Tracking Multiple Self-Occluding People using
Dense Spatio-Temporal Motion Segmentation

Martin Hofmann!»?
Advisers: Prof. Thomas S. Huang®
Prof. Gerhard Rigoll?

!University of Illinois at Urbana-Champaign, USA
2Technische Universitiat Miinchen, Germany
martin.hofmann@tum.de

Abstract. This master thesis discribes a new dense spatio-temporal mo-
tion segmentation algorithm with application to tracking of people in
crowded environments. The algorithm is based on state-of-the-art mo-
tion and image segmentation algorithms. We specifically make use of a
mean shift image segmentation algorithm and two graph based motion
segmentation algorithms. The resulting motion segmentation is on the
one hand accurate and on the other hand computationally efficient. In
addition our method is capable of handling mutual occlusions. This shows
that motion segmentation can efficiently be used to simultaneously de-
tect, track and segment moving objects. We apply this to tracking people
in surveillance videos, but the algorithm is not limited to this class of
scenes.

1 Introduction

Motion segmentation is a method for segmenting a video sequence into seg-
ments of coherent motion. In addition to a mere segmentation into some seg-
ments of similar motion, our algorithm is capable of finding long term motion
segments. Furthermore the proposed algorithm is able to associate motion seg-
ments through visual occlusion by other objects. Therefore, the found motion
segments reveal individual entities that move through a scene.

The final result can therefore be called a tracking algorithm because it is
able to find and track individual people in surveillance videos. It is important to
note, however, that this method originates from the idea of motion segmentation
and not from a tracking approach. We have shown that motion features alone
give very precise tracking and segmentation at the same time, without the use
of any appearance information.

We first present motivation and overview of the algorithm and then explain
every component in detail. Results and a Conclusion are given at the end of the
paper.

2 Overview and motivation

As described above, the central premise of this algorithm is to analyze the mo-
tion vector field generated from a spatio-temporal intensity pattern (a video).

2 M. Hofmann

The goal is to find groups of points in this three-dimensional space that belong
together.

. spatial
Video ogg‘zl:val motion clustering
(Mean Shift)
spa:lﬁ-;g:;g;ral extract trajectories @
(Normalized Cuts) e tmeaciiow)

Fig. 1: Schematic of the dense motion segmentation method.

¥

Clustering and segmentation algorithms are ideally suited to find these groups
of points. The disadvantage of state-of-the-art algorithms, like mean-shift or
normalized cuts, is their high computational complexity and their inability to
explicitly model occlusions.

Our algorithm is based on the N-cut motion segmentation algorithm [1].
Here a graph with every node representing a pixel is built and then segmented.
Because this results in a huge graph, the original algorithm only works on a very
subsampled version of the original video.

We overcome this problem by adding a preprocessing step: We use an image
segmentation technique, namely mean shift segmentation [2], and apply it to do
a pre-segmentation of the motion vector field at each frame. This greatly reduces
the number of motion observations from the number of pixels in a frame to the
number of motion segments in each frame.

The N-cut algorithm can find independent motions, but it is not capable of
matching motion segments through occlusions. Therefore a post-processing step
is added to join the clusters found by the N-cut algorithm and to overcome the
problem of mutual occlusions.

Figure 1 shows a schematic overview of the proposed dense spatio-temporal
motion segmentation algorithm. In the first step, an optical flow algorithm is
applied at each pair of frames to generate the motion field. At each frame sep-
arately this motion vector field is reduced in size by mean shift segmentation.
Then the N-cut algorithm is applied to find spatio-temporal clusters. In the last
step, clusters are grouped together with a min-cost max-flow algorithm, which
results in the final segmentation.

2.1 Definitions and optical flow calculation

The incoming video is represented as a space-time intensity pattern. Let P denote
the set of all points in this spatio-temporal cube and let P; C P denote all points
in frame ¢. Then obviously P = P U...U Py, where N is the number of frames
in the cube of interest.

Dense Spatio-Temporal Motion Segmentation 3

Each point s € P is associated with a color intensity vector ¢(s) and a motion
vector z(s). We use the optical flow algorithm described in [3] to calculate z(s).
This algorithm is an optical flow method based on block-matching.

2.2 Feature space reduction using mean shift

As mentioned in Section 2, the mean shift filtering is applied to the motion
vector field for each frame separately.

Each frame P, is segmented into a set of segments St(i). This ensures that
P =SSP u...us"Myp, (1)

where B; denotes the set of pixels that belong to the background. Background
pixels are those that do not move: B; = {s] z(s) =0, s € P;}.

