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Abstract—The goal of this paper is to provide a rigorous
information-theoretic analysis of subnetworks of interference
networks. We prove two coding theorems for the compound mul-
tiple-access channel (MAC) with an arbitrary number of channel
states. The channel state information at the transmitters is such
that each transmitter has a finite partition of the set of states and
knows which element of the partition the actual state belongs to.
The receiver may have arbitrary channel state information. The
first coding theorem is for the case that both transmitters have a
common message and that each has an additional private message.
The second coding theorem is for the case where rate-constrained,
but noiseless transmitter cooperation is possible. This cooperation
may be used to exchange information about channel state infor-
mation as well as the messages to be transmitted. The cooperation
protocol used here generalizes Willems’ conferencing. We show
how this models base station cooperation in modern wireless
cellular networks used for interference coordination and capacity
enhancement. In particular, the coding theorem for the cooper-
ative case shows how much cooperation is necessary in order to
achieve maximal capacity in the network considered.

Index Terms—Base station cooperation, channel uncertainty,
common message, conferencing encoders.

I. INTRODUCTION

A. Motivation

I N modern cellular systems, interference is one of the main
factors which limit the communication capacity. In order to

further enhance performance, methods to better control inter-
ference have recently been investigated intensively. One of the
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principal techniques to achieve this is cooperation among neigh-
boring base stations. This will be part of the forthcoming LTE-
Advanced cellular standard. It is seen as a means of achieving
the desired spectral efficiency of mobile networks. In addition,
it may enhance the performance of cell-edge users, a very im-
portant performance metric of future wireless cellular systems.
Finally, fairness issues are expected to be resolved more easily
with base station cooperation.

In standardization oriented literature, the assumptions gener-
ally are very strict. The cooperation backbones, i.e., the wires
linking the base stations, are assumed to have infinite capacity.
Full channel state information (CSI) is assumed to be present
at all cooperating base stations. Then, multiple-input-multiple-
output (MIMO) optimization techniques can be used for de-
signing the system [10]. However, while providing a useful the-
oretical benchmark, the results thus obtained are not accepted
by the operators as reliably predicting the performance of ac-
tual networks.

In order to obtain a more realistic assessment of the perfor-
mance of cellular networks with base station cooperation, the
above assumptions need to be adapted to reality. First, it is well
known that one cannot really assume perfect CSI in mobile com-
munication networks. Second, glass fibers or any medium used
for the backbones never have infinite capacity. The assumption
of finite cooperation capacity will also lead to a better under-
standing of the amount of cooperation necessary to achieve a
certain performance. Vice versa, we would like to know which
capacity can be achieved with the backhaul found in hetero-
geneous networks using microwave, optical fibers, and other
media. Such insights would get lost when assuming infinite co-
operation capacity.

The question arises how much cooperation is needed in order
to achieve the same performance as would be achievable with
infinite cooperation capacity. For general interference networks
with multiple receivers, the analysis is very difficult. Thus it
is natural to start by taking a closer look at component net-
works which together form a complete interference network.
Such components are those subnetworks formed by the com-
plete set of base stations, but with only one receiving mobile.
Then there is no more interference, so one can concentrate on
finding out by how much the capacity increases by limited base
station cooperation. This result can be seen as a first step towards
a complete rigorous analysis of general interference networks.

A situation which is closely related can be phrased in the co-
operation setting as well. Usually, there is only one data stream
intended for one receiver. Assume that a central node splits this
data stream into two components. Each of these components is
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then forwarded to one of two base stations. Using the coopera-
tion setting, one can address the question how much overhead
needs to be transmitted by the splitter with the data component,
i.e., how much information about the data component and the
CSI intended for one base station needs to be known at the other
base station in order to achieve a high, possibly maximal data
rate.

In [11], the cooperation of base stations in an uplink net-
work is analyzed. A turbo-like decoding scheme is proposed.
Different degrees of cooperation and different cooperation
topologies are compared in numerical simulations. In [9], work
has been done on the practical level to analyze cooperative
schemes. The implementation of a real-time distributed cooper-
ative system for the downlink of the fourth-generation standard
LTE-Advanced was presented. In that system, the channel
state information (CSI) at the transmitters was imperfect, the
limited-capacity glass fibers between the transmitting base
stations were used to exchange CSI and data information. A
feeder distributed the data among the transmitting base stations.

A question which is not addressed in this work but which will
be considered in the future is what rates can be achieved if there
are two networks as described above which belong to different
providers and which hence do not jointly optimize their coding,
to say nothing of active cooperation. In that case, uncontrolled
interference heavily disturbs each network and challenges dif-
ferent from those considered here need to be faced by the system
designer.

B. Theory

The rigorous analysis of such cellular wireless systems as de-
scribed above using information-theoretic methods should pro-
vide useful insights. The ultimate performance limits as well as
the optimal cooperation protocols can be derived from such an
analysis. The first information-theoretic approach to schemes
with cooperating encoders goes back to Willems [20], [21] long
before this issue was relevant for practical networks. For that
reason, it was not considered much in the next two decades.
Willems considers a protocol where before transmission, the en-
coders of a discrete memoryless multiple access channel (MAC)
may exchange information about their messages via noiseless fi-
nite-capacity links (one in each direction). This may be done in
a causal and iterative fashion, so the protocol is called a confer-
encing protocol.

For the reasons mentioned at the beginning, Willems’ confer-
encing protocol has attracted interest in recent years. Gaussian
MACs using Willems conferencing between the encoders were
analyzed in [3] and [19]. Moreover, in these two works, it was
shown that interference which is known noncausally at the en-
coders does not reduce capacity. For a compound MAC, both
discrete and Gaussian, with two possible channel realizations
and full CSI at the receiver, the capacity region was found in
[12]. In the same paper, the capacity region was found for the
interference channel if only one transmitter can send informa-
tion to the other (unidirectional cooperation) and if the channel
is in the strong interference regime. Another variant of unidi-
rectional cooperation was investigated in [16], where the three
encoders of a Gaussian MAC can cooperate over a ring of uni-

directional links. However, only lower and upper bounds were
found for the maximum achievable equal rate.

Further literature exists for Willems conferencing on the de-
coding side of a multiuser network. For degraded discrete broad-
cast channels, the capacity region was found in [6] if the re-
ceivers can exchange information about the received codewords
in a single conference step. For the general broadcast and mul-
ticast channels, achievability regions were determined. For the
Gaussian relay channel, the dependence of the performance on
the number of conferencing iterations between the receiver and
the relay was investigated in [13]. For the Gaussian -inter-
ference channel, outer and inner bounds to the capacity region
where the decoders can exchange information about the channel
outputs are provided in [7]. Finally, for discrete and Gaussian
memoryless interference channels with conferencing decoders
and where the senders have a common message, [15] determines
achievable regions. Exact capacity regions are determined if the
channel is physically degraded. If the encoders can conference
instead of having a common message, the situation is the same.

