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Abstract— This paper introduces a novel control approach
for teleoperation systems to achieve finite gain L2-stability
under communication unreliabilities. It is assumed that the
communication block satisfies a small gain condition, as for
example constant time delay and properly handled packet loss
do. The proposed approach, a generalization of the scattering
transformation, takes advantage of dissipative properties of
human arm, environment, and/or manipulator dynamics. It is
shown that transparency can be substantially improved com-
pared to the conventional scattering transformation approach.
Simulations and experimental results validate the proposed
approach.

I. INTRODUCTION

A teleoperation system allows the human to manipulate

in remote, inaccessible, dangerous, or scaled environments.

Audio, vision, and haptic data, are exchanged between a

human system interface and a teleoperator, see Fig. 1. From

a control point of view, the haptic control loop, where

motion and force data are exchanged between the master

and the slave manipulator, is very challenging as it is

closed over a communication network, e.g. the Internet.

The communication network introduces unreliabilities such

as (time-varying) time delay and packet loss, which do

not only distort the human haptic perception of the remote

environment but potentially destabilizing the overall system.

This paper focuses on finite gain L2-stability of a haptic

feedback system under such communication unreliabilities.

Over the past 20 years control approaches based on the

passivity framework and the scattering transformation have

been developed in order to stabilize a teleoperation system

in the presence of communication unreliabilities. Inspired

by power transmission lines, the scattering transformation is

proposed in [1] where arbitrary large constant time-delay

is addressed. The equivalent wave variables notation first

appears in [17]. The scattering transformation approach has

been extended to stabilize with packet loss, see e.g. [2], [7]

and with time-varying time delay [20]. The major reason

for the success of the passivity formalism in teleoperation

is that it can cope with the largely unknown, nonlinear

and time-varying human arm and environment dynamics,

which typically can assumed to be passive [11]. However, the

passivity framework is known to be conservative resulting in

a distorted display of the remote environment properties [9].

Relaxing the passivity conservatism by using knowledge on

the human dynamics is performed in [3] using a natural
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Fig. 1. Multimodal teleoperation system

admittance control (NAC) scheme. Stability analysis is per-

formed with a classical robust control framework, however,

without considering a teleoperation setup and communica-

tion unreliabilities. Gillespie in [6] models the human as a

second-order linear time-invariant system and proposes an

observer scheme. However, stability can be guaranteed only

for constant user impedances, which is known to be not

the case [18]. Moreover, the exploitation of the mechanical

properties of the environment can also greatly improve the

performance of the robotic system, see [5]. In summary, the

largely unknown and time-varying nature of human operator

and environment dynamics has continued to pose a challenge

for the design of guaranteed stable haptic systems.

The contribution of this paper - in contrast to existing

approaches - is the use of approximate knowledge of the

damping properties of the human arm, the controlled ma-

nipulators, and/or the environment for stabilizing control

design of a teleoperation system with communication un-

reliabilities. In fact, we can show that these subsystems are

QSR-dissipative [19], which will be exploited to the benefit

of transparency. The approach is based on the generalized

scattering transformation (GST) [10], [15], [16]. It applies

to QSR-dissipative systems, ensuring finite gain L2-stability

for arbitrary small gain network operators, e.g. constant time

delay or appropriately handled packet loss. A transparency

analysis of the proposed scheme for the constant delay

case shows improved performance, in terms of displayed

mechanical properties, compared to the standard scattering

transformation.

The remainder of the paper is organized as follows: in sec-

tion II the background for the dissipativity-based modeling

of our system, in section III, is presented. The generalized

scattering transformation is studied in section IV followed

by the corresponding transparency analysis in section V.

Experimental results are presented in section VI.
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II. DISSIPATIVITY THEORY BACKGROUND

Consider a system described by h : ẋ = f (x,u), y = h(x,u)
where x ∈ ℜn, u ∈ ℜp, y ∈ ℜq are the state, input and output

vectors respectively, and f (0,0) = h(0,0) = 0.

Definition 1: A dynamical system Σ : ẋ = f (x,u),
y = h(x,u) is called QSR-dissipative if there exist a positive

semi-definite function V : ℜn → ℜ+ such that for each

admissible u and each t ≥ 0

V (x(t))−V (x(0)) ≤
∫ t

0

[

u y
]T

P

[

u

y

]

dτ, (1)

with dissipativity matrix

P =

[

Q S

ST R

]

where Q ∈ ℜp×p, Q ∈ ℜq×q and S ∈ ℜp×q. For the ease

of notation the dependencies of u, y from time τ are not

explicitly written.