The segmentation (1) is done with the mean shift algorithm. The only dif-
ference to the standard algorithlm is that the feature points which are being
clustered are not (2 + 3)-dimensional, but only (2 4 2)-dimensional. The spatial
dimension stays at two, but in the range domain we have two motion vectors
instead of three color components.

The segmentation returns the mean velocity vectors z,E” for each segment,
which can formally be defined as:

NONS Zsesf“ z(s)

Z i (2)
157

2.3 Carving blocks using normalized cuts

The N-cut algorithm [1] clusters data based on an undirected graph G = (V,).
The graph is represented by its weight matrix W. In order to apply N-cut seg-
mentation, this weight matrix has to be built first.

Fig. 2: Associating patches to build a graph.

In the mean shift segmentation step, a set of motion coherent segments has
been generated at each frame. Each of these segments for all frames is associated

4 M. Hofmann

with a node in the graph G. Figure 2 illustrates this. The N-cut algorithm does
not require all nodes to be connected. In fact, we only connect segments which
overlap with segments in At of the adjacent frames.

The affinity between the adjacent elements should have two properties: (1)
Affinity should be high if the segments are likely to belong together spatially and
(2) the affinity should be high if the segments have similar motion. Each segment
is therefore projected to its adjacent frames using the mean motion vector. Then
the overlap with segments present in that frame is calculated, as well as their
motion similarity.

More precisely, for each frame ¢, each segment St(l) is projected to its At =
1... Atpax adjacent frames using the mean motion vector:

St(-zi-)Atlt = {5 + At - iz(sl)| s € St(z)} (3)

The cut set of the projection with the points in the corresponding frame is
given by

St(i)Atht = St(i)At\t N Pryae (4)

This cut set reveals the overlap of the i-th segment in frame ¢ with all the

segments j in frame t + At. More precisely, the overlapping area of the j-th
segment in frame t + At with the projected segment i of frame ¢ is given by

A(i—>j) _

t—t+ At

(4) 5(4)
tiAt N St+At\t

()

The motion similarity is measured by

d(i—U‘)

t—t+ At 7y 2"

t+At — Lt

(6)

The affinity between segment 4 in frame ¢ and segment j in frame t + At is
then defined as

05w = A s exp(—(d)57 007 20%) (7)

All the affinity measures a are plugged into the affinity matrix W, thus
forming the undirected graph G. Since the affinities are only processed in one
direction, the graph affinity matrix will have upper triangular form. To build
an undirected graph, the symmetric affinity matrix is calculated using W =
w+wT,

This graph can now be segmented using the N-cut algorithm. The algorithm
cuts the graph into two pieces and repeats this procedure recursively. The clus-
tering is stopped when the N-cut value drops below a predefined threshold which
is set so as to oversegment the scene into relevant chunks. This threshold is a
function of the definition of the affinity value a, and of the size of the chunks
that one wants to find. The size of the chunks is known for a given class of videos
and thus has to be set only once.

After the segmentation process, the scene P is clustered into disjoint spatio-
temporal blocks C;:

P = C(l) U...u C(i[nax) UuB (8)

Dense Spatio-Temporal Motion Segmentation 5

where B denotes all the spatio-temporal points that belong to neither object and
thus are background.
The block’s centroid ¢; and the mean velocity vector z; are defined as

~ ZSECi $

Ci = 7|C7,| 9)
A ZsECi Z(S)
B = =Sl (10)

Figure 4(a) shows the results of the normalized cut clustering procedure on
the surveillance video. Interesting to note is that the big chunks of motion have
been found successfully. Those chunks do not necessarily have to have all the
same motion; the motion only has to be similar from one frame to the next.
Therefore, non-linear motions can also be correctly clustered into single blocks.
Note also that the scene is still widely oversegmented and complete trajectories
have not been found yet. The reason for this oversegmentation is given in the
next section.

3 Global data association to find trajectories

In the original normalized cut segmentation algorithm, the clusters resulting
from the N-cut step are declared to be the final segmentation. The problem with
this method is the inability to handle occlusions. The trajectory of a moving ob-
ject which is divided in the middle by another occluding object will be clustered
into two segments. This is because there will be no affinities between the two
ends of the two pieces.

In the previous section we have explained how affinities are calculated be-
tween segments that are up to At frames apart. This readily allows us to recover
short time occlusions. One could just increase At in order to increase the ability
to handle bigger occlusions, but that would lead to an exponential growth of
the computational complexity. Instead, we propose another approach: We in-
tentionally perform the segmentation in the normalized cut clustering so as to
oversegment the scene. This way, final trajectories are not found yet, but the
identified blocks C; are likely to belong to single coherent blocks of motion.