The discrete MAC with conferencing encoders is closely re-
lated to the discrete MAC with common message. Intuitively,
the messages exchanged between the encoders in the coopera-
tive setting form a common message, so the results known for
the corresponding noncooperative channel with common mes-
sage can be applied to find the achievable rates of the coopera-
tive setting. This transition was used in [3], [19]–[21], and [12].
The capacity region of the MAC with common message was de-
termined in [17], a simpler proof was found in [20].

The goal of this paper is to generalize the original setting con-
sidered by Willems even further. We treat a compound discrete
memoryless MAC with an arbitrary number of channel realiza-
tions. The receiver’s CSI (CSIR) may be arbitrary between full
and absent. The possible transmitter’s CSI (CSIT) may be dif-
ferent from CSIR and asymmetric at the two encoders. It is re-
stricted to a finite number of instances, even though the number
of actual channel realizations may be infinite. For this channel,
we consider two cases. First, we characterize the capacity re-
gion of this channel where the transmitters have a common mes-
sage. Then, we determine the capacity region of the channel
where there is no common message any more. Instead, the en-
coders have access to the output of a rate-constrained noiseless
two-user MAC. Each input node of the noiseless MAC corre-
sponds to one of the transmitters of the compound MAC. Each
input to the noiseless MAC consists of the pair formed by the
message which is to be transmitted and the CSIT present at
the corresponding transmitter. This generalizes Willems’ con-
ferencing to a noncausal conferencing protocol, where the con-
ferencing capacities considered by Willems correspond to the
rate constraints of the noiseless MAC in the generalized model.
It turns out that this noncausal conferencing does not increase
the capacity region and as in [20], [21], every rate contained in
the capacity region can be achieved using a one-shot Willems
“conference.” We determine how large the conferencing capac-
ities need to be in order to achieve the full-cooperation sum rate
and the full-cooperation capacity region, respectively. The latter
is particularly interesting because it shows that forming a “vir-
tual MIMO system” as mentioned in Section I-A and considered
in [10] does not require infinite cooperation capacity.
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C. Organization of the Paper

In Section II, we address the problems presented above. We
present the two basic channel models underlying our analysis:
the compound MAC with common message and partial CSI
and the compound MAC with conferencing encoders and par-
tial CSI. We also introduce the generalized conferencing pro-
tocol used in the analysis of the conferencing MAC. We state the
main results concerning the capacity regions of the two models.
We also derive the minimal amount of cooperation needed in
the conferencing setting in order to achieve the optimal (i.e.,
full-cooperation) sum rate and the optimal, full-cooperation rate
region. The achievability of the rate regions claimed in the main
theorems is shown in Section III. The weak converses are shown
in Section IV. Only the converse for the conferencing MAC
is presented in detail, because the converse for the MAC with
common message is similar to part of the converse for the MAC
with conferencing encoders. We address the application of the
MAC with conferencing encoders to the analysis of cellular sys-
tems where one data stream is split up and sent using different
base stations in Section V. In the same section, in a simple nu-
merical example, the capacity regions of a MAC with confer-
encing encoders is plotted for various amounts of cooperation.
In the final section, we sum up the paper and discuss the direc-
tions of future research. In the Appendix several auxiliary lem-
mata concerning typical sequences are collected.

D. Notation

For real numbers and , we set and
.

For any positive integer , we write for the set
. The complement of a set in is denoted

by . The function is the indicator function of , i.e.,
equals 1 if and 0 else. For a set ,

we write . For a mapping
, define to be the cardinality of the range of .

Denote the set of probability measures on a discrete set by
. The -fold product of a is denoted by

. By , we denote the set of stochastic matrices
with rows indexed by and columns indexed by . The -fold
memoryless extension of a is defined as

where , .
Let be a finite set. For , define the

type of by . For
and , define to be the set of those such
that for all and such that if

.

II. CHANNEL MODEL AND MAIN RESULTS

A. Channel Model

Let , , be finite sets. A compound discrete memoryless
MAC with input alphabets and and output alphabet is
determined by a set of stochastic matrices

. may be finite of infinite. Every corresponds

to a different channel state, so we will also call the elements
the states of the compound MAC . The transmitter using

alphabet will be called transmitter (sender, encoder) 1 and the
transmitter with alphabet will be called transmitter (sender,
encoder) 2. If transmitter 1 sends a word

and transmitter 2 sends a word and
if the channel state is , then the receiver will receive the
word with probability

The compound channel model does not include a change of state
in the middle of a transmission block.

The goal is to find codes that are “good” (in a sense to be
specified later) universally for all those channel states which
might be the actual one according to CSI. In our setting, CSI
at sender is given by a finite CSIT partition

(1)

for . The sets , are finite and the satisfy

Before encoding, transmitter knows which element of the par-
tition the actual channel state is contained in, i.e., if
is the channel state, then it knows . With this knowledge, it
can adjust its codebook to the channel conditions to some de-
gree. For , we denote by

the set of channel states which is possible according to the com-
bined channel knowledge of both transmitters. Note that every
function from into a finite set induces a finite partition as in
(1), so this is a very general concept of CSIT. At the receiver
side, the knowledge about the channel state is given by a not
necessarily finite CSIR partition

(2)

is an arbitrary set and the sets satisfy

If the channel state is , then the receiver knows . Thus
it can adjust its decision rule to this partial channel knowledge.
This concept includes any kind of deterministic CSIR, because
any function from into an arbitrary set induces a partition as
in (2). Note that if is infinite, the transmitters can never have
full CSI, whereas this is possible for the receiver if

.

Definition 1: The compound discrete memoryless MAC
together with the CSIT partitions , and the CSIR partition

is denoted by the quadruple .

Example 1: There are several communication situations
which are appropriately described by a compound MAC. One
case is where information is to be sent from two transmitting
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Fig. 1. MAC with Common Message.

terminals to one receiving terminal through a fading channel.
If the channel remains constant during one transmission block,
one obtains a compound channel. Usually, CSIT is not perfect.
It might be, however, that the transmitters have access to partial
CSI, e.g., by using feedback. This will not determine an exact
channel state, but only an approximation. Coding must then
be done in such a way that it is good for all those channel
realizations which are possible according to CSIT.