Input-feedforward-output-feedback passive systems

(IF-OFP), a subclass of QSR-dissipative systems with

u,y ∈ ℜp, are represented by the choice

P =

[

−δ I 1
2
I

1
2
I −εI

]

,

δ ,ε ∈ℜ, and I the unity matrix. The system is called lossless

if δ = ε = 0, output-feedback strictly passive (OFP(ε)) if

δ = 0 and ε > 0, and input-feedforward strictly passive

(IFP(δ )) if δ > 0 and ε = 0. If one or both of the values

δ , ε are negative, then there is a shortage of passivity.

Feedback interconnected IFP and OFP systems still exhibit

IF-OFP properties as shown below.

Lemma 1: The negative feedback interconnection of

OFP(ε1) system Σ1 with IFP(δ2) system Σ2 is OFP(ε1 +δ2).

Proof : The system Σ1 is OFP(ε1) thus

V1(x(t))−V1(x(0)) ≤
∫ t

0
uT

1 y1 − ε1yT
1 y1 dτ,

whereas for the IFP(δ2) system Σ2

V2(x(t))−V2(x(0)) ≤
∫ t

0
uT

2 y2 −δ2uT
2 u2 dτ,

holds, where u1, u2 and y1, y2 are the respective inputs and

outputs, see Fig. 2(a). For the negative feedback interconnec-

tion of those two systems considering the compound storage

function V = V1 +V2 gives

V (x(t))−V (x(0)) ≤ ∫ t
0 uT

1 y1 − ε1yT
1 y1 +uT

2 y2 −δ2uT
2 u2 dτ

=
∫ t

0(e1 − y2)
T y1 − ε1yT

1 y1 + yT
1 y2 −δ2yT

1 y1 dτ

=
∫ t

0 eT
1 y1 − (ε1 +δ2)y

T
1 y1 dτ.

where u1 = e1 − y2, e1 being the input to the overall system,

and u2 = y1 hold. The output of the overall system is y1.

Lemma 2: Consider the IFP(δ1) system Σ1 and the

OFP(ε2) system Σ2 with δ1 ≥ 0 and δ1 +ε2 ≥ 0. The negative

feedback interconnection of Σ1 and Σ2 is IFP(κ) with

κ = min(δ1,δ1 + ε2).

(a) (b)

Fig. 2. (a) Negative feedback interconnection of systems Σ1 and Σ2. (b)
Nonlinear time-varying damping with lower bound dmin.

Proof : The compound storage function gives

V (x(t))−V (x(0)) ≤ ∫ t
0 eT

1 y1 +

[

e1

y2

]T

W

[

e1

y2

]

dτ

≤ ∫ t
0 eT

1 y1 +λmax(W )

[

e1

y2

]T [

e1

y2

]

dτ,

with

W =

[

−δ1I 2δ1I

0 −(δ1 + ε2)I

]

.

As λmax(W ) = −κ ≤ 0

V (x(t))−V (x(0)) ≤ ∫ t
0 eT

1 y1 −κeT
1 e1 −κyT

2 y2 dτ
≤ ∫ t

0 eT
1 y1 −κeT

1 e1 dτ,

holds. Thus, the system is IFP(κ).

Among the variety of stability notions we consider finite

gain L2-stability in this paper, which is another special

case of quadratic dissipativity with S = 0, R = I, Q = −γ2I,

γ ∈ R+.

Definition 2: [13] A dynamical system Σ : U →Y , with

U ⊂ L m
2e representing the admissible input space and Y

accordingly the output space is called finite gain L2-stable

if there exists a constant γ ∈ ℜ such that for each u ∈U and

each t ∈ [0,∞)
∫ t

0
y2 dτ ≤ γ

∫ t

0
u2 dτ. (2)

The smallest possible value γ satisfying (2) is called the

L2-gain of the system. An operator σ : u(·) 7→ y(·) with

u,y ∈ ℜp the input and output respectively is called small

gain operator if its L2-gain satisfies γσ ≤ 1.

Finite gain L2-stability of a negative feedback intercon-

nection can be concluded from the IF-OFP properties of its

subsystems.

Proposition 1: [13] Consider two IF-OFP systems Σ1 and

Σ2 with δi, εi, i∈ 1,2. The negative feedback interconnection

of Σ1 and Σ2 is finite gain L2-stable if

ε2 +δ1 > 0 and ε1 +δ2 > 0.

