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Abstract

This paper introduces our research platform for enabling
a multimodal Human-Robot Interaction scenario as well
as our research vision: approaching problems in a holis-
tic way to realize this scenario. However, in this paper the
main focus is laid on the image processing domain, where
our vision has been realized by combining particle tracking
and Dynamic Bayesian Network classification in a unified
Graphical Model. This combination allows for enhancing
the tracking process by an adaptive motion model realized
via a Dynamic Bayesian Network modeling several motion
classes. The Graphical Model provides a direct integra-
tion of the classification step in the tracking process. First
promising results show the potential of the approach.

1. Introduction

Due to the fact that human-robot interaction (HRI) has
an enormous impact on ongoing research efforts, several
research facilities pursue the goal of establishing a natu-
ral and intuitive HRI. In general, the information gained
from image processing techniques contribute a major part
to the knowledge required for HRI, nonetheless additional
information channels like audio-signals can improve the in-
teraction as well. Vision-based data can provide informa-
tion about the human (position, gestures, etc.) as well as
information about the environment (objects, scene under-
standing, etc.). Audio-based data can be utilized to estab-
lish a dialog between the human and the robot as well as to
gain knowledge about the scene (classifying environmental
noises, sound-localization, etc.).
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HRI covers many areas of image and audio processing,
thus, we limited our research focus to the following topics:
gesture recognition, and human-machine dialogs. Despite
this limited selection, we attempt to process entire data in
a unified framework and envision to process all occurring
problems in a holistic way to realize a multimodal HRI.

The rest of this paper is organized as follows: A brief
overview of related work concerning the topics covered in
this paper is presented in Section 2. In Section 3, we intro-
duce our scenario and the robotic platform. The multimodal
capable processing framework is presented in Section 4. In
Section 5, the Graphical Model for combining tracking and
classification is delineated, in addition first promising re-
sults are shown. The paper closes with a summary and an
outlook over the next planned steps.

2. Related Work

Ambient Assisted Living [15] is a research area, where
the integration of robotic platforms in the interaction with
humans obtains more and more importance. In [8] a mo-
bile robotic research platform is presented, which assists
humans in their daily life. In [1] the objective of the project
is a combination of robotics and ambient intelligence tech-
nologies. This is mediated by a mobile robotic companion
working in a smart home environment. In general, all re-
search activities attempting to establish a natural HRI tackle
this problem by following a multimodal strategy, like in [21]
speech recognition and visual perception techniques are in-
tegrated on a humanoid robot for accomplishing this goal.

Gestures are classical nonverbal means of communica-
tion, thus, several approaches [10, 12] can be found to in-
tegrate gestures in the HRI to achieve a natural and intu-



itive form of communication. For showing agreement or
disagreement, head gestures are an intuitive way, however,
like in [17] they were applied for controlling operations
(document browsing, dialog box confirmation). In addition
to head gestures, hand gestures are applied as a nonverbal
communication form, e.g. in [1 1] a system is presented ca-
pable to recognize hand gestures for a HRI context. A par-
ticular form of hand gestures is given by pointing gestures,
see [18] for an example. Pointing gestures can provide in-
formation for the localization of objects and persons, when
a person is pointing at them to indicate the position of the
object or of the person for a robot.

The approach presented in this paper deals with the com-
bination of particle tracking and Dynamic Bayesian Net-
work classification. To the best of the authors’ knowl-
edge, there has been little effort made to combine tracking
and classification in the way presented here, using Graphi-
cal Model-based inference and prediction as the dynamical
model of the particle filter. However, some approaches exist
heading in a similar direction.

A motion-based particle filter for head tracking was pro-
posed in [4]. It utilized adaptive Block-Matching as a dy-
namical model, thus improving the linear process model
while still avoiding the necessity of offline learning. The
analytical justification for its superiority over the standard
Condensation tracking [13] was given in [5].

In [9], a combination of the Condensation algorithm
and Graphical Models for tracking and classification of the
tracked features was presented. Here, the tracking process
was used to acquire the feature sequences of the observed
motion. After the tracking, the feature sequences were used
as an input for a Graphical Model-inference-based classifi-
cation.

