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Abstract—In this paper, we analyze sampling approximations of
stable linear time-invariant systems for input signals in the Paley-
Wiener space � . The goal is to approximate a transform
by using only the samples of the signal , which do not neces-
sarily have to be equidistant. We completely characterize the stable
linear time-invariant (LTI) systems and sampling patterns for
which the approximation process converges to for all signals
in � . Furthermore, we prove that for every complete inter-
polating sequence there exist a stable LTI system and a signal in

� for which the approximation error increases unboundedly
as the number of samples that are used for the approximation is
increased. This shows that a more flexible choice of the sampling
points instead of equidistant sampling, where such a divergence
behavior is known to exist, is not sufficient to overcome the di-
vergence. Thus, sampling based signal processing has fundamental
limits. The calculations further indicate that oversampling cannot
resolve the convergence problems.

Index Terms—Approximation, complete interpolating sequence,
Paley–Wiener space, sampling series, stable linear time-invariant
system.

I. INTRODUCTION AND NOTATION

O NE reason for the success of digital signal processing
lies in the fact that certain bandlimited signals are com-

pletely determined by their samples and that they can be per-
fectly reconstructed from these samples. The Shannon sampling
theorem [1] was the starting point for many further develop-
ments in sampling theory. However, also in other disciplines
than signal processing, sampling theory is an appreciated tool.
In his “Lectures on Computation” [2], Feynman discusses the
theoretical foundations and concepts of classical and quantum
computation. One important step in his argumentation is the
transition from the continuous-time domain to the discrete-time
domain and the Shannon sampling theorem is the theoretical
basis, which creates the link between both domains. He dis-
cusses the problem of transmitting a function of time and writes
in this context: “Consideration of such a problem will bring us
on to consider the famous Sampling Theorem, another baby of
Claude Shannon” [2, p. 132]. Besides the importance in signal
processing and communication theory [1], the reconstruction of
bandlimited continuous-time signals from their samples by the
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Shannon sampling series is also essential for other applications
and theoretical concepts [3]–[5]. The reconstruction of non-ban-
dlimited signals, which was analyzed, for example, in [6] and
[7], will not be considered in this paper. For a general overview
of sampling theorems, see [3], [8], and [9].

Often, the interest is not in the signal itself but in some pro-
cessed version of it. This might be the derivative, the Hilbert
transform or the result of any other stable linear system . Thus,
the goal is to approximate the desired transform of a signal

by an approximation process, which uses only finitely many,
not necessarily equidistant samples of the signal . Exactly as
in the case of signal reconstruction, the convergence behavior
is important for practical applications. In [10], Habib derived a
sampling representation for a certain class of stable linear sys-
tems acting on signals which are bandlimited in the sense of
Zakai [11]. However, important systems like the Hilbert trans-
form and the ideal low-pass filter do not belong to this class.

One possible application for this sampling-based signal pro-
cessing approach is in sensor networks. In a sensor network, a
large number of sensors is used to monitor some physical quan-
tity, e.g., temperature or electric field intensity. This physical
quantity varies continuously in space and thus, can be viewed as
a signal in space. In general, the sensors are placed non-equidis-
tantly according to the given spacial settings. Thus, in sampling
theoretic terminology, the sensors perform a non-equidistant
sampling of the signal. At the fusion center, where the data from
all sensors is gathered, the task is to reconstruct the signal or, in
the case where the signal is further processed, to approximate
some transformation of this signal by using only the samples of
the signal, which are produced by the sensors.

The sensor network example shows that non-equidistant sam-
pling patterns are important, in particular for practical applica-
tions. However, also in other applications, non-equidistant sam-
pling patterns arise quite naturally from the problem setting.
For example, it has been shown that bandlimited signals that
are bounded and real on the real axis are uniquely determined
by their sine wave crossings if the peak value of the signal is
smaller than the amplitude of the sine wave [12]–[14]. In this
case, the sine wave crossings are all real [15] and the set of sine
wave crossings constitutes a possible non-equidistant sampling
pattern.

