.0 3.0 4.0 1.0

total
∑

7.5 10.5 13.0 9.0
total average rank 1 3 4 2

6. Application to financial swap rates

We apply our estimation methods to annually compounded zero-coupon Euro swap rates from
12/07/1988 to 05/21/2001 with maturities of 2, 3, 5, 7 and 10 years, respectively (see Figure 2).
A zero-coupon swap is a special kind of interest rate swap. In an interest rate swap one party
agrees to pay a fixed rate (swap rate) and at the same time receives a floating rate which is usually
linked to a reference rate such as the London Interbank Offered Rate (LIBOR). In the case of a
zero-coupon swap, instead of paying the fixed rate periodically, one makes one large payment only
at the end of the maturity.
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Figure 2: swap rates for different maturities over time
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6.1. Parameter estimation and hypothesis testing

Let Xit denote the zero-coupon Euro swap rate at time t for maturity i with i = 2, 3, 5, 7
and 10 and t = 1, ..., 3150. Czado et al. (2009) showed that an ARMA(1,1)-GARCH(1,1) model
for {Xit, t = 1, ..., 3150} is sufficient for each i to capture the time dependence. After forming
standardized residuals Ẑit we can therefore consider {Ẑit, t = 1, ..., 3150} as an i.i.d. sample for
each fixed maturity i. We now model pairs of {(Ẑit, Ẑjt), t = 1, ..., 3150} as observations from
MT2(�). For brevity we present results for the pairs with i = 2 years and j = 3, 5, 7 and 10 years.
The remaining pairs are investigated in Zhang (2008).

In this section we regard four bivariate data sets of short term maturity versus medium and
long term maturities: 2 years and 3 years (Z2,Z3), 2 years and 5 years (Z2,Z5), 2 years and 7
years (Z2,Z7), and 2 years and 10 years (Z2,Z10). We compare the bivariate t- and meta t-models
regarding the data sets. The bivariate t-model is a special case of the bivariate meta t-model where
we assume that the degrees of freedom of the marginal distributions and the joint distribution are
equal. For the meta t-model we estimate the parameter vectors using MBP1, MBP2, DIR and
IFM methods while for the bivariate t-model the parameter estimation only proceeds with MBP1
and DIR methods. The results are given in Table 3.

The estimation results suggest that most data pairs have marginal distributions with param-
eters �1 and �2 estimated between [6.2, 6.9], while their joint parameter � is considerably smaller
than 6.2 and the correlation estimates are high. It also demonstrates that MBP1 and MBP2 yield
similar estimates as the DIR method. Furthermore, the similar size of the log likelihood value for
the MBP1, MBP2, DIR affirm that the MBP1 and MBP2 methods determine the maximum like-
lihood estimators as the DIR method while the log likelihood value results from the IFM method
is not at its maximum.

In order to justify the choice of the meta t-model we use the likelihood ratio test. We construct
a test with the null hypothesis H0 : �1 = �2 = � versus the alternative H1 : not H0. For

�̂
H0

:= (�̂t, �̂t, �̂t, �̂t) and �̂
H1

:= (�̂1, �̂2, �̂, �̂) we consider the test statistic

LR(�̂
H0
, �̂
H1

; x) := −2(ℓ(�̂
H0

;x)− ℓ(�̂
H1

;x)).

An �-level asymptotic test rejects H0 ⇐⇒ LR(�̂
H0
, �̂
H1

; x) ⩾ �1−�,2, where ℓ(�̂ ;x) is the log
likelihood function of the bivariate meta t-distribution defined in (7) and �1−�,2 is the (1−�)100%
quantile of the Chi-square distribution. Applying the estimates using MBP1 method for the
likelihood ratio test we decide based on the p-values in the Table 3 that the null hypothesis
is rejected for bivariate data sets (Z2,Z3), (Z2,Z5), (Z2,Z7) and accepted for the data set
(Z2,Z10). This means for the most pairs a bivariate t-model is not sufficient.
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Table 3: Parameter estimates of bivariate t- and meta t-models and the likelihood ratio test for H0 : �1 = �2 = �
versus H1 : not H0.