A combination of Condensation algorithm and Graphi-
cal Models in order to improve the tracking was presented
in [22], where facial expressions were observed. In that ap-
proach, the temporal progression was subjected to the linear
process of the particle filter, whereas the spatial correlation
between the facial features was inferred by an undirected
Graphical Model in each frame to enhance the tracking re-
sults.

An integration of stochastic states into the dynamical
model of a particle filter was introduced in [19]. Here, a
Condensation algorithm was implemented which utilized
several Gaussian Auto-Regressive Processes as possible dy-
namical models. The decision about which of them to use
for particle propagation was made by a finite-state machine
describing the several motion classes along with their tran-
sition probabilities.

A memory-based particle filter was proposed in [ 1 6], this
approach stores the previous estimated states and utilizes
them to generate a prior distribution. From the previous
states a probability is calculated indicating the likelihood

of a past state to appear in the future again. Similar to
our approach, this approach does not apply the Markov as-
sumption anymore and it is capable of handling non-linear,
time-variant, and non-Markov dynamics. Our approach,
in contrast, applies learned motion patterns via a Dynamic
Bayesian Network, whereas the memory-based particle fil-
ter uses the history of the past states to provide estimates for
the future.

3. Scenario and Research Platform

The Scenario is situated in an Ambient Assisted Living
environment. A human interacts with the robot ELIAS to
get information (e.g., what room a person is sitting in, when
the next train is leaving, etc.), to start services (listen to mu-
sic, make a video phone call, etc.) or to get a desired ob-
ject (in our case, by the help of other robots performing the
manipulation task). The focus of the research within the
scenario is to make the interaction with the mobile robotic
platform more natural by exploiting different communica-
tion channels, like speech and nonverbal information (gaze,
head or hand gestures, facial expressions). A typical inter-
action situation is depicted in Figure 1.

Figure 1. Human browsing through information displayed on the
touchscreen of the mobile robotic research platform.

The robot (a commercial research platform) has several
sensors to monitor the interaction environment. Besides
a laser scanner and sonar sensors for the navigation, two
microphones capture the audio-signals for the subsequent
speech processing. Multiple cameras are installed to de-
tect persons, faces, gestures, and objects. Furthermore, the
platform is equipped with a head with two degrees of free-
dom and two eyes movable with high speed. The computing
power of the research platform is constituted by two PC’s
(an industrial one running Linux used for image process-
ing and system control and a MAC-Mini for displaying the
graphical user interface, speech recognition and synthesis).
The currently implemented features of the platform are a
knowledge-based system controller, modules for speech in-
put and output, a recognizer for head gestures to confirm or
abort a speech command, an attention system based on the
users head pose and certain hand gestures. For the person
identification a face identification algorithm using Hidden



Markov Models and Eigenfaces is applied. Furthermore,
a badge recognizer is implemented to extract the bearer’s
name from his badge. Finally, a face model is used to
provide information about the users emotions (joy, neutral,
etc.) and micro-mimics (e.g. lifting of eyebrows).

4. Framework

This section delivers an overview about the applied sys-
tem architecture. The knowledge based system controller
is using facts and rules. Perception modules update or pro-
vide their observations in form of facts. The rules are used
to reason about the next steps and thereby trigger the action
modules. These perception and action modules can connect
to the system controller via two middlewares. One mid-
dleware is the Internet Communication Engine (ICE) sim-
plifying distributed computing including different operating
systems and programming languages.

The second applied middleware is a local sensory
buffer using shared memory, which is called Real-time
Database (RTDB). The RTDB origins from research about
a communication framework for cognitive autonomous ve-
hicles (see [7]) and is designed to deal with vast amounts
of data streams captured at different data rates. The basic
input for the RTDB is provided by modules writing their
sensor information into a shared memory and label the data
with a timestamp. For each data type a container has to be
defined (e.g., image data is stored in the Ipllmage_struct of
OpenCV [6], allowing to reuse the already existing algo-
rithms). The RTDB-Manager allocates a ring buffer for the
data container when the data is created for the first time.
This allows reading modules not only to access the most
recent data, but also to look back in time, depending on
the available shared memory and the update rate of the sen-
sor. Furthermore, this shared memory allows multiple mod-
ules to access the same data (e.g. a camera image) with-
out blocking effects. The processing modules write back
their resulting information (e.g. the position of a face) and
thereby provide them for the next modules in the processing
queue. The modules can be controlled (start, stop, pause, re-
sume) via the RTDB to manage and distribute the available
computational power among the modules required within
the current context. However, the timestamps of the data
allow to align the multimodal data of the different sensors
and modules for further processing. The derived high level
information (e.g. a gesture) is passed to the system con-
troller to decide the next actions. The framework is in use
on another service robot platform as well as on an indus-
trial robotic platform, where a human and a robotic assistant
work in a hybrid assembly scenario. Further input modali-
ties comprise gaze information of the user, a photonic mixer
device delivering depth information and physiological data
(pulse, skin conductance, heart beat).