In order to continue, we need some notation and definitions.
, denotes the space of all to the power

Lebesgue integrable functions on , with the usual norm
and the space of all functions for which the essential
supremum norm is finite. is the Lebesgue measure.
Furthermore, , is the space of all sequences such
that the -norm is finite. denotes the space of
all continuous functions on and the space of
all infinitely differentiable functions on whose support is in

. Further, let denote the Fourier transform of a function
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. For functions in the Fourier transform is defined in the
classical sense, according to

for functions in as the limit of
in , and for

functions in , in the distributional sense.
For and we denote by
the Paley-Wiener space of signals with a representa-
tion , for some

. If then . The
norm for , is given by

.
Since our analyses involve stable linear time-invariant (LTI)

systems, we briefly review some definitions and facts.
A linear system ,
is called stable if the operator is bounded, i.e., if

. Furthermore, it is

called time-invariant if for all
and .

Remark 1: Note that our definition of stability is with re-
spect to the -norm and thus is different from the concept
of bounded input—bounded output stability.

For every stable LTI system there exists
exactly one function such that

(1)

for all . Conversely, every function
defines a stable LTI system . The operator
norm of a stable LTI system is given by .
Furthermore, it can be shown that the representation (1) with

is also valid for all stable LTI systems
. Therefore, every stable LTI system that maps

in maps in , and vice versa. Note that
and consequently .

II. MOTIVATION AND OUTLINE

The discussion in Section I has shown that, in addition to the
pure signal reconstruction problem, it is often also important
to realize signal processing algorithms. In the sensor network
example, for example, the peak value and the dynamics of the
physical quantity, i.e., the signal, might be of interest. While the
peak value of the signal can be determined in principle from the
reconstruction of signal itself, the dynamics requires the com-
putation of the derivative of the signal. Since many signal pro-
cessing algorithms on bandlimited signals, like the computation
of the derivative, are stable LTI systems, the system approxima-
tion problem is important. In this paper, we analyze the system
approximation problem for stable LTI systems and signals in

, i.e., we analyze sampling type approximation processes
for the output of stable LTI systems and
signals in the space .

The results for the Paley–Wiener space are interesting
because the space is the largest space in the scale of

Paley–Wiener spaces. In particular, it is larger than the intensely
studied space of bandlimited signals with finite -norm.
Although it is still smaller than the important space of bandlim-
ited signals that are bounded on the real axis, the results for

can be seen as a step from the small space towards
the larger space of bounded bandlimited signals.

Further, the convergence theory of sampling series for the
space is closely connected with the mean-square conver-
gence theory of sampling series for bandlimited wide-sense sta-
tionary process [16].

In [17], the convergence behavior of approximation processes
that use equidistant samples, taken at or above Nyquist rate, was
analyzed. Among other things it was shown that there exists a
stable LTI system and a signal such that

i.e., the peak value of the approximation error grows arbitrarily
large. In particular the peak value and the derivative that were
discussed above cannot be determined from the samples in this
setting.

In this paper, we go one step further and consider more flex-
ible sampling patterns [18]. By using non-equidistant sampling,
an additional degree of freedom is created, which may help to
improve the convergence behavior. We will analyze whether
this additional degree of freedom can be exploited to construct
approximation processes that are convergent for all signals in

and all stable LTI systems. More precisely, we analyze
the convergence behavior of the sampling series

(2)

where is a stable LTI system,
, are reconstruction functions and is a signal in

.
The paper is organized as follows. In Section III, we present

the fundamentals of non-equidistant sampling. In particular,
we characterize meaningful sampling patterns and discuss the
convergence behavior of (2) for signals in . Finally, in
Section IV, we completely characterize the cases where (2)
converges to for all and the cases where (2)
diverges for some . Moreover, we prove the existence
of a stable LTI system and a signal for which
(2) diverges. This shows that there are fundamental limits in
sampling based signal processing. In Section V, we discuss
the results and present open problems. We conjecture that
oversampling itself cannot resolve the convergence problems.
Only oversampling in combination with more general sampling
functionals may achieve a uniformly convergent approximation
process.

