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Abstract

We consider regular variation of a Lévy process X := (X t)t≥0 in R
d with Lévy

measure Π in consideration of dependence between the jumps. By transforming

the one-dimensional marginal Lévy measures to those of a standard 1-stable Lévy

process, we decouple the marginal Lévy measures from the dependence structure.

The dependence between the jump components is modeled by a so-called Pareto

Lévy measure, which was introduced in [18] for spectrally positive Lévy processes in

R
d. In contrast to the use of a Lévy copula, also after standardisation of the marginal

Lévy measures we stay within the class of Lévy measures. We give conditions on the

one-dimensional marginal Lévy measures and the Pareto Lévy measure such that

X is α-stable or multivariate regularly varying, respectively. Finally, we present

graphical tools to visualize the dependence structure in terms of the spectral density

and the tail integral for homogeneous and non-homogeneous Pareto Lévy measures.
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1 Introduction

In a series of papers Hult and Lindskog [11, 12, 13, 14] have defined and investigated

regular variation of measures and additive processes, which apply in particular to Lévy

measures and Lévy processes. Their concept of regular variation of a stochastic process

with càdlàg sample paths is for a Lévy process X equivalent to regular variation of the

random vector X1 and its Lévy measure; cf. [14], Lemma 2.1. Similar concepts have been

used to study the extremal behaviour of stochastic processes in De Haan and Lin [7] and

in Giné, Hahn and Vatan [9].

Since regular variation of a random vector X1 is well understood (cf. Resnick [20, 21]),

it seems that all such results can be translated to the corresponding Lévy measure. Of

course, this is in principle true, but we argue that new insight in the dynamic of the Lévy

process X can be gained by investigating regular variation of the Lévy measure itself. This

is particularly true when our main emphasis is on dependence modeling between the jump

components of a multivariate Lévy process. From the Lévy-Khinchine representation in

(2.1) below it is clear that the Lévy measure determines dependence in the jump part of

X for every arbitrary time interval.

With a view towards the overwhelming success story of the distributional copula,

Tankov and collaborators (cf. [24, 25, 17, 6]) have introduced the so-called Lévy copula

by standardizing the marginal Lévy measure to Lebesgue measure. Contrary to the dis-

tributional copula model, which is always a distribution function, the Lévy copula defines

a measure which is not a Lévy measure.

It has been suggested in Definition 2.2 of [1] that a simple inversion transformation

of the one-dimensional marginal Lebesgue measures leads to a Lévy measure with stan-

dard 1-stable margins. For multivariate distributions [18] suggested the transformation of

marginals not to uniform but to standard Pareto distributions. This has the advantage

that the well-developed theory of multivariate regular variation can be applied. In this pa-

per functional limit theorems for partial sums and partial maxima to stable Lévy processes

are proved. The corresponding Lévy measures reflect the transformation of marginals by

a representation in terms of marginal standard 1-stable Lévy measures and a Pareto Lévy

copula as denoted in [18].

Both papers [1, 18] restrict their investigations to spectrally positive Lévy processes,

i.e. Lévy measures concentrated on the positive cone [0,∞)d. Moreover, their respective

focus is on applications and not so much on the basic understanding of the marginal

transformation. In the present paper we start with a Lévy process in Rd with positive

or negative jumps possible in every component and explore the transformation of the

marginal Lévy measures to Lévy measures of standard 1-stable Lévy processes.

Our paper is organised as follows. In Section 2 we recall basic knowledge about multi-
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variate regular variation of Lévy measures and formulate Sklar’s Theorem for Pareto Lévy

measures. The main results about regular variation of a Lévy measure and its Pareto Lévy

measure we prove in Section 3. In Section 4 we calculate the limit measure of a bivariate

regular varying Lévy measure for homogeneous Pareto Lévy measures and consider also a

non-homogenous example outside regular variation. For d = 2 we also show graphical rep-

resentation of the dependence structure in Section 5. Some technical proofs are postponed

to the Appendix.

2 Preliminaries

We assume that all random elements considered are defined on a common probability

space (Ω,F , P ). For a topological space T its Borel-σ-algebra is denoted by B(T). For

B ∈ B(T), we denote by B◦ and by B the interior and the closure of B, respectively, and

∂B = B \ B◦ is the boundary of B.

Regular variation of Lévy measures is formulated in terms of vague convergence of

Radon measures on E := R
d
\ {0} := [−∞,∞]d \ {0}, where 0 := (0, . . . , 0) is the zero

in Rd, and we also denote ∞ := (∞, . . . ,∞). E is equipped with the usual topology such

that B(E) = B(Rd) ∩ E, and the Borel sets of Rd bounded away from 0 are relatively

compact in E.

For a, b ∈ Rd we write a < b, if this holds componentwise. For a, b ∈ R we write

a ∨ b := max{a, b}. For a set I we define |I| as its cardinality.

Let X := (X t)t≥0 be a Lévy process in Rd with characteristic triple (γ, A, Π), where

γ ∈ R
d, A is a symmetric non-negative definite d×d matrix, and the Lévy measure Π is a

measure on Rd satisfying Π({0}) = 0 and
∫

Rd min{1, |x|2}Π(dx) < ∞, where | · | denotes

any arbitrary norm in R
d. The Lévy-Khintchine representation gives for every t ≥ 0,

E
[
ei(z,Xt)

]
= e−tΨ(z), z ∈ R

d ,

where

Ψ(z) = i(γ, z) +
1

2
z⊤Az +

∫

Rd

(
1 − ei(z,x) + i(z, x)1{|x|≤1}

)
Π(dx) (2.1)

and (·, ·) denotes the inner product in Rd. We consider a Lévy measure Π on E by setting

Π(B) := Π(B ∩Rd) for B ∈ B(E). Further, we assume throughout that the sample paths

of X are almost surely (a.s.) right-continuous and have left limits. For details and more

background on Lévy processes we refer to [23].

2.1 Multivariate regular variation of Lévy measures

The notion of multivariate regular variation of a random vector has been in the focus of

multivariate extreme value theory for years; cf. [20, 21]. Of course, a reformulation of the
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definition in terms of a multivariate probability measure is obvious. Since Lévy measures

may, however, be infinite measures, they require an extension to such a setting, which has

been investigated in all generality in [13].

Definition 2.1. [[13], Section 3]

A Lévy measure Π on E is called regularly varying if one of the following equivalent

definitions (1) or (2) holds.

(1) There exists a norming sequence {cn}n∈N of positive numbers with cn ↑ ∞ as n → ∞

and a non-zero Radon measure µ on B(E) with µ(R
d
\ Rd) = 0 such that

nΠ(cn·)
v
→ µ(·) as n → ∞ , (2.2)

where
v
→ denotes vague convergence on B(E). Then necessarily the limit measure µ is

homogeneous of some degree α > 0 (called the index of regular variation), i.e. µ(t ·) =

t−αµ(·) for all t > 0.

For Π regularly varying with index α, norming sequence cn and limit measure µ we shall

write Π ∈ RV(α, cn, µ).

(2) There exists a finite non-zero measure µS on B(S), where S := {x ∈ Rd : |x| = 1}

denotes the unit sphere with respect to a norm | · | on Rd, such that for all u > 0

Π({x ∈ Rd : |x| > tu, x/|x| ∈ ·})

Π({x ∈ Rd : |x| > t})
w
→ u−αµS(·) as t → ∞ , (2.3)

where
w
→ denotes weak convergence on B(S). We call µS the spectral measure of Π.

We did not specify the norm | · |, since regular variation does not depend on the choice

of the norm; see [10], Lemma 2.1.

2.2 The Pareto Lévy measure

We use the same notation as in [17]. Define sgn(x) := 1{x≥0} − 1{x<0} and

I(x) :=

{
(x,∞), x ≥ 0,

(−∞, x], x < 0 .
(2.4)

Definition 2.2. [Tail integral of a Lévy measure]

Let X be a Lévy process in Rd with Lévy measure Π. The tail integral of X is the function

Π : (R \ {0})d → R defined as

Π(x1, . . . , xd) := Π

(
d∏

i=1

I(xi)

)
d∏

j=1

sgn(xj) .
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By definition (2.4) all tail integrals are right-continuous functions on (R \ {0})d. The

tail integral does not determine the Lévy measure uniquely, because it does not specify

its mass on R
d \ (R \ {0})d.