bivariate meta t-model MT2(�1, �2, �, �)

method (Z2,Z3) (Z2,Z5) (Z2,Z7) (Z2,Z10)

�̂1

MBP1 6.366 6.884 6.731 6.680
MBP2 6.366 6.881 6.728 6.680
DIR 6.362 6.877 6.725 6.677
IFM 10.993 10.993 10.993 10.993

�̂2

MBP1 6.241 6.846 6.488 6.228
MBP2 6.241 6.843 6.485 6.229
DIR 6.234 6.839 6.482 6.225
IFM 11.278 12.465 12.462 11.828

�̂

MBP1 3.167 4.063 4.465 5.093
MBP2 3.166 4.054 4.455 5.102
DIR 3.165 4.048 4.450 5.090
IFM 2.436 3.466 4.293 5.176

�̂

MBP1 0.958 0.915 0.865 0.841
MBP2 0.958 0.915 0.865 0.841
DIR 0.958 0.915 0.865 0.841
IFM 0.938 0.880 0.816 0.785

log likelihood

MBP1 −5374.532 −6438.849 −7121.341 −7352.185
MBP2 −5374.532 −6438.848 −7121.341 −7352.185
DIR −5374.532 −6438.848 −7121.341 −7352.185
IFM −5426.637 −6483.500 −7163.900 −7396.200

bivariate t-model MT2(�t, �t, �t, �)

method (Z2,Z3) (Z2,Z5) (Z2,Z7) (Z2,Z10)

�̂t
MBP1 5.399 6.171 6.111 6.210
DIR 5.369 6.144 6.085 6.188

�̂t
MBP1 0.962 0.919 0.869 0.844
DIR 0.962 0.919 0.870 0.844

log likelihood
MBP1 −5392.700 −6448.136 −7126.642 −7354.132
DIR −5392.696 −6448.134 −7126.640 −7354.131

likelihood ratio test: H0 : �1 = �2 = � versus H1 : not H0

(Z2,Z3) (Z2,Z5) (Z2,Z7) (Z2,Z10)

statistic 36.337 18.575 10.601 3.895
p-value > 0.000 > 0.000 0.005 0.143

6.2. Rolling windows estimation

In the previous section we apply the bivariate t- and bivariate meta t-models to the swap data
to estimate their parameters. We have obtained a single value for each of the parameters of the
bivariate data series. However the economic environment often changes rapidly and it may not
be reasonable to assume constant values of the model parameter. For this reason it would be
interesting to see how the parameters of the model vary with respect to the time. To catch the
changes of the models we apply a rolling window analysis to the observed time series.

We place a sequence of rolling windows on the time axis and estimate the parameters for each
of these windows. Two sequential windows overlap by 50 data points. The data size of a window
amounts up to 250 data points which implies the number of trading days in a year. The time span
goes from December 07, 1988 to Jan 21st, 2001, which includes 3150 data points. We investigate
the variability of parameter estimates over 59 rolling windows.

The sequence of estimated values shows the evolution of the parameters in our models over
time. The 59 rolling windows estimates for each parameter �1,ℎ, �2,ℎ, �ℎ and �ℎ, ℎ = 1, ..., 59, are
illustrated in the 1st, 2nd, 3rd and the 4th row of Figures 3, respectively. We can observe that
the parameter estimates vary considerably over the rolling windows. They occasionally fluctuate
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to 100 which indicate that data at those specific time intervals is almost normal distributed.
Compared to the rolling estimated marginal degrees of freedom the rolling estimated joint degrees
of freedom �̂ℎ, ℎ = 1, ..., 59, show much less extreme fluctuations over time. For �̂ℎ we notice that
MBP1, MBP2 and DIR give similar values while the IFM estimates differ considerably.