III. MODELING OF TELEOPERATION SYSTEM

In this paper we study a velocity-force teleoperation ar-

chitecture. We assume that all the subsystems, human, envi-

ronment, and manipulators, can be represented as dynamical

systems in Cartesian space; for simplicity we consider only

translation here. Hence, each subsystem is represented by the

general structure

Mẍ(t)+D(x, ẋ, t)+Kx(t) = f (t), (3)
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where x ∈ ℜn is the position vector in the Cartesian space,

f ∈ ℜn is the Cartesian force, M ∈ ℜn×n and K ∈ ℜn×n

are the diagonal and positive-definite inertia and stiffness

matrices, respectively. The components Di(x, ẋ, t) of the

damping term D(x, ẋ, t) = diag{Di(x, ẋ, t)} are assumed to be

continuous, potentially time-varying and nonlinear functions

for which D(x, ẋ, t) ≥ dminẋ, with dmin ≥ 0, holds componen-

twise and accounts for viscous damping, see Fig. 2(b) for a

visualization in the 1-DoF case.

Recent works [3], [18], suggest that actual human arm

endpoint characteristics are close to second-order; many non-

actuated mechanical structures also have second-order struc-

ture. Note that for our approach we only have to assume that

human and environment can be represented by a second order

structure (3), however, without knowledge of the specific

values of M, D(·), and K. Only knowledge on the lower

bound of the damping represented by dh
min ≥ 0 and de

min ≥ 0

are required for human and environment.

For the controlled manipulators an impedance/admittance

control scheme is considered; it can be used to render

a desired dynamics or to achieve a certain compliant

behavior to avoid contact instability, see e.g [12]. The

impedance/admittance controlled manipulators, master and

slave, are assumed articulated robots with position control

in joint space and cartesian impedance. The joint controllers

are assumed high gain; gravity and external forces are

compensated, therefore the internal position loop dynamics

can assumed to be negligible. The desired behavior is then

achieved by implementing admittances in the form of simple

mass-spring-damper system with linear time-invariant inertia,

damping and stiffness matrices. The resulting master and

slave dynamics is

f ∗m + f ∗h − fh = Mmẍm +Dmẋm, (4)

fe = Msẍs +Dsẋs +Ksxs (5)

where Di the damping, Mi inertia, Ki stiffness, xi positions,

and i = {m,s} subscripts indicate master and slave, respec-

tively. The human and environmental forces are represented

by fh and fe, respectively, whereas f ∗m is the force-feedback

term and f ∗h the voluntarily applied force. The system

structure is illustrated in Fig. 3. The blocks Ξ and Ξ−1 are

explained in the next section.

With appropriate choice of the input/output pair the

model (3) is input-feedforward-output-feedback passive

(IF-OFP) system. Consider for example the force f as input,

the velocity ẋ as output, and the following storage function

V =
1

2
ẋT Mẋ+

1

2
xT Kx, (6)

representing the kinetic and potential energy. Taking the

derivative of it and integrating it follows

V (x(t))−V (x(0)) =
∫ t

0
(Mẍ+Kx)T ẋdτ =

=
∫ t

0
( f −D(x, ẋ,τ))T ẋdτ ≤

∫ t

0
f T ẋ−dminẋT ẋdτ

The system is, hence, shown to be OFP(dmin) with the

input/output pair force/velocity and dmin = ε ≥ 0. Similarly,

Fig. 3. Teleoperation system with time delay and generalized scattering
transformation

the system can be shown to be IFP(δ ) with input ẋ, output f ,

and storage function (6)

V (x(t))−V (x(0)) ≤
∫ t

0
ẋT f −dminẋT ẋdτ,

dmin = δ ≥ 0.

Remark 1: For all subsystems, i.e. human, environment,

and master and slave manipulator, knowledge of the lower

sector bound of the damping force term D(x, ẋ, t) of the

system (3) is sufficient to guarantee IF-OFP properties. The

inertia M and stiffness K components can be unknown as

long as it can be shown that the subsystem has a second

order structure as (3).

Remark 2: In case, where the bound of the damping force

term D(x, ẋ, t) of the system (3) is unknown, the analysis is

reduced to the case of simply passive systems as performed

in [1].

It is straightforward to see that that the systems (4) and (5)

are subcases of the dynamics in (3) and the controlled

manipulators are, hence, OFP(εm) and OFP(εs), respectively,

with εm = λmin(Dm) and εs = λmin(Ds) being the smallest

eigenvalues of the damping matrices. Accordingly with the

choice of ẋm as input and fh as output, the human arm

is IFP(δh) with δh = dh
min. Similarly with input ẋ∗s − ẋs and

output fe, the environment is IFP(δe) with δe = de
min.