Definition 2.3. [Margins of a Lévy process/Lévy measure/tail integral]

Let X = (X1, . . . , Xd) = (X1
t , . . . , X

d
t )t≥0 be a Lévy process in Rd with Lévy measure Π

and I ⊆ {1, . . . , d} a non-empty index set. We define the following quantities:

(1) The I-margin of X is the Lévy process XI := (X i)i∈I .

(2) ΠI denotes the Lévy measure of XI and is the I-marginal Lévy measure. It is given

by

ΠI(A) = Π
(
{x ∈ R

d : (xi)i∈I ∈ A}
)
, A ∈ B(R|I| \ {0}) .

(3) The I-marginal tail integral of X is given by ΠI : (R \ {0})|I| → R with

ΠI((xi)i∈I) = ΠI

(∏

i∈I

I(xi)
) d∏

i∈I

sgn(xi) .

To simplify notation, we denote one-dimensional margins by X i, Πi and Πi.

By [17], Lemma 3.5, the set of all marginal tail integrals {ΠI : I ⊆ {1, . . . , d}} deter-

mines the Lévy measure Π uniquely and vice versa.

The following lemma is well-known. Indeed, [21] introduces multivariate regular vari-

ation in two versions: firstly, he defines standard regular variation with uniform normal-

ization, see p. 173, and, secondly, non-standard regular variation with componentwise

normalization, see p. 204. For the sake of selfcontainedness of our paper, we prove the

following result in the Appendix. Theorem 3.1 below can be viewed as a converse of this

lemma.

Lemma 2.4. Let Π be a d-dimensional Lévy measure. If Π ∈ RV(α, cn, µ), then for x > 0

and all i = 1, . . . , d,

nΠi(cnx) → µi(1)x−α and nΠi(−cnx) → µi(−1)x−α as n → ∞ , (2.5)

where µi(B) := µ({x ∈ E : xi ∈ B}) for B ∈ B(R \ {0}) and µi(1), |µi(−1)| ∈ [0,∞).

Further, there exists an index i∗ ∈ {1, . . . , d} such that µi∗(1) − µi∗(−1) > 0 and Πi∗ ∈

RV(α, cn, µi∗).

Now we present our reference Lévy measure, which will appear for every d-dimensional

Lévy measure after transformation of the marginal Lévy measures. It has been proposed

in [18].
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Definition 2.5. [Pareto Lévy measure, Pareto Lévy copula]

Let Γ be a d-dimensional Lévy measure with one-dimensional marginals Γi(dxi) = |xi|
−2 dxi

on R\{0}. Then we call Γ the Pareto Lévy measure (PLM) and its tail integral Γ is called

Pareto Lévy copula (PLC).

The margins Γi are Lévy measures of 1-stable Lévy processes, but Γ is in general not

the Lévy measure of a 1-stable Lévy process.

The following result has been proved for Lévy copulas in [17], Theorem 3.6.

Theorem 2.6. [Sklar’s Theorem for Pareto Lévy measures]

(1) Let X be a Lévy process in Rd with Lévy measure Π. Let ∅ 6= I ⊆ {1, . . . , d} be an

arbitrary index set. Then there exists a PLM Γ such that

ΠI ((xi)i∈I) = ΓI

(( 1

Πi(xi)

)
i∈I

)
, (xi)i∈I ∈ (R \ {0})|I| . (2.6)

The PLM Γ is unique on
∏d

i=1 Ran(1/Πi).

(2) Let Γ be a d-dimensional PLM and Πi for i = 1, . . . , d one-dimensional tail integrals

of arbitrary Lévy processes. Then there exists a Lévy process X in Rd, whose components

have tail integrals Π1, . . . , Πd and whose marginal Lévy measures satisfy (2.6) for every

non-empty I ⊆ {1, . . . , d} and every (xi)i∈I ∈ (R \ {0})|I|. The Lévy measure Π of X is

uniquely determined by Γ and Π1, . . . , Πd.

Proof. (1) Recall the following tools from [17], Theorem 3.6. For x ∈ (−∞,∞] and

i = 1, . . . , d we define

Π̇i(x) :=

{
Πi(x) for x 6= 0 ,

∞ for x = 0

and

∆Πi(x) :=

{
limξ↑x Πi(ξ) − Πi(x) = Πi({x}) for x 6= 0

0 for x = 0.

Since Πi may have atoms or may be finite, we construct an atomless infinite measure m

on B((−∞,∞]d \ {0} × [0, 1]d × R). Denote by λ the Lebesgue measure on R and by δx

the Dirac measure in x. Then we take the product measure

m := Π ⊗ λ|[0,1]d ⊗ δ0 (2.7)

+

d∑

i=1

δ(0,...,0︸︷︷︸
i−1

,∞,0,...,0) ⊗ δ(0,...,0︸︷︷︸
d

) ⊗ λ|(
(−∞,−Πi(−∞,0))∪(Πi(0,∞),∞)

) .
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For B ∈ B(Rd \ {0}) we define

Γ (B) := m

({
(x1, . . . , xd, y1, . . . , yd, z) ∈ ((−∞,∞]d \ {0}) × [0, 1]d × R : (2.8)

(
1

Π̇i(xi) + yi∆Πi(xi) + z

)

i=1,...,d

∈ B
})

,

where we set 1/∞ := 0 and 1/0 := ∞. Note that we use 1/(Π̇i(xi +yi∆Πi(xi)+z) in (2.8)

instead of Π̇i(xi+yi∆Πi(xi)+z as in [17], equation (3.5) (corresponding to componentwise

inversion: x 7→ 1/x). By the proof of Theorem 3.6, [17], it follows Γi(x) = x−1 for x 6= 0

and (1) is proved.

(2) Define the set of marginal tail integrals of Π by equation (2.6). Then the Lévy mea-

sures Πi are the one-dimensional margins of Π and, therefore, Π is a Lévy measure. With

[17], Lemma 3.5, Π is uniquely defined by its marginal tail integrals. �

Remark 2.7. [Relation between Lévy copula and Pareto Lévy measure]

Every Lévy copula Ĉ defines uniquely a PLM Γ, given for x, y ∈ Rd such that 0 /∈ [x, y)

by

Γ([x, y)) =
∑

u∈{1/y1,1/x1}×···×{1/yd,1/xd}

(−1)N(u)Ĉ(u) , (2.9)

where u = (u1, . . . , ud) ∈ (−∞,∞]d, N(u) := #{k : uk = 1/yk} and 1/0 := ∞. Further-

more, for the PLC Γ we have for x = (x1, . . . , xd) ∈ (R \ {0})d

Γ(x1, . . . , xd) = Ĉ

(
1

x1

, . . . ,
1

xd

)
. (2.10)

Consequently, for a PLM Γ with corresponding Lévy copula Ĉ the following assertions

are equivalent:

(1) Γ is the Lévy measure of a 1-stable Lévy process.

(2) Γ is homogeneous of degree 1; i.e. Γ(tA) = t−1Γ(A) for all t > 0 and A ∈ B(E).

(3) Ĉ satisfies for all t > 0

Ĉ(tx1, . . . , txd) = tĈ(x1, . . . , xd) , x ∈ R
d .

With equation (2.9) we can reformulate Theorem 4.6 of [17] for PLMs .

Theorem 2.8. Let Π be a Lévy measure with one-dimensional margins Πi, i = 1, . . . , d,

and α ∈ (0, 2). Π is homogenous of degree α if and only if all Πi are homogenous of degree

α and if it has a PLM Γ that is homogeneous of degree 1.
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The advantage of working with a Pareto Lévy measure instead of a Lévy copula should

be clear: the Pareto Lévy measure is always a Lévy measure. The corresponding Lévy

process extends the class of stable processes in a natural way; see Sklar’s Theorem 2.6.

In our next results we formulate the relationship between a Lévy measure Π and its

(by Sklar’s Theorem) transformed PLM Γ for sets in the generating semi-algebra of rect-

angular sets. For one-dimensional tail integrals we define (recall the possible singularity

in 0)

Πi(x+) := lim
β↓x

Πi(β) and Πi(x−) := lim
β↑x

Πi(β) for x ∈ R. (2.11)

The tail integral Πi is continuous on R \ {0} if and only if Πi has no atoms on R \ {0}.

