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ABSTRACT
In this paper we analyze the reconstruction of bandlimited signals
from their sine wave crossings by a sampling type reconstruction
process. The reconstruction process is highly adapted to the signal
which shall be reconstructed, because the reconstruction functions
and the sampling points are implicitly generated by the signal. We
show that the reconstruction process is uniformly convergent for all
signals in the Paley-Wiener spaces PWp

π , 1 < p ≤ ∞. However,
the adaptivity cannot prevent the peak value of the reconstruction
process to diverge for certain signals in PW1

π .

Index Terms— adaptive, reconstruction, sampling, sine type,
zero crossings

1. INTRODUCTION

The recovery of bandlimited signals from their zero crossing has
been intensively studied, because the zero crossings of a signal are
robust under various non-linear disturbances the signal might un-
dergo, for example when it is transmitted over a non-linear channel
or in magnetic recording [1]. According to Hadamard’s factoriza-
tion theorem [2, p.26], a bandlimited signal that is bounded on the
real axis is—up to some constants—uniquely determined by its ze-
ros [3]. In general the zeros of a bandlimited signal are complex,
but in physical systems, complex zeros are not observable [4]. Only
the zero crossings, i.e., the locations of the odd order real zeros of a
signal, can be easily detected. But, in general, the zero crossings do
not contain enough information to reconstruct the signal [5]. As the
example (1 − sinc(πt))/t2 shows, there are even bandlimited sig-
nals that have no real zero at all. In order to circumvent the problem
of complex and multiple zeros, the invertible transformation

ψf (z) = f(z)−A sin(πz), z ∈ C, (1)

with A > ‖f‖∞, has been considered [5, 6, 7]. For signals f that
are bandlimited with bandwidth not larger than π, and both bounded
and real on the real axis, ψf has only real and simple zeros [8].
Moreover, given such a signal f , the theory of entire functions shows
that ψf can be reconstructed from its real zero crossings {tk}k∈Z by
virtue of the infinite product

ψf (z) = ψf (0) lim
R→∞

∏
|tk|≤R

(
1− z

tk

)
(2)

under the assumption that ψf (0) �= 0. Thus, ψf is determined by
its zeros {tk}k∈Z and ψf (0) = f(0). Since ψf (tk) = f(tk) −
A sin(πtk) = 0, k ∈ Z, the zero crossings {tk}k∈Z of ψf are the
sine wave crossings of f . Finally, the signal f can be reconstructed
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from ψf by using (1). Hence, f is uniquely determined by its sine
wave crossings {tk}k∈Z and f(0).

There is a considerable amount of literature dealing with the re-
construction of signals from its zeros by products [9, 3, 7]. In general
the convergence of infinite products is intricate and needs a careful
treatment. However, in many publications the argumentation is more
or less heuristic, and the results are rather claims without a rigorous
mathematical justification. Although, under the assumptions on the
signal f from above, the function ψf and consequently the signal f
are uniquely determined by {tk}k∈Z and f(0), the question remains
whether the reconstruction is stable.

One of the first papers that presents a mathematically rigorous
approach is [6]. In [6], Bar-David showed that every bandlimited
signal f with bandwidth smaller than π that is bounded and real
on the real axis, and that satisfies f(0) �= 0, can be reconstructed
according to (1) and (2) from the sine wave crossings of f , i.e., the
real and simple zeros of ψf , and f(0), provided that A > ‖f‖∞.

In practice the reconstruction of ψf using the infinite product ac-
cording to (2) has several drawbacks in terms of convergence speed
an sensitivity against jitter in the location of the zeros {tk}k∈Z, and
thus is not the preferred way to do the reconstruction.

2. NOTATION

Let f̂ denote the Fourier transform of a function f , where f̂ is to be
understood in the distributional sense. Lp(R), 1 ≤ p < ∞, is the
space of all pth-power Lebesgue integrable functions on R, with the
usual norm ‖ · ‖p, and L∞(R) is the space of all functions for which
the essential supremum norm ‖ · ‖∞ is finite.