5. Research Focus

As mentioned above, the general goal is to accomplish a
multimodal HRI, therefore, we highlight our major research
vision, a holistic approach for handling problems in HRI.
The general idea behind this vision is the integration and
the establishment of interrelations between modules of dif-
ferent origin (feature extraction, classification, dialog unit,
etc.) in a unifying form, for which the described frame-
work provides a good foundation. For the computer vision-
based processing, we combined the tracking and classifica-
tion processes in a unifying Graphical Model (GM). Before
we introduce our new approach, we outline briefly the basic
concepts (GMs, particle tracking).

5.1. Basic Concepts
5.1.1 Graphical Models

Graphical Models (GMs) [14] are applied in many areas
of research, since they provide a descriptive and illustra-
tive way to depict problems regarding control theory, com-
puter science, pattern recognition, etc. In general, the GMs
combine probability theory and graph theory portraying the
interdependences between different random variables. In
this paper we consider only directed GMs, also known as
Bayesian Networks (BNs). When BNs model time series
data, they are called Dynamic Bayesian Networks (DBNs),
which we applied to model the dynamical model of the par-
ticle filter. Hidden Markov Models (HMMs) are a sub-class
of DBNs, where observations are dependent on an unob-
servable variable, referred as hidden state.

An efficient inference algorithm for GMs is the Junc-
tion Tree Algorithm. This algorithm uses cluster potentials
(cliques v and separators ¢) for describing the dependen-
cies between random variables (Xi,...,X,,) by the quo-
tient of cluster and separator potentials

[cec ¥(C)
(X1, Xp) = 32952 (1)
[Ises #(5)
The DBN modeling the dynamical models of the differ-
ent motion classes was realized with the Graphical Model
Toolkit [3].

5.1.2 Particle Tracking

Reliable tracking of objects in a video sequence is still a
challenging task for current research activities. The Con-
densation algorithm [13] is a robust tracking method suc-
cessful even under unfavorable conditions.

The observed sequence Zr = {zi,...,zr} is related
to the desired information, which is referred to as the state
sequence X = {x1,...,X7} of the pattern.

In each frame t, the state x; of the observed object in-
fluences the observation z;, which is therefore exclusively



dependent on x;:

t

p(Zi]%) = [ [ p(zilxi).- )

i=1

Additionally, in the classical Condensation algorithm the
object states x; are assumed to be subject to the Markov
property, i.e. dependent only on their immediate temporal
predecessor:

p(xe| Xe—1) = p(Xe[xe—1). (3)

The density p(x;|x;—1) represents the dependency of the
current state on its predecessor, i.e. the change of the state
vector over time. Thus, the term can be interpreted as the
dynamical model describing the motion of object.

The Condensation algorithm can be subdivided into two
steps: prediction of the current state x; having the observed
sequence Z;_1, and a measurement step having the entire
observation sequence Z;. Combining both steps and regard-
ing equation 2 and the fact that given a state x; the obser-
vation sequence Z; has no more information, the recursive
step from one frame to its successor is given by:

p(X¢|Z4) = k‘tp(lt|xt)/ P(Xe|Xe—1)P(Xe—1]2Zi-1) dXy—1.

Xt—1
“4)
with kt = 1/p(Zf |Zt_1).
A sampling with the Monte Carlo Method is used to ap-
proximate the computationally infeasible integration over
the state x;_1.

