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Abstract – Using standard background modeling ap-

proaches, close or overlapping objects are often detected

as a single blob. In this paper we propose a new and ef-

fective method to distinguish between overlapping fore-

ground objects in data obtained from a time of flight

sensor. For this we use fusion of the infrared and the

range data channels. In addition a further process-

ing step is introduced to evaluate if connected compo-

nents should be further divided. This is done using non-

maximum suppression on strong depth gradients.

Keywords: background subtraction, fusion, time-of-
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1 Introduction
In the last years, time of flight imaging sensors

delivering range images have enriched the working field
of image processing. While the spatial resolution of
range images is far from the resolution of typical video
sensors, the information they can deliver is extremely
valuable for many tasks.
In many applications a static camera observing a scene
is the common case. In these scenarios, background
subtraction techniques are a useful tool to either detect
objects or to reduce the amount of input data for
further computationally expensive processing steps.
This is achieved, by removing those parts of the image
data that belong to the background and thus are not
of interest.
The basic principle of background subtraction is
widely used. Some methods simply use an image of
the empty scene to subtract from an actual image.
Other methods model the background statistically or
update it over time. State of the art methods try to
model the probability density function for each pixels
or image region separately. One successful and widely
accepted approach is to use a single Gaussian, as
it was used in [1]. Another approach assumes more
complex distributions and uses Gaussian Mixture
Models (GMM) [2]. A common method to update

the GMM over time has been suggested in [3] and
is further elaborated in [4]. Other references, using
different methods to model the probability density
function will be mentioned in Section 3.
As long as single non overlapping objects have to
be detected, most methods deliver sufficient results.
In difference to texture images, where the resulting
foreground blobs are difficult to divide, the information
in range images can be used to further examine if a
resulting blob from a foreground segmentation process
contains more than one object. In this paper, it
is proposed to use non maximum suppressed depth
gradients to find borders of objects. These borders are
then used to divide foreground blobs into several parts
to describe different objects.

2 Data
The data used in this paper has been recorded dur-

ing the 7th Framework EU Project PROMETHEUS.
In this paper, two indoor scenarios in a smart home
environment are used for first experiments. In these
scenarios up to 4 individuals, played by actors, portray
daily behavior in a living room. The data is therefore
captured in a very controlled environment. The sensor,
a CMOS time of flight Camera (PMD[Vision]3k-S), de-
livers a range image with a spatial resolution of 64×48
pixels for a range of up to 7.5m in a depth resolution of
≈ 1cm as well as an 64× 48-pixel NIR (Near-infrared)
image. The images obtained by this sensor technology
are typically very noisy. Because of this, all sensor data
has been preprocessed with a 5×5-median filter, which
reduces stronger noise, but some local details are lost.
Examples of typical data can be seen in Fig. 1.

3 Background modeling in range

and texture images
Several background modeling techniques have been

suggested in the past years. Typical approaches are



Figure 1: The sensor output for the empty scene in
the ”smartroom”-scenarios, the left part is the range
information, the right is a NIR image.

using a pixel-wise modeling of the background, com-
puted on a given set of training images. A pixel based
background modeling leads to the decision R if a pixel
I(x, y)t at time t belongs to the background (BG) or
the foreground (FG)

R =
p(BG∣I(x, y)t)

p(FG∣I(x, y)t)
=

p(I(x, y)t∣BG)p(BG)

p(I(x, y)t∣FG)p(FG)
(1)

In most cases nothing is known about foreground ob-
jects. It is unknown how often, when and where they
will occur. Because of this the priors are set to be equal
p(FG) = p(BG) and a uniform distribution of fore-
ground object appearance is assumed p(I(x, y)t∣FG)) =
cFG. If these assumptions are considered in equation
1, this leads to the decision that a pixel belongs to the
background, if

p(I(x, y)t∣FG) > R ⋅ cFG = ctℎr (2)

where ctℎr is a threshold. In the following,
p(I(x, y)t∣BG) is referred as the background model,
which will be estimated by a training set X. The
estimated model is then denoted as p̂(I(x, y)t∣X,BG)
and explicitly depends on the training set. If all
training samples are assumed independent, the main
task is to estimate the density function for each pixel
and to adapt it to possible changes. Several different
density estimates have been used in the past, kernel
based estimates were used in [5] and Gaussian Mixture
Models have been used in a wide range of approaches,
e.g. in [2] [3]. Explicit modeling of the time aspect has
been considered by using Hidden Markov Models in [6]
or in [7] by modeling the pixel value distribution over
time as an autoregressive process.