III. FUNDAMENTALS OF NON-EQUIDISTANT SAMPLING

A. Complete Interpolating Sequences

In this section, we study some fundamentals of non-equidis-
tant sampling. Throughout the paper, we assume that the
sampling points , are real and that the sequence
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of sampling points is ordered strictly increasingly.
Moreover, without loss of generality, we assume that if

.
Although some of the theorems below are also valid for gen-

eral complex sampling point sequences, we restrict our presen-
tation to sequences of real sampling points that are strictly in-
creasing.

Moreover, for our analysis, we require the sampling points
to fulfill the following minimal property.

Property 1: There are two constants , such
that

(3)

for all and the left inequality in (3) is no longer true
if one or more sampling points are removed.

This minimal property is closely linked with the concept of
a complete interpolating sequence. Property 1 is fulfilled if and
only if is a complete interpolating sequence for .
For details about complete interpolating sequences and the norm
inequality (3) and further background material, we would like
to refer the reader to [19, Lecture 23].

Definition 1: We say that is a complete interpo-
lating sequence for if the interpolation problem

, has exactly one solution for every se-
quence .

Definition 2: A system of vectors in a separable
Hilbert space is called Riesz basis if is complete in

, and there exist positive constants and such that for all
and arbitrary scalars , we have

(4)

Equation (3) implies that a signal is completely
determined by its values on the sampling grid. It couples
the behavior of the continuous-time signal, more precisely
its -norm, with the -norm of the samples on the grid

, i.e., the behavior of the discrete-time signal. This
coupling is one reason why complete interpolating sequences
are of such high importance.

Another interesting fact [20, p. 143], which establishes a
connection between Riesz bases and complete interpolating
sequences is the following.

Theorem 1: The system is a Riesz basis for
if and only if is a complete interpolating

sequence for .

In our preceding discussion, we have seen how important the
concept of a complete interpolating sequence is. Therefore, a
definition that is less implicit than Definition 1 would be de-
sirable. Lyubarskii and Seip have shown that it is possible to
characterize complete interpolating sequences directly in terms
of the sequence itself and without using signals [21].
We briefly review the definition of a relatively dense sequence
and the definition of a function of exponential type, before we
state this characterization in Theorem 2.

Definition 3: A sequence of real numbers is called
relatively dense if there exists an such that

for each

Definition 4: An entire function is said to be of exponential
type if for all there exists a constant such that

(5)

for all . The smallest value which can be used in (5) is
called exponential type of .

For details about entire functions of exponential type, we
would like to refer the reader to [19] and [22].

Theorem 2 (Lyubarskii and Seip [21]): A sequence
of real numbers is a complete interpolation sequence

for if and only if the following three conditions are
fulfilled:

1) is uniformly discrete, i.e.,

2) The limit

(6)

exists for all finite and represents an entire function
of exponential type .

3) There exists a constant and a relatively dense subse-
quence , such that for all finite intervals

Aside from the necessary and sufficient condition in
Theorem 2, there are other conditions for a sequence to be a
complete interpolating sequence for that are simpler but
only sufficient. One example is Kadec’s 1/4-Theorem [20, p.
42], which answers the question when the set forms
a Riesz basis for .

Theorem 3 (Kadec’s 1/4-Theorem): If is a se-
quence of real numbers for which

then forms a Riesz basis for .
Since we assume that the sequence is a complete

interpolating sequence for , it follows by definition, that
for each there is exactly one function that
solves the interpolation problem

.
(7)

According to (3), the norm of satisfies ,
where is the same constant as in (3). On the other hand, if
the sequence of real and increasingly ordered sampling points

is a complete interpolating sequence for , then
the product in (6) converges uniformly on for all
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and as defined by (6) is an entire function of exponential type
[19]. As a consequence,

(8)

is the unique function in that solves the interpolation
problem (7).