Since Lévy measures can be finite or infinite in 0, the Lévy measure on the hyperplanes

through the axes needs special attention. Furthermore, since Pareto Lévy copulas are

defined quadrantwise, special care has to be taken for sets which are not concentrated

in one single quadrant. The following result presents the Lévy measure Π of arbitrary

rectangles in terms of the PLM Γ and the one-dimensional marginal tail integrals Πi, i =

1, . . . , d. The proof is given in the Appendix.

Proposition 2.9. Let Γ be a PLM and Πi for i = 1, . . . , d one-dimensional Lévy mea-

sures. Let Π be the Lévy measure defined by equation (2.6). With Πi(0) = Πi(0+) the

following assertions hold.

(1) For a, b ∈ Rd with 0 /∈
∏d

i=1(ai, bi],

Π

(
d∏

i=1

(ai, bi]

)
= Γ

(
d∏

i=1

(
1

Πi(ai)
,

1

Πi(bi)

])
. (2.12)

(2) Let ∅ 6= K ⊂ {1, . . . , d}. Define

Ai :=





[
1

Πi(0−)
, 1

Πi(0+)

]
, if Πi(0−) < 0, Πi(0+) > 0 ,

[
0, 1

Πi(0+)

]
, if Πi(0−) = 0, Πi(0+) > 0 ,

[
1

Πi(0−)
, 0
]

, if Πi(0−) < 0, Πi(0+) > 0 .

(2.13)

For a, b ∈ R
d with 0 /∈

∏
i∈K{0} ×

∏
i/∈K(ai, bi],

Π

(
∏

i∈K

{0} ×
∏

i/∈K

(ai, bi]

)
= Γ

(
∏

i∈K

Ai ×
∏

i/∈K

(
1

Πi(ai)
,

1

Πi(bi)

])
. (2.14)

The following result presents the PLM defined in (2.8) of arbitrary rectangles in terms

of the Lévy measure Π and its one-dimensional marginal tail integrals Πi for i = 1, . . . , d.

It directly follows from the construction (2.7) and (2.8).
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Proposition 2.10. Let Π be a Lévy measure with one-dimensional margins Πi for i =

1, . . . , d. For the PLM Γ defined in (2.8) the following holds.

(1) Define

Di := I

(
1

Πi(0−)

)
∪ I

(
1

Πi(0+)

)
∪ {0} . (2.15)

For a, b ∈ R
d with (a, b] ⊂

∏d
i=1 Di

Γ((a, b]) = Π ⊗ λ|[0,1]d

({
(x1, . . . , xd, y1, . . . , yd) ∈ (Rd \ {0}) × [0, 1]d : (2.16)

1

Π̇i(xi) + yi∆Πi(xi)
∈ (ai, bi] for i = 1, . . . , d

})

(2) For a, b ∈ Rd with (a, b] ⊂ Rd \
∏d

i=1 Di

Γ((a, b]) =

d∑

i=1

δ0 ⊗ · · · ⊗ δ0︸ ︷︷ ︸
i−1

⊗Γi ⊗ δ0 ⊗ · · · ⊗ δ0︸ ︷︷ ︸
d−i

((a, b]) , (2.17)

where Γi(dxi) = |xi|
−2dxi for xi ∈ R \ {0}.

Remark 2.11. For a multivariate compound Poisson process the sets Di are equal to

Di = (−∞,−1/λ−
i ] ∪ (1/λ+

i ,∞) ∪ {0}

for i = 1, . . . , d where λ−
i , λ+

i > 0 are the intensities of the positive and negative Poisson

processes, respectively. The above construction of Proposition 2.10(b) ensures that the

resulting PLM has indeed 1-stable margins.

Example 2.12. [Independence PLM]

The jumps of a Lévy process are independent, if the Lévy measure is supported by the

coordinate axes {xei : x ∈ R, i = 1, . . . , d}, see [23], E 12.10, where the ei denote the unit

vectors in Rd. So the independence PLM is given by

Γ⊥(A) =
d∑

i=1

Γi(Ai) for A ∈ B(Rd \ {0}),

where Ai := {xi ∈ R : (0, . . . , 0, xi, 0, . . . , 0) ∈ A} and Γi denote the Lévy measure of a

one-dimensional standard 1-stable Lévy process. By [17], Lemma 3.5, Γ is characterized

by the family of marginal tail integrals (Γ⊥,I)I⊆{1,...,d}, given for (x1, . . . , x|I|) ∈ (R\{0})|I|

by

Γ⊥,I(x1, . . . , x|I|) =

{
0 , if |I| > 1 ,

x−1 , if |I| = 1 .
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Example 2.13. [Complete positive dependence PLM]

The jumps of a Lévy process are completely dependent or comonotonic, if there exists

a strictly ordered set S ⊂ K := {x ∈ R
d : sgn(x1) = · · · = sgn(xd)} such that for

almost all sample paths ∆X t ∈ S for t > 0, see [17], Definition 4.2. In this case, all

components jump a.s. together and, therefore, the PLM of complete positive dependence

is concentrated on (R \ {0})d. So Γ is characterized by the corresponding PLC, given for

(x1 . . . , xd) ∈ (R \ {0})d by

Γ||(x1, . . . , xd) =
1

|x1| ∨ · · · ∨ |xd|
1K((x1, . . . , xd))

d∏

j=1

sgn(xj)

and is supported by {x ∈ R
d \ {0} : x1 = · · · = xd}.

Example 2.14. [Archimedean PLM]

Analogously to the Archimedean copula construction (cf. [19], Section 4), Archimedean

Pareto Lévy measures can be defined by constructing their Pareto Lévy copula on (R \

{0})d and setting Γ(Rd \ (R \ {0})d) = 0.

Let ϕ : [−1, 1] → [−∞,∞] be a strictly increasing continuous function with ϕ(1) = ∞,

ϕ(0) = 0 and ϕ(−1) = −∞, having derivatives of order up to d on (−1, 0) and (0, 1),

satisfying for all k = 1, . . . , d,

∂kϕ(u)

∂uk
≥ 0 , u ∈ (0, 1) , and (−1)k ∂kϕ(u)

∂uk
≤ 0 , u ∈ (−1, 0) .

Set ϕ̃(u) := 2d−2 (ϕ(u) − ϕ(−u)) for u ∈ [−1, 1]. Then

Γ(x1, . . . , xd) = ϕ

(
d∏

i=1

ϕ̃−1

(
1

xi

))
, (x1 . . . , xd) ∈ (R \ {0})d ,

is a Pareto Lévy copula, see [17], Theorem 6.1.

If we construct a Lévy measure Π by margins Πi for i = 1, . . . , d and an Archimedean

PLM, Π may have mass on Rd \ (R \ {0})d, although Γ has not. In equation (2.14) we see

that Π(Rd \ (R \ {0})d) > 0 if and only if Πi(0+) < ∞ or Πi(0−) > −∞ for at least one i.

Example 2.15. [Clayton PLM]

Setting in Example 2.14

ϕ(x) = (− log |x|)−1/θ
(
η1{x>0} − (1 − η)1{x<0}

)
, θ > 0, η ∈ (0, 1) ,

corresponds to the Clayton Pareto Lévy measure and the Clayton Pareto Lévy copula is

for θ > 0, η ∈ [0, 1] given for (x1, . . . , xd) ∈ (R \ {0})d by

Γη,θ(x1, . . . , xd) = 22−d

(
d∑

i=1

|xi|
θ

)−1/θ
(
η1{x1···xd>0} − (1 − η)1{x1···xd<0}

)
.
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For d = 2 this reduces to

Γη,θ(x1, x2) =
(
|x1|

θ + |x2|
θ
)−1/θ (

η1{x1x2>0} − (1 − η)1{x1x2<0}

)
, (2.18)

which was frequently used, e.g. in [4, 5, 8]. Obviously, a Clayton PLM is homogeneous of

degree 1.

Example 2.16. [Non-homogeneous PLM]

Setting in Example 2.14

ϕ(x) = ζ
|x|

1 − |x|

(
η1{x>0} − (1 − η)1{x<0}

)
, ζ > 0, η ∈ (0, 1) ,

yields the PLC for ζ > 0, η ∈ [0, 1] given for (x1, . . . , xd) ∈ (R \ {0})d as

Γη,ζ(x1, . . . , xd) =
ζ
∏d

i=1 |1/xi|∏d
i=1(|1/xi| + ζ) −

∏d
i=1 |1/xi|

(
η1{x1···xd>0} − (1 − η)1{x1···xd<0}

)
.

