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Abstract
It is not fully known how long it takes a human to reliably recog-
nize emotion in speech from the beginning of a phrase. However,
many technical applications demand for very quick system re-
sponses, e. g. to prepare different feedback alternatives before
the end of a speaker turn in a dialog system. We therefore inves-
tigate this ‘gating paradigm’ employing two spoken language
resources in a cross- and combined manner with a focus on va-
lence: we determine how quick a reliable estimate is obtainable
and whether matching by models trained on the same length
of speech prevails. In addition we analyze how individual fea-
ture groups by type and derived functionals respond and find
considerably different behavior. The language resources have
been chosen to cover for manually segmented and automatically
segmented speech at the same time. In the result one second of
speech is sufficient on the datasets considered.

Index Terms: affective computing, automatic emotion recogni-
tion, incremental speech processing, gating paradigm

1. Introduction
Many real-time application scenarios of speech-based emotion
recognition technology require instant estimates as soon as one
starts talking. A good example are virtual agents, which need
to prepare several responses that fit their human communication
partner’s emotion to trigger just the best one as soon as it is
time to respond [1] – in fact like a human does when listening
to his communication partner while already preparing different
alternative responses to choose the best match when ‘it is time’.
This demands for incremental processing of speech, as has long
been the case in the related field of Automatic Speech Recog-
nition. In emotion recognition though, few works deal with the
topic of different lengths and units, i. e. ‘chunkings’ of speech,
and practically none systematically explores the reliability of a
system output with increasing availability of speech – the ‘gating
paradigm’ as known for word recognition (for an overview on
this problematic cf. [2]). However, experiments on human per-
ception considering facial (partly including speech) information
exist, which demonstrate that already after 160 ms valence can
be assessed after the start of its portray [3], whereby positive
valence seems to be recognized earlier [4, 3]. In accordance
to these named studies we also limit our following analyses to
valence analysis, which at the same time seems very interesting
from an application point of view. In music perception, it could
also be shown that trained musicians are able to recognize a
melody earlier [5], which is why we want to investigate not only
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how fast an emotion recognition system can sufficiently reliably
detect emotion, but whether we can train it in this respect by
matching the learning model to the available temporal context.

The remainder of the paper is organized as follows: we first
introduce the French language resources used for our studies –
the CINEMO and JEMO corpora – with according statistical fig-
ures on length distribution in section 2. The acoustic descriptors
employed are detailed in section 3. Experiments and results are
described in section 4. From these findings we draw conclusions
and give future perspectives in section 5.

2. Affective Speech Corpora
In the following we introduce two different data sets that were
selected to cover for manually segmented (CINEMO) and auto-
matically segmented (JEMO) speech turns.

2.1. CINEMO

The CINEMO corpus [6] features 3 992 instances after segmenta-
tion amounting to a total net playtime of 2:13:59 h of emotional
French speech by 51 speakers (21 female (1 656 instances), 30
male (2 336 instances)) in different age groups captured by an
on-board sound card and stored in 16 kHz, 16 Bit PCM to hard
disk without conversion. CINEMO’s general protocol is dub-
bing selected scenes that were picked from 12 French movies to
encompass a broad coverage of emotions in close to everyday sit-
uations, and induce mood sufficiently well [7]. The participants
had to superpose their voice on the actor’s either with the latter
audible or muted. In both cases the dialog as well as indications
on pauses between the lines were shown on a screen as a Karaoke
with the current word highlighted. It features a complete annota-
tion by two labelers (L1: male, 31 years; L2: female, 26 years).
Two different strategies were intentionally followed: labeler
L1was provided the context in sequential order and manually
segmented the audio, whereas labeler L2was provided with sin-
gle instances after segmentation in random order for verification.
Segmentation was based on balancing interests between syn-
tax, pragmatic, and stationarity of the major emotion, whereby
shorter segments were preferred and predominant non-linguistic
vocalizations served as additional segment-boundaries. Focusing
on valence in this work, the following mapping was followed
to select the ANGER, NEUTRAL, and HAPPINESS instances
according to Table 1 from the whole CINEMO corpus which
has a labeling for complex emotions by 16 ‘major’ and ‘minor’
emotions and 6 dimensions (cf. [6] for details): all instances
with an intensity rating of low and major emotion of neutral by
both annotators were picked as NEUTRAL, all those with full
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# Instances/Subjects ANGER NEUTRAL HAPPINESS sum f m subjects f subjects m subjects f+m

CINEMO
Train 230 407 166 803 354 449 20 15 35
Test 114 103 147 364 152 212 9 6 15
Sum 344 510 313 1 167 506 661 29 21 50

JEMO
Train 119 284 222 625 301 324 14 13 27
Test 60 132 94 286 144 142 7 5 12
Sum 179 416 316 911 445 466 21 18 39

Table 1: Number of instances and subjects per corpus, emotion, and gender.
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Figure 1: CINEMO and JEMO corpus: histogram of segment lengths per emotion. The rightmost bar cumulates all remaining (i. e.
including all longer) instances (in the case of happiness this was cut off vertically in the image for the JEMO corpus. The full number
resembles 52. Additionally quartiles 1–3 and the total time (TT) are given.

agreement on the major emotion belonging to satisfaction, joy,
or amusement (whereby combinations of these were allowed) as
HAPPINESS, and finally all those with cold or hot anger (again
combinations allowed) as ANGER. For a better understanding of
the experiments on duration from the beginning, the distributions
of according segment lengths are shown in Figure 1.