Example 1: The following simple example illustrates the
aforementioned properties. In the case of equidistant samples

, the theory reduces to the well known Shannon
sampling series with sinc-kernel. We have

Furthermore, , and it turns out
that

is the well-known sinc-kernel. Of course, has the interpola-
tion property (7) and the interpolation problem

, has exactly one solution for every se-
quence . This solution is given by the Shannon
sampling series

In the case of equidistant sampling at Nyquist rate, the energy
of the discrete-time signal equals the energy of the continuous-
time signal

(9)

If the sampling pattern is relaxed from the constraint of being
equidistant, equality (9) cannot be supposed to be true any
longer, but, as we have seen, we have at least the norm equiv-
alence (3) if the sequence of sampling points is a
complete interpolating sequence for .

The norm equivalence (3) is very useful for the convergence
analysis of the sampling series

For , we have

(10)

where we used (3) in the first inequality and (7) in the last
equality. Since

according to (3), it follows that

and, consequently,

(11)

for all . Moreover, since , this
implies that

for all signals .
Further, if the sequence of sampling points is a com-

plete interpolating sequence for , sampling based signal
processing is possible for , because for all stable LTI
systems and we have

(12)

and the right-hand side of (12) converges to zero according to
(11). Thus, we have

(13)

and, due to , that

(14)

for all signals .
Equations (13) and (14) show that, for , the fi-

nite sampling series with transformed kernel (2) converges to
the transformed signal in the -norm and in the max-
imum-norm. This means, the transformed signal can be arbi-
trarily well approximated by the finite sampling series (2). From
(10) and (12), we can again see the significance of complete
interpolating sequences, because the convergence behavior and
in particular the convergence speed of (2) is determined by the
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samples of the signal . Equation (2) can be regarded
as a model for signal processing on a discrete set.

B. Zeros of Sine-Type Functions

In the previous section, we have seen that (2) converges for
all signals in and all sampling patterns that are com-
plete interpolating sequences for . Before we tackle the
problem of analyzing the convergence behavior of (2) for sig-
nals in , we review some results on the convergence be-
havior of (2) for signals in and the special case where
is the identity operator.

Definition 5: An entire function of exponential type
is said to be of sine type if the zeros of are separated and
simple, and there exist positive constants , and such that

whenever and are real and
.

Example 2: is a function of sine type, and its zeros
are .

Example 3: For signals that are real on the real
axis, the function is a sine-type
function if .

For further information about sine-type functions, we would
like to refer the reader to [19] and [23].

There is an important connection between the set of zeros
of a function of sine type, the basis properties of the

system of exponentials and complete interpolating
sequences.

Lemma 1: If is the set of zeros of a function of sine
type, then the system is a Riesz basis for
and is a complete interpolating sequence for .

Proof: This lemma is a simple consequence of Theorems
9 and 10 in [23, pp. 143 and 144].

Lemma 1 implies that if is a function of sine type with zeros
, then , where is given by (8), is a Riesz

basis for [19, p. 169, Theorem 1].
For sampling patterns that are made of the zeros of sine-type

functions, we have a good local convergence behavior of

(15)

for all . In [24], the uniform convergence on compact
subsets of of the sampling series (15) was proved for signals
in and sampling patterns that are made of the zeros of
sine-type functions.

Theorem 4: Let be a function of sine type, whose zeros
are all real and ordered increasingly and let ,

be the corresponding reconstruction functions as defined in (8).
Further, let . Then, we have

for all .

Remark 2: Since is a complete interpolating se-
quence for , the function , defined by (6) and as a con-
sequence the functions , defined by (8), are uniquely
determined. Hence, there is no degree of freedom in the choice
of the functions .

Note that Theorem 4 makes no statement about the global
convergence behavior of the sampling series. Although
can be arbitrary, it has to be fixed. The global convergence be-
havior is more problematic. In [25], it was shown that for all
members of a certain subclass of sampling patterns the peak
value of (15) diverges for some signal . This sub-
class is determined by the sine-type functions that have a repre-
sentation as Fourier–Stieltjes integral in the form

(16)

where is a real function of bounded variation on the in-
terval that has a jump discontinuity at each endpoint.