For d = 2 the PLC Γη,ζ reduces to

Γη,ζ(x1, x2) =
1

|x1| + |x2| + ζ |x1x2|

(
η1{x1x2>0} − (1 − η)1{x1x2<0}

)
,

which was treated in [8], Example 2.8(d). Obviously, this PLM has homogeneous one-

dimensional margins, but is not homogeneous of degree 1.

3 Main Results

It is well-known and we proved it in Lemma 2.4 that multivariate regular variation of Π

implies regular variation of at least one of the one-dimensional marginal Lévy measures

Πi. To prove the converse, we assume w.l.o.g. that Π1 ∈ RV(α, cn, µ1). We also assume

that the following tail balance conditions hold for x > 0 and for all i = 1, . . . , d

lim
n→∞

nΠi(cnx) = p+
i x−α and lim

n→∞
−nΠi(−cnx) = p−i x−α , (3.1)

where p+
i , p−i ∈ [0,∞). For x ∈ R we define

p
sgn(x)
i (x) :=

{
p+

i , if x ≥ 0,

p−i , if x < 0.

The following result is an analogon of [18], Theorem 3.1, for distributional copulas.
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Theorem 3.1. Let Γ be a PLM and Πi for i = 1, . . . , d one-dimensional Lévy mea-

sures. Let Π be the d-dimensional Lévy measure defined in (2.12). Suppose that Π1 ∈

RV(α, cn, µ1) and that the tail balance conditions (3.1) for the margins hold. Furthermore,

suppose that Γ ∈ RV(1, n, ν). Then Π ∈ RV(α, cn, µ), where for a = (ai)i=1,...,d, b =

(bi)i=1,...,d ∈ Rd and for i = 1, . . . , d,

ãi :=





0 , if ai = 0 ,

sgn(ai)(p
sgn(ai)
i )−1|ai|

α , if ai 6= 0, p
sgn(ai)
i > 0 ,

∞ , if ai > 0, p
sgn(ai)
i = 0 ,

−∞ , if ai < 0, p
sgn(ai)
i = 0 ,

(3.2)

and b̃i is defined analogously. Furthermore, we have

µ((a, b]) = ν

(
d∏

i=1

(ãi, b̃i]

)
. (3.3)

Proof. First we show that {nΠ(cn·)}n∈N is relatively compact in the vague topology. Since

Π is a Lévy measure, for the ball B0,r = {x ∈ Rd : |x − 0| < r} we get

sup
n∈N

nΠ
(
cn(Rd \ B0,r)

)
< ∞ for all r > 0

and by [16], Theorem 15.7.5, the sequence {nΠ(cn·)}n∈N is relatively compact. So there

are subsequential vague limits and by [13], Theorem 2.8, we have to show convergence for

sets in a determining class. The sets {(a, b] : a, b ∈ E, a ≤ b} are an ∩-stable generator

of B(E), but since Π(R
d
\ Rd) = 0 it is sufficient to investigate convergence on the sets

{(a, b] : a, b ∈ Rd \ {0}, a ≤ b}. Consequently, we have to show that nΠ(cn(a, b]) →

µ((a, b]) as n → ∞ for all sets (a, b] with a, b ∈ Rd \ {0}, 0 /∈ (a, b] and

µ(∂(a, b]) = µ

(
d⋃

k=1

∏

i<k

[ai, bi] × {ak, bk} ×
∏

i>k

[ai, bi]

)
= 0 ,

where µ is a non-zero Radon measure with µ(R
d
\ {0}) = 0 and homogeneous of degree

α.

For a, b ∈ E and the weight constants pi given in (3.1) we define index sets

K1 := {i : aibi 6= 0, p
sgn(ai)
i p

sgn(bi)
i > 0} , K2 := {i : aibi 6= 0, p

sgn(ai)
i > 0, p

sgn(bi)
i = 0} ,

K3 := {i : aibi 6= 0, p
sgn(ai)
i = 0, p

sgn(bi)
i > 0} , K4 := {i : aibi > 0, p

sgn(ai)
i = p

sgn(bi)
i = 0} ,

K5 := {i : ai < 0 < bi, p
sgn(ai)
i = p

sgn(bi)
i = 0} , K6 := {i : ai = 0, p

sgn(bi)
i > 0} ,

K7 := {i : ai = 0, p
sgn(bi)
i = 0} , K8 := {i : bi = 0, p

sgn(ai)
i > 0} ,

K9 := {i : bi = 0, p
sgn(ai)
i = 0} .

(3.4)
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Moreover, we set for a, b ∈ E with 0 /∈ (a, b]

µ((a, b]) (3.5)

:= ν

(
∏

i∈K1

(
sgn(ai)

p
sgn(ai)
i

|ai|
α,

sgn(bi)

p
sgn(bi)
i

|bi|
α

]
×
∏

i∈K2

(
sgn(ai)

p
sgn(ai)
i

|ai|
α,∞

)

×
∏

i∈K3

(
−∞,

sgn(bi)

p
sgn(bi)
i

|bi|
α

]
×
∏

i∈K4

∅ ×
∏

i∈K5

(−∞,∞) ×
∏

i∈K6

(
0,

sgn(bi)

p
sgn(bi)
i

|bi|
α

]

×
∏

i∈K7

(0,∞) ×
∏

i∈K8

(
sgn(ai)

p
sgn(ai)
i

|ai|
α, 0

]
×
∏

i∈K9

(−∞, 0]

)
.

Consider sets (a, b] with a, b ∈ Rd\{0}, 0 /∈ (a, b] and µ(∂(a, b]) = 0. From relation (2.12)

we obtain

nΠ(cn(a, b]) (3.6)

= nΓ

(
n

∏

i∈K1,K2,K3,K4,K5

(
1

nΠi(cnai)
,

1

nΠi(cnbi)

]
×

∏

i∈K6,K7

(
1

nΠi(0+)
,

1

nΠi(cnbi)

]

×
∏

i∈K8,K9

(
1

nΠi(cnai)
,

1

nΠi(0+)

])
.

From the definition of the pi in (3.1) we conclude for n → ∞ that

(
1

nΠi(cnai)
, 1

nΠi(cnbi)

]
→

(
sgn(ai)

p
sgn(ai)
i

|ai|
α, sgn(bi)

p
sgn(bi)
i

|bi|
α

]
=: B1 for i ∈ K1 ,

(
1

nΠi(cnai)
, 1

nΠi(cnbi)

]
→

(
sgn(ai)

p
sgn(ai)
i

|ai|
α,∞

)
:= B2 for i ∈ K2 ,

(
1

nΠi(cnai)
, 1

nΠi(cnbi)

]
→

(
−∞, sgn(bi)

p
sgn(bi)
i

|bi|
α

]
=: B3 for i ∈ K3 ,

(
1

nΠi(cnai)
, 1

nΠi(cnbi)

]
→ ∅ =: B4 for i ∈ K4 ,(

1
nΠi(cnai)

, 1
nΠi(cnbi)

]
→ (−∞,∞) =: B5 for i ∈ K5 ,

(
1

nΠi(0+)
, 1

nΠi(cnbi)

]
→

(
0, sgn(bi)

p
sgn(bi)
i

|bi|
α

]
=: B6 for i ∈ K6 ,

(
1

nΠi(0+)
, 1

nΠi(cnbi)

]
→ (0,∞) =: B7 for i ∈ K7 ,

(
1

nΠi(cnai)
, 1

nΠi(0+)

]
→

(
sgn(ai)

p
sgn(ai)
i

|ai|
α, 0

]
=: B8 for i ∈ K8 ,

(
1

nΠi(cnai)
, 1

nΠi(0+)

]
→ (−∞, 0] =: B9 for i ∈ K9 .

Furthermore,

0 /∈ (a, b] ⇒ 0 /∈
d∏

i=1

(
1

nΠi(cnai)
,

1

nΠi(cnbi)

]
⇒ 0 /∈

9∏

i=1

Bi

13



and

µ(∂(a, b]) = 0 ⇒ ν

(
∂

d∏

i=1

(
1

nΠi(cnai)
,

1

Πi(cnbi)

])
= 0 ⇒ ν

(
∂

9∏

i=1

Bi

)
= 0 .

Since nΓ(n·)
v
→ ν(·) as n → ∞ and ν has no atoms on the considered sets applying

Propositions A.1 and A.2 yields that expression (3.6) converges to µ and relation (3.3)

holds.

