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Abstract
In this paper we suggest feature selection and Principal Component Analysis as a way to analyze and compare corpora of emotional
speech. To this end, a fast improvement of the Sequential Forward Floating Search algorithm is introduced, and subsequently extensive
tests are run on a selection of French emotional language resources well suited for a first impression on general applicability. Tools for
comparing feature-sets are developed to be able to evaluate the results of feature selection in order to obtain conclusions on the corpora or

sub-corpora divided by gender.

1. Introduction

At present, there are various corpora in use by the automatic
emotion recognition community, with considerable differ-
ence in size, topic and application context. None of them
are ideal: they all have their advantages and drawbacks.
Consequently, the comparison and possible unification of
corpora is an important aid for current research: (Tahon and
Laurence Devillers, 2010) for example studies differences
in anger across corpora in a very detailed fashion by examin-
ing acoustic properties. In this paper we take the same two
corpora in order to allow for meaningful comparisons and
findings, yet with different methods. We will be using PCA
and feature selection to visualize and compare corpora by
their compound of most relevant features. This seems rea-
sonable, as it is e. g. known that ‘more’ acted corpora tend to
prefer pitch-based descriptors in comparison to more natural
emotional speech, where spectral information typically is
expected as ‘reliable candidate’ of best features.

Feature selection is usually considered as a tool to make
machine learning models more efficient. Selecting the best
features may improve the quality of the model by avoid-
ing over-training and/or it may increase the speed of com-
putation and reduce memory demands. Feature selection,
however, is rarely considered as a tool to characterize or an-
alyze a corpus or measure similarities or differences among
corpora.

Sequential Floating Forward Selection (SFFS) was intro-
duced in (Pudil et al., 1994) and is certainly among the most
widely used techniques in the field. In this paper, we con-
sider SFFS as the baseline experimental technique and try
to improve it by the help of ‘set-similarity’. This approach
is different to other improvements found in the literature,
and it introduces a different dimension to amend feature
selection algorithms.

As named above, our intent is to analyze the similarities and
differences of corpora or sub-corpora by their compound-
structure of highly relevant features. The main motivation
of introducing a modified variant of SFFS is the comparably
high computation cost of SFFS. This is a clear drawback in
the respect of our aim: if a feature-selection-based compar-

| CINEMO [ #POS | #SAD | #ANG | #NEU |
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Table 1: CINEMO sub-corpus, number of segments for 50
speakers

ison of several corpora is to be carried out, there will be a
clear demand for sufficient speed of processing. By using
our proposed algorithm a more extensive analysis is possible
as it would be achievable in the same amount of time using
‘classical’ SFFS.

2. Corpora

The corpora CINEMO and JEMO were already introduced
in (Brendel et al., 2010). Here we only give a short descrip-
tion.

2.1. CINEMO

The corpus CINEMO (Rollet et al., 2009) used in this paper
consists of 1532 instances after segmentation of emotional
French speech amounting to a total net playtime of 2:13:59
hours. 50 speakers (of 15 to 60 years old) dubbed 27 scenes
of 12 movies. A subset of the more consensual segments
was chosen for training models for detection of 4 classes
(Positive, SADness, ANGer and NEUtral). The rich anno-
tation of CINEMO was used to build these 4 macro-classes.
Table 1 shows the distribution of instances among classes
within the considered CINEMO sub-corpus.

2.2. JEMO

The corpus JEMO features 1 135 instances after segmenta-
tion of speech recorded from 39 speakers (18 to 60 years
old). JEMO is a corpus collected within an emotion detec-
tion game. This game used a segmentation tool based on
silenced pauses and used a first system of 5 emotions detec-
tion (ANGer, FEAr, SADness, POsitive and NEUtral) and a
system of activation detection (low/high) built on CINEMO
data. The corpus recorded was the reaction of the users to
the system response.
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[JEMO | #POS | #SAD | #ANG | #NEU |

| LLD | Functionals

[ #segments [ 316  [223 [ 179 [416 |

Table 2: JEMO sub-corpus, number of segments for 39
speakers.