Theorem 5: Let be a function of sine type that has the rep-
resentation (16) and whose zeros are all real and or-
dered increasingly. Let , be the corresponding recon-
struction functions as defined in (8). Then there exists a signal

such that

Remark 3: In particular, is a sine-type function that
has the representation (16). Hence, Theorem 5 implies that

i.e., the peak approximation error of the Shannon sampling se-
ries with equidistant sampling points diverges for some signal

.
Theorem 5 was one of the motivations why we conjectured in

[26] that the divergence occurs even for larger classes of sam-
pling patterns.

Conjecture 1: Let be complete interpolating
sequences for and , the corresponding recon-
struction functions as defined in (8). Then, there exists a signal

such that

In Conjecture 1, we make a statement about the convergence
behavior of the sampling series (2) for the case where is the
identity operator, or in other words, for the case where no system
is present. In Theorem 7, we will analyze the sampling series
(2), i.e., the case where a stable LTI system is present and
show that for every complete interpolating sequence there exist
a stable LTI system and a signal in , so that we have
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divergence. Hence, the modification of Conjecture 1, where we
additionally apply a stable LTI system, is true.

IV. NON-EQUIDISTANT SAMPLING FOR

In Section III, we have seen that, given any sampling point se-
quence that is a complete interpolating sequence
for , the sampling series (2) is uniformly convergent for
all and all stable LTI systems .
However, for the convergence behavior is essentially
more intricate, because (3) cannot be used anymore.

In this section, we analyze the convergence behavior of the
sampling series (2) for signals . Theorem 6 gives
a necessary and sufficient condition for the convergence of (2)
to the transformed signal for all . Later, in the
proof of Theorem 7, we will use Theorem 6 to show that for
every sampling pattern that is a complete interpo-
lating sequence for there exists a stable LTI system

and a signal such that (2) diverges
for a fixed . Thus, it will turn out that the additional degree
of freedom in the choice of the sampling points, compared to
equidistant sampling, cannot prevent the approximation process
(2) to diverge for some stable LTI system
and some signal .

Theorem 6: Let be a complete interpolating
sequence for , , the corresponding reconstruc-
tion functions as defined in (8), a stable LTI system and a
closed subset of . For all we have

if and only if there exists a constant such that

(17)

for all . If (17) is not fulfilled, then there exists a signal
such that

(18)

Remark 4: Note that due to the generality of the set , The-
orem 6 comprises several results for different types of conver-
gence. If the set contains only a single point then the the-
orem makes a statement about the pointwise convergence and if

then Theorem 6 deals with uniform convergence. Uni-
form convergence on all of is important whenever the peak
value of the reconstruction has to be controlled over the whole
real axis.

Remark 5: Condition (17) has an interesting interpretation in
terms of test signals. The exponential function
can be thought of as a test signal, where the parameter ranges
from to . If

is uniformly bounded with respect and
then the sampling series (2) converges for all . Al-
though the test signals do not belong to the signal space ,
they have an appealingly simple structure. They are just scaled
versions of one basic function .

For the proof of Theorem 6, we need Lemma 2, the proof of
which is given in Appendix A.

Lemma 2: Let be a complete interpolating se-
quence for , , the corresponding reconstruction
functions as defined in (8), a stable LTI system, and

. Then, we have

Proof of Theorem 6: The proof consists of two parts. The
first part proves the “ ” direction of the “if and only if” asser-
tion and the second part the second assertion of the theorem.
Since the second assertion implies the “ ” direction of the “if
and only if” assertion, the whole theorem is proved.

