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ABSTRACT

This paper introduces a new visual tracking technique combining
particle filtering and Dynamic Bayesian Networks. The particle fil-
ter is utilized to robustly track an object in a video sequence and gain
sets of descriptive object features. Dynamic Bayesian Networks use
feature sequences to determine different motion patterns. A Graphi-
cal Model is introduced, which combines particle filter based track-
ing with Dynamic Bayesian Network-based classification. This uni-
fied framework allows for enhancing the tracking by adapting the
dynamical model of the tracking process according to the classifica-
tion results obtained from the Dynamic Bayesian Network. There-
fore, the tracking step and classification step form a closed tracking-
classification-tracking loop. In the first layer of the Graphical Model
a particle filter is set up, whereas the second layer builds up the dy-
namical model of the particle filter based on the classification pro-
cess of the Dynamic Bayesian Network.

Index Terms— particle tracking, graphical models

1. INTRODUCTION

The tracking of objects and humans is an important task in image-
processing and still of high interest in ongoing research efforts. In
addition, the recognition and classification of dynamic gesture pat-
terns are still challenging tasks, especially when facing cluttered en-
vironments, changing lighting conditions, etc.

Best to our knowledge, there has been little effort made to com-
bine tracking and classification of gestures in a unifying framework
providing better recognition as well as tracking of gestures. How-
ever, some approaches heading in the same direction exist: An adap-
tive velocity model was introduced in [1] among other modifications
for improving the particle tracking. A motion-based particle filter
for head tracking was proposed in [2] and the analytical justification
for its superiority over the standard condensation tracking was given
in [3]. In [4], different linear dynamical models were coupled in a
state-system, where the different models can be chosen according to
transition probabilities deposed in a class model. A combination of
condensation algorithm and Graphical Models in order to improve
the tracking was presented in [5], where facial expressions were ob-
served. In that approach, the temporal progression was subjected to
the linear process of the particle filter, whereas the spatial correlation
between the facial features was inferred by an undirected Graphical
Model

The rest of this paper is organized as follows: In Section 2, the
basic concepts of Graphical Models are given, whereas, in Section 3
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the basic concepts of particle filtering are presented. Our algorith-
mic approach using the classification process as a substitute for the
dynamical model of the particle filtering is introduced in Section 4.
In Section 5, we present first promising results for real data. The pa-
per concludes with a summary and an outlook over the next planned
working steps.

2. GRAPHICAL MODELS

Graphical Models (GMs) [6] are applied in many areas of research,
since they provide a descriptive and illustrative way to depict prob-
lems regarding control theory, computer science, pattern recognition,
etc. In general, the GMs combine probability theory and graph the-
ory portraying the interdependences between different random vari-
ables. In this paper we consider only directed GMs, also known as
Bayesian Networks (BNs). When BNs model time series data, they
are called Dynamic Bayesian Networks (DBNs), which we apply to
model the dynamical model of the particle filter. Hidden Markov
Models (HMMs) are a sub-class of DBNs, where observations are
dependent on an unobservable variable, referred as hidden state.

An efficient inference algorithm for GMs is the Junction Tree Al-
gorithm. This algorithm uses cluster potentials (cliques 1 and sepa-
rators ¢) for describing the dependencies between random variables

(X1,...,X,) by the quotient of cluster and separator potentials
c

p(X17~--7Xn):M7 W
[ses ¢(5)

The DBN modeling the dynamical models of the different mo-
tion classes was realized with the Graphical Model Toolkit [7].

3. PARTICLE TRACKING

Reliable tracking of objects in a video sequence is still a challenging
task for current research. The condensation algorithm [8] is a robust
tracking method successful even under unfavorable conditions.

The observed sequence Zr = {z1,...,zr} is related to the
information the observer is interested in, which is referred to as the
state sequence X7 = {x1,...,Xxp} of the pattern.

In each frame ¢, the state x; of the observed object influences the
observation z, which is therefore exclusively dependent on x;:

t
p(Z:]X) = [ [ p(zilxi). @
1=1

Additionally, in the classical condensation algorithm the object
states x; are assumed to be subject to the Markov property, i.e. de-
pendent only on their immediate temporal predecessor:

P(Xe|X—1) = p(Xe[xe—1) (3)
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The density p(x¢|x:—1) expresses the dependency of the current
state on its predecessor, i.e. the change of the state vector over time.
Thus, the term can be interpreted as the dynamical model describing
the motion of object.