2.2. JEMO

The JEMO corpus features speech recorded from 39 speakers (18
to 60 years old) disjunctive from those in CINEMO. The overall
1 134 instances amount to a total net playtime of 38:01 min. It
was collected within an emotion-detection game where players
had to act emotions such that the computer would recognize
them. The game uses a speech segmentation based on silence
pauses and an emotion recognizer based on the 5-emotions anger,
fear, sadness, satisfaction and neutral built on CINEMO data.
The linguistic content is free and the language French. The
system detects the emotion plus activity (low or high) from the
audio signal and depicts the detected emotion by an according
emoticon on a screen visible to the player.

This game is a prototype of a real time detection system
with recognition rate considerably below human performance
(whereby anger and sadness are found on the upper and fear on
the lower end). It is thus intended to motivate the players to
depict the emotions. Such a paradigm might actually encourage
the players to depict the emotion in a way that is consistent with
what the recognizer is doing to classify it as when adjusting one’s
speaking style in order to be recognized by a speech recognizer.
However, given the named below human performance this is
rather unlikely. This recognizer performance often additionally

led to a spontaneous and differentiated behavior (e. g. several
negative reactions due to an emotion often not recognized and
a positive reaction when the emotion was finally recognized
were observed). Thus, speakers generated mixed acted and
spontaneous utterances with higher level of expressivity than in
CINEMO. Note that both these spontaneously occurring reac-
tions, and the emoted acts are grouped together in the further
analysis. The speech in the JEMO corpus has been annotated
by the same two labelers as for CINEMO with respect to major
and minor emotion independent of the actual game state. For our
consideration of valence we focus on ANGER, NEUTRAL, and
JOY based on the major emotion as for CINEMO, which mostly
stem from the spontaneous player reactions. Distributions are
provided accordingly in Table 1 and Figure 1.

3. Acoustic Features
For acoustic modeling we use the openSMILE toolkit’s“base”
set of 988 features – a slight extension over the set provided for
the INTERSPEECH 2009 Emotion Challenge [8]. This set is ex-
tracted by systematic brute-forcing based on 19 functionals of 26
acoustic low-level descriptors (LLD, smoothed by simple mov-
ing average) well known to carry information on emotional state
[9] and corresponding first order delta regression coefficients as
depicted in Table 2 plus speaker gender as feature.

4. Experiments and Results
To foster easy reproducibility of results and proper definition of
sets we decided for a straight-forward partitioning by speaker
index into test (≈30 % / first (JEMO) and last (CINEMO) 12
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LLD (26 · 2) Functionals (19)
(δ) Intensity Moments (4):
(δ) Loudness absolute mean, std. deviation
(δ) LSP Frequency 0–7 kurtosis, skewness
(δ) MFCC 1–12 Extremes (3)/Positions (2):
(δ) Pitch 2× values, range/2× position
(δ) Pitch envelope (Linear) Regression (4):
(δ) HNR offset, slope, MAE, MSE
(δ) ZCR Quartiles (6):

3× quartiles, 3× ranges

Table 2: Acoustic features: low-level descriptors (LLD) and
functionals. Abbreviations: Harmonics-to-Noise-Ratio (HNR),
Line Spectral Pairs (LSP), Mel Frequency Cepstral Coeffi-
cients (MFCC), Mean Absolute/Square Error (MAE/MSE), Zero-
Crossing-Rate (ZCR).

speaker IDs per set), and train, whereby train is divided into two
to optimise the classifiers, but united for the final experiments.
By that we ensure strict speaker independence and ‘genuine’
results without previous fine-tuning on the test partition. The
classifier of choice in this work are popular Support Vector Ma-
chines parametrized as polynomial Kernel with pairwise multi-
class discrimination based on Sequential Minimal Optimization
learning [10]. Parameters were optimized on the development
sets and found optimal at 0.2 complexity and 1.0 exponential
factor. Results are provided by unweighted average (UAR, to
better reflect imbalance of instances among classes) or weighted
average (WAR) recall (i. e. accuracy per class) as used in [8].
However, as classes are comparably balanced, no strong differ-
ences are observed in comparison to the weighted average recall
(i. e. recognition rate).