For σ > 0 let Bσ be the set of all entire functions f with the
property that for all ε > 0 there exists a constant C(ε) with |f(z)| ≤
C(ε) exp((σ+ε)|z|) for all z ∈ C. The Bernstein space Bp

σ consists
of all functions in Bσ , whose restriction to the real line is in Lp(R),
1 ≤ p ≤ ∞ [10]. The norm for Bp

σ is given by the Lp-norm on the
real line, i.e., ‖ · ‖Bp

σ
= ‖ · ‖p. A signal in Bp

σ is called bandlimited
to σ. By the Paley-Wiener-Schwartz theorem the Fourier transform
of a signal bandlimited to σ is supported in [−σ, σ] [10]. For 1 ≤
p ≤ 2 the Fourier transformation is defined in the classical and for
p > 2 in the distributional sense.

For σ > 0 and 1 ≤ p ≤ ∞ we denote by PWp
σ the

Paley-Wiener space of signals f with a representation f(z) =
1/(2π)

∫ σ

−σ
g(ω) eizω dω, z ∈ C, for some g ∈ Lp[−σ, σ]. If

f ∈ PWp
σ then g(ω) = f̂(ω). The norm for PWp

σ , 1 ≤ p < ∞, is

given by ‖f‖PWp
σ
= (1/(2π)

∫ σ

−σ
|f̂(ω)|p dω)1/p. For p = 2 we

obtain the Paley-Wiener space PW2
σ , which is nothing else than the

space of bandlimited signals with finite energy. Hölder’s inequality
leads to PWs

σ ⊂ PWp
σ for 1 ≤ p < s ≤ ∞. Moreover, we have

‖f‖∞ ≤ ‖f‖PW1
σ

, which implies that every signal in PW1
σ is

bounded on the real line.
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(a) Plot of u(t) (solid line) and sin(πt)
(dotted line).

-4 -2 2 4

−1

1
z-plane

(b) Plot of the zeros of u(z) (×)
and the zeros of ψu(z) (◦) in the
complex plane.

Fig. 1. Illustration of the transformation of the complex zeros of a
bandlimited signal in real zeros.

3. CONVERGENCE RESULT

3.1. Basic Properties of ψf

In the introduction we have seen that the transformation (1) is im-
portant, because for signals f ∈ B∞

π that are real on the real axis,
ψf has only real and simple zeros. Figure 1 illustrates this transfor-
mation. The signal u(t) = (1 − sinc(πt))/t, which is depicted in
Fig. 1(a), has only complex zeros except for one real zero at zero.
The zeros of u in the complex plane in the vicinity of the origin are
plotted in Fig. 1(b) as crosses. Furthermore, the zeros of ψf , which
are plotted as circles in Fig. 1(b), are nothing else than the abscissas
of the crossings of u and the sine function.

In the following we use the transformation (1) only for signals
f ∈ PW1

π that are real on the real axis, and we assume that A = 1,
i.e., we consider the transformation

ψf (z) = f(z)− sin(πz). (3)

The space PW1
π is interesting, because it is the largest space in the

scale of Paley-Wiener spaces.

For signals f ∈ PW1
π that are real on the real axis and that sat-

isfy ‖f‖∞ < 1, ψf is a sine-type function. This fact will be of value
for us, because sine-type functions have many pleasant properties.

Definition 1. An entire function f of exponential type π is said to
be of sine type if

(i) the zeros of f are separated and simple, and

(ii) there exist positive constants A, B, and H such that A eπ|y| ≤
|f(x+iy)| ≤ B eπ|y| whenever x and y are real and |y| ≥ H .

Example 1. sin(πz) is a function of sine type and its zeros are tk =
k, k ∈ Z.