C.&J. [ #POS | #SAD | #ANG | #NEU

Male 252 262 267 432
Female | 377 325 256 494

Table 3: Female and Male sub-corpora of the unified corpus,
# of segments for 38 female and 50 male speakers.

In JEMO speakers generated spontaneous sentences with
higher level of expressivity than in CINEMO. The corpus
has been annotated by two coders with major and minor
emotions. These data were more prototypical than in the
corpus CINEMO as very few mixtures of emotions were
annotated.

Table 2 shows instance distribution in the JEMO sub-corpus.
Table 3 shows instance distribution in the sub-corpora ob-
tained by dividing the unified corpus by gender.

3. Features

In the following we will describe two different feature sets
based on two different extraction engines.

3.1. LIMSI features

Each speech segment is passed through spectral (16 MFCCs)
and prosodic analysis (pitch, zero-crossing and energy) by
the LIMSI extractor. The feature extractor next calculates
basic statistical features on voiced parts: min, max, mean,
standard deviation, range, median quartile, third quartile,
min and max intra range and the mean and standard devia-
tion of the coefficients of least square fitting regression (of
each voiced segment); min and max inter range (between
voiced segments). Overall, 458 features are thus obtained in-
cluding further post-processing: 23 for pitch, 51 for energy
(from these 22 root mean square energy), 18 zero-crossings
and 366 for MFCC1-16.

Table 4 shows the low level descriptors and functionals used
in generating the LIMSI features for these experiments.

| LLD | Functionals
Energy moments(2):
RMS Energy absolute mean, max
FO extremes(3):
Zero-Crossing-Rate | 2 x values, range
MFCC 1-16 linear regression(2):
MSE, slope
quartiles(2)

quartile, tquartile

Table 4: LIMSI features: low-level descriptors and function-
als. Abbreviations: root mean square (RMS), Mel Frequency
Cepstral Coefficients (MFCC), Mean Absolute/Square Error
(MAE/MSE). Note that not all combinations are used.

moments (4):

absolute mean, std. deviation
kurtosis, skewness

extremes (5):

2 X values, 2 X position, range
linear regression (4):

offset, slope, MAE, MSE
quartiles (6):

3 x quartiles, 3 x ranges

(6) RMS Energy

(9) Log-Frame-Energy
() Voicing Probability
(6) FO

(6) FO envelope

(8) Zero-Crossing-Rate
(6) MFCC 1-12

(9) LSP Frequency 0-7

Table 5: Acoustic features in openEAR: low-level descrip-
tors and functionals. Abbreviations: Line Spectral Pairs
(LSP), Mel Frequency Cepstral Coefficients (MFCC), Mean
Absolute/Square Error (MAE/MSE).

3.2. openEAR features

To introduce sufficient variance in our experimentation and
not base our findings solemnly on one feature extractor, we
use the same openEAR toolkit’s (Eyben et al., 2009) “base”
set as used in (Schuller et al., 2010): 988 features — a slight
extension over the set provided for the INTERSPEECH
2009 Emotion Challenge (Schuller et al., 2009) — based on
19 functionals of 26 acoustic low-level descriptors (LLD,
smoothed by simple moving average) and corresponding
first order delta regression coefficients as depicted in Table
5.

4. Using PCA for visualizing corpora

To illustrate the distribution of the corpus, the mean of each
feature was computed per speaker and per class. In order
to be able to display the speaker-means the most important
principal components were computed with Weka (Witten
and Frank, 2005) and the first two components are shown.
Figure 1 shows the speaker-means of CINEMO with 458
LIMSI features in the first two dimensions of its PCA space.
Figure 2 shows the speaker-means of JEMO with 458 LIMSI
features in the first two dimensions of its PCA space.
Figure 3 shows the speaker-means of CINEMO with open-
EAR features in the first two dimensions of its PCA space.
Figure 4 shows the speaker-means of JEMO with openEAR
features in the first two dimensions of its PCA space.
Comparing these figures one can see that the LIMSI features
form an elongated shape, especially in JEMO, while with
openEAR the shapes are rounder, which seems to be better.
Although classes are intertwingled in all the cases, the open-
EAR figures show more separation of the classes, especially
on JEMO. Consequently, we can expect better results with
JEMO and with openEAR features. This will be confirmed
in the following sections.