Furthermore, the 1st row of Figure 4 illustrates the comparison of estimated parameters �̂1,ℎ,
�̂2,ℎ, �̂ℎ, ℎ = 1, ..., 59, in bivariate meta t-model and the estimated degrees of freedom �̂t,ℎ in
bivariate t-model. It shows that the rolling degrees of freedom �̂t estimated with bivariate t-
model and the estimated values of parameters �1, �2 and � from the bivariate meta t-model
differ from each other by a considerable amount over the entire time interval. This also means
that any significant deviation from the solid line (rolling estimates of �̂t,ℎ from bivariate t-model,
ℎ = 1, ..., 59) affirms that a meta t-model is needed. Furthermore, we can observe that the dotted
lines in the graphs for degrees of freedom parameters are often fluctuate to 100 while the solid
black line, which represents the rolling estimates of MBP algorithm are more stable. In the 2nd
row of Figure 4 we can see the rolling correlations �̂ℎ and �̂t,ℎ, estimated by both bivariate meta t-
model and bivariate t-model, respectively. The differences of the two estimated series are marginal
but can be followed particularly in the periods between 1993-1995 and between 1997-1999. The
3rd row of Figure 4 illustrates the estimated tail dependence defined in (11) of the data using
the estimated copula parameters of both models. The plots disclose a significant difference of
the estimated tail dependence by applying the parameters of the bivariate meta t- and bivariate
t-models.

In order to assess overfitting of bivariate meta t-distributions we computed 90% bias corrected
and accelerated (BCa) pointwise confidence intervals for the tail dependence coefficient of bivariate
t-distributions. The BCa confidence interval is a modified bootstrap confidence interval which
has good theoretical coverage probability and computational feasibility (see DiCiccio and Efron,
1996). For illustration we consider only four pairs as above. Thus, at each of the 59 rolling
windows a bivariate t-distributions is fitted for 250 bootstrap samples each. Using (11) we obtain
250 bootstrap estimates for the tail dependence coefficients, on which the corresponding BCa
interval is based. Figure 5 presents pointwise 90% BCa confidence intervals for �(�̂t,ℎ, �̂t,ℎ) as
well as rolling window estimates �(�̂t,ℎ, �̂t,ℎ) and �(�̂ℎ, �̂ℎ), ℎ = 1, ..., 59. The 90% BCa confidence
intervals (bold dashed lines) mostly cover the rolling estimates of tail dependence for the bivariate
meta t-model (dashed lines) but not always. In particular, for the pair (Z2,Z3), more than a
quarter of the rolling estimates of tail dependence �(�̂ℎ, �̂ℎ) based on meta t-model are not in
the BCa confidence interval. For the pair (Z2,Z5), �(�̂ℎ, �̂ℎ) are outside the BCa interval for
ℎ = 9, 12, 23, 30, 43, 48. For (Z2,Z7), most of estimates between the 19th and 29th windows
and some of the estimates in the end of the considered time horizon are not inside of the BCa
interval. And for ℎ = 21, 31, 33, 40, 55, the estimates �(�̂ℎ, �̂ℎ) of the pair (Z2,Z10) are outside
the interval. These results indicate that both models have a significant difference in estimating
the copula parameters and the bivariate t-distribution is not flexible enough to capture bivariate
tail dependencies detected by a meta t-distribution. Finally, our bootstrap study reveals similar
funding to one for stock indices in Aussenegg and Cech (2008) in sense that there are time periods
when tail dependency cannot be captured well by the bivariate t-distribution.

7. Summary and outlook

Multivariate financial data exhibits heavy-tailedness, i.e. marginal extreme events occur often
jointly. Therefore, a multivariate t-distribution and its copula are preferred over Gaussian ones for
modeling in economics, finance and risk management. Meta t-distributions generalize multivariate
t-distributions and allow for arbitrary marginal distributions. Estimation of meta t-distributions
is numerical unstable and complex. Therefore there are different stepwise methods proposed for
finding MLE’s in literature (see Bouye et al. 2000; Embrechts et al. 2003; Demarta and McNeil
2005).