In the following discussion we will show that ψf is a sine-type
function if f is in PW1

π , satisfies ‖f‖∞ < 1, and is real on the
real axis. From [8] we know that ψf has only simple zeros. More-
over, since lim|t|→∞ f(t) = 0 according to the Riemann-Lebesgue
lemma, it follows that the zeros are also separated. Thus, ψf satisfies
item (i) of Definition 1. Moreover, since ψf has the representation
ψf (t) = 1

2π

∫ π

−π
eiωt dμ(ω), where μ(ω) is of bounded variation

on [−π, π] and has a jump discontinuity at each endpoint, it follows
[11, p. 143] that ψf also satisfies item (ii) of Definition 1, and hence
is a sine-type function.

For further information about sine-type functions we would like
to refer the reader to [11] and [2].

3.2. Adaptive Reconstruction Process

In the previous section we have seen that bandlimited signals f ∈
PW1

π , ‖f‖PW1
π

< 1, that are real on the real axis can be recon-
structed from their sine wave crossings, i.e., the zero crossings of
ψf , by using (2) and (3) as reconstruction formulas. In this paper we
analyze a different reconstruction process, which has the shape

∞∑
k=−∞

f(λk)
ψf (t)

ψ′
f (λk)(t− λk)

, (4)

where ψf is defined as in (3), and {λk}k∈Z denotes the zero se-
quence of ψf . Note that the knowledge of the zero sequence of ψf is
enough for the reconstruction process (4). The samples {f(λk)}k∈Z

can be calculated from ψf : since ψf (λk) = 0, k ∈ Z, it follows
from (3) that f(λk) = sin(λk), k ∈ Z.

Reconstruction processes of the shape (4) are a special case of
more general sampling series with non-equidistant sampling patterns
of the shape

∑∞
k=−∞ f(λk)φk(t), where φk, k ∈ Z, are certain re-

construction functions, and {λk}k∈Z is the sequence of sampling
points [12]. In our case, the sampling pattern {λk}k∈Z and the re-
construction functions

φf,k(t) :=
ψf (t)

ψ′
f (λk)(t− λk)

are implicitly generated by the signal f , and thus, in a certain sense,
adapted to the signal f .

For a large class of signals the reconstruction process (4) con-
verges uniformly on all of R.

Theorem 1. Let 1 < p ≤ ∞. For all f ∈ PWp
π for which ψf is a

sine-type function we have

lim
N→∞

(
sup
t∈R

∣∣∣∣∣f(t)−
N∑

k=−N

f(λk)
ψf (t)

ψ′
f (λk)(t− λk)

∣∣∣∣∣
)

= 0, (5)

where {λk}k∈Z denotes the zero sequence of ψf .

The proof of Theorem 1 is based on the following lemma, a
proof of which can be found in [2, p. 165].

Lemma 1. Let φ be a function of sine type, and {λk}k∈Z its zero set.
Further, let 1 < p < ∞. Then there exist two constants CL(p) > 0
and CR(p) > 0, depending only on p, such that for all f ∈ Bp

π

CL(p)

( ∞∑
k=−∞

|f(λk)|p
) 1

p

≤ ‖f‖Bp
π
≤ CR(p)

( ∞∑
k=−∞

|f(λk)|p
) 1

p

.

Proof of Theorem 1. Since PWp
π ⊂ PW2

π for p ≥ 2, it is clear that
if (5) is true for all f ∈ PW2

π for which ψf is a sine-type function,
then (5) is true for all f ∈ PWp

π , p ≥ 2, for which ψf is a sine-type
function. Hence, it suffices to prove the case 1 < p ≤ 2.