PCA is a dimension-reduction technique suited to display in-
stances of a high-dimensional space in a lower dimensional
one. However, the principal components are not easily in-
terpretable for humans. It seems worth, though, to select 2
important features and compare the two sub-corpora in this
two dimensional and interpretable space.

Figures 5 and 6 show the classes ANG and POS of CINEMO
and JEMO in the feature-space of MeanEnergy and Mean-
Pitch. In both cases we can see some differences between
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Figure 1: Speaker-means of CINEMO with 458 LIMSI
features in the two most important dimensions of its 2D
PCA space. Note that some data of all the classes is masked
by the classes NEU and POS in the center.
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Figure 2: Speaker-means of JEMO with 458 LIMSI features
in the first two dimensions of its 2D PCA space. Note that
some data of all the classes is masked by the classes NEU
and POS in the center.

the sub-corpora. Anger in JEMO often contains more energy
and higher pitch than in CINEMO. Also in the case of POS
of JEMO sometimes higher energetic levels are observed.
Note that the coordinates of the two figures are not the same,
i.e. the energy related to POSitive is usually lower than that
related to ANGer.

5. Using feature selection for measuring
differences between corpora
A good introduction to feature selection can be found in

(Guyon and Elisseeff, 2003). Methods are generally divided
into two larger groups: filter-based and wrapper methods.
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Figure 3: Speaker-means of CINEMO with openEAR fea-
tures in the two most important dimensions of its 2D PCA
space. Note that some data of all the classes is masked by
the classes NEU and POS in the center.
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Figure 4: Speaker-means of JEMO with openEAR features
in the first two dimensions of its 2D PCA space. Note that
some data of all the classes is masked by the classes NEU
and POS in the center.

Filter-based variable ranking is usually computationally af-
fordable, since often only a simple scoring function is com-
puted. However, it usually can not take into account the
interaction or correlation between features. At the same
time even ‘weak’ features may add considerably in a com-
pound and should thus not be discarded by choosing only
individually high ranked candidates. Wrappers utilize a
data-driven learnt classifier’s minimal error as target func-
tion — consequently they are time-consuming once more
complex algorithms are chosen. Usually, one would like to
have the later target classifier also employed in the selection
process to avoid biases. In this paper we provide results
with a wrapper method, namely Sequential Forward Float-
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Figure 5: Speaker-means of class ANG in JEMO and CIN-
EMO in the feature-space of MeanEnergy and MeanPitch.
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Figure 6: Speaker-means of class POS in JEMO and CIN-
EMO in the feature-space of MeanEnergy and MeanPitch.

ing Search (SFFES) and alternatives that are computationally
less ‘expensive’.

5.1. Improving feature selection with set-similarity

based heuristics

LetY = {y; : 1 <i < D} denote a set of available features
and X = {x; : 1 < i < k,z; € Y} a subset of features.
The named wrapper-methods do feature selection by running
a real test on the subset X. In our case this test is always
a 10-fold speaker independent (Spl) cross-validation (CV).
As described, the worth is evaluated by a measure — in our
case recognition rate — and the result of this evaluation is
denoted by J(X), i.e. J is our criterion function.

Feature selection can usually be considered as a tree-search,
especially when the branch and bound method (B&B) is
considered (Somol et al., 2004). Since we consider forward
selection, our tree is reverted compared to B&B: the root
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node represents the empty set and the child nodes of a parent
represent all possible extensions of the parent’s feature-set
with one new feature. The root node has D children, and the
number of children is exactly D — k on level k.