For the proof, we introduce the abbreviation

First part, “ ”: Let (17) be fulfilled and be arbi-
trary but fixed. For each there exists a such
that and consequently

. Furthermore,

where we used the assumption (17) in the last inequality. More-
over, because of (14), there exists a such that

for all . Since
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we obtain for
all , and the proof of the first part is complete because

was arbitrary.
Second part: If (17) is not fulfilled, we have

because

by Lemma 2. Thus, the Banach–Steinhaus theorem [27, p. 98]
implies that there exists a signal such that

Since , we have (18) and
the proof is complete.

In Theorem 6, we have completely characterized the cases
where (2) converges to the signal for all . We will
now show that, for every sampling pattern that is a
complete interpolating sequence for , there really exists a
stable LTI system such that (2) diverges for some .

Theorem 7: Let be a complete interpolating
sequence for and , the corresponding recon-
struction functions as defined in (8). Then, for all , there
exists a stable LTI system with continuous and a signal

such that

Theorem 7 shows that, in general, it is not possible to approx-
imate the output of a stable LTI system by the sampling se-
ries (2), because we can find a signal and a stable LTI
system such that (2) diverges for some arbitrary given .

In order to prove Theorem 7, we need Lemma 3, which is
an application of the proposition in [28, p. 57] by Szarek and
Lemma 4, which is a consequence of Lusin’s theorem.

The divergence results in Section II for equidistant sampling
series were based on the analysis of the inverse Fourier integral
of a Fourier series. This can be seen from the following identity:

(19)

where we identify the sum inside the parenthesis on the right-
hand side of (19) as the partial sum of the Fourier series of the

-periodic extension of . A well-known result about Fourier
series is the du Bois–Reymond theorem [29], which states the

existence of a continuous functions whose Fourier series di-
verges at a some point. This result is equivalent to the divergence
of the -norm of the Dirichlet kernel

(20)
as goes to infinity. In order to treat the non-equidistant sam-
pling series in Theorem 7 we use a proposition by Szarek which
shows that the divergence is not restricted to Fourier series but
equally applies to bounded biorthogonal systems.

Proposition 1 (Szarek): Let a probability space
and a biorthogonal sequence of measurable func-
tions on (i.e., ) such that

1) for ;
2) for some

and for all sequences of scalars (and as a con-
sequence, for all
scalars .

Then there exists , depending only on , such that

The next Lemma is a simple corollary of Szarek’s
proposition.

Lemma 3: Let be a complete interpolating
sequence for and the corresponding recon-
struction functions as defined in (8). Then, there exists a con-
stant such that

(21)

for all . is the same constant as in (3).

Proof: The proof of Lemma 3 is given in Appendix B.
Remark 6: For the special case of equidistant sampling, we

have and and the left-hand side of (21)
in Lemma 3 simplifies to

and using the -periodicity of the Dirichlet kernel, we obtain

(22)

If we compare (20) and (22) we see how Szarek’s result is re-
lated to the divergence of Fourier series and the divergence of the

-norm of the Dirichlet kernel. Szarek’s proposition is
more general, because it generalizes the divergence result from
orthogonal systems to general bounded biorthogonal systems.
However, to achieve this generality, the additional maximum in
front of (22) is necessary.
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Lemma 4: For every function and every
there exists a function and a Lebesgue

measurable set such that

��� ���

���

Proof: Lemma 4 is a direct consequence of Lusin’s The-
orem [27, p. 55].

Equipped with the Lemmas 3 and 4, we are in the position to
prove Theorem 7.

Proof of Theorem 7: Let be arbitrary but fixed. If we
can find a stable LTI system such that (17) is not fulfilled the
proof is complete, because the assertion then follows directly
from Theorem 6.

By Lemma 3 there exists a constant such that

for all . Therefore, there exists an integer
such that

and a such that

(23)

For each , we can choose

Obviously, with . Using
the abbreviation

we have

and because of (23),

(24)

According to Lemma 4, for every and every
there exists a function and a set

such that

(25)

(26)

and

Obviously, and therefore every
defines a stable LTI system with norm

. Furthermore, we have

(27)

The second term in (27) can be made arbitrarily small, because

where we used (25) and (26) in the last line. Since
, we have

by the absolute continuity of the integral. It follows that

(28)

Combining (28) with (24) gives

Thus, by the Banach–Steinhaus theorem [27, p. 98], there exists
a continuous function such that
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Clearly, and thus defines a stable LTI
system . Furthermore, since

where we used (1) in the first line, we obtain

This shows that (17) is not fulfilled and therefore completes the
proof.

