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Abstract. We propose a novel architecture for keyword spotting which
is composed of a Dynamic Bayesian Network (DBN) and a bidirectional
Long Short-Term Memory (BLSTM) recurrent neural net. The DBN
uses a hidden garbage variable as well as the concept of switching par-
ents to discriminate between keywords and arbitrary speech. Contex-
tual information is incorporated by a BLSTM network, providing a dis-
crete phoneme prediction feature for the DBN. Together with continu-
ous acoustic features, the discrete BLSTM output is processed by the
DBN which detects keywords. Due to the flexible design of our Tandem
BLSTM-DBN recognizer, new keywords can be added to the vocabu-
lary without having to re-train the model. Further, our concept does not
require the training of an explicit garbage model. Experiments on the
TIMIT corpus show that incorporating a BLSTM network into the DBN
architecture can increase true positive rates by up to 10 %.

Key words: Keyword Spotting, Long Short-Term Memory, Dynamic
Bayesian Networks.

1 Introduction

Keyword spotting aims at detecting one or more predefined keywords in a given
speech utterance. In recent years keyword spotting has found many applications,
e.g. in voice command detectors, information retrieval systems, or embodied
conversational agents. Hidden Markov Model (HMM) based keyword spotting
systems [9] usually require keyword HMMs and a garbage HMM to model both,
keywords and non-keyword parts of the speech sequence. However, the design of
the garbage HMM is a non-trivial task. Using whole word models for keyword
and garbage HMMs presumes that there are enough occurrences of the keywords
in the training corpus and suffers from low flexibility since new keywords cannot
be added to the system without having to re-train it. Modeling phonemes instead
of whole words offers the possibility to design a garbage HMM that connects all
phoneme models but implies that the garbage HMM can potentially model any
phoneme sequence, including the keyword itself.
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In this paper we present a new Dynamic Bayesian Network (DBN) design
which can be used for robust keyword spotting and overcomes most of the draw-
backs of other approaches. Dynamic Bayesian Networks offer a flexible statistical
framework that is increasingly applied for speech recognition tasks [2, 1] since it
allows for conceptual deviations from the conventional HMM architecture. Our
keyword spotter does not need a trained garbage model and is robust with re-
spect to phoneme recognition errors. Unlike large vocabulary speech recognition
systems, our technique does not require a language model but only the keyword
phonemizations. Thereby we use a hidden garbage variable and the concept of
switching parents [1] to model either a keyword or arbitrary speech.

In order to integrate contextual information into the keyword spotter, we
extend our DBN architecture to a Tandem recognizer that uses the phoneme
predictions of a bidirectional Long Short-Term Memory (BLSTM) recurrent neu-
ral net together with conventional MFCC features. Tandem architectures which
combine the output of a discriminatively trained neural net with dynamic classi-
fiers such as HMMs have been successfully used for speech recognition tasks and
are getting more and more popular [6, 8]. BLSTM networks efficiently exploit
past and future context and have been proven to outperform standard meth-
ods of modeling contextual information such as triphone HMMs [4]. As shown
in [12], the framewise phoneme predictions of a BLSTM network can enhance
the performance of a discriminative keyword spotter. In [3] a BLSTM based
keyword spotter trained on a fixed set of keywords is introduced. However, this
approach requires re-training of the net as soon as new keywords are added to
the vocabulary, and gets increasingly complex if the keyword vocabulary grows.
The keyword spotting architecture proposed herein can be seen as an extension
of the graphical model for spoken term detection we introduced in [13]. Thus,
we aim at combining the flexibility of our DBN architecture with the ability of
a BLSTM network to capture long-range time dependencies and the advantages
of Tandem speech modeling.

The structure of this paper is as follows: Section 2 reviews the principle of
DBNs and BLSTMs as the two main components of our keyword spotter. Section
3 explains the architecture of our Tandem recognizer while experimental results
are presented in Section 4. Concluding remarks are mentioned in Section 5.

2 Keyword Spotter Components

Our Tandem keyword spotter architecture consists of two major components: a
Dynamic Bayesian Network processing observed speech feature vectors to dis-
criminate between keywords and non-keyword speech, and a BLSTM network
which takes in to account contextual information to provide an additional dis-
crete feature for the DBN. The following sections will shortly review the basic
principle of DBNs and BLSTMs.



2.1 Dynamic Bayesian Network

Dynamic Bayesian Networks can be interpreted as graphical models G(V,E)
which consist of a set of nodes V and edges E. Nodes represent random vari-
ables which can be either hidden or observed. Edges - or rather missing edges -
encode conditional independence assumptions that are used to determine valid
factorizations of the joint probability distribution. Conventional Hidden Markov
Model approaches can be interpreted as implicit graph representations using a
single Markov chain together with an integer state to represent all contextual and
control information determining the allowable sequencing. In this work however,
we decided for the explicit approach [2], where information such as the current
phoneme, the indication of a phoneme transition, or the position within a word
is expressed by random variables.