As in (Somol et al., 1999), the forward step — the Sequential
Forward Search (SFS) — is similar to a breadth-first search
on this tree with the rule that on each level only the optimal
child is selected while all others are pruned. In addition,
there is a backward step, in which a feature is removed,
if a better feature-set is obtained measured by the defined
optimization criterion than the so far optimal one on that
level.

Feature selection can also be considered as a global opti-
mization task, and the forward step can be considered as
exploitation and the backward step as exploration. In global
optimization the balance of exploration and exploitation is
important: without the backward step, SFFS would be too
greedy: it would too easily be stuck in local optimums. How-
ever, what we will show in the ongoing is that the backward
step is strong enough to make the forward step more greedy.
At a certain level k, SFFS tests all the D — k nodes and takes
the best. A more greedy algorithm would be more similar to
a depth-first search, meaning that we take the first child with
a positive gain. This way exploitation is made faster, which
however, increases the danger to stick to a local optimum.
Nevertheless, our claim is that in our field of application,
the backward step is strong enough to handle this.

A further improvement was made to order the new feature
candidates according to the expectation of their significance.
To estimate the gain achievable by adding a certain feature
z to the set of features X, we use the known history of
our search tree: we take the most similar case, when x
was added to a feature set X’. We will call the gain for
x the significance of z: S(z, X), which is similar to the
notation of (Somol et al., 1999). The estimated significance
is denoted as S’ (z, X).

Similarity of two sets may be measured in many ways, one
of the most frequently used measures is Jaccard similarity,
which we decided for. This means that estimated signifi-
cance is computed as follows:

Sz, X) = J(X* U {z}) — J(X*) :

X* = argmax(Jaccard(X, X)) €))

where Jaccard() is the Jaccard set similarity measure. In-
stead of argmax, other functions may be used, like for ex-
ample a weighted sum with exponentially decaying weights.
In the backward step of SFFS we keep the breadth-first
manner of the algorithm, since a strong exploration is needed
to avoid local minima. However, not a full breadth search is
done, only a certain percentage p of the ordered candidates
are tested. Candidates are ordered in increasing order of
estimated significance, so that we try to remove first the
most insignificant features. We applied p=20 % of breadth
search, which proved to be sufficient in our case.

We name our introduced method “SFFS with Set-Similarity
Heuristics” (SFFS-SSH). This proposed algorithm has only
one parameter to be tuned: p. Note that the computational
overhead of our heuristics is negligible compared to a 10-
fold CV test on a corpus. Thus, the running time of the



[#it. /RR | SFES [ SFFS-SSH [ allfeat. |
LIMSI | 28382/53.4% | 6394/52.4% | —/54.6%
openEAR | 28126/58.5% | 4742/58.8% | —159.6%

Table 6: Number of iterations and Recognition Rate (RR)
using the best 24 selected features on the united CINEMO
and JEMO corpus with conventional SFFS in comparison to
our suggested efficient modification (SFFS-SSH).

[ RR [24L. [240. [allL. [allO. |
CINEMO [ 493% [ 56.6% | 485% | 53.8%
JEMO 63.7% | 67.9% | 61.6% | 64.2%
Female | 64.6% | 645% | 59.5% | 62.6%
Male 53.0% | 56.6% | 499.5% | 57.0%

Table 7: Recognition Rate (RR) with the best 24 selected
features, and all features. Abbreviations: openEAR (O.),
LIMSI-features (L.)

algorithm depends mainly on the number of iterations, which
we expect to decrease significantly.

In the following experiments we trained the data set using
LIBSVM (Chih-Chung Chang and Lin, 2001) with a ra-
dial basis function kernel. As stated earlier, we use 10-fold
speaker independent cross-validation, designed in our lab.
In short this means that speakers are divided into folds, in-
stead of partitioning merely taking instances without speaker
assignment into account, thus maintaining speaker indepen-
dence, while being able to run a 10-fold CV with all its
benefits as being able to use a complete (sparse) data set for
testing and introduce variance in the evaluative runs.