Another situation to be modeled by compound channels oc-
curs if there are two transmitters each of which would like to
send one message to several receivers at the same time. The
channels to the different receivers differ from each other because
all the terminals are at different locations. Now, the following
meaning can be given to the above variants of channel knowl-
edge. If CSIT is given as , this describes that the
information is not intended for all receivers, but only for those
contained in . Knowledge about the intended receivers may
be asymmetric at the senders. If every receiver has its own de-
coding procedure, full CSIR (i.e., )
would be a natural assumption. If the receivers must all use the
same decoder, there is no CSIR. Nontrivial CSIR could mean
that independently of the decision at the transmitters where data
are to be sent (modeled by CSIT), a subset of receivers is chosen
as the set which the data are intended for without informing the
transmitters about this decision.

B. MAC With Common Message

Let the channel be given. We now present the
first of the problems treated in this paper, the capacity region of
the compound MAC with common message. It is an interesting
information-theoretic model in itself. However, its main interest,
at least in this paper, is that it provides a basis for the solution of
the problem presented in the next section, which is the capacity
region of the compound MAC with conferencing encoders.

Assume that each transmitter has a set of private messages
and that both transmitters have an additional

set of common messages for the receiver (Fig. 1). Let
be a positive integer.

Definition 2: A is a triple
of functions satisfying

is called the blocklength of the code.

Remark 1: Clearly, the are in
one-to-one correspondence with the families

(3)

where , and where the satisfy

(The sets are obtained from by setting

In the following, we will use the description of as fam-
ilies as in (3). The functional description of codes will be of use
when we are dealing with transmitter cooperation. We say more
on that in Remark 3.

The and are the codewords and the are the de-
coding sets of the code. Let the transmitters have the common
message . Suppose that transmitter 1 additionally has the pri-
vate message and knows that . Then it uses the
codeword . If transmitter 2 additionally has the private mes-
sage and knows that , it uses the codeword .
Suppose that the receiver knows that . If the channel
output is contained in , the receiver decides that the
message triple has been sent.

Definition 3: For , a is a
if

That means that for every instance of channel knowledge
at the transmitters and at the receiver, the encoding/decoding
chosen for this instance must yield a small average error for
every channel state that may occur according to the CSI. In
other words, the code chosen for a particular instance
of CSI must be universally good for the class of channels

.
The first goal in this paper is to characterize the capacity re-

gion of the compound MAC with common message. That means
that we will characterize the set of achievable rate triples and
prove a weak converse.

Definition 4: A rate triple is achievable for the
compound channel with common message if for
every and and for large enough, there is a

with

We denote the set of achievable rate triples by
.
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Before stating the theorem on the capacity region, we need to
introduce some new notation. We set to be the set of families

of probability distributions, where is a distribution on a fi-
nite subset of the integers and where

for each . Every defines a family of
probability measures on , where is the set cor-
responding to . This family consists of the probability mea-
sures , where

(4)

and where is such that . Let the
quadruple of random variables take values in

with joint probability . Then, define the set
to be the set of , where every

and where

Defining

we are able to state the first main result.

Theorem 1: For the compound MAC , one has

and there is a weak converse. More exactly, for every
in and for every

, there is a such that there exists a sequence of
fulfilling

if is large, i.e., one has exponential decay of the error proba-
bility with increasing blocklength.

is convex. The cardinality of the auxiliary
set can be restricted to be at most .

Remark 2:
1) A weak converse states that if a code has rates which are

further than from the capacity region and if its block-
length is large, then the average error of this code must be
larger than a positive constant only depending on . A mo-
ment’s thought reveals that this is a stronger statement than

just saying that the rates outside of the capacity region are
not achievable.

2) is independent of the CSIR partition .
That means that given a certain CSIT, the capacity region
does not vary as CSIR varies. A heuristic explanation of
this phenomenon is given in [22, Sec. 4.5] for the case of
single-user compound channels. It builds on the fact that
the receiver can estimate the channel from a pilot sequence
whose length is negligible compared to the blocklength.

3) Note that first taking a union and then an intersection of
sets in the definition of is similar to the
max-min capacity expression for the classical single-user
discrete memoryless compound channel [4]. We write two
intersections instead of one in order to make the difference
clear which remains between the two expressions. Recall
that the are families of probability measures. Every
choice activates a certain element of
such a family . The union and the first intersection are thus
related in a more complex manner than in the single-user
expression.

4) As CSIT increases, the capacity region grows and in prin-
ciple, one can read off from this how the region scales with
increasing channel knowledge at the transmitters. More
precisely, assume that there are pairs and
of CSIT partitions

such that is finer than . That means that for
every there is a with , so
one can assume that . Observe that the corre-
sponding to , which we call only in this
remark, can naturally be considered a subset of ,
which denotes the corresponding to only for this
remark. Thus

and it follows that .

C. MAC With Conferencing Encoders

Again let the channel be given. Here we as-
sume that each transmitter only has a set of private messages

for the receiver. Encoding is done in three
stages. In the first stage, each encoder transmits its message
and CSIT to a central node, a “switch”, over a noiseless rate-
constrained discrete MAC. The rate constraints are part of the
problem setting and thus fixed, but the noiseless MAC is not
given, it is part of the code. For reasons that will become clear
soon, we call it a “conferencing MAC.” In the second stage, the
information gathered by the switch is passed on to each encoder
over channels without incurring noise or loss. The codewords
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Fig. 2. MAC with Conferencing Encoders.

are chosen in the third stage. Each encoder chooses its code-
words using three parameters: the message it wants to transmit,
its CSIT and the output of the conferencing MAC. This is illus-
trated in Fig. 2.

The conferencing MAC can be chosen freely within the con-
straints, so it can be seen as a part of the encoding process. As-
sume that the blocklength of the codes used for transmission
is set to be . The rate constraints are such that
is the maximal number of bits transmitter can communicate
to the receiving node of the conferencing MAC. Thus if trans-
mitter 1, say, has message and CSIT , then transmitter 2,
who knows neither nor , can use at most additional bits
from transmitter 1 to encode its own message. Consequently,
there is a limited degree of cooperation between the encoders
enhancing the reliability of transmission. As the constraints on
the noiseless MAC are measured in terms of , one can interpret
the communication over this channel as taking place during the
transmission over of the codeword preceding that
which is constructed with the help of the conferencing MAC.

Example 2 shows how this kind of coding generalizes coding
using Willems conferencing functions as defined in [20] and
[21]. From Theorem 2, it follows that Willems conferencing is
more than just a special case. In fact, it suffices to achieve the
capacity region. In Section V-A, we give an application where it
is useful to have the more general notion of conferencing which
is used here.