In Fig. 3, the feedback interconnection structure of the

considered velocity-force architecture is illustrated. A small

gain network operator represents the communication unreli-

ability in the forward and feedback path, it can be constant,

arbitrarily large time delay as visualized in Fig. 3.

Proposition 2: The negative feedback interconnection of

the lefthand subsystem Σl in Fig. 3, with f ∗m + f ∗h as input

and ẋm as output is OFP(εl) with εl = εm +δh ≥ 0. Similarly,

the negative feedback interconnection of the righthand sub-

system Σr, with ẋ∗s as input and fe as output is IFP(δr) with

δr = min(δe,δe + εs).

Proof: Straightforward from Lemma 1 and Lemma 2.

In general, from now on we consider the networked

interconnection of an OFP(εl) and an IFP(δr) system with

εl ,δr > 0 with

Pl =

[

0 1
2
I

1
2
I −εlI

]

, Pr =

[

−δrI
1
2
I

1
2
I 0

]

their corresponding dissipativity matrices.
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Remark 3: Straightforwardly, this analysis can be carried

out for other teleoperation architectures, e.g. the force-

velocity architecture.

IV. GENERALIZED SCATTERING

TRANSFORMATION

The generalized scattering transformation is a linear in-

put/output transformation to guarantee stability in presence

of any small gain operator in the communication loop and

it is represented by the matrix Ξ in Fig. 3. Instead of the

lefthand output variable ẋm the variable ul is transmitted.
[

ul

υl

]

= Ξ

[

ẋm

f ∗m

]

.

Analogously, υr is transmitted instead of fe where
[

ur

υr

]

= Ξ

[

ẋ∗s
fe

]

.

The ur and υl are the output of the network operator

for the forward and backward channel, respectively. The

transformation is parametrized using a rotation matrix R and

a scaling matrix B

Ξ = R ·B =

[

cosθ I sinθ I

−sinθ I cosθ I

][

b11I 0

0 b22I

]

(7)

where I represents the n × n unity matrix, detB 6= 0 and

θ ∈ [−π
2
, π

2
]. The choice of the transformation angle θ

is based on the IFP- and OFP-properties of each side,

b11,b22 > 0 represent free tuning parameters.

Proposition 3: [10] Assume a system consisting of the

networked negative feedback interconnection of an OFP(εl)

and an IFP(δr) system with εl , δr > 0, the bidirectional com-

munication channel and the input-output transformation (7).

Finite gain L2-stability is ensured for any small gain operator

in the network if and only if for each B the rotation matrix

parameter θ ∈ [θl ,θr]. Here θl and θr are one of the two

solutions of

cot2θi = εBi
−δBi

, i ∈ {l,r} (8)

which simultaneously satisfy

a(θi) = sinθi cosθi −δBi
cos2 θi − εBi

sin2 θi ≥ 0, (9)

εBi
and δBi

are given by the matrix PBi

PBi
=

[

−δBi
I 1

2
I

1
2
I −εBi

I

]

= B−T PiB
−1 =

=

[

−b2
22δiI − 1

2
b11b22I

− 1
2
b11b22I −b2

11εiI

]

, i ∈ {l,r}. (10)

Hence, instead of choosing θ = 45◦ and b11 =
√

b, b22 = 1√
b
,

as for standard scattering transformation [1], here θ can be

chosen out of an interval.

Remark 4: Finite gain L2-stability of the whole system is

guaranteed for any small gain operator in the communication

loop. It is straightforward to see that this applies not only to

arbitrarily large constant time delay, which has a L2-gain

γD = 1, but also for time-varying delay [4] and properly

handled packet loss [2], [7], as the passivity-preserving

algorithms presented have a L2-gain γP ≤ 1.

V. TRANSPARENCY ANALYSIS

Transparency is the ability of the teleoperation system to

present the undistorted dynamics of the environment to the

human. As a result the human feels like “being” on the

remote side and directly interacting with the environment.

Modeling the real environment as a mechanical linear time-

invariant impedance Ze(s) and the impedance displayed to

the human Zh(s), transparency is achieved if [14]

Zh(s) = Ze(s),

where s is a complex variable, representing the Laplace

domain; it will be omitted when not needed.