Knowing single coherent pieces allows us to reason about occlusion. In the
final processing step, we use a data association technique to stitch these pieces
together into trajectories in a way to account for longterm occlusions. A MAP
definition is used of matching observations to trajectories. This description can
be mapped into a min-cost max-flow network, which then can be solved with
linear programming methods.

3.1 Finding Trajectories with a MAP Approach

Let X = {x;} be the set of observations. In our case the observations are x; =
{Ci, €i, 2;}, where C; is the set of points belonging to block i, ¢; is the centroid
of the block and ¢; is the mean velocity vector over all points of the block.

6 M. Hofmann

A trajectory is defined as the set of observations that belong to the trajectory:
Tr = {Xky»Xkys - - - Xk, }- More than one trajectory is possible, so that the whole
set of observations is given by T = {7x}. We want to find the optimal set of
trajectories given the observation. The MAP formulation is given by

T* = argmax P(T|X)
T
= argmax P(X|T)P(T)
T

= argmax [] P(a|T)P(T) (11)

The last step in Equation (11) assumes conditional independence of the likeli-
hood probabilities given 7. Optimizing this equation directly is infeasible due to
the huge number of possible combinations of trajectories. Instead a non-overlap
constraint is introduced that states that a given observation can only belong to
one trajectory.

TeNT =0, Vk #1 (12)

Furthermore, it is assumed that the trajectories 7y are independent of each
other. Then using the constraint (12), Equation (11) can be written as:

T* = arg maXHP(xAT) H P(Tk) (13)
T i TeE€T
st.TRNT =0, Vk #1 (14)

The first term of Equation (13) is the likelihood function of observations.
A Bernoulli distribution is used to model the observation probability. Here (;
denotes the false alarm probability of observing the object.

1-6; AT eT,x; €Ty

15
Bi otherwise (15)

P(xi\T) = {

The second term of Equation (13) is modeled as a Markov chain with initial-
ization probability P.,;,, termination probability P..;; and transition probability
Hink:

P(77€) = P({xkoaxkl)""xkzk})
- entr(xko)ﬂink(xkl |.’L'k0) e
Prink(Tr,, [Th,, 1) Pewit (Th) (16)

The definition of these probabilities and their relation to the observed clusters
is described later in Section 3.3.

Dense Spatio-Temporal Motion Segmentation 7

Fig. 3: The cost flow network.

3.2 Mapping to a Min-Cost Max-Flow Network

In this work, a cost flow graph is used for the data association step. Figure 3
illustrates such a graph. In this, each observation 7 is represented by two nodes
(us,v;) connected with a directed edge. This edge holds the cost ¢(u;, v;) of using
this observation. Each node pair is connected to observations nearby, also with
a directed edge. This edge holds the cost ¢(v;,u;) of associating the connected
node pairs. Furthermore, each node pair is connected to a global source s and
the sink node t. In addition to the edge costs, each edge is set to have at most
one unit of flow. This allows for modeling of the non-overlap constraint. A flow,
starting at the source node, searches its way through the graph to reach the
sink node in a way that minimizes the overall cost. This flow reveils the optimal
data-association.

A mathematical definition of the mapping from the MAP formulation to the
flow network has been provided in [4] along with a prove, that the optimal data
association of (11) is equivalent to finding the optimal flow in the graph. This is
achieved, when the edge costs are set as follwos:

C(S,Ui) = Cen,i = - log Pentr(aji) (17)
c(vi, t) = Cegs = —log Pegit () (18)
C(’Ui, uj) = Cz,j = - IOg]Dlink(xj |xl) (19>
clusv) = Ci= log (20)

Note that all the costs are positive except for C;, which may be negative if
Bi < 0.5.

The max-flow problem can be solved with the Ford-Fulkerson algorithm,
Karger’s algorithm [5], or the scaling push-relabel method [6].

8 M. Hofmann

3.3 Estimating Model Parameters from Clustering

For the algorithm to work as desired it is essential to have good estimates for
the model probabilities, namely Peyntr, Pegit, Prink as well as for the false alarm
rate 3.

In our case, the observations are defined as x; = {C;, ¢;, 2;}, where C; it the
set of points belonging to the block, ¢; is the centroid of the block and ¢; is the
mean velocity vector over all points of the block.