In this paper we adapt the general MBP estimation algorithm developed by Song et al. (2005)
to the case of the multivariate meta t-distribution constructed by a t-copula. We implement and
investigate the behavior of these MBP algorithms in two dimensions. This algorithm overcomes
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Figure 5: 90% Bootstrap BCa interval for �(�̂t,ℎ, �̂t,ℎ) based on bivariate t-model
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many practical difficulties one may encounter using direct maximization or the IFM methods. The
MBP algorithm calculates the maximum likelihoods estimators (MLE) in multi-step optimizations.
It requires a decomposition of the log likelihood function into a working model and an error model
and updates the parameters through an iterative approach that solve the sore equations of both
models iteratively. The convergence of the MBP algorithm to a fixed point under regularity
conditions is guaranteed by the existence of the asymptotic contraction mappings which requires
the Hessian matrix of the working model to be more informative about the true value than the
one of the error model. To ensure the convergence, we developed two strategies in the MBP
algorithm − a non-adaptive MBP method and an adaptive MBP method. In the non-adaptive
MBP approach we keep some of the parameters in the working model fixed while those parameters
are iteratively updated in the adaptive approach.

In our simulation study we found out that the non-adaptive MBP algorithm is a computation-
ally cost intensive approach. However, it can handle small meta t-distributed samples very well
compared to the adaptive MBP, direct maximization and IFM method, especially if the degrees of
freedom of the copula parameter are low. In particular the non-adaptive MBP method results in
minimal robustly estimated bias and MSE. Additionally it has a very low failure rate associated
with algorithm convergence.

The rolling windows technique is a simple way to assess variability of model parameters in
time. It relies on a much smaller part of an entire data set. Therefore, our non-adaptive MBP
algorithm for meta t-distributions is especially tailored to this situation. Thus we applied both
MBP algorithms along with the DIR and the IFM algorithms to Euro swap rates. For this we
consider models based on bivariate t and meta t-distributions. Due to the small sample properties
of the non-adaptive MBP algorithm, we apply the algorithm to rolling window analysis on the
swap rates data. Pointwise bootstrap BCa confidence intervals for tail dependency coefficients
indicate that a meta t-distribution is more suitable to the swap rates data than a simple bivariate
t-model with a single degree of freedom.

Construction of flexible multivariate copulas (d > 2) is a fast growing and active research area.
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According to recent empirical studies by Fischer et al. (2009) and Berg and Aas (2007), pair copula
constructions (PCC’s) are, at the moment, most successful in fitting multivariate financial data.
In these constructions a multivariate copula is represented as a product of d(d − 1)/2 bivariate
unconditional and conditional copulas (for more details see Bedford and Cook, 2001, 2002 and Aas
et al. 2009). A ML estimation of PCC’s for high dimensional data is very time consuming and may
be numerically unstable. Since parameters of unconditional copulas are involved in arguments of
conditional pair-copulas, log likelihood functions of PCC’s can be naturally split into working and
error models and therefore we envision here an applicability if the MBP algorithm. This paper
provides the ground work to proceed in this attractive future research area.
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Appendix: Derivatives of the modified working and error models in bivariate case

To simplify the expressions of the derivatives of the modified working and error models, we
begin with some definitions: Let x = (x1, ...,xn)t ∈ ℝn×2 with xi := (xi1, xi2)t, i = 1, ..., n.
In the bivariate case, we have four parameters, i.e. �1, �2, �, �. For clarity, we spare the nota-
tion � for the parameters. Now we define zi := (zi1, zi2)t = (zi1(�1, � ;xi1), zi2(�2, � ;xi2))

t
:=(

t−1� (F (xi1, �1)), t−1� (F (xi2, �2))
)t

,

A(�1, �2, �, � ;xi) := ztiR
−1zi =

1

1− �2
(
z2i1 + z2i2 − 2zi1zi2�

)
,

B(�j , � ;xij) := z2ij , j = 1, 2. (.1)

Their derivatives with respect to �1, �2, and � are calculated as follows:

∂A(�1, �2, �, � ;xi)