Table 6 shows the results with a fixed number of 24 features.
As can be seen, selecting 24 features does not improve the
result. The explanation for this is that the united corpus is
sufficiently large to avoid over-training. It can further be
seen that SFFS-SSH provides similar good feature-selection
at considerably lower number of iterations. Thus the first
test of our method was successful, which is why we will
exclusively apply SFFS-SSH in the ongoing.

Table 7 shows the recognition rate (RR) for the various sub-
corpora with SFFS-SSH with the number of features fixed
to 24.

There is a more significant difference in RR between CIN-
EMO and JEMO than between the female and male sub-
corpora for both libraries (openEAR and LIMSI) and also
for the selected features and the total set of features.

Table 8 next shows the recognition rate (RR) for the various
sub-corpora with SFFS-SSH with the optimal number of
features.

| RR/# features | LIMSI | Openear |
CINEMO 55.7%129 | 58.2% /36
JEMO 65.8% /43 | 7122% /43

Table 8: Recognition Rate (RR) and number of features of
the best selected feature set
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[LIMSI

\ MFCC \ Pitch \ Energy \ ZCR ‘

CINEMO | 21 0 2 1
JEMO 21 0 2 1
Female 17 3 3 1
Male 17 5 2 0

Table 9: Frequency of different feature groups in the 24
selected LIMSI features.

’ openEAR \ MECC \ Pitch \ Energy \ Zrc ‘

CINEMO | 12 0 6 1
JEMO 11 5 2 0
Female 10 3 3 4
Male 6 1 8 0

Table 10: Frequency of different feature groups in the 24
selected openEAR features. Note that if features are missing
to sum up to 24, they are of other kind than the considered
ones.

As seen in the table, some percent of improvement can
be achieved with a significantly higher number of features.
Interestingly, the optimal number of features is higher for
JEMO with both feature-sets.

5.2. Ratio of feature groups in selected feature sets

Having established an efficient method for feature selection
we will next consider how it can be used for our primary aim
in this paper: in order to measure the differences between
sub-corpora, as a first attempt we have computed the ratio
of different feature groups for LIMSI and openEAR after
feature selection.

Tables 9 and 10 show the number of features in the different
features groups. Since the number of features is constantly
24, these correspond to ratios. There are considerably less
MFCC features used in openEAR in overall ratio, but more
corresponding to energy and other low-level descriptors, not
grouped here (cf. table 5).

The differences between female-male seems to be larger
than between CINEMO and JEMO. This contradicts the
difference in RR. Consequently, these numbers are important
but not detailed enough. We thus will next investigate further
measures.

Since CINEMO and JEMO in table 9 have exactly the same
ratios for each feature group, we repeated this experiment
with 48 features. This naturally demands for longer compu-
tation times, as SFFS is a forward selection. Thus, it would
have been desirable to reveal differences already at a low
dimension of the selected feature space. For quantitative
illustration we consider this experiment with the LIMSI set
on the CINEMO and JEMO corpora. Results are shown in
table 11.

Visibly, there is a slight difference in this case compared
to the smaller target set size, but results across corpora are
very similar. Comparing table 9 to table 11, we can only
see that more energy features have been selected, which
likely indicates their lower relevance, though used, if more
features are to be selected. Recognition rate is 64.6 % for



’ LIMSI \ MFCC \ Pitch \ Energy \ ZCR ‘
CINEMO | 32 1 13 2
JEMO 30 1 16 1

Table 11: Number of different feature groups in the 84
selected LIMSI features.

Similarity of features | LIMSI | openEAR
CINEMO-JEMO 0.5983 | 0.5903
Female—-Male 0.4907 | 0.4255

Table 12: Correlation-based similarity of the selected
feature-sets.

JEMO and 51.1 % for CINEMO, which resembles a slight
improvement.

This extended experiment did not bring us further — it just
confirmed previous results: we consider more features and
by that obtain slightly improved results in terms of recog-
nition rate, however, we still need tools for more detailed
analysis of the features.