5.2. Combining Tracking and Classification

The approach concerning tracking and classification is
the attempt to combine both methods in a unifying Graph-
ical Model (GM-approach), where both methods can profit
from each other. Therefore, a particle filter is used for
the tracking part, whereas the classification is performed
by a DBN. The interface between tracking and classifica-
tion is the dynamical model in the particle filter: The term
p(X¢|X:—1) serves as an estimation of the object motion, ap-
proximated with a linear filter. If this dynamical behavior
is, instead, computed using inference on a DBN describ-
ing the dynamics more exactly, both tracking and classi-
fication can be improved. An adaptive motion model can
be used to adapt the tracking process according to a set of
motion classes M. The motion class is determined via a
DBN, according to that result the dynamical model of the
tracking process can be adapted, forming a closed tracking-
classification-tracking loop. In addition to the adaptive mo-
tion model, a classification step can be performed by clas-
sifying the entire observed sequence.

5.2.1 The Graphical Model

The process generating the observed feature vector se-
quence of a gesture class ¢ with a certain motion pattern
m is modeled by the GM in Figure 2. The prolog and the
T — 1 chunks constituting the GM consist of five nodes:

("~ Particle
generation
[{ _forx |
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o
e
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Figure 2. GM-approach for combining tracking and classification.

The gesture class c; represents the gesture expressed via
a certain motion pattern. The gesture class c¢; is appointed
to a motion sequence of the entire observation range 7. An
observation sequence is assumed to correspond to one ges-
ture from its beginning to its end. The gesture class hence
remains unchanged throughout the sequence.

The motion class m; represents the motion class of the
observed pattern indicating the kind of motion an observed
object performs. The transitions between adjacent m;_1
and my are deterministic in the way that m; copies the state
of m;_1. The reason is that an observation sequence is
assumed to consist of one complete motion, from its be-
ginning to its end. The class of motion hence remains un-
changed throughout the sequence.

The temporal progression state q; resembles the hidden
state variable in a HMM. It depicts the temporal progression
of the motion as each state describes a discrete time step.

The state vector X; denotes, in this case, the position of
the tracked object.

The observation vector z; is the actual observation. In
this application, it is an array of image pixels.

The objective of this tracking and classification approach
is twofold: For the adaptive motion model, the objective is
to deduce for the observed sequence Z;_; the most proba-
ble motion class m;_;. With this information, the particles
are distributed according to the transition of temporal pro-
gression state g;—1 to ¢; to infer the best prediction for the
next state x;. For the classification step, the objective is to
deduce the most probable gesture class ¢ € C for the entire
observation sequence Z7.

5.2.2 Adaptive Motion Model

As above mentioned, the combination of tracking and clas-
sification is achieved fusing both in a unifying GM via



the dynamical model of the particle filter expressed by
p(X¢|x¢—1). This first-order process in equation 4 is replaced
here by inference in a DBN taking all other RVs into ac-
count, thus the Markov property is not valid anymore con-
stituting an important difference between our adaptive mo-
tion model-approach and the classical Condensation.

In the prediction step, the a-priori-density is created as

P(Xt|Zt71) = P(Xt71|Zt71)P(Xt|Xt71)7 &)

since with given state vectors in the past, the past observa-
tion vectors do not provide any new information, thus
p(X¢|Xe—1, Zi1) = p(Xe| Xp—1).

Using the independence of an observation z; on
any RV except of its corresponding state Xx; yielding
(z¢| X, Zi-1) = p(z4|x¢), the a-posteriori-density in the
measurement step can be expressed as

P(Xt\zt) =k p(zt‘xt)p(XAthl)a (6)

with k; = 1/p(z¢|Z;—1), and where p(z;|x;) can be evalu-
ated by computing the value of a weight function.

p(x¢|X;—1) is the prediction of the state vector in frame
t from the state vectors in frames 1...¢{ — 1. This term
is evaluated via Bayesian inference by marginalizing over
each RV in the path between x; and x;_; (see Motion-DBN
in Figure 2):

For inference and prediction, only the crosshatched sub-
graph of the GM in Figure 2 is used which does not con-
tain the observation vectors z;. From X;_; inference is ap-
plied to predict the next state vector x; by creating 50 par-
ticles utilizing the learned transition probabilities from the
Motion-DBN and measure their correlation with the obser-
vation z;.