In practice, perfectly transparent teleoperation is difficult

to achieve. The interesting question is the degree of trans-

parency that is possible on a teleoperation system. Ignoring

the controller dynamics and robot compliance we investigate

in this section the case of constant time delay. The displayed

impedance can be computed based on the environment

impedance and the generalized scattering transformation

according to

Zh =
ξ21 −ξ11Re−sT

−ξ22 +ξ12Re−sT
, R =

ξ21 +ξ22Ze

ξ11 +ξ12Ze

, (11)

where T = T1 +T2 the round trip time delay and

Ξ =

[

ξ11 ξ12

ξ21 ξ22

]

.

In order to analyze and compare different impedances

a Padé approximation will be used for the time-delay,

which is, however, only valid for low frequencies, i.e.

e−sT ≈ (1− T
2

s) · (1+ T
2

s)−1 for ω < 1
3T

. The teleoperator

dynamics are ignored for simplicity. The transformation

angle is limited to θ ∈ [0, π
2
].

The displayed impedance in case of an environment with

a spring and a damper Ze = ke
s

+be is approximated for low

frequencies by (11) as

ZLF
h |

Ze=
ke
s +be

=
γ ke

s
+bh +mhs

1+ γ(T
2
− b22

b11
T besinθcosθ)s

(12)

with γ = 1
1+T kesinθcosθ , bh = γ(be + T

2
ke(sin2θ − cos2θ)),

mh = γ( b11
b22

T sinθcosθ + T
2

be(sin2θ − cos2θ)) and
b11
b22

> 2besinθcosθ ; the latter resulting from the requirement

on stable transfer functions in the approximation. The

denominator of (12) can be shown to be a low pass filter

which in the worst case, i.e. θ = 0◦ or θ = 90◦, has a

cut-off frequency 2
T

> 1
3T

, therefore, it can be ignored. The

resulting displayed impedance is then

ZLF
h |

Ze=
ke
s +be

= γ
ke

s
+bh +mhs (13)

Similarly, it can be shown that for free space motion an in-

ertia linearly increasing with the time delay is approximately

displayed

mh ≈
b11

b22
T sinθ cosθ . (14)

The computation is straightforward from (11) with Ze = 0.
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Fig. 4. Displayed stiffness kh depending on rotation angle θ , environment
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By (13) and (14) it can be derived that the scaling matrix

alters the performance of the system in a similar way the

characteristic impedance configures the performance of the

scattering transformation architecture, cf. [8]. Considering

the low frequency approximation, a small factor
b11
b22

will

avoid large inertia in free space movement whereas a large

one is required to display high stiffness. Moreover, it can

be seen in (8), (9) and (10) that the choice of the scaling

components influences the region [θl ,θr] that finite gain L2-

stability can be guaranteed. An increasing factor
b11
b22

will

allow for lower θl whereas if
b11
b22

is decreased, the interval

[θl ,θr] is increasing from the righthandside, i.e. higher θr.

In order to exemplarily compare the standard scattering

transformation with the generalized scattering transforma-

tion we choose the scaling components of the generalized

scattering transformation such that the displayed inertia in

free space (14) is the same as for the standard scattering

transformation, namely
b11
b22

= b
2sinθ cosθ . The approximated

displayed stiffness kh is then compared for the two methods,

see Fig. 4, and it is seen that the stiffness of the generalized

scattering transformation outperforms the one displayed by

the conventional scattering transformation approach, i.e. for

θ = 45◦ and the choice b = 1. The bigger the deviation from

the 45◦ the larger the improvement in terms of displayed

stiffness, however, the damping properties are slightly dis-

torted (13).

The proposed approach is demonstrated in simula-

tion for a teleoperation velocity-force control scheme

with a linear time-invariant spring-damper environment

Ze = 300
s

+30, hence δr = δe = 30, and negligible slave dy-

namics. The lefthandside system is considered OFP(εl) with

εl = 10 resulting from either the human or master dynamics’

minimum damping. The two systems result in dissipativity

matrices Pr =

[

−30 1/2

1/2 0

]

and Pl =

[

0 1/2

1/2 −10

]

. For

comparison reasons a characteristic impedance b = 1 is

chosen for the scattering transformation and the generalized

scattering transformation is tuned with scaling components,

b11 =
√

b = 1 and b22 = 2b11 sinθ cosθ
b

such that in free

space both methods display same inertia. The time delay

is T1 = T2 = 50ms and the resulting system is according to

Prop. 3 delay-independently stable for all θ ∈ [3◦,87◦]. In

Fig. 5 we observe, that the generalized scattering transfor-

mation outperforms the standard scattering transformation.