V. DISCUSSION AND OPEN PROBLEMS

Although we have not proved Conjecture 1 in this paper, we
have shown the divergence of (2) for certain signals in
and stable LTI system. The sampling-type system approxima-
tion process (2) is an important generalization of the ordinary
sampling series. For the proof, we used a deep result by Szarek.
However, the proof technique seems to not be strong enough to
prove Conjecture 1, i.e., the divergence of the sampling series
when the system is the identity.

A further open question concerns the convergence behavior of
the sampling series (2) with oversampling, i.e., the case where

. It is well known that, in certain situations,
oversampling can help resolve convergence problems. For ex-
ample, the peak value of the Shannon sampling series

diverges for certain signals , whereas the series is
uniformly convergent for all signals in , i.e.,
for the case where oversampling is applied [26]. In contrast, for
the system approximation problem with equidistant sampling
series, oversampling does not help. In [30] it was shown that
there exists a stable LTI system and a signal in such that
the approximation process diverges. We conjecture that for the
system approximation problem with sampling series that use
non-equidistant sampling patterns, oversampling does not help
either.

Conjecture 2: The divergence of (2), as observed in this
paper, remains even if oversampling is applied.

We strongly believe that Conjecture 2 is true. Thus, it is prob-
lematic to use the approximation process (2). However, there
may be a remedy if the following conjecture is true.

In the approximation process (2), the samples of
the signal are used. The sampling of the signal corresponds
to a point evaluation of at the sampling points . In-
stead of the point evaluation, it is also possible to consider more

general linear functionals , for example,
functionals that also take the signal values in the proximity of
the sampling points , into account. In this case, the
approximation process takes the form

(29)

Note that, in the classical sampling approach, the functionals are
given by .

For approximation processes that use the general evaluation
functionals, we have the following conjecture.

Conjecture 3: We conjecture that the system approxima-
tion process (29) with properly chosen functionals ,
is uniformly convergent for all stable LTI systems and all

, i.e., if oversampling is used. However, if
no oversampling is used, such more general functionals do not
improve the convergence behavior.

Such a positive result would be important for the foundations
of digital signal processing, and it would be interesting to find
suitable functionals.

APPENDIX

A. Proof of Lemma 2

Proof: Let and arbitrary but fixed. For
convenience, we introduce the function

We have

(30)

because is continuous. Taking the supremum on both sides of
(30) gives

(31)

Furthermore, since is continuous on the compact interval
, attains its maximum in some point .

For , let
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and choose

where . denotes the indicator func-
tion of the set and the Lebesgue measure. Obviously,

for all . It follows that

and

(32)

Combining (31) and (32) completes the proof.

B. Proof of Lemma 3

Proof: We only have to check whether all assumptions of
the Proposition in [28, p. 57] are fulfilled. Due to the interpola-
tion property of , we have

i.e., , where , , forms a
biorthogonal system. In order to be able to apply the Proposition
in [28, p. 57], we reorder the functions according to

which creates a biorthogonal system with index
set . Obviously, we have for all . Using

where is an arbitrary sequence of scalars, we obtain

where is the same constant as in (3) and

Thus, all assumptions of the Proposition in [28, p. 57] are ful-
filled, and there exists a constant such that

Consequently, for every there exists a natural number
such that

If is odd, then it can be written as with
some non-negative integer , and we have

It follows that

If is even, then we consider and obtain

Again, can be written as with some non-
negative integer , and we have



BOCHE AND MÖNICH: SAMPLING OF DETERMINISTIC SIGNALS AND SYSTEMS 2111

It follows that

Combining the results for odd and even completes the
proof.
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