Let 1 < p ≤ 2. Further, let f ∈ PWp
π be such that ψf is a

sine-type function. Since f ∈ Bq
π and φf,k ∈ Bq

π , 1/p + 1/q = 1,
we can apply Lemma 1 to obtain∥∥∥∥∥f −

N∑
k=−N

f(λk)φf,k

∥∥∥∥∥
Bq
π

≤ CR(q)

( ∞∑
l=−∞

∣∣∣∣∣f(λl)−
N∑

k=−N

f(λk)φf,k(λl)

∣∣∣∣∣
q) 1

q

≤ CR(q)

( ∑
|l|>N

|f(λl)|q
) 1

q
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for all N ∈ N. In the last inequality we used the interpolation prop-
erty of φf,k, namely φf,k(λl) = 1 if l = k, and φf,k(λl) = 0 if
l �= k. Moreover, since( ∞∑

l=−∞
|f(λl)|q

) 1
q

≤ ‖f‖Bq
π

CL(q)
< ∞,

it follows that

lim
N→∞

( ∑
|l|>N

|f(λl)|q
) 1

q

= 0.

The proof is complete, because there exists a constant C(q) such that
‖f‖∞ ≤ C(q)‖f‖Bq

π
for all f ∈ Bq

π .

Remark 1. In Theorem 1 we have the requirement that ψf is a sine-
type function. A simple sufficient condition for ψf to be a sine-type
function is that the signal f ∈ PWp

π , 1 < p ≤ ∞, is real on the real
axis and ‖f‖∞ < 1.

Remark 2. For fixed t ∈ R, the sum in Theorem 1 is absolutely and
unconditionally convergent.

4. DIVERGENCE RESULT

In [13] we conjectured that the sampling series with matched recon-
struction function (4) is not uniformly convergent on all of R for
certain f ∈ PW1

π with ‖f‖PW1
π
< 1. Next, we will prove that this

conjecture is true. This shows that the restriction in Theorem 1 that
f ∈ PWp

π with p strictly larger than 1 is indeed necessary. Thus,
Theorem 1 is sharp in the sense that it cannot be extended to hold for
p = 1.

Theorem 2. There exists a function f1 ∈ PW1
π , such that ψf1 is a

sine-type function with solely real zeros and

lim sup
N→∞

(
sup
t∈R

∣∣∣∣∣f1(t)−
N∑

k=−N

f1(tk)
ψf1(t)

ψ′
f1
(tk)(t− tk)

∣∣∣∣∣
)

= ∞,

where {tk}k∈Z ⊂ R denotes the zero sequence of ψf1 .

Theorem 2 shows that even the adaptivity of the reconstruction
process (4) to the signals cannot avoid the divergence of the peak
value of reconstruction error for certain signals in PW1

π .
For the proof of Theorem 2 we use a recent result by Hryniv and

Mykytyuk, which was proved in [14].

Theorem 3 (Hryniv and Mykytyuk).

(i) Let w ∈ PW1
π and λk = k+w(k), k ∈ Z. Then there exists

a function f ∈ PW1
π such that ψf has the zero sequence

{λk}k∈Z.

(ii) Conversely, if f ∈ PW1
π , then there exists a function ω ∈

PW1
π such that {λk}k∈Z = {k + w(k)}k∈Z is the zeros

sequence of ψf .

This theorem is remarkable, because it completely characterizes
the zero sequences of ψf for f ∈ PW1

π in terms of a disturbance of
the integers by a function in PW1

π . In general it is hard to find such
descriptions for the zeros of entire functions.

The following corollary is a simple consequence of Theorem 3.

Corollary 1. Let w ∈ PW1
π be real on the real axis with |w(k)| <

1/2, k ∈ Z, and tk = k+w(k), k ∈ Z. Then there exists a function
f ∈ PW1

π that is real on the real axis such that ψf is a function of
sine type that has the zero sequence {tk}k∈Z.

Proof. Let w ∈ PW1
π be real on the real axis with |w(k)| < 1/2,

k ∈ Z, and tk = k + w(k), k ∈ Z. According to part (i) of Theo-
rem 3, there exists a function f ∈ PW1

π such that ψf has the zero
sequence {tk}k∈Z. Since {tk}k∈Z ⊂ R, it follows from (2) that ψf

and consequently f can be chosen to be real on the real axis. It re-
mains to show that ψf is a sine-type function. Since |w(k)| < 1/2,
k ∈ Z, and lim|k|→∞ w(k) = 0, the zeros {tk}k∈Z of ψf are sepa-
rated and simple, hence ψf satisfies item (i) of Definition 1. More-
over, by the same argumentations as in Sec. 3.1, ψf also satisfies
item (ii) of Definition 1, and hence is a sine-type function.