The condensation algorithm can be subdivided into two steps:
prediction of the current state x; having the observed sequence Z;_1,
and a measurement step having the entire observation sequence Z;.
Combining both steps and regarding equation 2 and the fact that
given a state x; the observation sequence Z; has no more informa-
tion, the recursive step from one frame to its successor is given by:

p(%:|22) = kupl(ze|x) / p(%e[%e1)p(xe 1| Ze 1) dxe 1, (4)
Xt—1

with k{; = 1/p(Zf ‘Zt—l)-
A sampling with the Monte Carlo Method is used to approximate
the computationally infeasible integration over the state x;_1.

4. TRACKING USING BAYESIAN INFERENCE

The new approach presented in this paper is a fusion of a DBN clas-
sification and condensation tracking — a first impression can be seen
in Figure 1.

The tracking result of an object obtained via the condensation
algorithm can be used by a DBN to classify the performed motion,
according to that result the dynamical model of the tracking process
can be adapted, forming a closed tracking-classification-tracking
loop. The interface between tracking and classification is the dy-
namical model in the particle filter: The term p(x¢|x;—1) serves as
an estimation of the object motion, approximated with a linear filter.
If this dynamical behavior is, instead, computed using inference on
a DBN describing the dynamics more exactly, a better tracking is
obtained.

(b) 4. frame

(a) 1. frame (¢) 10. frame

Fig. 1. In the 1. frame, the particles are placed on the hand (initial-
ization) for the eight gesture classes. In the 4. and 10. frame, the
classification results and their related tracking paths are indicated
with their corresponding colors. The most probable path is indicated
in white.

4.1. Conditional Density Propagation

The objective of this tracking and classification algorithm is to de-

duce the pattern class 7 € M from the observation sequence Zr.
The set of all discrete observation steps is denoted as

Zp = {z1,...,2zr}, where T is the number of discrete time steps.

The pattern class of interest is given by

m = arg maxp(m|Zr). Q)

The observation model employed in the condensation algorithm
assumes the observation Z7 to be a cluttered, noise-affected off-
spring of the actual, hidden state sequence X7 which describes all

relevant properties of the pattern. A marginalization over the set of
all possible states X' yields

p(m|zr) = |

X

p(m|Xr)p(Xr|Zr) dXr (6)

with p(m|X7, Z7) = p(m|X7), since according to the observation
model, Z7 does not contain any additional information given X’r.
Inserting this into (5) yields

= arg max/ p(m|Xr)p(Xr|Z7r) dXr. (@)

To avoid a high computational load, the recursive concept of
the condensation algorithm is held (see Section 3), to track the pat-
tern states in two steps: First, predict an a-priori-density p(X¢| Z:—1)
from the frame ¢t — 1. Then, measure the predicted density (using the
observation) to generate the a-posteriori-density p(X;|Z:).

The first-order process approximating p(x¢|x;—1) in equation 4
is replaced here by inference in a DBN taking all other RVs into
account, thus the Markov property is not valid anymore constitut-
ing an important difference between our approach and the classical
condensation.

In the prediction step, the a-priori-density is created as

P(X| Zi-1) = p(Xi—1]| Zi—1)p(x¢ | Xy 1), ®)

since with given state vectors in the past, the past observation vectors
do not provide any new information, thus
P(Xe|Xi—1, Ze—1) = p(xe| Xi—1).

p(Xe—1|2Z:—1) is the a-posteriori-density of the preceding frame
and p(x¢|X;—1) is the prediction of the state vector in frame ¢ from
the state vectors in frames 1...¢. The latter term is to be computed
by inference within the DBN.

Using the independence of an observation z; on any RV except
of its corresponding state x; yielding (z¢| X, Z¢—1) = p(z¢|x¢), the
a-posteriori-density in the measurement step can be expressed as

P(Xe|Ze) = ke p(2e]xe)p(X2| Ze-1), ©)

with k; = 1/p(z¢|Z¢-1), and where p(z¢|x;) can be evaluated by
computing the value of a weight function.