2.2 Bidirectional LSTM Network

The basic idea of bidirectional recurrent neural networks [10] is to use two recur-
rent network layers, one that processes the training sequence forwards and one
that processes it backwards. Both networks are connected to the same output
layer, which therefore has access to complete information about the data points
before and after the current point in the sequence. The amount of context infor-
mation that the network actually uses is learned during training, and does not
have to be specified beforehand.

Analysis of the error flow in conventional recurrent neural nets (RNNs) re-
sulted in the finding that long time lags are inaccessible to existing RNNs since
the backpropagated error either blows up or decays over time (vanishing gradi-
ent problem). This led to the introduction of Long Short Term Memory (LSTM)
RNNs [7]. An LSTM layer is composed of recurrently connected memory blocks,
each of which contains one or more recurrently connected memory cells, along
with three multiplicative ‘gate’ units: the input, output, and forget gates. The
gates perform functions analogous to read, write, and reset operations. More
specifically, the cell input is multiplied by the activation of the input gate, the
cell output by that of the output gate, and the previous cell values by the forget
gate. Their effect is to allow the network to store and retrieve information over
long periods of time.

Combining bidirectional networks with LSTM gives bidirectional LSTM,
which has demonstrated excellent performance in phoneme recognition [4], key-
word spotting [3], and emotion recognition [11]. A detailed explanation of BLSTM
networks can be found in [5].

3 Architecture

The Tandem BLSTM-DBN architecture we used for keyword spotting is depicted
in Figure 1. The network is composed of five different layers and hierarchy levels
respectively: a word layer, a phoneme layer, a state layer, the observed features,



and the BLSTM layer (nodes inside the grey shaded box). For the sake of sim-
plicity only a simple LSTM layer, consisting of inputs it, a hidden layer ht,
and outputs ot, is shown in Figure 1, instead of the more complex bidirectional
LSTM which would contain two RNNs.

The following random variables are defined for every time step t: qt denotes
the phoneme identity, qps

t represents the position within the phoneme, qtr
t indi-

cates a phoneme transition, st is the current state with str
t indicating a state

transition, and xt denotes the observed acoustic features. The variables wt, wps
t ,

and wtr
t are identity, position, and transition variables for the word layer of the

DBN whereas a hidden garbage variable gt indicates whether the current word
is a keyword or not. A second observed variable bt contains the phoneme predic-
tion of the BLSTM. Figure 1 displays hidden variables as circles and observed
variables as squares. Deterministic conditional probability functions (CPFs) are
represented by straight lines and zig-zagged lines correspond to random CPFs.
Dotted lines refer to so-called switching parents [1], which allow a variable’s par-
ents to change conditioned on the current value of the switching parent. Thereby
a switching parent can not only change the set of parents but also the imple-
mentation (i.e. the CPF) of a parent. The bold dashed lines in the LSTM layer
do not represent statistical relations but simple data streams.

Assuming a speech sequence of length T , the DBN structure specifies the
factorization
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with p(·) denoting random conditional probability functions and f(·) describ-
ing deterministic CPFs.

The size of the BLSTM input layer it corresponds to the dimensionality of
the acoustic feature vector xt whereas the vector ot contains one probability
score for each of the P different phonemes at each time step. bt is the index of
the most likely phoneme:

bt = max
ot

(ot,1, ..., ot,j , ..., ot,P ) (2)

The CPFs p(xt|st) are described by Gaussian mixtures as common in an
HMM system. Together with p(bt|st) and p(str

t |st), they are learnt via EM train-
ing. Thereby str

t is a binary variable, indicating whether a state transition takes
place or not. Since the current state is known with certainty, given the phoneme
and the phoneme position, f(st|qps

t , qt) is purely deterministic. A phoneme tran-
sition occurs whenever str

t = 1 and qps
t = S provided that S denotes the number
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Fig. 1. Structure of the Tandem BLSTM-DBN keyword spotter.

of states of a phoneme. This is expressed by the function f(qtr
t |q

ps
t , qt, s

tr
t ). The

phoneme position qps
t is known with certainty if str

t−1, qps
t−1, and qtr

t−1 are given.
The hidden variable wt can take values in the range wt = 0...K with K

being the number of different keywords in the vocabulary. In case wt = 0 the
model is in the garbage state which means that no keyword is uttered at that
time. The variable gt is then equal to one. wtr

t−1 is a switching parent of wt: if
no word transition is indicated, wt is equal to wt−1. Otherwise a word bigram
specifies the CPF p(wt|wtr

t−1 = 1, wt−1). In our experiments we simplified the



word bigram to a zerogram which makes each keyword equally likely. Yet, we
introduced differing a priori likelihoods for keywords and garbage phonemes:

p(wt = 1 : K|wtr
t−1 = 1) =

K · 10a

K · 10a + 1
(3)

and

p(wt = 0|wtr
t−1 = 1) =

1
K · 10a + 1

. (4)