The properties of µ can easily be seen. µ is an α-homogeneous Radon measure on B(E)

with µ(R
d
\Rd) = 0 since ν is a 1-homogeneous Lévy measure. Moreover, µ is a non-zero

Radon measure because the one-dimensional margin µ1 is a non-zero measure. �

Corollary 3.2. Assume the situation of Theorem 3.1. Then

lim
t→∞

Π(t, . . . , t)

Π1(t)
=

µ(1, . . . , 1)

µ1(1)
=

1

p+
1

ν

(
1

p+
1

, . . . ,
1

p+
d

)
, (3.7)

lim
t→−∞

Π(t, . . . , t)

Π1(t)
=

µ(−1, . . . ,−1)

µ1(−1)
= −

1

p−1
ν

(
−

1

p−1
, . . . ,−

1

p−d

)
. (3.8)

Proof. As a consequence of (3.3) we have

lim
t→∞

Π(t, . . . , t)

Π1(t)
= lim

n→∞

Π(cn, . . . , cn)

Π1(cn)
=

µ(1, . . . , 1)

µ1(1)
=

1

p+
1

ν

(
1

p+
1

, . . . ,
1

p+
d

)
.

�

Note that both limits are independent of α, i.e. they are defined by the dependence

structure given by the PLM and the weight constants of the marginal tail integrals. The

following notion is well-known for bivariate probability measures and has attracted much

attention when modelling joint extremes; see e.g. [15].

Definition 3.3 (Tail dependence coefficient).

(1) Let Π be a Lévy measure with PLM Γ. We define the upper and lower tail dependence

coefficient of Γ as

ΛU := lim
t→∞

tΓ(t, . . . , t) and ΛL := lim
t→−∞

|tΓ(t, . . . , t)|.

If ΛU > 0 we call Γ upper tail dependent, and if ΛL > 0 the PLM Γ is called lower integral

dependent.

(2) If ΓU > 0 (ΓL > 0) and the conditions (3.1) hold with p+
i > 0 (p−i > 0) for all

i = 1, . . . , d, then we call Π upper (lower) tail dependent.
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Note that ΛU and ΛL always exist, since by the standardized one-dimensional margins

we have

|tΓ(t, . . . , t)| ≤ 1 for t 6= 0.

Remark 3.4. If Γ ∈ RV(1, n, ν), then

ΛU = ν(1, . . . , 1) and ΛL = |ν(−1, . . . ,−1)|.

The following result is a converse of Theorem 3.1 and extends Proposition 2.4.

Theorem 3.5. Let Π be a d-dimensional Lévy measure with one-dimensional margins Πi

for i = 1, . . . , d, and Γ the PLM given in (2.8). Suppose that Π ∈ RV(α, cn, µ). Then the

tail balance conditions (3.1) hold and Γ ∈ RV(1, n, ν). For a, b ∈ Rd with (a, b] ⊂
∏d

i=1 Di

with Di defined in (2.15), the relation between µ and ν is given as

ν((a, b]) = µ

(
d∏

i=1

(âi, b̂i]

)
, (3.9)

where for i = 1, . . . , d

âi :=





0 , if p
sgn(ai)
i = 0,

sgn(ai)
(
p

sgn(ai)
i ai

)1/α

, if p
sgn(ai)
i > 0 ,

∞ , if ai > 0, p
sgn(ai)
i = 0 ,

−∞ , if ai < 0, p
sgn(ai)
i = 0 ,

(3.10)

and the b̂i are defined in the same way. For a, b ∈ Rd \
∏d

i=1 Di it holds ν((a, b]) =

Γ((a, b]).

Proof. By Lemma 2.4, the tail balance conditions (3.1) hold with p+
i := µi(1) and p−i :=

−µi(−1) and there exists at least one index i∗ such that p+
i∗

+ p−i∗ > 0.

Analogously to the proof of Theorem 3.1 we have to show that nΓ(n(a, b]) → ν((a, b]) as

n → ∞ for all sets (a, b] with a, b ∈ Rd \ {0}, 0 /∈ (a, b] and ν(∂(a, b]) = 0, where ν is a

non-zero 1-homogeneous Radon measure with ν(R
d
\ Rd) = 0.

Recall the definition of the sets Di in (2.15). By relation (2.17) we have that Γ is 1-

homogeneous on Rd \
∏d

i=1 Di and so we define ν((a, b]) := Γ((a, b]) for sets (a, b] ⊂

(Rd \
∏d

i=1 Di). Further, we define ν on B(E) by ν(R
d
\ Rd) := 0 and for (a, b] ⊂

∏d
i=1 Di

we set with Definition (3.2) for x̃i

ν((a, b]) := µ({(x1, . . . , xd) ∈ R
d \ {0} : x̃i ∈ (ai, bi] for i = 1, . . . , d}) .

ν is a non-zero 1-homogeneous Radon measure since µ is an α-homogeneous Lévy measure

and Γ is 1-homogeneous on Rd \
∏d

i=1 Di. Moreover, ν is a non-zero measure because µi∗
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is a non-zero measure and p+
i∗ + p−i∗ > 0.

Suppose that a, b ∈ Rd \ {0} with 0 /∈ (a, b] and ν(∂(a, b]) = 0.

With relation (2.16) we obtain for (a, b] ⊂
∏d

i=1 Di that

nΓ(n(a, b]) = nΠ ⊗ λ|[0,1]d

({
(cnx1, . . . , cnxd, y1, . . . , yd) ∈ (Rd \ {0}) × [0, 1]d : (3.11)

1

nΠ̇i(cnxi) + nyi∆Πi(cnxi)
∈ (ai, bi] for i = 1, . . . , d

})
.

With limn→∞ n∆Πi(cnxi) = 0 it holds

lim
n→∞

1

nΠ̇i(cnxi) + yi∆Πi(cnxi)
=






0 , if xi = 0

sgn(xi)(p
sgn(xi)
i )−1|xi|

α , if xi 6= 0, p
sgn(xi)
i > 0 ,

∞ , if xi > 0, p
sgn(xi)
i = 0 ,

−∞ , if xi < 0, p
sgn(xi)
i = 0 .

We see that ν(∂(a, b]) = 0 holds if and only if µ(∂(â, b̂]) = 0 and 0 /∈ (a, b] implies

0 /∈ (â, b̂]. So with Propositions A.1 and A.3 it results for (3.11) as n → ∞ that

lim
n→∞

nΓ(n(a, b]) = µ ⊗ λ|[0,1]d({(x1, . . . , xd, y1, . . . , yd) ∈ (Rd \ {0}) × [0, 1]d :

x̃i ∈ (ai, bi] for i = 1, . . . , d}) = ν((a, b]) ,

and (3.9) follows. �

4 Examples

To simplify notation, we only consider the case d = 2. Moreover, we assume that we are

in the framework of Theorem 3.1 with Π1 ∈ RV(α, cn, µ1), p+
1 , p−1 > 0 and p+

2 , p−2 ≥ 0, i.e.

µi(x) = sgn(x)p
sgn(x)
i |x|−α for x 6= 0.

Example 4.1. [Independence PLM, continuation of Example 2.12]

Since Γ⊥ is homogeneous of degree 1, by Theorem 3.1 we get Π ∈ RV(α, cn, µ) and with

Γ⊥(dx1, dx2) = δ0(dx1)|x2|
−2dx2 + δ0(dx2)|x1|

−2dx1 , (x1, x2) ∈ R
2 \ {0},

the limit measure µ is supported on the axes. Hence, µ is given by

µ(dx1, dx2) = δ0(dx1)p
sgn(x2)
2

α

|x2|α+1
dx2 + δ0(dx2)p

sgn(x1)
1

α

|x1|α+1
dx1 , (x1, x2) ∈ R

2 \ {0}.

Then ΛU = ΛL = 0 and the limits in (3.7) and (3.8) are equal to 0.
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Example 4.2. [Complete positive dependence PLM, continuation of Example 2.13]

The complete positive dependence PLM Γ‖ is homogeneous of degree 1 and with rela-

tion (3.3) we obtain for the limit measure µ that

µ(I(x1) × I(x2)) =
(
p

sgn(x1)
1 |x1|

−α ∧ p
sgn(x2)
2 |x2|

−α
)

1K((x1, x2)) , (x1, x2) ∈ (R \ {0})2.