4.2. The Graphical Model

The process generating the observed feature vectors of a motion can
be modeled by the DBN in Figure 2. The prolog and the 7" — 1
chunks constituting the DBN consist of four nodes:

The motion class m; represents the class of the observed pat-
tern indicating the kind of motion an observed object performs. An
observation sequence is assumed to consist of one complete motion,
from its beginning to its end. The class of motion hence remains
unchanged throughout the sequence.

The temporal progression state q; is similar to the state variable
in a HMM. It represents the temporal progression of the motion as
each state represents a discrete time step.

The state vector x; denotes, in this case, the position of the
tracked object.

The observation vector z; is the actual observation. In this ap-
plication, it is an array of image pixels.

For inference and prediction, only the subgraph (crosshatched)
of the DBN in Figure 2 is used which does not contain the observa-
tion vectors z;. From X;_; inference is applied to predict the next
state vector x; by creating 50 particles utilizing the learned transi-
tion probabilities from the DBN and measure their correlation with
the observation z;.
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Fig. 2. The DBN used to combine tracking and classification.

4.3. Bayesian Inference

The prediction term p(x¢|X;—1) is evaluated by Bayesian inference
by marginalizing over each RV in the path between x; and x;_1:

p(xe|Xi1) = Z Z ZZP(Xt,mt—1,Qt71,mt,Qt|Xt71)

me—1qt—1 ™Mt qt
(10)

Splitting the conditional probability term and considering the
mutual independences of the RVs yields

p(Xe|Xe—1) = 3o, D0, 2y 2og P(Me—1, Gr—1|Xe—1)
p(me|lme—1)p(qe|me, ge—1)p(Xe|me, q¢). (11)

The motion class m is assumed to remain constant throughout
the observed motion, i.e. m; =: m for any time-step ¢t. With this,
the probability function term simplifies to

p(me|me—1) = d(me, me—1), (12)

with the Kronecker delta d.
Inserting this term into equation 11 results in

p(Xe|Xeo1) = D2, 20, 2o, P(M, q—1]|Xi—1)
p(ae|m, gi—1)p(xe[m, gr). (13)

By splitting the leftmost term and shifting the innermost sum
according to the distributive law, the conditional probability mass
function

pxe|Xea) = 32, p(m|Xi1) 32, | p(gi-1]m, Xio1)
th p((ﬁ‘m, Qt—l)p(xt‘m,(h) (14)

describes intuitively which operations have to be performed by an
algorithm in order to calculate p(x¢|X:—1):

For each possible motion class m and motion state ¢:— in the
previous time-step, their respective probability has to be determined
by the term p(m, q;—1|X:—1), given the knowlegde of all previous
state vectors X;—1. Then, the transition probability to each current
motion state ¢; from its predecessor is calculated by p(g¢|m, gi—1).
Finally, the term p(x¢|m, ¢¢) predicts the current state vector X; as a
multi-dimensional mixture of Gaussian components whose parame-
ters are learned in advance. This density function provides the Gaus-
sian means and covariances for each tracked state, while the other
densities can be seen as weighting factors. Thus in each time step
the algorithm samples from each pattern class, from each preceding
state and each current state. Using these values, it tracks the pattern
state by sampling from a weighted set of Gaussian curves.
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The conditional probability mass function p(g:|m, g¢—1) can be
expressed by the corresponding clique and separator potentials (see
Figure 3):

p(xe|Xi—1) = Do g, P(Msqe—1]Xe1)

> b, (meae,qe—1) Y, (me,qeXt)
at dx, 4 (me,qr—1) P2,y (me,q)

. (15)

The clique potential ¢, , and the separator potential ¢, ,
have immediate dependencies only towards their parameters. How-
ever, since their mapping is determined by global message passing at
each time step, they are dependent from the whole set X;_1. For this
reason, the Markov property p(x:|X:—1) = p(x¢|x¢—1) of the con-
densation algorithm does not apply in this case. Instead, all observed
features of the past are taken account for an optimal prediction based
on the maximum of available information.

Fig. 3. The Junction Tree of the DBN, depicting the clusters (circles)
and their shared separators (rectangles).

4.4. Tracking-Classification-Tracking Loop

After initialization of the tracker, in this case, we assumed the
knowledge about the location of the first state x¢—o, the tracking-
classification-tracking loop starts. The following steps are per-
formed until the end of the sequence ¢t = T is reached:

Variable prediction: The motion class m; and motion state q;
of the current frame are sampled with knowledge of the particle se-
quence.