Particularly for the case where θ = {30◦,60◦} a stiffness of
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Fig. 5. Displayed impedance comparison in contact with the environment,
Ze = 300

s
+30.

45.7 N/m is displayed, whereas if θ = {10◦,80◦} a stiffness

kh = {164.4,166.3} N/ms displayed. This by far closer to

the real environment stiffness of ke = 300 N/m than the

scattering transformation which displays only 35.5 N/m, see

Fig. 5. The structural difference between the two symmetric

choices θ = π
4
±∆, ∆∈ [0, π

4
] is currently under investigation.

VI. EXPERIMENTAL EVALUATION

The goal of this section is to validate the proposed

approach in an experiment. A human interacts with a virtual

environment using a teleoperation system over a communi-

cation channel, and the displayed impedance is computed

to evaluate the approach. The experimental testbed consists

of two tubular linear motors, Thrusttube 2510 from Copley

Controls Corp., shown in Fig. 6, two force sensors from

Burster Corp. and a PC. Each linear motor is able to display

peak forces of up to 780 N and 104.3 N of continuous

stall forces and is connected to a digital servo drive Xenus

XTL, again from Copley Controls Corp. The digital servo is

operated in current control, thus, we can consider the signal

input to be approximately proportional to the applied motor

force. The position is measured by an optical incremental

encoder with a precision of 1µm. The whole haptic interface

is controlled from a PC running a real time Linux operating

system. The digital servo is connected to the PC through a

Sensoray I/O card. All the control functions are implemented

by Simulink blocksets including friction compensation and

velocity computation. The applied sampling rate of the haptic

signals and the local control loops is 1000Hz.

A virtual linear time-invariant spring-damper environment

Ze = 300
s

+30, i.e. de
min = 30. A position-based admittance

control scheme was used, with master impedance

Zm = 3s+10. Therefore, a lower master damping

εm = dm
min = 10 could be guaranteed to experimentally

test the algorithm. The scaling parameters were chosen such

that the free-space motion displayed dynamics are similar

in both methods, b = 70, b11 =
√

70, b22 = 2b11 sinθ cosθ
b

and resulted in θl = 2◦ and θr = 55◦. The proposed

scheme was tested initially with an angle θ = 52◦. The

2795



network

environment

HSIhuman

teleoperator

Fig. 6. Experimental setup

0 5000 10000

0

0.2

0.4

P
o

s
it
io

n
 (

m
)

Time (ms)

Generalized Scattering Transformation

 

 Master

Slave

0 5000 10000

0

50

100

F
o

rc
e

 (
N

)

Time (ms)

 

 

0 5000 10000

0

0.2

0.4

P
o

s
it
io

n
 (

m
)

Time (ms)

Scattering Transformation

 

 

0 5000 10000

0

50

100

F
o

rc
e

 (
N

)

Time (ms)

 

 

Fig. 7. Position and force tracking

time delay was 50ms in both channels. The system was

stable throughout the experiment. The displayed impedance

is identified, using a least-square identification. For the

generalized scattering transformation a displayed impedance

of kh = 245 N/m, bh = 31 Ns/m is identified, which is

slightly improved compared to the displayed stiffness of

the scattering transformation, kh = 228 N/m, bh = 26 Ns/m.

Starting oscillations did not allow for further increase

of θ . For θ = 11◦ the position and force signals are

illustrated in Fig. 7. The displayed impedance was again

identified, for the generalized scattering transformation

kh = 302 N/m, bh = 1.1 Ns/m obviously outperforming

compared to the displayed stiffness achieved with the

scattering transformation. Experiments showed that, the

closer to the marginal condition, i.e. θl = 2◦, the system was

tuned, the more the system compensated its extra damping

for a higher displayed stiffness, see (13).

VII. CONCLUSIONS

In this paper, approximate knowledge on the damping of

the human, the environment or/and the controlled manipula-

tors of a teleoperation scheme is used in order to improve

the performance. The subsystems can then be shown to be

modeled as IF-OFP systems, a subclass of QSR-dissipative

systems. This allows the application of the generalized scat-

tering transformation guaranteeing finite gain L2-stability

for all small gain operators in the communication loop.

Transparency analysis for the constant time delay case shows

the superior performance of the proposed approach. The

proposed approach is validated in simulation studies and

experiments on a 1-DoF teleoperation system.
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