We now come to the formal definitions. Recall that a noiseless
MAC is nothing but a function from a Cartesian product to some
other space.

Definition 5: A is a
quadruple of functions which satisfy

where is a finite set and where satisfies

(5)

(6)

for the functions and defined by
. The

number is called the blocklength of the code. is called a

conferencing MAC or alternatively a generalized conferencing
function. The latter name is justified by Example 2.

Remark 3: Analogous to the situation for the MAC
with common message described in Remark 1, the

given by the quadruple
uniquely determines a family

(7)

where and is formed in
an analogous manner. For the elements of this family,

(not necessarily different!), (not necessarily
different!) and the satisfy

For every , the family (7) must satisfy

(8)

(9)

Thus an alternative definition of would be families
like the family (7) together with conferencing MACs as in (5)
and (6). This is the form we will mostly use in the paper because
of shorter notation. However, the original definition 5 is more
constructive and gives more insights into the practical use of
such codes. It will be used in the converse, where the way how
the codewords depend on the messages will be exploited.

Remark 4: Note that (5) and (6) really are rate constraints.
Indeed, let be a rate pair achievable by the MAC de-
fined by , where the average error criterion is used.1 Then by
the characterization of the MAC with noncooperating encoders
without common message (cf. [4, Th. 3.2.3]), there must be
independent random variables on and on

such that

(10)

(11)

(12)

But by the constraints (5) and (6), one knows that the right-hand
side (RHS) of (10) must be smaller than and the right side
of (11) must be smaller than . Clearly, the sum rate then
must be smaller than . Moreover, as the bounds in
(10)–(12) are achievable, it even follows

for every admissible choice of and .
With the above definition, the coding scheme is obvious: if the

message pair is to be transmitted and if the pair of CSIT
instances is , then the senders use the codewords
and , respectively. If CSIR is and if the channel output
is contained in the decoding set , then the receiver decides
that the message pair has been transmitted.

1Even though the channel is noiseless, this does make a difference. In fact,
Dueck showed in [5] that the maximal and the average error criteria differ for
MACs using the example of a noiseless channel!
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Definition 6: For , a
is a if

In the following example, we prove our claim that using
generalized conferencing in the encoding process generalizes
Willems’ conferencing encoders. We fix the notation

if ,
if .

(13)

Example 2 (Willems Conferencing Functions): Let positive
integers and be given which can be written as products

for some positive integer which does not depend on . Assume
that

We first give a formal definition of a pair of Willems confer-
encing functions . Such a pair is determined in an it-
erative manner via sequences of functions and

, where for and ,

For and , one recursively defines functions

by

The functions , are then obtained by setting

One checks easily that is a noiseless MAC with
output alphabet satisfying (5) and (6).
Clearly, is known at transmitter because it
only depends on and .

Note that not every conferencing MAC with
output alphabet can be obtained through Willems
conferencing. The most trivial example to see this is where
is prime and where the conferencing function mapping into

depends on . However, this setting can be given an in-
terpretation in terms of MACs. Every pair of Willems’ confer-
encing functions is nothing but the -fold use of a nonstationary
noiseless MAC with feedback. The above description of a trans-
mission block of length over such a “Willems channel” as the
one-shot use of a noiseless MAC as above is possible because
noise plays no role here.

For achievability and weak converse, we adapt the definitions
from Section II-B to the conferencing setting. Let , be
nonnegative real numbers at least one of which is strictly greater
than 0.

Definition 7: A rate pair is achievable for the
compound channel with conferencing en-
coders with conferencing capacities if for every

and and for large enough, there is a
with

We denote the set of achievable rate pairs by
.

To state the result, we need to define the sets . We
denote by the set of families

of probability distributions, where is a distribution on a finite
subset of the integers and where

for every (cf. the definition of
in Section II-B). Every defines a family of probability
measures on , where is the
set corresponding to . This family consists of the probability
measures defined by

where is such that . Finally we
define subsets and of . consists of those
where the do not depend on and consists of those

where the do not depend on .
For and , let be a

quadruple of random variables which is distributed according
to . The set is defined as the set of
those pairs of nonnegative reals which satisfy

If , define the set
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If (the reverse case is analogous with
replacing ), define the set

Theorem 2: For the channel and the pair
of nonnegative real numbers, one has

if
if
if .

This set can already be achieved using one-shot Willems
conferencing functions, i.e., functions as defined in
Example 2 with . More exactly, for every

and for every
, there is a such that there exists a sequence of

fulfilling

for large and using a one-shot Willems conference.
is convex. One also has a weak

converse. Further, the cardinality the auxiliary set can be
restricted to be at most .

Remark 2 applies here, too. Further, we note the following.

Remark 5: If , then
, where

Thus bidirectional conferencing leads to a complete exchange
of CSIT. The capacity region only depends on the joint CSIT at
both transmitters, the asymmetry is lost.

Before beginning with the proof in the next section, we use
Theorem 2 to find out how much cooperation is necessary to
achieve the full-cooperation performance, i.e., the performance
achieved when , if cooperation in both directions
is possible at all. (So we do not ask how large must be if

.) By Theorem 2, the region of rates achievable with full
cooperation is given by

(14)
also determines the maximally achievable sum rate.

Let be the set of those which achieve the max-
imum in (14).

Corollary 1:
1) The infinite cooperation sum capacity is achievable if and

only if

(15)

2) The full cooperation region is achieved if

In particular, infinite-capacity cooperation is neither neces-
sary in order to achieve the full-cooperation sum rate nor to
achieve the full-cooperation rate region.

Proof:
1) Denote the maximal sum rate achievable with cooperation

capacities by . As for , the
problem of finding is a maximization problem:
one has

The equation

(16)

holds if and only if there is a such that

That means in particular that

so must maximize

Then (16) is equivalent to

and this proves (15).
2) This part is trivial.

In Section V, we present a numerical example which shows
how the rate region changes with the conferencing capacities.

III. ACHIEVABILITY PROOFS

A. MAC With Common Message

The proof of the achievability of proceeds as
follows. We first show that is achievable using
random codes, where codewords and decoding sets are chosen
at random and the error is measured by taking the mean average
error over all realizations. For this part, we adapt the nice proof
used by Jahn [8] in the context of arbitrarily varying multiuser
channels to the setting of the compound MAC with common
message. It uses some hypergraph terminology. An alternative
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proof proceeding as in standard random coding can be found
in [18]. It uses the same encoding and the same decoding, but
needs the additional assumption that . Next, we de-
randomize, i.e., we extract a good deterministic code from the
random one. This is much easier than for arbitrarily varying
channels. It is first done for and then an approxi-
mation argument is used for the case .