Farticle prediction: The state vector x; has to be predicted by
the sampled movement class and current state.

Measurement: verification of the validity of the predicted sam-
ple by measurement.

Resampling: The new particles are sampled out of the set of
preceding samples considering the result of a weight function.

Classification: applying Bayesian inference from Section 4.3.

5. EXPERIMENTS

We tested the system with RGB image sequences (ten frames per se-
quence, ten sequences per class) for eight different gesture classes,
see Figure 4. The tracking framework used this raw data to extract
skin-color matrices. The skin color was used as the weighting factor
for the particle filtering process. Tracking was then performed using
our Bayesian Inference as the dynamical propagation model. As a
comparison, a tracker using Brownian molecule motion as a repre-
sentative of purely stochastical particle propagation was also used.
For evaluating the performance of the algorithm in comparison
to existing methods, the measures Tracker Detection Rate (TRDR)
and Object Tracking Error (OTE) presented in [9] are applied. For
the initialization, a fixed number of 50 particles was used. The par-
ticles were set on the relevant object, i.e. the human hand. In each
frame, the centroid of the tracked object is calculated and compared
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Fig. 4. Tracking results for the eight sequences (one for each class)
by the Bayesian Inference Tracker.

to that of the Ground Truth. The average Cartesian distance between
them in each frame constitutes the OTE:

N
1
OTE = NZ: V@ =) + ! — v (16)

(z9,y?) is the object position of Ground Truth, (z;,y;) the
tracked one. N is the number of frames.

The detection rate is determined by defining a distance threshold
and checking whether each single distance between the centroids
falls below it. Since in this application the object of interest (the
hand) has a diameter of approximately d = 140 px, the threshold is
defined as d/2 = 70px. Each frame with a distance lower than d/2
is rated as a positive detection and increments the counter N,,. The
detection rate is then defined as

N,
N

In Table 1, the results of the proposed tracking method are com-
pared to those of a condensation tracking using Brownian Particle
Motion (Gaussian Normal Distribution: mean value p# = 0, stan-
dard deviation o = 100px) [10] to predict the particles’ dynamic
behavior.

TRDR =

A7)

Classification result using GM-based approach

DBN Brownian
Class OTE TRDR OTE TRDR
Arcleft 96.67px | 41.00% | 98.63px | 36.00%
Delta 94.75px | 50.00% | 96.71px | 41.00%
Halfarc 45.44px | 84.00% | 134.34px| 33.00%
Leftdown 19.36px | 99.00% | 94.63px | 35.00%
Leftright 57.41px | 71.00% | 78.21px | 56.00%
Vee 142.65px| 34.00% | 86.07px | 61.00%
Veeup 58.55px | 72.00% | 66.01px | 63.00%
Zoro 165.47px| 39.00% | 164.72px| 27.00%
Total 85.04px | 61.25% | 102.42px| 44.00%

Table 1. Tracking performance results: This table provides an

overview for the eight classes for the achieved OTE and TRDR. In
addition the achieved total performance is given.

The arithmetic mean over the eight gestures was computed to
retrieve an overall OTE and TRDR. In general, the results of the
presented approach are significantly better than the tracking results
using Brownian Motion. The weak performance of the Brownian
Motion tracking is due to the frequent clutter in the data sets.

The most probable path is depicted via a white line in Figure 4.
Nevertheless, the major drawback of the current system is its lack of
real-time capability due to the frequent use of Bayesian Inference for
each particle and the way of integration of the GMTK for inference
in the tracking system.

6. CONCLUSION AND FUTURE WORK

A new approach for enhancing tracking by fusing tracking with
classification in a unifying GM was presented. A closed tracking-
classification-tracking loop improves the tracking by adapting the
dynamical model of the tracking process according to the classifica-
tion results obtained from the Dynamic Bayesian Network capable
of discriminating between a fixed set of motion patterns. First eval-
uations show the potential of the approach, however, there is still
room for improvement and optimization left. The bottle-neck for the
processing speed is the integration of the GMTK-based classifica-
tion results. In addition, the number of motion class can be extended
and the number of particles can be reduced until a optimal amount
for tracking and classification process is obtained.
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