The parameter a can be used to adjust the trade-off between true positives and
false positives. Setting a = 0 means that the a priori probability of a keyword
and the probability that the current phoneme does not belong to a keyword are
equal. Adjusting a > 0 implies a more aggressive search for keywords, leading to
higher true positive and false positive rates. The CPFs f(wtr

t |qtr
t , wps

t , wt) and
f(wps

t |qtr
t−1, w

ps
t−1, w

tr
t−1) are similar to the phoneme layer of the DBN (i.e. the

CPFs for qtr
t and qps

t ). However, we assume that “garbage words” always consist
of only one phoneme, meaning that if gt = 1, a word transition occurs as soon
as qtr

t = 1. Consequently wps
t is always zero if the model is in the garbage state.

The variable qt has two switching parents: qtr
t−1 and gt. Similar to the word layer,

qt is equal to qt−1 if qtr
t−1 = 0. Otherwise, the switching parent gt determines the

parents of qt. In case gt = 0 - meaning that the current word is a keyword - qt is
a deterministic function of the current keyword wt and the position within the
keyword wps

t . If the model is in the garbage state, qt only depends on qt−1 in a
way that phoneme transitions between identical phonemes are forbidden.

Note that the design of the CPF p(qt|qtr
t−1, qt−1, w

ps
t , wt, gt) entails that the

DBN will strongly tend to choose gt = 0 (i.e. it will detect a keyword) once a
phoneme sequence that corresponds to a keyword is observed. Decoding such
an observation while being in the garbage state gt = 1 would lead to “phoneme
transition penalties” since the CPF p(qt|qtr

t−1 = 1, qt−1, w
ps
t , wt, gt = 1) contains

probabilities less than one. By contrast, p(qt|qtr
t−1 = 1, wps

t , wt, gt = 0) is deter-
ministic, introducing no likelihood penalties at phoneme borders.

4 Experiments

Our keyword spotter was trained and evaluated on the TIMIT corpus. The
feature vectors consisted of cepstral mean normalized MFCC coefficients 1 to
12, energy, as well as first and second order delta coefficients. For the training of
the BLSTM, 200 utterances of the TIMIT training split were used as validation
set while the net was trained on the remaining training sequences. The BLSTM
input layer had a size of 39 (one for each MFCC feature) and the size of the
output layer was also 39 since we used the reduced set of 39 TIMIT phonemes.
Both hidden LSTM layers contained 100 memory blocks of one cell each. To
improve generalization, zero mean Gaussian noise with standard deviation 0.6
was added to the inputs during training. We used a learning rate of 10−5 and a
momentum of 0.9.



The independently trained BLSTM network was then incorporated into the
DBN in order to allow the training of the CPFs p(bt|st). During the first training
cycle of the DBN, phonemes were trained framewisely using the training portion
of the TIMIT corpus. Thereby all Gaussian mixtures were split once 0.02%
convergence was reached until the number of mixtures per state increased to 16
and 32 respectively. In the second training cycle segmentation constraints were
relaxed, whereas no further mixture splitting was conducted. Phoneme models
were composed of three hidden states each.

We randomly chose 60 keywords from the TIMIT corpus to evaluate the
keyword spotter. The used dictionary allowed for multiple pronunciations. The
trade-off parameter a (see Equation 3) was varied between 0 and 10.
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Fig. 2. Part of the ROC curve for the DBN keyword spotter and the Tandem BLSTM-
DBN approach using different values for the trade-off parameter a. Left side: 16 Gaus-
sian mixtures; right side 32 Gaussian mixtures.

Figure 2 shows a part of the Receiver Operating Characteristics (ROC) curves
for the DBN and the Tandem BLSTM-DBN keyword spotter, displaying the true
positive rate (tpr) as a function of the false positive rate (fpr). Note that due to
the design of the recognizer, the full ROC curve - ending at an operating point
tpr=1 and fpr=1 - cannot be determined, since the model does not include
a confidence threshold that can be set to an arbitrarily low value. The most
significant performance gain of context modeling via BLSTM predictions occurs
at an operating point with a false positive rate of 0.2%: there, the Tandem
approach can increase the true positive rate by 10%. Conducting the McNemar’s
test revealed that the performance difference between the BLSTM-DBN and
the DBN is statistically significant at a common significance level of 0.01. For
higher values of the trade-off parameter a, implying a more aggressive search for
keywords, the performance gap becomes smaller as more phoneme confusions
are tolerated when seeking for keywords.



5 Conclusion

This paper introduced a Tandem BLSTM-DBN keyword spotter that makes
use of the phoneme predictions generated by a bidirectional Long Short-Term
Memory recurrent neural net. We showed that the incorporation of contextual
information via BLSTM networks leads to significantly improved keyword spot-
ting results.

Future works might include a combination of triphone and BLSTM modeling
as well as processing the entire vector of BLSTM output activations instead of
exclusively using the most likely phoneme prediction.
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