We assume here that the receiver has no CSI and show that
is achievable. This gives an inner bound to the

capacity region for arbitrary CSIR partitions . As is trivial in
the no-CSIR case, we omit it in the notation.

Hypergraphs: A cubic hypergraph is a discrete set of the
form with a collection of subsets .

Definition 8: Consider a family
of random vectors, where

the take values in , the take values in and the
take values in . This family is a random -half
lattice in if the family

of random vectors is i.i.d. and such that given
• the pair of families ,

is conditionally independent;
• the family , where , is conditionally i.i.d.;
• the family , where , is conditionally i.i.d.

Let a random -half lattice on be
realized on a probability space . For any ,

and ,
we define2 the expressions at the bottom of the page. We now
state an analog to the Hit Lemmas in [8] which, just like those,
is proved immediately using the independence/conditional in-
dependence properties of the random -half lattice
and the union bound.

Lemma 1: For a random -half lattice on
and for any ,

and

2Recall the notation defined in the Introduction.

Hence, for any probability measure on

The Encoding/Decoding Procedure: We can now return to
the proof of the achievability part of Theorem 1. Let the channel

be given (recall that the receiver is assumed to have
no CSIR). We define a random code with block length which
encodes common messages, messages of the first trans-
mitter and messages of the second transmitter. The random-
ness of the code can be viewed in two ways. First, one can see it
as a method of proof which allows us to find a number of codes
from which we will select a good one later. However, the ran-
domness could also be incorporated into the system. Given that
the transmitters and the receiver have access to the common ran-
domness needed in the definition of the code, this already gives
an achievable rate region if this randomness is exploited in the
coding process. During the proof, one will see that this region
even is achievable using a maximal error criterion. One needs
to use the average error criterion when the achievability proof
for random codes is strengthened in order to obtain the desired
achievability part of Theorem 1 which requires the use of deter-
ministic codes.

Using the notation introduced before Theorem 1, we de-
fine an i.i.d. set of i.i.d. families of random variables

. Let

and let be the corresponding finite subset of the integers. The
distribution of each on is the -fold product of .
Given , the rest of the random variables in family is assumed
to be conditionally independent given . The conditional dis-
tribution of each given on is the -fold memo-
ryless extension of and the conditional distribution of
each given on is the -fold memoryless extension
of . Given a message triple that is to be transmitted
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and given an instance of CSIT, the transmitters use the
random codewords and .

We now define the decoding procedure, which requires access
to the same random experiment as used for encoding. Fix a

. The used in the encoding process and every define
a probability measure as in (4). For every ,
define a set

(cf. the notation section in the Introduction). This set does not
depend on the state . The decoding sets are defined
as follows: consists exactly of those which satisfy
both of the following conditions:

• there is a such that

• for all and for all ,

Clearly the are disjoint. This decision rule does not depend
on , nor on .

Bounding the Mean Maximal Error for Random Coding: We
now bound the mean maximal error incurred by random coding,
i.e., for each message triple , CSIT instance
and channel state , we ask how large

(17)

can be. The receiver makes an error (decides incorrectly) if for
the channel output , one of the following holds:

E1) for all ,
E2) there is an and arbitrary and
such that

E3) there is a and a and arbitrary
such that

E4) there is a and arbitrary such that

E5) there is a and arbitrary such that

The mean probability of the event described in (E1) is upper-
bounded by

Note that the joint distribution of the triple and
the channel output is . Lemma 7 from the Appendix then
implies that the above term can be bounded by

(18)

We now bound the probability that one of the events
(E2)–(E5) holds for some fixed . To this end we
use Lemma 1. The pair , where

, defines a cubic hypergraph. Fur-
ther, the collection of random vectors

is a random -half lattice on . One
obtains a probability measure on via

We then obtain for fixed the inequality at the bottom of
the page. By the half-lattice property and Lemma 1, the right-
hand side of this inequality can be upper-bounded by

(19)

(20)

(21)

(22)

It remains to bound the expressions (19)–(22). For every
, let the random vector have distribution
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. We use Lemma 6 a) and 9 from the Appendix to bound (19)
by

This equals

(23)

because the sequence forms a Markov
chain. Here, is an error term which depends on and which
converges to zero as tends to zero. Using Lemmas 6 b) and
Lemma 9 from the Appendix, we see that the terms in (20)–(22)
can be bounded by

(24)

(25)

(26)

respectively. Here, again, , , depend on and converge
to zero as tends to zero. The bounds in (25) and (26) can be
reduced to

(27)

(28)

For (27), this follows from

where the chain rule for mutual information was used and the
fact that and are conditionally independent given .
The bound (28) follows in an analogous way. Collecting (18)
and for each , the bounds (23), (24), (27), and
(28), we obtain an upper bound for the mean maximal error (17)
which is shown at the bottom of the page. Note that this bound

is uniform in . It tends to zero exponentially with rate
if

(29)

for some .
Now assume that is contained in

. Hence, there is a such that

For large, we can find numbers , , satisfying

Choose and such that . Inserting this
in (29) establishes the existence of a sequence of random codes
whose mean average error converges to 0 with rate . Hence, for
every , one can find random codes
according to the procedure described above with rates close to

and with an exponentially small maximum error
probability.

Extracting a Deterministic Code for : The next
step is to extract a deterministic code with the same rate triple
and with small average error from the random one. This is easy
when , an approximation argument similar to the one
in [2] solves the problem for . So let us first assume
that . For and , we
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define on the underlying probability space the random
variable

This gives the average error for a channel state and the
random code determined by the elementary event . For
every and every in , we
found above a random code with block length and message
set and a such that

and for if is large (the
bound on the mean maximum error a fortiori also holds for the
mean average error). For , define the set

If is nonempty, we can infer the existence of a

deterministic with expo-
nentially small error probability. And indeed, the Markov in-
equality implies

so must be nonempty. This proves the existence of

a deterministic with
exponentially decaying average error probability for every

, so this whole set is achievable.
Approximation for : For a positive integer to be

chosen later, we first define an approximating compound dis-
crete memoryless MAC. For every , is
a multiple of for all .
Clearly, . The following is a
slight variation of [2, Lemma 4].