∂�j
=

1

1− �2

(
2zij

∂zij
∂�j
− 2�zik

∂zij
∂�j

)
,

∂B(�j , � ;xij)

∂�j
= 2zij

∂zij
∂�j

,

where k ∕= j, k, j = 1, 2, and
∂zij
∂�j

:=
∂t−1� (F (xij ; �j))

∂�j
, j = 1, 2 Furthermore, the derivatives of

functions A and B with respect to � and � are given by:

∂A(�1, �2, �, � ;xi)

∂�
=

1

1− �2

⎛⎝2

2∑
j=1

zij
∂zij
∂�
− 2�

2∑
j ∕=k;j,k=1

zik
∂zij
∂�

⎞⎠ ,

∂B(�j , � ;xij)

∂�
= 2zij

∂zij
∂�

,

where
∂zij
∂�

:=
∂t−1� (uj)

∂�
with uj := F (xij ; �j), j = 1, 2,

∂

∂�
A(�1, �2, �, � ;xi) =

−2zi1zi2(1 + �2) + 2�(z2i1 + z2i2)

(1− �2)2
.

The marginal model and its derivatives
For a ∈ ℝ let ln Γ(a) and  (a) be the digamma and trigamma functions of the gamma function
Γ(a). With the density function of univariate t-Distribution defined in (4) we have the marginal
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model and its derivatives with respect to �j , j = 1, 2, as follows:

ℓm(�1, �2 ;x) :=

2∑
j=1

n∑
i=1

ln f(xij ; �j) =

n∑
i=1

ln

⎛⎝ Γ(
�j+1
2 )

√
�j�Γ(

�j
2 )

(
1 +

x2

�j

)− �j+1

2

⎞⎠
=

2∑
j=1

n ln Γ(
�j + 1

2
)− n

2
ln(�j�)− n ln Γ(

�j
2

)− �j + 1

2

n∑
i=1

ln
(
1 +

x2ij
�j

)
,

∂

∂�j
ℓm(�1, �2 ;x) =

n

2
 (
�j + 1

2
)− n

2�j
− n

2
 (
�j
2

)− 1

2

n∑
i=1

ln(1 +
x2ij
�j

) +
�j + 1

2�j

n∑
i=1

x2ij
�j + x2ij

.

The error model and its derivatives
With the density function of the bivariate t-Copula defined in (3) the error model is given by:

ℓe(�1, �2, �, � ;x) :=

n∑
i=1

ln c(F (xi1 ; �1), F (xi2 ; �2) ; �, �)

=

n∑
i=1

ln

⎛⎝ �
2 ⋅ Γ(�2 )2

(
1 +

z21+z
2
2−2z1z2�

�(1−�2)
)− �+2

2

Γ(�+1
2 )2

√
1− �2(1 +

z21
� )−

�+1
2 (1 +

z22
� )−

�+1
2

⎞⎠
= 2n ln Γ(

�

2
) + n ln(

�

2
)− 2n ln Γ(

� + 1

2
)− n

2
ln(1− �2)

− � + 2

2

n∑
i=1

ln
(
1 +

A(�1, �2, �, � ;xi)

�

)
+
� + 1

2

n∑
i=1

2∑
j=1

ln
(
1 +

B(�j , �, xij)

�

)
,

with A(�1, �2, �, � ;xi) and B(�j , �, xij), j = 1, 2, defined in (.1). The first order derivatives of the
error model with respect to the parameters �1, �2, � and � are calculated as follows:
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2
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)]

+
1

2

n∑
i=1

2∑
j=1

(ln(1 +
B(�j , � ;xij)

�
)) +

� + 1

2�

n∑
i=1

2∑
j=1

∂
∂�B(�j , � ;xij) ⋅ � −B(�j , � ;xij)

� +B(�j , � ;xij)
,

and

∂

∂�
ℓe(�1, �2, �, � ;x) =

n�

1− �2
− � + 2

2

n∑
i=1

∂
∂�A(�1, �2, �, � ;xi)

� +A(�1, �2, �, � ;xi)
.
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