For x1 ∈ R \ {0} we get

µ(I(x1) × {0}) = µ1(I(x1)) − lim
x2↑0

µ(I(x1) × I(x2)) − lim
x2↓0

µ(I(x1) × I(x2))

=

{
p

sgn(x1)
1 |x1|

−α , if p
sgn(x1)
2 = 0 ,

0 , if p
sgn(x1)
2 > 0 .

Analogously for x2 ∈ R \ {0} with p+
1 > 0, p−1 > 0 we get µ({0} × I(x2)) = 0. Since Γ‖ is

supported by {(x1, x2) ∈ (R \ {0})2 : x1 = x2}, µ is supported by {(x1, x2) ∈ (R \ {0})2 :

x2 = (p
sgn(x2)
2 /p

sgn(x1)
1 )1/αx1}. Finally, the limit measure µ results in

µ(dx1, dx2) = p
sgn(x1)
1

α

|x1|α+1
1
{x2=(p

sgn(x2)
2 /p

sgn(x1)
1 )1/αx1}}

dx1 , x1 ∈ R \ {0}.

Then ΛU = ΛL = 1 and the limits in (3.7) and (3.8) are given as

lim
t→∞

Π(t, t)

Π1(t)
=

p+
1 ∧ p+

2

p+
1

and lim
t→−∞

Π(t, t)

Π1(t)
= −

p−1 ∧ p−2
p−1

.

Example 4.3. [Clayton PLM, continuation of Example 2.15]

The Clayton PLM Γη,θ is homogeneous of degree 1 and we have Γη,θ(R
2 \ (R \ {0})2) = 0.

For x1 ∈ R \ {0} we get

µ(I(x1) × {0}) = lim
ǫ↑0

µ(I(x1) × (ǫ, 0]) (4.1)

=





0 , if p−2 > 0 ,

lim
ǫ↑0

Γη,θ

(
I

(
sgn(x1)

p
sgn(x1)
1

|x1|
α

)
× I(ǫ)

)
, if p−2 = 0 ,

=

{
0 , if p−2 > 0 ,

p
sgn(x1)
1 |x1|

−α
(
η1{x1<0} + (1 − η)1{x1>0}

)
, if p−2 = 0 ,

and for x2 ∈ R \ {0} we obtain

µ({0} × I(x2)) = lim
ǫ↑0

µ((ǫ, 0] × I(x2)) = lim
ǫ↑0

Γ

((
−1

p−1
|ǫ|α, 0

]
× I (x̃2)

)

= Γη,θ ({0} × I(x̃2)) = 0,

Let x1, x2 ∈ R \ {0}. If p
sgn(x2)
2 > 0, then

µ(I(x1) × I(x2)) =
(
(p

sgn(x1)
1 )−θ|x1|

αθ + (p
sgn(x2)
2 )−θ|x2|

αθ
)−1/θ (

η1{x1x2>0} + (1 − η)1{x1x2<0}

)
.
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If p
sgn(x2)
i = 0, then

µ(I(x1) × I(x2)) = Γη,θ

(
I

(
sgn(x1)

p
sgn(x1)
1

|x1|
α

)
× ∅

)
= 0 .

Moreover, the limits in (3.7) and (3.8) are given by

lim
t→∞

Π(t, t)

Π1(t)
=

µ(1, 1)

µ(1)
=





η((p+
1 )−θ+(p+

2 )−θ)
−1/θ

p+
1

, if p+
2 > 0 ,

0 , if p+
2 = 0 ,

and

lim
t→−∞

Π(t, t)

Π1(t)
=

µ(−1,−1)

µ(−1)
=





−η((p−1 )−θ+(p−2 )−θ)
−1/θ

p−1
, if p−2 > 0 ,

0 , if p−2 = 0 ,

and ΛU = ΛL = η2−1/θ. So if η > 0 and p+
2 > 0 (p−2 > 0), then we always have upper

(lower) tail dependence.

Example 4.4. [Non-homogeneous PLM, continuation of 2.16]

Γη,ζ is concentrated on (R \ {0})2 and we get

nΓη,ζ(n(I(x1) × I(x2))) =
1

|x1| + |x2| + n|x1x2|
→ 0 as n → ∞

for all x1, x2 ∈ R \ {0}. Therefore, Γ is not only non-homogeneous, but also not regularly

varying. Consequently, by Theorem 3.1, Π defined by (2.6) is not multivariate regularly

varying. Moreover, ΛU = ΛL = 0, so there is no tail dependence in this model.

It has been shown in [8] that for η = 1 the Lévy measure of the sum of the two

components of the bivariate Lévy process can, for certain marginal models, be calculated

explicitly. This is also true for the Pareto Lévy measure, which is not bivariate regularly

varying. Surprisingly, it turns out that the Lévy measure of the sum

Γ+(·) := Γ1,ζ({(x1, x2) ∈ R
2 \ {0} : x1 + x2 ∈ ·})

is univariate regularly varying. Note that this does not contradict [3], Theorem 1.1, where

it was proved that a vector X is regularly varying, if and only if every linear combination

is regularly varying. More precisely, for z > 0,

Γ+(z) =
6 + 2zζ

z(4 + zζ)
+

4 + 2zζ

z(4 + zζ)
√

zζ(4 + zζ)
ln

(∣∣∣∣∣
zζ +

√
zζ(4 + zζ)

zζ −
√

zζ(4 + zζ)

∣∣∣∣∣

)
.

From this it is easy to see that

Γ+(z) ∼ 2z−1 = Γ1(z) + Γ2(z),

which exhibits the same behaviour as for the independence model.
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5 Graphical representation of the dependence struc-

ture of Lévy processes

For a stable r. v. the spectral measure charaterizes the dependence between the marginals,

see [22], which remains true for multivariate regularly varying r. v. in the limit, see Def-

inition 2.1. Consequently, the spectral density has been a popular graphical tool for sta-

ble and regularly varying distributions and processes, at least in two dimensions. A 1-

homogeneous PLM is the Lévy measure of a standard 1-stable Lévy process and, there-

fore, we consider its spectral measure where we again restrict the situation to d = 2 for

presentation purposes.

The Pareto Lévy copula provides a new possibility to visualize the dependence struc-

ture between the jump parts of the marginal Lévy processes. As a graphical tool it can also

be applied to non-regularly varying PLMs, where no spectral measure exists. Whereas an

empirical version of the spectral density estimates a density, immediately by definition,

an empirical version of the Pareto Lévy copula estimates a tail integral.

Consequently, one would guess that the empirical spectral density (or some kernel den-

sity version) provides more insight into the dependence structure. This is partly true, with

the exception that the dependence of joint extremes is estimated by the tail dependence

coefficient, which is based on the Pareto Lévy copula and the tail integral as indicated in

Definition 3.3 and Corollary 3.2.

In the first subsection we present both graphical representations for bivariate homo-

geneous Pareto Lévy measures from the previous examples, the spectral density and the

Pareto Lévy copula. In the second subsection we visualize the dependence structure of

the non-regularly varying PLM given in Example 2.16 only by its PLC, since there exists

no spectral measure.

5.1 Homogeneous Pareto Lévy measures

Recall from Theorem 14.3 of [23] that the 1-homogeneous PLM Γ as a 1-stable Lévy

measure has for all B ∈ B(Rd) the representation

Γ(B) =

∫

S

∫ ∞

0

1B(rφ)r−2 dr µ̃S(dφ),

where S denotes the unit sphere in Rd. Since µ̃S is a finite measure it can be normalized

to a probability measure, which means in our situation that

µS(·) =
µ̃S(·)

Γ({x ∈ R2 : |x| > 1})
=

Γ({x ∈ R2 : |x| > 1, x/|x| ∈ ·})

Γ({x ∈ R2 : |x| > 1})
. (5.1)
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This representation shows that µS measures the dependence between joint extremes, and

that it depends on the chosen norm | · |.