Lemma 2: For every , there is a function
satisfying if such

that for every

(30)

(31)

Let be as in the lemma and let be the corresponding
function from to . Let ,

and . By (30) and [4, Lemma 1.2.7] (which quantifies
the uniform continuity of entropy), one has the inequalities

Now fix a triple which is contained in the interior
of . The above inequalities imply that for large

it is contained in the interior of defined
through the channel . Here, the necessarily finite
partitions of are
defined by

recall (13). These really are partitions by Lemma 2.
The achievability result for compound MACs with a
finite number of states established the existence of

for the compound

MAC such that

For large enough, one has .
Then, the above sequence of codes for has
the desired rates for . It remains to bound
the average error incurred when applying the codes
for transmission over . For fixed , let the

have the form (3).
For any , (31) implies that the average error can be
bounded by

By enlarging if necessary, this goes to zero as approaches
infinity, so one obtains an exponentially small average prob-
ability of error. One checks easily that the existence of a
sequence of with

for every in the interior
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of implies the existence of such a sequence also
for the rate triples lying on the boundary of .

Convexity and Bound on : The convexity of
is clear by the concavity of mutual information in the input dis-
tributions. The bounds on follow in the same way as in [20].

B. MAC With Conferencing Encoders

The achievability part of Theorem 2 relies on the achievability
part of Theorem 1. We first define the Willems conferencing
functions that will turn out to be optimal for large blocklengths
in the course of the proof. Then, we show how Theorem 1 can
be applied to design a from a using these
conferencing functions if certain conditions on the rates are ful-
filled. Next, we show that these conditions can be fulfilled. Fi-
nally, we show that the average error of the conferencing codes
thus defined is small. As in the achievability proof for the MAC
with common message, it suffices to assume that the receiver
has no CSIR.

Preliminary Considerations: Let and be mes-
sage sets, let be a blocklength and let , be conferencing
capacities. If is large enough, we can construct a pair of simple
one-shot Willems conferencing functions (cf. Example 2) with
these message sets which will be admissible with respect to
and , . The blocklength needs to be large enough to ensure
the existence of positive integers , with

(32)

Then define

if

if .

Every can be written uniquely as

(33)

where and where

if ,
if .

The conferencing function can
now be defined by

(34)

Note that by (32)

(35)

so is an admissible one-shot Willems conferencing function.
Coding for : Now we show how to construct

a using the conferencing functions defined above
and the whose existence was proved in Section III-A.

We assume . Let be contained in
. Set

Then is contained in , defined
through , where the CSIT partition of both encoders
is given by

(36)

One knows by Theorem 1 that for any , there
is a such that for large , there is a

for
with

(37)

For fixed , let such a have the form

(38)

Below, we will show that if is large enough, one can find
, and , such that (32) is satisfied for and

such that

(39)

(40)

and

(41)

(42)

(43)

Because of the validity of (32), one can carry out the construc-
tion of the conferencing functions after (32). As noted in (35),
the pair defined in (34) for is an admissible
pair of conferencing functions. By (41)–(43), one can naturally
consider the set as a subset of and the
sets as equal to . With and recalling the
alternative definition of right after Definition 5, one
can now define a by a family as in (7) as follows: as-
sume that and have a representation

and as in (33). Then

(44)

(45)
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where is to be considered an element of . The
decoding sets are defined as

(46)

This code is a for the compound
MAC with conferencing encoders as in Definition 5 because
it satisfies (8) and (9) for the pair of conferencing functions

. We now show that it also achieves the desired rates.
Without loss of generality, one can assume that

(47)

if . We may also assume that

(48)

It follows for large enough from (37) and (41)–(48) and the
definition of the that

(49)

Further by (39), (40), (42), (43) and (37), for ,

(50)

Combining (49) and (50) yields

so the rates are as desired. Below, the average error of this
will be shown to be small, thus

finishing the proof of the achievability part of Theorem 2.
Finding , , , for : Let a positive

integer be fixed. Without loss of generality, let
, so again without loss of generality, one can assume

. We choose

Hence (32) and (39)–(41) are always satisfied. In order to find
and , three cases need to be distinguished. In all of the

cases, it is straightforward to check that (42) and (43) hold.
Case 1: for . Then .
Set for . Then , so

.
Case 2: for . Choose such that

for . Then and .

Case 3a: , . Then and .
Choose and such that

Then for both ; note that and
.

Case 3b: , . Analogous to case 3.
The Average Error for : Recall the form (38) of

the and the definitions

(44)–(46) of the above. We now
bound its average error. Let the channel state be arbi-
trary. The satisfies

where the sum ranges over the message set

of the . With assumption (47)
and (41)–(43), one has

One thus obtains for the average error of the
that

This proves that the average error of this
is exponentially

small. Thus the rate pair is achievable and this
finishes the proof of the achievability part of Theorem 2 for
the case .

The Case : First note that the case
is analogous to the case

which is treated here. One can use all the methods used in the
case for the first user. An admissible one-shot
Willems conferencing function can be constructed as in the
case . Then let .
One checks that the triple defined as above is
contained in , where also is defined as above.
Given a blocklength , one then can find , , , as
above, where only the relevant cases need to be considered.
This then defines a good .

Convexity and Bound on : The convexity of
is inherited from the convexity of

. Also the bound on the cardinality of the set
appearing in the parametrization of the rate regions comes
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from the bound on the range of the auxiliary random variable
appearing in the parametrization of the capacity region of the
compound MAC with common message.

IV. CONVERSES

We will concentrate on the converse for the MAC with con-
ferencing encoders because it requires some nonstandard pre-
liminaries. For the converse for the MAC with common mes-
sage, we only show how to start the proof, the rest is similar
to the proof of the MAC with conferencing encoders. For both
outer bounds, one assumes perfect CSIR. As we will prove that,
fixing a pair of CSIT partitions, this outer bound coincides with
the inner bound with no CSIR, this includes all possible permis-
sible types of CSIR.

A. Converse for the MAC With Conferencing Encoders

First we define what we mean exactly by the statement that a
weak converse holds for with .

Definition 9: A weak converse holds for the compound
MAC with if the average error
of every whose rate pair

is further than from
satisfies if is large

enough. Without loss of generality we measure distance in the
-norm, so the statement that the rate pair of the code is further

than from can be formulated as

(51)

We first show that the weak converse for the compound MAC
with conferencing encoders is implied by the weak converse for
an auxiliary compound MAC with different CSIT and a slightly
restricted kind of cooperation. CSIR will also be assumed to be
perfect for that channel. We then show that the weak converse
holds for this auxiliary MAC. Throughout the section, we will
assume that . The case of one conferencing capacity
being equal to zero is treated analogously.