The results of this background subtraction are
usually used as input for higher level processing like
tracking or recognition systems. The main focus of
this paper is to take the result of the background
subtraction, which delivers blobs of foreground objects,
and examine for each blob if it represents a single or
multiple foreground objects. This is done by searching
for strong depth gradients and using them to divide
blobs.

4 Gaussian Mixture Model
Since illumination in the scene could change grad-

ually or suddenly (change in texture information) or
new objects could be brought in or removed from the
scene (change in texture and range information), an
adaptive modeling of the background is chosen. For
this the training set X is updated by adding new
samples and discarding old ones. A time period T
is chosen, and at time t the training set is Xt =
I(x, y)t, .., I(x, y)t−T . Among these samples from the
recent history there could be some values that belong to
the foreground, thus the reestimate using this dataset is
p(I(x, y)t∣Xt, BG+FG). A GMM with M components
is used:

p(I(x, y)∣Xt, BG+ FG) =

M
∑

m=1

�̂mN (I(x, y); �̂m, �̂2
m)

(3)
where �̂m are the means and �̂2

m are the variances
of the Gaussian components. Mixing weights, denoted
by �̂m sum up to one and are non-negative. For a new
sample I(x, y)t the ownership ot,m is computed based
on the Mahalanobis distance to each Gaussian compo-
nentD2

m(I(x, y)) = (I(x, y)t−�̂m)2/�̂2
m. If the distance

is smaller than three standard deviations, the owner-
ship ot,m is set to one, else it is set to zero. If there is
no component which is close enough, a new Gaussian
component is added with �̂M+1 = I(x, y)t, �̂M+1 = �
and �̂2

M+1
= �2

0 . The recursive update rules for existing
Gaussian components, given a new data sample I(x, y)t
are:

�̂m ← �̂m + �(ot,m − �̂m) (4)

�̂m ← �̂m + ot,m(�/�̂m)(I(x, y)t − �̂m) (5)

�̂2
m ← �̂2

m + ot,m(�/�̂m)((I(x, y)t − �̂m)2 − �̂2
m) (6)

This method is an online clustering algorithm, usually
foreground objects will be represented by some clus-
ters with small weights �̂m. Therefore the background
model can be approximated by the first B largest clus-
ters. In this approach such a background model will
be used independently for both range and NIR texture
of the data. The clusters used to describe the back-
ground are the two clusters with the strongest weights.
Note, that a more sophisticated method to chose the
number of clusters and a detailed explanation of this
background modeling technique is given in [8]. In this
paper the number of Gaussians at each time step is
fixed, because the focus is on the processing of the ex-
tracted foreground blobs, as it will be described in the
next section.
Considering the special characteristics of the data
(range + NIR), the foreground detection is on one hand
very robust for all kind of objects, with a high distance
to the wall or the furniture, on the other hand it is not
very robust for objects or persons which are e.g. sitting
on the furniture, because the distance is then naturally



Figure 2: The results of the background subtraction on
the range image (left) and on the NIR image (right)

small. Also the characteristic of NIR imaging leads to
very similar NIR textures for all kind of textiles, this
includes the clothes the people are wearing as well as
the covering of the couch, which enhances the difficulty
of extracting foreground in NIR images.

5 Postprocessing of extracted

blobs using depth gradients
After the background subtraction has been per-

formed, blobs of foreground objects are extracted.
Note, that these foreground blobs are of similar char-
acteristics, no matter which background subtraction
method has been performed, so that the following ap-
proach can be combined with a variety of different
methods.
A typical foreground blob is the result of a connected
component analysis performed on the pixel wise binary
foreground/background decision (see Fig. 2).
Overlapping foreground objects or those which are

very close to each other result in a single blob. To divide
this blobs a depth gradient based segmentation is pro-
posed. For each pixel belonging to the foreground, the
gradient is computed on the range image by applying
a gradient operator or forward or backward difference.
In this paper, the Sobel operator (Sx, Sy) is chosen to
estimate the partial derivatives for the x- and y- direc-
tion.

