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Für Naomi
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Diese Arbeit wurde am Tokamak ASDEX Upgrade in Garching bei München, Deutsch-
land, durchgeführt. Dabei wurde eine neue Diagnostik zur Messung des radialen elek-
trischen Feldes aufgebaut, die auf der Messung der passiven Emission von einfach ioni-
sierten Helium-Ionen basiert, die in einer dünnen Schicht am Plasmarand vorkommen.
An ITER wird die H-mode (high confinement mode) der bevorzugte Betriebsmodus sein.
Dieser zeichnet sich durch einen verbesserten Energieeinschluss und eine starke Trans-
portbarriere am Plasmarand aus. Die allgemein akzeptierte Theorie, dass der Gradient
des radialen elektrischen Feldes und die damit verbundene verscherte Plasmarotation
turbulenten Transport reduziert, ist bisher experimentell noch nicht nachgewiesen. Des-
halb tragen die Messungen dieser neuen Diagnostik zu einem aktuellen und bisher nicht
vollkommen verstandenen Thema der Plasmaphysik bei.
Das Hauptthema dieser Arbeit ist die Messung des radialen elektrischen Feldes in der
Transportbarriere am Plasmarand von H-mode-Entladungen und der Vergleich der Tiefe
dieses Feldes mit den Vorhersagen der neoklassischen Theorie. Aufgrund der Verwendung
von passiver Spektroskopie sind Messungen in nahezu allen Typen von Plasmaentladun-
gen möglich, ohne das Plasma zu beeinflussen oder zu stören. Die notwendige Entfaltung
der linien-integrierten Messung wurde mittels integrierter Datenanalyse durchgeführt.
Dabei wurde ein Vorwärts-Model aufgesetzt, welches die Rekonstruktion der benötigten
radialen Profile ermöglichte. Hierbei kamen Bayes’sche Statistik sowie ein “Marcov chain
Monte Carlo”-Algorithmus zum Einsatz. Die Vorteile dieser Methode sind eine konsis-
tente Fehlerfortpflanzung aller gemessenen Größen, die automatische Berücksichtigung
von Außreißern sowie das einfache Einbinden von Randbedingungen und Hintergrund-
wissen. Die Genauigkeit und Verlässlichkeit dieser Methode wird ausführlich in einer
Sensitivitätsstudie diskutiert, wobei der Schwerpunkt auf den Auswirkungen der Un-
sicherheit in der Rekonstruktion des magnetischen Gleichgewichts liegt.
Das wichtigste Ergebnis dieser Arbeit ist, dass das Minimum im gemessenen radialen
elektrischen Feld gut duch die neoklassische Theorie beschrieben wird. Dies deutet da-
rauf hin, dass der turbulente Transport in der dominanten Ionen-Spezies in dem Bereich
mit starker Verscherung reduziert ist. Um diese Annahme zu untermauern, wurde die
Entwicklung des radialen elektrischen Feldes und der Randgradienten für unterschiedliche
Arten von Entladungen untersucht. Dabei wurde der Zusammenbruch und die Wieder-
aufbauphase der Profile während eines ELM-Zyklus betrachtet. Weiterhin zeigte die
Entwicklung der Er-Profile während eines L-H-Übergangs gute Übereinstimmung von
Messung und Theorie, sowohl in der L-mode als auch in der H-mode. Beim Vergleichen
von Entladungen über einen weiten Bereich von unterschiedlichen normierten Stoßfre-
quenzen konnte die stoßfrequenz- und temperaturabhängige Abweichung der neoklassis-
chen Theorie von ∇p/n bestätigt werden.
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This thesis was carried out at the ASDEX Upgrade Tokamak in Garching near Munich,
Germany. A new diagnostic for measuring the radial electric field was implemented,
which utilizes the passive emission of singly ionized Helium, existing in a small shell at
the plasma boundary. The H-mode is the preferred working regime for ITER, which is
characterized by improved confinement and a strong transport barrier at the plasma edge.
The widely accepted theory, that the radial electric field gradients and the concomitant
sheared plasma flows reduce turbulent transport in the pedestal region, leading to these
steep gradients in the density and temperature profiles, has not yet been experimentally
verified. Therefore, the measurements of this diagnostic contribute to an ongoing and
not fully understood topic in plasma physics.
This thesis focuses on the measurement of the radial electric field in the edge transport
barrier of H-mode discharges and the comparison of its depth with the Er depth predicted
by neoclassical theory. By using passive spectroscopy, measurements for nearly all types
of discharges are possible without disturbing or influencing the plasma. The necessary de-
convolution of the line integrated measurements was performed by applying integrated
data analysis. A forward model was set up, which allows the reconstruction of the
involved radial profiles using Bayesian statistics combined with a “Marcov chain Monte
Carlo” code. The advantages of this method are consistent error propagation of all
measured quantities, automatic outlier treatment and simple integration of background
knowledge as well as boundary conditions. The accuracy and reliability of this method
is shown in a sensitivity study, with focus on the effects of the uncertainties of the
equilibrium reconstruction.
The main result of this thesis is, that the minimum in the measured radial electric
field is well described by neoclassical theory, indicating that in the region with strong
velocity shear the turbulent transport for the main ions is reduced. To corroborate this
assumption, the development of the radial electric field and the edge kinetic profiles were
analyzed for different types of discharges. This includes the break-down and the recovery
of the edge profiles during an ELM cycle. The Er measurements during a L-H transition
showed good agreement of theory and measurement in both L- and H-mode. Comparing
discharges with a wide range in collisionality confirms the temperature and collisionality
dependent deviation of neoclassical theory from ∇p/n.
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Diagnostik enorm. Weiterhin möchte ich auch Herrn Dr. T. Pütterich für sehr hilfreiche
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1