We observe that trajectories are likely to be true observations if they are big.
We therefore model the false alarm rate as:

¢l

- (y”

where |C;| denotes the volume of cluster 4 and pg denotes the reference volume.
Any object bigger than the reference volume will result in a 5; < 0.5 and thus
will have negative cost in the flow graph. Those objects therefore are encouraged
to be part of some trajectory. Consequently, objects with volume smaller than
pp will have positive cost and are only added in the graph if they help to form
a trajectory.

To calculate the transition probabilities Py, (x;]x;), an affinity measure has
to be generated. This step is crucial in overcoming the occlusion problem. Clus-
ters are likely to belong together if they have (1) high similarity in their mean
velocity and (2) high spatial continuity.

To meet the first requirement, the motion similarity is measured by

djjs = exp(— |2 — &]]° /20?) (22)
For the second requirement, the spatial continuity is measured. The key to
do this is the use of 3D morphologic operations. We use a morphologic dilate op-
eration for each observation separately using a structure element which encodes
the motion of the object. Doing so extends the 3D spatio-temporal blob of the
object in time.
First, each object ¢ is dilated, which results in a spatio-temporal prediction:

Ci=(CidoM)\C (23)

where the @-operator denotes morphologic dilate and M; is a structure element
which has the form of a line from the origin in the direction of the mean velocity
vector At - z;. In our experiments M; is generated with the Bresenham line in-
terpolation algorithm. The scaling factor At specifies the length of the structure
element and thus defines the number of frames the cluster is projected into the
future.

The spatial overlap is calculated as

Sjli =

¢ine| (24)

Dense Spatio-Temporal Motion Segmentation 9

The link probability is then assembled to take spatial and motion continuity

into account:
Pron (s]3) = 2201 (25)
258l - djli

P.ptr and P,y are modeled using a priori expert knowlege about entry and
exit points in the scene.

Fig.4: (a) Results of the spatio-temporal normalized cut clustering. (b) Results
of the full spatio-temporal motion segmentation.

4 Results

Results are shown for a video sequence from the Trecvid dataset [7]. The final
clustering for this surveillance video is seen in Figure 4(b), which shows a 3D
visualization of the found clusters in the spatio-temporal data volume. Figure
5 depicts a selected frame from this sequence. In this frame, the sequence was
segmented into six clusters.

These results show that the major motions are automatically found and cor-
rectly labeled. Small cluttered blocks which would result from noise have success-
fully been removed. Important to note is that the method is capable of keeping
identity through occlusions.

It is also very interesting to note that this kind of segmentation not only finds
major motions, but is also able to very precisely segment the objects. This is
remarkable, given that only motion information and no appearance information
is processed.

However, there are also some false positives. The orange cluster, for example,
would be considered such a false positive. This cluster somewhat detects the
shadow and the feet of the person labeled in green. Ideally this green person and

10 M. Hofmann

the orange feet cluster should be clustered together. The reason for this false
positive is that the shadow seems to be a significant independent motion. This
shows that the algorithm is not mainly a people tracking algorithm, but rather
a generic motion segmentation algorithm. In order to gear the algorithm more
to a specific domain like people tracking, prior knowledge about the object class
would be necessary.

Fig.5: (a) Original frame from a surveillance video; (b) Segmentation results.

4.1 Conclusion

In this paper we have presented a motion segmentation algorithm which extends
the normalized cut motion segmentation method and allows to (1) handle long
scenes (2) at high resultion and (3) is capable of handling a significant amout
of mutual occlusions. It can be seen that motion segmentation alone can simul-
taneously give detection, tracking and segmentation. We have shown that this
method can readily be applied to tracking multiple highly articulated objects
like humans.

References

1. Shi, J., Malik, J.: Motion segmentation and tracking using normalized cuts. In:
Proc. Sixth International Conference on Computer Vision. (Jan. 1998) 1154-1160

2. Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: Proc. Seventh
IEEE International Conference on Computer Vision. Volume 2. (Sept. 1999) 1197—
1203

3. Ogale, A.S., Aloimonos, Y.: A roadmap to the integration of early visual modules.
International Journal of Computer Vision 72(1) (2007) 9-25

4. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking
using network flows. In: Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2008). (June 2008) 1-8

5. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow al-
gorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence 26(9) (2004) 1124-1137

6. Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algo-
rithm. Journal of Algorithms 22(1) (1997) 1-29

7. Smeaton, A.F.; Over, P., Kraaij, W.: Evaluation campaigns and TRECVid. In:
MIR ’06: Proceedings of the 8th ACM International Workshop on Multimedia In-
formation Retrieval. (2006) 321-330