The motion class m is assumed to remain constant
throughout the observed motion, i.e. m; =: m for any time-
step t. With this, the probability function term simplifies to

p(mt|mt—1) = 5(mt7mt—1)7 (N

with the Kronecker delta 4.
Regarding this property the prediction term is given by

p(xe| Xim1) = X2, th,l th p(m, qi—1|Xi—1)
p(ge|m, gi—1)p(x¢|m, gr). (®)

By splitting the leftmost term and shifting the innermost
sum according to the distributive law, the conditional prob-
ability mass function

pxe| X)) = >0, p(m|Xe_1) 32, | plar—1|m, A1)
th p(atlm, gr—1)p(xe|m, q:) )

describes which operations have to be performed by an al-
gorithm in order to calculate p(x¢|X;—1):

For each possible motion class m and motion state
g:+—1 in the previous time-step, their respective probabili-
ties have to be determined from the terms p(m|X;_1) and
p(m, g1—1|X:—1), given the knowlegde of all previous state
vectors X;_1. Then, the transition probability to each cur-
rent motion state ¢; is calculated by p(q:|m, g;—1) from its
predecessor. Finally, the term p(x:|m, ¢;) predicts the cur-
rent state vector x; as a multi-dimensional mixture of Gaus-
sian components whose parameters are learned in advance.
This density function provides the Gaussian means and co-
variances for each tracked state, while the other densities
can be seen as weighting factors. Thus in each time step
the algorithm samples from each motion class, from each
preceding state and each current state. Using these values,
it tracks the pattern state by sampling from a weighted set
of Gaussian curves.

Tracking-Classification-Tracking Loop After the ini-
tialization of the tracker, in this case, we assumed the
knowledge about the location of the first state x;—¢, the
tracking-classification-tracking loop starts. The following
steps are performed until the end of the sequence ¢ = T is
reached:

Variable prediction: The motion class m; and motion
state g; of the current frame are sampled with knowledge of
the particle sequence.

Farticle prediction: The state vector z; has to be pre-
dicted by the sampled movement class and current state.

Measurement: verification of the validity of the pre-
dicted sample by measurement.

Resampling: The new particles are sampled out of the
set of preceding samples considering the result of a weight
function.

Inference: applying Bayesian inference from Sec-
tion 5.2.2 to determine p(x¢|X;_1).

5.2.3 Classification Step

Besides the adaptive motion model, the combination of
tracking and classification can be used to deduce a gesture
class ¢ € C from the entire observation sequence Z7.

The set of all discrete observation steps is denoted as
Zr ={z,..., 27}, where T is the number of discrete time
steps. The gesture class of interest is given by

¢ = argmax p(c|Z2r). (10)

The observation model employed in the Condensation
algorithm assumes the observation Zr to be a cluttered,
noise-affected origin of the actual, hidden state sequence
Xr which describes all relevant properties of the pattern. A
marginalization over the set of all possible states X7 yields

p(C|ZT)=/X p(c|Xr)p(Xr|Zr) dXr (11)



with p(c| X7, Z1r) = p(c|Xr), since according to the obser-
vation model, Z7 does not contain any additional informa-
tion given Xr.

Inserting this into (10) yields

¢=argmax [ p(lXnp(¥r|Zr) dxr. (2)
¢ X

T

With all respective conditional probability functions re-
placed accordingly and any constant terms removed from
the max, statement, the gesture class ¢ is expressed as
¢= argmax, [ . [y, Theper o5l Xn)p(ze/x)

-p(c|Xr) dXr. (13)

5.2.4 Experiments

We tested the system with simulated and real-recorded data
sequences (ten sequences per class for simulated data, and
eleven sequences per class for real data) for three differ-
ent classes (left to right, vee move, zorro move). The sim-
ulated sequences were generated by a moving white rect-
angle in a noisy environment formed by white circles and
some randomly distributed rectangles. The real-recorded
data sequences were skin-color image sequences (obtained
by applying a method like presented in [18]) of a test per-
son performing the three gestures. One gesture sequence is
depicted in Figure 3. For the initialization a fixed number of
50 particles were used. The particles were set on the rele-
vant object, i.e. human hand, or moving rectangle. In order
to compare our GM-approach, the obtained results for the
tracking and classification are compared to those of a refer-
ence model, a Condensation tracking using Brownian Par-
ticle Motion (Brownian-approach) [20]: Gaussian Normal
Distribution with mean value ; = 0, and standard deviation
o = 100px to predict the particles’ dynamic behavior.