4.1. Recall in Dependence of Gating

In our first experiment we consider the development of per-
formance with increasing time on the combination of the two
corpora to provide results more independent of manual or auto-
matic segmentation (per train, development, and test partitions
separately). We choose equidistant measure points in 0.1 s inter-
vals for testing instances’ time from the beginning, i. e. partial
segments of up to a certain length as 0.1 s, 0.2 s, etc. were used
to extract the features while the full segments are used to extract
the features used in training as would usually be the case in
a typical emotion recognizer. We consider lengths until 2.0 s
and finally the whole chunk. Lengths in between are not fol-
lowed, as no big differences are observed after 2.0 s. We always
keep the number of testing instances fixed, meaning that chunks
shorter than the current length of interest may be included. This
is done per feature group (cf. Table 2), once ‘horizontally’ per
low-level-descriptor group (intensity and loudness, pitch and its
envelope, and HNR and ZCR are grouped together, the other
groups are straight forward from the Table), once ‘vertically’
per functional type (as in italics in the table). In addition we
consider all features together, and only 0th order deltas (i. e. the
actual features), and 1st order deltas isolated. Figures 2a and
3a depict the according developments of unweighted average
recall over time. As for the low-level descriptors, the figures
do not only reveal the ranking of these, but different ‘gradient’
behavior: pitch is found among the flattest curves with increas-
ing speech available, while e. g. the MFCC curve is comparably
steep before the saturation at approximately 1 second. In the
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(b) LLD: absolute gain by matched length training.

Figure 2: CINEMO and JEMO corpus combined.

case of functionals only positions show a clearly flat curve. Note
however that the curves also partly cross each other.

4.2. Gain by Matched Length Training

We next consider how matching the lengths of the chunks in the
learning model can improve the performance which is shown in
Figures 2b and 3b. This means that we do not only gate the test,
but accordingly the training instances. A real-life system can
ensure such matched condition provided a reliable speech onset
detection. Once onset is detected, it would need to ‘switch’ the
learning models according to the current runtime of the speech
chunk. In the figures the average UAR gain is shown over
time in ‘gating manner’, i. e. the average at a time is calculated
considering summing over previous measure points in 0.1 s steps.

Here, strong differences are observed for the low-level de-
scriptors: while e. g. HNR/ZCR suffers from matching, Intensity
clearly benefits from matching, in particular at the beginning of
a speech chunk. Also in the case of functional-based analysis
different behavior is observed, yet, grouped as functionals all
benefit from matching. As examples, extremes show a mono-
tonic average gain decrease pattern with evolving speech chunk
length, while they benefit most from matching at the beginning.
In contrast, positions in time of extremes show an almost mono-
tonic respective increase pattern – naturally the curve has to
fall at some point, as with increasing window length decreasing
difference between matching and whole chunks is present.

We now investigate the effect of merged, intra- or inter- (i. e.
cross-) corpus analysis looking also at automatic and manual seg-
mentation separately. Table 3 first depicts results for WAR and
UAR when using the whole chunks for training and at selected
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Figure 3: CINEMO and JEMO corpus combined.

lengths for testing. A remarkable gap in performance exists in
intra-corpus investigation (JEMO is the apparent ‘easier’ task –
as said potentially also owed to the subjects emoting in a way
that addresses the feedback of the emotion recognition system,
i. e. they are adjusting their expression to be consistent with
what the recognizer is picking on); the merging of the training
and testing partitions is found in between. Interestingly, shorter
testing sequences can lead to better results for JEMO. One ex-
planation might be labelers making their judgment rather early
when segments are not ‘pure’ in their emotion. As to be expected,
inter-corpus tests reveal considerably lower performance due to
the different nature of the data-sets. The table next shows the
average UAR gain by matching at selected four points in time
as before. It is striking that only the CINEMO corpus bene-
fits from matching, naturally in particular at the beginning. As
JEMO apparently does not benefit from matching, the merged
test produces a lowered gain over considering only CINEMO.
This could be owed to the higher quality of manual segmentation.

5. Conclusion
In this work we investigated the accuracy increase starting from
the beginning of a speech turn with increasingly available speech
material. As a ‘rule-of-thumb’ number we observed one second
of speech to be sufficient on the data used – afterwards consider-
ably low further gain is observed having the full speech chunk
available. We further investigated whether matching the learning
model to the duration of the test size is beneficial. This was the
case for one corpus (CINEMO), where segmentation was done
manually. In a cross-corpus investigation length matching has

[%] Merge Intra Inter
Train/Test CJ/CJ C/C J/J J/C C/J

WAR

all 67.7 60.4 77.3 47.5 60.5

UAR

≤0.5 s 55.7 48.0 68.2 39.1 56.2
≤1.0 s 66.0 57.5 72.6 43.5 57.8
≤1.5 s 66.3 57.8 74.4 45.3 59.0
≤2.0 s 65.5 60.6 72.9 46.3 56.5
all 67.0 60.9 72.0 47.8 56.4

UAR Gain by Matched Length Condition

≤0.5 s 4.1 6.9 -0.1 -6.6 -8.8
≤1.0 s 1.3 2.5 -1.7 -4.1 -5.2
≤1.5 s 0.7 0.7 -0.6 -2.5 -4.2
≤2.0 s 0.2 -0.2 -1.1 -1.9 -3.4

Table 3: Speaker independent recognition performance and av-
erage UAR gain for merged, intra-, and inter-corpus settings, all
features. Abbreviations: CINEMO (C), JEMO (J).

proved to be counter-productive. Clear differences were further
found for different feature and functional groups.

In a future investigation other quantizations can be consid-
ered, as voiced- or unvoiced segments instead of fixed length
intervals and the behavior of gating for categorization of corpora.
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