∇̂(I(x, y)t) =

(

Sx(I(x, y)t)
Sy(I(x, y)t)

)

(7)

the gradient magnitude is then computed as:

∣∇̂(I(x, y)t)∣ =
√

(Sx(I(x, y)t))2 + (Sy(I(x, y)t))2 (8)

and the gradient orientation can be estimated by

�̂ = arctan
Sy(I(x, y)t)

Sx(I(x, y)t)
(9)

Figure 3: Depth gradient based segmentation of fore-
ground blobs: the upper images are the range (left)
and the NIR image(right), in the lower left all channels
that will be fused are depicted: light gray is foreground
that is detected in both range and NIR image, darker
gray is foreground that is detected in the NIR image
only and very dark gray means that foreground is de-
tected in the range image only. Strong depth gradients
are shown in white. The lower right image shows the
resulting foreground clusters after applying the fusion
rule.

After that a non-maximum-suppression is computed by
checking for each pixel if it has a higher magnitude than
the neighbors in the gradient direction, for this the gra-
dient orientation is discretized to the eight orientations
in a one pixel neighborhood. An absolute threshold
dtℎr for the minimal gradient magnitude is used addi-
tionally, to avoid to find depth edges that are of no
interest. After depth edges of interest are found, a fu-
sion of the foreground of the range data FGR, the fore-
ground of the NIR data FGNIR and the depth edges
∣∇̂nms(I(x, y)t)∣ ≥ dtℎr is done. The following fusion
rule leads to good results (see Fig. 5):

FG = (FGR ∪ FGNIR) ∩ (∣∇̂nms∣ < dtℎr) (10)

Note, that in this equation an inversion of the depth
edges is done (< dtℎr).

6 Experiments
To verify the idea to split foreground blobs based

on depth gradients, experiments have been performed.
For a first test, a set of N extracted foreground im-
ages (consisting of one or several foreground blobs) have
been postprocessed with the given approach. After that
an error measure, the average distance of the number
of resulting foreground objects to the ground truth, is
computed.

enum =
∣NFG −NGT ∣

nfr

(11)



Dataset enum,BG enum,PP NGT nfr

smartroom1 1.087 0.346 2.067 104
smartroom2 0.4 0.37 1.55 90

Table 1: Results: enum,BG is the error of the foreground
blobs extracted by the background model, enum,PP is
the error of the depth gradient based postprocessed
foreground blobs, NGT is the average number of ob-
jects in a frame (ground truth) and nfr is the number
of frames used for evaluation.

Figure 4: Typical errors that occurred are over seg-
mentation of limbs (left image pair) and separation of
occluded objects (right image pair).

where NFG is the number of correctly extracted fore-
ground objects and NGT is the number of foreground
objects in the ground truth. These first experiments
lead to very interesting results. The first is, that ob-
viously the depth gradient based postprocessing of ex-
tracted foreground blobs improves the performance es-
pecially on the set ”smartroom1”, in which up to four
people are moving in a very narrow environment. Only
a slight increase in performance is seen in the dataset
”smartroom2” which mainly shows interaction between
two persons, which are only overlapping in few cases.
The number of errors that occur almost compensate the
performance gain in that scenario. Typical errors are:

∙ Segmentation of body limbs as separate objects

∙ Occluded objects are separated into several parts

Both errors are expectable and can be compensated
in future works by applying tracking algorithms that
model the splitting and merging of blobs over time.

7 Conclusion
An effective method was shown on how to use stan-

dard background modeling techniques in conjunction
with Time of Flight cameras, that deliver range im-
ages. An efficient algorithm that postprocesses fore-

ground blobs by segmenting them based on depth gra-
dient shows good results. Further investigations will
show, if more sophisticated methods of fusing the re-
sults of the range and NIR background model with the
depth gradient information will lead to better results.
A combination with a tracking algorithm should lead
to more robustness to avoid splitting of subparts and
should enable to label the ID of split blobs over time.
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