For the proof of Theorem 2, we need the following lemmas.

Lemma 2. Let f ∈ PW1
π be such that ψf is a sine-type function.

Then there exists a constant C1 such that for all N ∈ N sufficiently
large we have

∣∣ψf

(
N + 1

2

)∣∣ ≥ C1.

Proof. Let {λk}k∈Z be the zero sequence of ψf . Since ψf is a sine-
type function, there exists, for every ε > 0, a number C2 > 0 such
that |ψf (x+ iy)| ≥ C2 e

π|y| outside the circles of radius ε centered
at the zeros {λk}k∈Z of ψf [11, p. 144, Lemma 2]. According to
part (ii) of Theorem 3 we have λk = k + w(k), k ∈ Z, for some
w ∈ PW1

π . Further, since limk→∞ w(k) = 0, there exists a natural
number N0 such that |N + 1/2− λN | ≥ 1/4 for all N ≥ N0.

Lemma 3. Let f ∈ PW1
π , and let {λk}k∈Z denote the zero

sequence of ψf . Then for all sequences {ak}k∈Z ⊂ C with
supk∈Z

|ak| < ∞ there exists a constant C3 such that for all
sufficiently large N we have∣∣∣∣∣

N∑
k=−N

ak

(N + 1
2
− λk)

−
N∑

k=−N

ak

(N + 1
2
− k)

∣∣∣∣∣ ≤ C3.

Proof. According to part (ii) of Theorem 3 there exists a function
w ∈ PW1

π such that λk = k + w(k), k ∈ Z. For sufficiently large
N ∈ N we have N + 1/2− λk ≥ 1/4 for all k ∈ Z. Further, since
w ∈ PW1

π , there exists a N0 ∈ N such that |w(k)| < 1/4 for all
k ≥ N0. Thus, for sufficiently large N , N ≥ N0, we have∣∣∣∣∣

N∑
k=−N

ak

N + 1
2
− λk

−
N∑

k=−N

ak

N + 1
2
− k

∣∣∣∣∣
≤ ‖w‖PW1

π
sup
k∈Z

|ak|
N∑

k=−N

1

(N + 1
2
− λk)(N + 1

2
− k)

. (6)

Finally, using elementary calculations it can be shown that the sum
in (6) is bounded from above by some constant.

Lemma 4. There exists a function w ∈ PW1
π that is real on the

real axis with ‖w‖PW1
π
< 1/2 and w(k) ≥ 0, k ∈ Z, such that

lim sup
N→∞

N∑
k=−N

sin(πw(k))

N + 1
2
− k

= ∞.

Proof. For N ∈ N, consider the function

fN (t) :=

2N−1∑
k=−2N+1

fN (k)
sin(π(t− k))

π(t− k)

where fN (k) = 1 for |k| ≤ N , and fN (k) = 2 − |k|/N for N <
|k| < 2N . A short calculation shows that ‖fN‖PW1

π
≤ 3, N ∈ N.

Next, let M(l) = 2(l
3), l ∈ Z, and choose

w(t) =
1

10

∞∑
l=1

1

l2
fM(l)(t). (7)
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It follows that w ∈ PW1
π , because

‖w‖PW1
π
≤ 1

10

∞∑
l=1

1

l2
‖fM(l)‖PW1

π
≤ 3

10

π2

6
<

1

2
,

and that w(k) ≥ 0, k ∈ Z. Consequently, we have 0 ≤ w(k) <
1/2, for all k ∈ Z. Thus, for r ∈ N, we have

M(r)∑
k=−M(r)

sin(πw(k))

M(r) + 1
2
− k

≥ 2

M(r)∑
k=−M(r)

w(k)

M(r) + 1
2
− k

≥ 1

5r2

M(r)∑
k=−M(r)

fM(r)(k)

M(r) + 1
2
− k

=
1

5r2

2M(r)∑
k=0

1

k + 1
2

>
1

5r2
log(M(r)) =

1

5
r log(2),

because sin(x) ≥ 2x/π for all x ∈ [0, π/2].