(b) 6. frame
Figure 3. In the 1. frame, the particles are placed on the hand
(initialization) for the three gestures: Vee move (green), Zorro
move (blue), and left to right (red). For the 6. and 10. frame,
the results of the Motion-DBN and their related tracking paths are
indicated with their corresponding colors. The most probable path
is indicated in white.

(a) 1. frame (¢) 10. frame

Tracking Results For evaluating the tracking perfor-
mance in comparison to existing methods, the measures
Tracker Detection Rate (TRDR) and Object Tracking Er-
ror (OTE) presented in [2] are applied. In each frame, the

centroid of the tracked object is calculated and compared
to that of the Ground Truth data. The average Cartesian
distance between them in each frame constitutes the OTE.
The TRDR is determined by defining a distance threshold
and checking whether each single distance between the cen-
troids falls below it. Since in this application the object of
interest (the hand) has a diameter of approximately d = 140
px, the threshold is defined as d/2 = 70px. Each frame
with a distance lower than d/2 is rated as a positive detec-
tion. In Table 1, the obtained tracking results for the TRDR
and OTE for the GM-approach and the Brownian-approach
are shown.

GM-approach Brownian-approach
OTE 47.9 px 132.4 px
TRDR 77.8% 33.5%

Table 1. Tracking performance results.

Classification results The 63 gesture sequences (three
per class) were classified by using the Motion-DBN, the re-
sults for the two approaches (GM-based, Brownian-based)
can be seen in Table 2 in form of confusion matrices.

GM-approach Brownian-approach

leftright | vee | zorro || leftright | vee | zorro
leftright 19 0 2 0 0 21
vee 0 19 2 0 0 21
ZorTro 0 0 21 0 0 21

Table 2. Classification results.

Interpretation In general, the results of the presented
GM-approach are significantly better than the tracking re-
sults of Brownian-approach. The weak performance of
the Brownian-approach is due to the frequent clutter in the
data sets and the Brownian Motion dynamical model which
should provide a generic dynamical model. Thus, the per-
formance of the reference model can be clearly improved
by utilizing a better dynamical model. In addition, the cur-
rent GM-approach lacks of the capability to track a motion
pattern clearly different from the motion classes modeled
by the Motion-DBN.

The classification results of the reference model (in this
case the Brownian-approach) showed a weak performance,
since the tracking process failed and thus the classification.
In this case, the zorro gesture is some kind of garbage class
for the Brownian-approach.

5.2.5 Discussion

The current approach for combining tracking and classifi-
cation in a unifying GM demonstrates much potential, how-



ever, there are many possibilities left to proof the potential
of the approach and to optimize it.

First, the current gesture set is too limited and the motion
patterns show a clear difference, thus, the DBN-based clas-
sification can perform quite well. Therefore, the gesture set
should be increased by gestures having a quite overlap in
their motion patterns. Besides, gestures having non-linear
motion patterns can demonstrate the capability of the pre-
sented approach to handle these kinds of patterns. In addi-
tion, the gesture set (three gestures, ten sequences per class
for simulated data, and eleven sequences per class for real
data) can be extended in the number of gestures and for the
real data sequences in the number of test persons.

Second, the current approach lacks real-time capability
and thus can presently not be integrated on the robotic plat-
form, however, it is imaginable to use the Compute Unified
Device Architecture (CUDA) to speed up the the Bayesian
inference for the particles. Due to design of the DBN-based
classification for the motion classes for each particle, there
is room for parallelizing the operations and process them
via the graphic card.

6. Conclusion and Future Work

A new approach for combining tracking and classifica-
tion in a unifying GM was presented. The approach can
improve the tracking via an adaptive motion model, and the
classification can be integrated in the tracking process. First
evaluations show the potential of the approach, however,
there is still room for improvement left. First, the current
system lacks of real-time capability, since the bottle-neck
is the integration of the GMTK-based classification results.
Second, the number of motion class can be extended and the
number of particles can be reduced until a optimal amount is
obtained. Third, the interrelation between the gesture class
and the motion class can be varied that several gestures can
be modeled with a limited amount of motion patterns.
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