5.3. Correlation based similarity of feature-sets

Having two feature sets from the same total set of features,
one would like to compare the two sets. To list the features
selected appears to have less practical applicability, since
there might be different features, which are similar. For
the same reason, a simple Jackard-similarity is also not
sufficient. Instead, measures of describing and comparing
feature-sets have to be developed.

One way to measure similarity of corresponding features
is the cross-correlation matrix. There is no way to define
a cross-correlation between the same features of the differ-
ent sub-corpora, like CINEMO and JEMO or female and
male, since the instances are independent. What can be
done, though, is to compute a cross-correlation for differ-
ent features over the united corpus, i. e. for CINEMO and
JEMO together. Moreover, we can define the similarity of
the selected feature-sets based on this. The similarity of
feature sets F' and F” is computed as follows:

sim(F, F") = aver{f € F : min{corr(f, f'): f' € F'}
2
Where “aver” is the average and “corr” the correlation com-
puted on the entire corpus. Since the measure “sim” is asym-
metrical, the average of sim(F, F') and sim(F’, F') was
taken. Note that this measure would not have any sense over
the totals of features (it would be 1) — it is only reasonable
in combination with feature selection.
In table 12 the similarity of sub-corpora can be seen mea-
sured by the similarity of the 24 selected features. As can
be seen, the similarity of CINEMO and JEMO in terms of
feature sets is higher than of female to male. This confirms
our finding in recognition rate.

5.4. Rank based similarity of feature-sets

It is not straight forward to derive an individual feature’s
relevance in the resulting feature-set. To obtain a sharpened
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’ Difference in feature ranks \ LIMSI \ openEAR ‘

CINEMO-JEMO 0.17 0.19
Female-Male 0.07 0.09

Table 13: Highets differences in feature ranks.

picture on this, one can use the first iteration of SFFS as a
feature ranking, as it considers each individual. Note that the
first iteration of SFFS and our SFFS-SSH is identical. The
rank of the feature is the result obtained using only that one
feature. One can do this not only for the selected features
but for the total set of features, i.e. 458 for LIMSI features
and 988 for openEAR in our case.

Table 13 shows the highest difference in feature ranks for
the same features. This measure shows that CINEMO and
JEMO is more different in this aspect than the female and
male sub-corpora. There is a consistently higher difference
for openEAR, the reason might be that results for openEAR
are better and the number of features is higher, which allows
for the maximum to be higher. The measure based on feature
ranks by that confirms the measure based on feature-groups.

6. Conclusions

We have seen four measures connected to feature selection
for measuring similarity of sub-corpora: similarity measures
based on recognition rate, groups of features, correlation
and feature-ranks. They support however two different kinds
of results: for recognition rate and correlation, the differ-
ence between female and male — which was considered as
comparative anchor — is higher than between CINEMO and
JEMO. On the other hand, measured in feature-groups and
feature-ranks, the difference between CINEMO and JEMO
is higher than the difference between female and male. Our
result indicates that several measures have to be used. The
four measures seem also to show that there might be at
least two aspects of difference: in one aspect female and
male are more different, in another the CINEMO and JEMO
sub-corpora are.

7. Future Work

For dimension reduction, future work may test other tech-
niques, especially so called cluster-preserving or similarity-
preserving transformations.

In the future several more measures shall be developed to
measure similarity of feature sets and corpora. Similar-
ity of feature sets and the importance of features might be
represented in a tree-like structure, which corresponds to
the tree-structure of feature selection and propagates some
measures of importance and similarity. This structure and
measure is however complex.

Our SFFS-SSH algorithm can also be further developed. For
example, instead of Jaccard-similarity a correlation based
similarity measure may be used not only after feature selec-
tion but already within feature selection.

The correlation-based similarity measure can also be im-
proved: for each feature currently we take only into ac-
count the most similar feature. A more complex measure
would add together all the similar features with a decreasing
weight.
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