An Auxiliary MAC: We now describe the auxiliary MAC. Let
be given. As we assume perfect CSIR, we may

assume . Let be CSIT partitions as
in (1) and define the CSIT partition as in (36). Let the channel

be given (symmetric CSIT!). We now define what

we mean by a for ,

where , , are positive integers and .

Definition 10: A is a

quadruple of functions which satisfy

where is a finite set and where satisfies

(52)

(53)

for the functions and defined by
. The number is called the blocklength of the code.

Thus, an auxiliary code is one where only messages are ex-
changed and where this is done independently of the CSIT. Like

, every can also be described by a family
analogous to (7) and a conferencing MAC like the from the
above definition.

Definition 11: The is a
if

The following two Lemmas show that the weak converse
for with implies the weak converse as
claimed in Theorem 2. The weak converse for with

is shown after the proof of Lemma 4.

Lemma 3: Let a be
given with

(54)

for some . Then there is a such that
for sufficiently large .

Lemma 4: For every there exists a positive integer
such that for every and every

for there is a
for .

Deduction of the Weak Converse for Theorem 2
From the Weak Converse for the Auxiliary MAC: Before
proving Lemma 4, we show how it implies a weak con-
verse for with . Assume that the

for satis-
fies (51). Let be arbitrary. By Lemma 4, for this

, there is a
for . As

for all , Lemma 3 implies
that for large . This implies the desired weak
converse for with .

Proof of Lemma 4: Let a
for be given

which has the form (7) and which uses the conferencing
function . Without loss of generality, assume that

(55)



3060 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 5, MAY 2011

Set and define

to be the projection of onto . Further, define a
conferencing MAC by

As is the conferencing MAC of the
, one obtains

This together with (55) implies that is admissible for
a with conferencing capacities . Further
set and and .
One checks immediately that the code thus defined is a

for . This
proves the lemma.

The Weak Converse for the Auxiliary MAC: Here we prove
Lemma 3. Let be arbitrary and set

Let a be given which satisfies
(54). We must show that there exists a such that

for large .
Assume that the above has

the form

and uses the conferencing MAC . We may assume that
, because otherwise, we are done. Consider a probability

space on which the following random variables are
defined:

• is uniformly distributed on ;
• ;
• for each ,

• for each a taking values in such that for
, , , and

Fix a and a . By Fano’s inequality

where denotes binary entropy. By the chain rule for entropy

(56)

(Several rules for calculating with entropy are collected in [4,
Ch. 1.3].) Using (56), can be bounded via

(57)

One obtains an analogous bound on

(58)

For one has the bounds

(59)

and

(60)

Using the chain rule, one splits up the mutual information
terms in the bounds (57)–(59) into two terms each such that the
channel only appears in the second one:

These mutual information terms and the one in (60) are bounded
successively in the following. First, the terms not depending on
the channel are considered. By the properties of , if the value
of is given, the random variable can assume at most
values, hence

An analogous argument shows

Finally, as in Remark 4, one sees that , so

Next we treat the remaining mutual information terms. Recall
that for , the corresponding codewords do not
need to be distinct. This is a problem when , are to be
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replaced by , in the expressions. Define
. We next show that

(61)

(62)

(63)

(64)

This allows us to do the replacement and to control the error
incurred by the replacement. In order to show (61)–(64), we
write

One has and
, as is a

function of and is a function of .
Thus in order to show (61)–(64), we need to bound the
distance of from and of

from .

Lemma 5: One has

Proof: Note that as is a function of

Now is a function of and
is a function of , so one has

Hence it suffices to show

(65)

Set

and set . From

it follows that . Now if ,
then , because otherwise one would
obtain a contradiction to the disjointness of and . We
introduce the random variable which equals
1 if and 0 else. The above bound on the size of

implies for . Therefore

The assignment of message pairs to codewords is unique on ,
so

Altogether this shows (65) and thus the lemma.

Thus (61)–(64) is established. The next goal is to obtain a
single-letter representation of the right-hand terms in (61)–(64).
This is done by several applications of the chain rules. Set

Further, set

One has

is a function of , so

Further as the channel is memoryless,
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Hence

In an analogous manner, one shows that

Further, with the same arguments as above

Finally,

Now we define the random variables that will be used for the
single-letter characterization. Let take values in ,

in , in and in , with

Note that is a finite set, that
, that and that .

Further

Combining the above equalities and inequalities, this implies
that

Thus for every and every , using
(56)–(64) and recalling the definitions of and , one has
the bounds

(66)

(67)

(68)

On the other hand, the validity of (54) implies that there is a
and a such that one of the following

inequalities holds:

(69)

(70)

(71)

According to which of (69)–(71) holds, we distinguish between
three cases. In order to simplify notation, we write

Case 1: Equation (71) holds. Then comparing (71) with
(68) yields

But if is chosen small enough, this gives a contra-
diction if is large depending on and . Thus for
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small and large , there can be no
satisfying (71).

Case 2: Equation (71) does not hold, but (69) holds. To-
gether with (66), the fact that (71) does not hold implies

Then using (66), we obtain

Thus for large , there can be no

satisfying (69) if is too small.
Case 3 Equation (71) does not hold, but (70) holds. Anal-
ogous to case 2.

And this proves the weak converse for the auxiliary MAC.

B. Converse for the MAC With Common Message

We restrict ourselves here to describing the setting that is the
starting point for the weak converse and apply Fano’s inequality.
The rest is single-letterization of mutual information terms and
similar to what was done in the converse for the MAC with
conferencing encoders. We assume full CSIR again.

For a , let a be given
with the form (7). Let a probability space be given
on which the following random variables are defined:

• uniformly distributed on ;
• uniformly distributed on given and uni-

formly distributed on given ;
• for every ,

• for every a random variable such that

for all , .
If , the definition of the and Fano’s inequality
imply

From this point, replacing the message variables by the code-
word variables and the single-letterization are very similar to
the one done in the converse for the MAC with Conferencing
Encoders, so we omit them. Thus the weak converse for The-
orem 1 is proved.

Fig. 3. Central node distributing one data stream to two senders.

V. APPLICATION AND NUMERICAL EXAMPLE

A. Applications in Wireless Networks

It was noted in the Introduction that the information-theoretic
compound MAC with conferencing encoders can be used to an-
alyze “virtual MISO systems.” We now give the informal de-
scription of a simplified wireless “virtual MISO” network which
we will then translate into our setting of compound MAC with
conferencing encoders. Assume that one data stream intended
for one receiving mobile terminal is to be transmitted. Two base
stations, which are placed at spatially remote positions, are used
to send the data to the destination. Assume that the base stations
are fed by a central network node with their part of the informa-
tion which is to be transmitted. At the receiver, the two streams
received from the two base stations are then combined to form
the original data stream. The question arises how the original
data stream should be distributed by the central node in order
to achieve a good performance. We will assume that the central
node has the combined CSIT of both transmitters, which could
for example be achieved by feedback. The network is pictured
in Fig. 3.