Now, we are in the position to prove Theorem 2.

Proof of Theorem 2. Let w ∈ PW1
π be the function from Lemma 4

and {tk}k∈Z = {k+w(k)}k∈Z ⊂ R. According to Corollary 1 there
exists a function f1 ∈ PW1

π that is real on the real axis such that
ψf1 is a function of sine type that has the zero sequence {tk}k∈Z.
Therefore, we have f1(tk) = sin(πtk) = (−1)k sin(πw(k)) for
all k ∈ Z. For N ∈ N, sufficiently large, so that Lemma 2 can be
applied, it follows that∣∣∣∣∣

N∑
k=−N

f1(tk)
ψf1(N + 1

2
)

ψ′
f1
(tk)(N + 1

2
− tk)

∣∣∣∣∣
= |ψf1(N + 1

2
)|
∣∣∣∣∣

N∑
k=−N

(−1)k sin(πw(k))

ψ′
f1
(tk)(N + 1

2
− tk)

∣∣∣∣∣
≥ C1

∣∣∣∣∣
N∑

k=−N

(−1)k sin(πw(k))

ψ′
f1
(tk)(N + 1

2
− tk)

∣∣∣∣∣ .
Moreover, since ψf1 is a sine-type function we have either ψ′

f1
(tk) =

(−1)kck or ψ′
f1
(tk) = (−1)k+1ck for some positive ck, satisfying

infk∈Z ck > 0 and c := supk∈Z
ck < ∞ [2, p. 164]. We continue

the proof, assuming that ψ′
f1
(tk) = (−1)kck, k ∈ Z. The other

case is treated analogously. Applying Lemma 3, it follows that∣∣∣∣∣
N∑

k=−N

(−1)k sin(πw(k))

ψ′
f1
(tk)(N + 1

2
− tk)

∣∣∣∣∣ ≥ 1

c

N∑
k=−N

sin(πw(k))

(N + 1
2
− k)

− C3

for all sufficiently large N ∈ N. Combining all partial results, we
have∣∣∣∣∣

N∑
k=−N

f1(tk)
ψf1(N + 1

2
)

ψ′
f1
(tk)(N+ 1

2
−tk)

∣∣∣∣∣ ≥ C1

c

N∑
k=−N

sin(πw(k))

(N+ 1
2
−k)

− C4

for all N ∈ N, sufficiently large. Finally, applying Lemma 4 gives

lim sup
N→∞

(
sup
t∈R

∣∣∣∣∣
N∑

k=−N

f1(tk)
ψf1(t)

ψ′
f1
(tk)(t− tk)

∣∣∣∣∣
)

≥ lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f1(tk)
ψf1(N + 1

2
)

ψ′
f1
(tk)(N + 1

2
− tk)

∣∣∣∣∣ = ∞,

which completes the proof.

5. CONCLUSION

In this paper we have studied the adaptive signal reconstruction
scheme (4), where the reconstruction functions and the sampling
points are matched to the signal. Due to the transformation (3)
that is used, this problem is closely related to the reconstruction of
bandlimited signals from their sine wave crossings. Since, under
the assumptions that f ∈ PW1

π is real valued on the real axis and
‖f‖∞ < 1, the sampling points are the zeros of a sine-type function,
we could employ the theory of sine-type functions to obtain our re-
sults. We have shown the uniform convergence of the reconstruction
process for the spaces PWp

π , 1 < p ≤ ∞. However, the adaptivity
cannot prevent the divergence of the peak value of the approxima-
tion process for certain signals in PW1

π , which is the largest space
in the scale of Paley-Wiener spaces.
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