Using polar coordinates r = |x| and φ = x/|x| ∈ S, the Lévy measure Γ has for the

set A := {(r, φ) : 0 ≤ r1 < r2 ≤ ∞, 0 ≤ ρ1 < ρ2 < 2π} the representation

Γ(A) =

∫ ρ2

ρ1

∫ r2

r1

r−2 drµ̃S(dφ) . (5.2)

Note that all sets A of this type form a semi-algebra of subsets of R2 \ {0} and, hence,

generate the Borel sigma algebra B(R2 \ {0}). Defining the transformation T : [0,∞) ×

[0, 2π) → R2 by T (r, φ) = r(cos φ, sin φ), Γ has a density given in polar coordinates as

Γ ◦ T (dr, dφ) = µ̃S(dφ) r−2dr . (5.3)

From this we see firstly the well-known fact that the spectral density as the normalized

angular measure completely determines the dependence in 1-stable models (as in all other

models of arbitrary homogeneous order). We also note that the homogeneity on the whole

of Rd plays an important role for the multiplicative structure in (5.3): for a general PLM

this does no longer hold.

Using the notation introduced above we can relate the spectral measure with the PLM

as follows. Since the arcs are for any norm given by

Sρ1,ρ2 :=

{
(cos φ, sinφ)

|(cos φ, sinφ)|
: ρ1 < φ ≤ ρ2

}
,

we find from the definition (5.1) by integrating out r over (1,∞) in (5.2)

µS([ρ1, ρ2]) =

∫ ρ2

ρ1
µ̃S(dφ)

∫ 2π

0
µ̃S(dφ)

=
Γ(Sρ1,ρ2)∫ 2π

0
µ̃S(dφ)

. (5.4)

This relates the spectral measure and the PLM for Borel sets on the sphere. This implies

that apart from a normalizing factor both measures carry the same information on the

dependence of the model.

We present the spectral measures by plotting the density µS(dφ)/dφ on [0, 2π). Here

we take an idea from [2] and visualize µS as a graph such that the area included between

two angles (ρ1 and ρ2, say) and a solid curve (s(ρ) for ρ ∈ [ρ1, ρ2]) represents the spectral

measure µS([ρ1, ρ2]). The uniform distribution corresponds then to the unit circle. These

graphs we call Basrak graphs.

Whereas polar coordinates are the natural ones for the spectral measure, the natural

coordinates for the PLC Γ are the cartesian coordinates. The natural generator of the

Borel sigma algebra B(R2 \ {0}) are here the sets, which have been used to define the

tail integral. It is, however, obvious from the definition of the spectral measure in (5.1)
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that there is no simple relation between the spectral measure and the PLM on these sets.

For specific PLCs it is, however, possible (as shown below) to obtain the form of the

corresponding spectral measure, provided the homogeneity property holds.

On the other hand, for non-homogeneous PLCs there exists no spectral measure, more

precisely, the factorization of the PLM into a radial part and an angular part is no longer

possible: the angular part depends still on r; cf. Example 5.4.

However, the PLC Γ exists and can also be visualised. Consequently, we also suggest

a graphic representation for the PLC. This is done as follows. For a given point (x1, x2)

not on any axes we plot |Γ(x1, x2)| = Γ(I(x1) × I(x2)) as the L2-distance of a point to

the origin, where we can also use any other distance.

Example 5.1. [Independence PLM, continuation of Examples 2.12 and 4.1]

Since Γ⊥ has mass only on the coordinate axes, its spectral measure is for φ ∈ [0, 2π)

given by

µS(dφ) =
1

4
δ0(dφ) +

1

4
δπ/2(dφ) +

1

4
δπ(dφ) +

1

4
δ3π/2(dφ) .

Figure 1 shows the spectral density µS(dφ)/dφ. The PLC Γ of independence is equal to

0; see Figure 3.
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Figure 1: The left figure shows the Basrak graph of the spectral measure µS of the independence PLM

in [0, 2π) with uniform weights 0.25 on 0, π
2
, π, 3

2
π. The right figure shows the Basrak plot of the spectral

measure µS of the complete positive dependence PLM. The length of the rays represents the probability

mass on the corresponding angles.

Example 5.2. [Complete positive dependence PLM, continuation of Example 2.13 and

4.2]

Γ‖ has mass only on {x ∈ R2 \ {0} : x1 = x2} and its spectral measure is for φ ∈ [0, 2π)

given by

µS(dφ) =
1

2
δπ/4(dφ) +

1

2
δ5π/4(dφ) .
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The right Figure 1 shows the spectral density µS(dφ)/dφ on [0, 2π) and as Basrak graph.

The PLC Γ‖ given as

Γ‖(x1, x2) =
1

|x1| ∨ |x2|
1K((x1, x2))sgn(x1)sgn(x2) .

and is visualized in Figure 3.

Example 5.3. [Clayton PLM, continuation of Examples 2.15 and 4.3]

From (2.18) we find

Γη,θ(dx1, dx2) = (1+θ)
(
|x1|

θ + |x2|
θ
)−1/θ−2

|x1|
θ−1|x2|

θ−1
(
η1{x1x2>0} + (1 − η)1{x1x2<0}

)
dx1dx2 .

By transformation to polar coordinate Γη,θ has representation (5.3) with density

µ̃S(dφ)

dφ
= (1 + θ)

(
| cos(φ)|θ + | sin(φ)|θ

)−1/θ−2
| cos(φ)|θ−1| sin(φ)|θ−1

(
η1{cos(φ) sin(φ)>0} + (1 − η)1{cos(φ) sin(φ)<0}

)
, (5.5)

and (5.4) applies. These denisities are shown in Figure 2.

We visualize the Clayton PLC Γη,θ in Figure 3 for η = 1 (i.e. joint jumps are always

in the same direction) and different parameter values θ > 0. We see that for increasing

parameter θ, the PLC values increases. This is reasoned by the increase of mass near π/4.

If θ decreases, the mass of µ̃S moves near to the axes and the PLC values decrease.

5.2 A non-homogeneous Pareto Lévy measure

Example 5.4. [Non-homogeneous PLM, continuation of Example 2.16]

Γη,ζ has the density

Γη,ζ(dx1, dx2) =
2sgn(x1x2) + ζx1sgn(x2) + ζx2sgn(x1) + ζ2x1x2

(|x1| + |x2| + ζ |x1x2|)3

(
η1{x1x2>0} − (1 − η)1{x1x2<0}

)
dx1dx2 .

Transforming Γη,ζ to polar coordinates yields (5.3) where µ̃S = µ̃r
S
(dφ) is given by

µ̃r
S
(dφ)

dφ

=
2sgn(cos(φ) sin(φ)) + ζr cos(φ)sgn(sin(φ)) + ζr sin(φ)sgn(cos(φ)) + ζ2r2 cos(φ) sin(φ)

(| cos(φ)| + | sin(φ)| + ζr| cos(φ) sin(φ)|)3

(
η1{cos(φ) sin(φ)>0} − (1 − η)1{cos(φ) sin(φ)<0}

)
. (5.6)

In contrast to (5.5) µ̃r
S

depends on the radius and decreases for increasing r, see Figure 4.
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Figure 2: Basrak graphs of the spectral densities µS2
(dφ)/dφ (first row), µS1

(dφ)/dφ (second row), and

µS∞(dφ)/dφ (third row) of the Clayton PLC for different parameter values of θ > 0 and η ∈ [0, 1] as

given in (5.1) on [0, 2π). The right figures present them as Basrak graphs.
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Figure 3: The first row of figures show the Clayton PLC Γ⊥, Γ‖ (left) and Γη,ζ for η = 1 and different

values θ > 0 (right). The other figures show Γη,ζ for different values for θ and η ∈ [0, 1].
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Figure 4: Densities µ̃S(dφ)/dφ given in (5.5) and µ̃r
S
(dφ)/dφ given in (5.6).
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Figure 5: Logarithmic PLM densities of the Clayton PLM Γη,θ for η = 1, θ = 1 and the non-homogenous

PLM Γη,ζ for η = 1, ζ = 0.001 for three different values of the radius r.

Moreover, Figure 5 shows the logarithmic PLM densities Γη,θ ◦T (r, dφ) for (η = 1, θ =

1) and Γη,ζ ◦ T (r, dφ) for (η = 1, ζ = 0.001) for three different values of the radius. We

see that for a small radius r both densities are almost identical. But for increasing r, the

Clayton density decreases uniformly for all angles φ and the non-homogeneous density

decreases strongly for angles near π/4 and weakly for angles near 0 and π/2. Figure 6

shows the PLC Γ‖ and Γη,ζ for different parameter values for η ∈ [0, 1] and ζ > 0. We see

that for small values of ζ the PLM Γη,ζ is similar to the Clayton PLM Γη,θ for θ = 1. For

increasing parameter ζ the PLC values become smaller and converge to independence.
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Figure 6: The figures show the PLC Γ⊥, Γ‖ and Γη,ζ for different parameter values for η ∈ [0, 1] and

ζ ∈ (0,∞).
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A Appendix

A.1 Proofs

Proof of Lemma 2.4

Suppose i ∈ {1, . . . , d} and A ∈ B(E) with 0 /∈ A and µi(∂A) = µ({x ∈ E : xi ∈ ∂A}) = 0.