The answer to this problem can be given immediately once
one has translated the question into the setting of compound
MAC with generalized conferencing. If the data stream is not
split at all, but both senders know the complete message and
also have the other transmitter’s CSIT, then the full-cooperation
sum capacity is achieved, i.e., the capacity of the system where
the senders and the central node are all at the same location. The
drawback of this scheme is that the capacity of each of the links
from the central node to the base stations must be at least the
full-cooperation sum capacity. The other extreme is if the cen-
tral node just splits each message from the data stream into two
components. Then the overhead which needs to be transmitted
to the corresponding sender in addition to its message compo-
nent is minimized. However, the full-cooperation sum capacity
will not be achieved in general. The goal should be to find the
minimal amount of overhead which suffices to achieve a good
performance.

From Theorem 2 it follows that it suffices for the splitter to
send to the first base station, in addition to the first component of
the message, the one-shot Willems conferencing function value
attained by the message of the second component and the second
sender’s CSIT. The analogous statement holds for the overhead
for the second sender. The sum of the overhead rates required
to achieve the full-cooperation sum capacity can be seen from
Corollary 1. See also the following numerical example.
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Fig. 4. The capacity regions for the conferencing capacity pairs �� �� � �
��� ��, �� �� � � ����� ����, and �� �� � � ����� ����.

B. Numerics

We present a simple example of a rate region for the MAC
with conferencing encoders. Assume .
Let consist of the stochastic matrices

Here, the output distribution corresponding to the input combi-
nation is written in row .

In Fig. 4, different capacity regions are pictured. and
denote the capacity regions of the MACs given by and ,
respectively, without cooperation. Their intersection is the ca-
pacity region of the compound channel consisting of and

, where the exact channel is known at the transmitter. The
capacity region in the case of no CSIT is shown for no coop-
eration . Note that absence of cooperation
makes the region strictly smaller. and have been chosen
such that their sum is the minimal achieving the op-
timal sum capacity

has been chosen as .1 minus the minimal such that
the first user achieves the maximal possible rate and
has been chosen as the minimal such that the second user
achieves the maximal possible rate. Finally, “full coop.” denotes
the rate region which can be achieved by full cooperation. As
noted in Corollary 1, it can already be achieved with
and .

VI. CONCLUSION AND OUTLOOK

We have derived the capacity regions of two information-the-
oretic compound multiple access channels: the compound MAC

with common message and the compound MAC with confer-
encing encoders, where conferencing can be done about mes-
sages and channel state information. The channel with common
message, aside from the interest it has on its own, was used to
derive the capacity region of the channel with conferencing en-
coders. The latter channel can be applied in the rigorous infor-
mation-theoretic analysis of certain wireless cellular networks
which use base station cooperation in order to transmit data to
one mobile receiver. One can derive the exact amount of base
station cooperation that is needed in order to achieve the sum
capacity and the capacity region as would be achievable if the
base stations were at the same location and could thus be re-
garded as forming a “virtual MISO system.”

This analysis was motivated by recent developments in the
design of cellular systems. As interference is the main limiting
factor in the performance of such systems, research has recently
focused on methods of controlling interference in order to meet
the requirements for future wireless systems such as LTE-Ad-
vanced. Much of the literature which has contributed to this re-
search uses strict assumptions that will not generally be met in
reality. Assuming limited base station cooperation and channel
uncertainty in this paper, we tried to obtain a more appropriate
description of real situations.

Note that we did not address the issue of unknown out-of-net-
work interference. This is a problem for real networks. Dif-
ferent systems operating in the same frequency band and op-
erated by different providers who do not jointly design their
systems interfere each other. This happens, e.g., when Wireless
Local Area Network (WLAN)-systems are located close to each
other. Future work will be to model this information-theoreti-
cally. The appropriate model is to take MACs with conferencing
encoders. However in this case, channel uncertainty should not
be included by considering a compound channel, but rather, the
model best describing reality is the arbitrarily varying channel.
In such a channel, the transmission probabilities can change for
each channel use in a way unknown to the encoder. (This is just
the way unknown interference acts on channels.) Ahlswede’s
robustification technique [1] shows how to construct codes for
arbitrarily varying channels from codes for compound channels.
Hence from that point of view, the work done in the present
paper can also be regarded as a preliminary needed for the anal-
ysis of arbitrarily varying MACs with conferencing encoders.

APPENDIX

Here, we include some technical lemmas concerning typical
sequences.

Lemma 6:
a) Let be a finite set. Let . Let

. Then, for all , for every

is a universal function (i.e., independent of every-
thing), positive if and and for all
values of , one has .

b) Let be finite sets. Let and sto-
chastic matrices with input alphabet and output al-
phabet . Let . Let
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be the joint distribution corresponding to and . Then,
for all , for all ,

is a universal function (i. e. independent of everything),
positive if , and for arbitrary

, one has .

Proof: This is essentially [4, Lemma 1.2.6 and 1.2.7].

Lemma 7: Let be a finite set and let . Then,
there is a universal constant such that

Proof: This is exactly [14, Lemma III.1.3].

The next lemma is not used in the text. However, it is used in
the proof of Lemma 9, which we will prove. For and

, denote by the set of that are
-generated by with constant (cf. [4, Def. 1.2.9]).

Lemma 8: Let be finite sets. Let and
. Let . Then for any

is a universal function (i.e., independent of everything), pos-
itive if and for arbitrary , one
has .

Proof: This is essentially [4, Lemma 1.2.13].

The following lemma was already used in [8]. A slightly dif-
ferent form was proved in [1]. As it is nonstandard, we give a
proof here.

Lemma 9: Let be a nonempty subset of , and
let and be finite sets. Let and . For

, define the probability measure on by

Then

(72)

for some universal positive function which tends to 0 as
.

Proof: Denote by all the joint types in such
that there is an with

Every can be written as the union of some , where
. Hence

(73)

As there are at most different joint types in
, this is smaller than

(74)

Without loss of generality, we can assume that the union on the
left side of (73) is nonempty. Hence there is an with

, so . This implies for any which
is close to (in the sense of the definition of ) and for all

and

Thus . By Lemma 8, we conclude, using
(73) and (74), that

which finishes the proof.
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