Note that, since 0 /∈ A, also 0 /∈ {x ∈ E : xi ∈ A}. Next we observe that

µ(∂{x ∈ E : xi ∈ A}) = µ({x ∈ E : xi ∈ ∂A for at least one i ∈ {1, . . . , d}})

≤ µ({x ∈ E : xi ∈ ∂A}) = 0 .

Consequently,

nΠi(cnA) = nΠ(cn{x ∈ E : xi ∈ A})

→ µ({x ∈ E : xi ∈ A}) = µi(A) < ∞ .

Setting A = (x,∞) and A = (−∞,−x] for x > 0, the homogeneity property of µ yields

(2.5). Since µ is a non-zero measure, there exists at least one index i∗ such that µi∗ is a

non-zero measure, i.e. µi∗(1) − µi∗(−1) > 0 and Πi∗ ∈ RV(α, cn, µi∗). If µi is a non-zero

measure, then µi(1)−µi(−1) > 0 and Πi is tail-equivalent to Πi∗ . If µi is the zero measure,

then µi∗(1)− µi∗(−1) = 0 and the tail integrals of Πi are lighter than the tail integrals of

Πi∗ . �

Proof of Proposition 2.9

(1) Assume that aibi ≤ 0 for at most k ∈ {0, . . . , d} indices. We prove (2.12) by induction

on k = 0, . . . , d.

Let k = 0, i.e. aibi > 0 for all i = 1, . . . , d. Define vector u = (ui)i=1,...,d ∈
∏d

i=1{ai, bi}

and set N(u) := #{i : ui = ai}. Then with Definition 2.2 and (2.6) we obtain

Π

(
d∏

i=1

(ai, bi]

)
=

∑

u∈{ai,bi}i=1,...,d

(−1)N(u)(−1)dΠ (u)

=
∑

u∈{ai,bi}i=1,...,d

(−1)N(u)(−1)dΓ

((
1

Πi(ui)

)

i=1,...,d

)

= Γ

(
d∏

i=1

(
1

Πi(ai)
,

1

Πi(bi)

])
.

Suppose (2.12) holds for a, b ∈ Rd with aibi ≤ 0 for at most k indices. W.l.o.g. we assume

now that aibi ≤ 0 for i = 1, . . . , k + 1. If ak+1 = 0, then the induction hypothesis results
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in

Π

(
d∏

i=1

(ai, bi]

)

= lim
ǫ↓0

Π

(
∏

i<k+1

(ai, bi] × (ǫ, bk+1] ×
∏

i>k+1

(ai, bi]

)

= lim
ǫ↓0

Γ

(
∏

i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

]
×

(
1

Πi(ǫ)
,

1

Πi(bi)

]
×
∏

i>k+1

(
1

Πi(ai)
,

1

Πi(bi)

])

= Γ

(
∏

i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

]
×

(
1

Πi(0+)
,

1

Πi(bi)

]
×
∏

i>k+1

(
1

Πi(ai)
,

1

Πi(bi)

])
.

If ak+1 6= 0, i.e. ak+1 < 0 and bk+1 ≥ 0, then with the induction hypothesis we get

Π

(
d∏

i=1

(ai, bi]

)

= Π{1,...,d}\{k+1}

(
∏

i6=k+1

(ai, bi]

)
− lim

β↓bk+1

Π

(
∏

i<k+1

(ai, bi] × (β,∞) ×
∏

i>k+1

(ai, bi]

)

−Π

(
∏

i<k+1

(ai, bi] × (−∞, ak] ×
∏

i∈I,i>k+1

(ai, bi]

)

= Γ{1,...,d}\{k+1}

(
∏

i6=k+1

(
1

Πi(ai)
,

1

Πi(bi)

])

− lim
β↓bk+1

Γ

(
∏

i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

]
×

(
1

Πk+1(β)
,∞

)
×
∏

i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

])

−Γ

(
∏

i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

]
×

(
−∞,

1

Πk+1(ak+1)

]
×
∏

i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

])

= Γ

(
∏

i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

]
×

(
1

Πk+1(ak+1)
,

1

Πk+1(bk+1+)

]
×
∏

i>k+1

(
1

Πi(ai)
,

1

Πi(bi)

])
.

Recall that for bk+1 > 0 we have by right-continuity of the tail integral Πk+1(bk+1+) =

Πk+1(bk+1). If bk+1 = 0, then Πk+1(bk+1+) = Πk+1(0+).

(2) We prove (2.14) by induction on |K| = 1, . . . , d − 1. For |K| = 1 we assume w.l.o.g.

that K = {1}. Sklar’s Theorem 2.6 implies

Π

(
{0} ×

d∏

i=2

I(xi)

)

= Π{2,...,d}

(
d∏

i=2

I(xi)

)
− lim

ǫ↓0
Π

(
I(ǫ) ×

d∏

i=2

I(xi)

)
− lim

ǫ↑0
Π

(
I(ǫ) ×

d∏

i=2

I(xi)

)
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= Γ{2,...,d}

(
d∏

i=2

I

(
1

Πi(xi)

))
− Γ

(
I

(
1

Π1(0+)

)
×

d∏

i=2

I

(
1

Πi(xi)

))

−Γ

((
−∞,

1

Π1(0−)

)
×

d∏

i=2

I

(
1

Πi(xi)

))

= Γ

([
1

Π1(0−)
,

1

Π1(0+)

]
×

d∏

i=2

I

(
1

Πi(xi)

))
.

With induction on |K| equations (2.13) and (2.14) result. �

A.2 Auxiliary results

Proposition A.1. Let M and (Mn)n∈N be a measures on B(E) and a, b, (an)n∈N, (bn)n∈N ∈

E with 0 /∈ (a, b] and 0 /∈ (an, bn] for all n. Suppose

(1) an → a and bn → b as n → ∞ ,

(2) M(∂(a, b]) = 0 ,

(3) sup
a,b∈E,0/∈(a,b],M(∂(a,b])=0 |Mn((a, b]) − M((a, b])| → 0 as n → ∞ .

Then Mn((an, bn]) → M((a, b]) as n → ∞.

Proof. We estimate

|Mn((an, bn]) − M((a, b])| ≤ |Mn((an, bn]) − M((an, bn])| + |M((an, bn]) − M((a, b])|

≤ sup
a,b∈E,0/∈(a,b],M(∂(a,b])=0

|Mn((a, b]) − M((a, b])| + |M((an, bn]) − M((a, b])|.

As n → ∞ the first term tends to 0 by condition (3), and the second term by a combina-

tion of conditions (1) and (2). �

Proposition A.2. In the situation of Theorem 3.1 we have

sup
a,b∈E, 0/∈(a,b], ν(∂(a,b])=0

|nΓ(n(a, b]) − ν((a, b])| → 0 as n → ∞.

Proof. For a, b ∈ E with 0 /∈ (a, b] and ν(∂(a, b]) = 0 define gn(a, b) := |nΓ(n(a, b]) −

ν((a, b])|. Since Γ and ν have no atoms, gn is continuous on E2. So for ǫ > 0 the sets

Sn := {x, y ∈ E : gn(x, y) < ǫ} are open. Furthermore, gn is decreasing for n → ∞

and converges pointwise to 0. Therefore, Sn is increasing and (Sn)n∈N is an open cover

of E2. Since R2 \ {0} is compact in the here used topology (see [21], p.171), there exists
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an N ∈ N such that SN = E
2. So for every n > N and every (x, y) ∈ E

2 we obtain

|nΓ(n(x, y]) − ν((x, y])| = gn(x, y) < ǫ, where N does not depend on (x, y). �

Proposition A.3. In the situation of Theorem 3.5 we have

sup
a,b∈E, 0/∈(a,b], µ(∂(a,b])=0

|nΠ(cn(a, b]) − µ((a, b])| → 0 as n → ∞.

The proof is analogous to the proof of Proposition A.2.
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