1 Introduction

1.1 Fusion

The process of combining two light elements (e.g. two Helium atoms) to a heavier one is
called nuclear fusion. This is the opposite of nuclear fission, the process utilized in todays
atomic power plants, where a heavier atom (e.g. 235U) is split into lighter elements. In the
following, this work will focus on topics related to fusion. This process can also be used
as a power source by freeing atomic energy. The mass of the resulting heavier atom is
smaller than the sum of the masses of the two initial atoms. The mass difference is set free
in form of energy, which is several orders of magnitude higher than for chemical reactions
using fossil fuels. In times of restricted fossil resources and a strong public disapproval
concerning atomic waste from nuclear fission devices, fusion could be a promising way
toward a long lasting and clean energy source.

Energy source of stars: Looking at the sky, we can see billions of working fusion power
plants: the stars. The nearest one, the sun, has brought up the question for its energy
source a long time ago and therefore enforces the research on fusion devices. The solution
was found after the discovery of the atomic nucleus and the tunnel effect: the so-called
proton-proton chain reaction [1].

4p −→ 4
2He+ 2e+ + 2νe + 26.7 MeV (1.1)

Two protons p fuse into one Deuterium atom, together with another proton 3
2He is

formed. Two 3
2He atoms can create one 4

2He atom. The final process in equation (1.1)
shows the fusion of 4 protons to one He nucleus together with 2 free electrons e, 2
neutrinos νe and 26.7MeV of energy.

The sun provides certain conditions to enable the proton-proton chain: high density and
high temperature. Both of them are necessary because of the low cross-section of the
proton-proton fusion. High density (of about 1030 1

m3 in the core) is maintained by the
gravitational forces, which requires a minimal mass of about one tenth of the solar mass
(about 1.2 · 1030 kg). This highly efficient gravitational confinement also enables a high
temperature of about 107 K, which is still too little to overcome the Coulomb barrier of a
proton but provides sufficient tunneling probability to maintain the fusion reaction.[2]
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Modifications for fusion on earth: Trying to design a fusion power plant on the basis
of the proton-proton chain fails due to the limitations on size required for gravitational
confinement. A solution to this problem can be achieved by replacing gravitational con-
finement by magnetic confinement, utilizing the response of charged particles to magnetic
fields. Due to the fact, that this sort of confinement is less efficient and the amount of
plasma in an earth bound device has to be drastically reduced, the cross-section is much
too low. Therefore, other fusion reactions have to be explored. As can be seen in figure
1.1, the Deuterium-Tritium (D-T) reaction has its maximum at the lowest temperature,
which leads to sufficiently high cross-sections for fusion devices.

D + T −→ 4
2He+ n + 17.6 MeV (1.2)

Tritium is radioactive with a half-life of 12.3 years and is therefore not naturally avail-
able. It has to be bred from Lithium by exposing it to neutrons. The high availability of
Lithium together with the production of neutrons in the D-T fusion reaction will assure
the required amount of Tritium. The second element, Deuterium, is naturally avail-
able with a percentage of 0.015 % within normal water and therefore also sufficiently
available.

1.2 Magnetic confinement

The physical basis for magnetic confinement is the Lorentz-force acting on charged parti-
cles. Due to the high temperatures, a plasma consists of ionized atoms and free electrons.
Applying a strong magnetic field forces all particles to gyrate around the magnetic field-
lines and thus, particle-transport perpendicular to the magnetic field is strongly reduced.
In plasma physics, it is a common simplification to describe the resulting particle motion
with the guiding-center approach. The movement of the center of the gyration (guiding-
center) on the magnetic field is treated separately from the circular motion around the
guiding-center (see figure 1.2). A complete suppression of perpendicular motion is not
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possible due to drift motion (see chapter 2) and turbulent processes. Choosing different
magnetic geometries, a diversity of fusion devices with completely different properties
can be built.

1.2.1 1D confinement

Following the book of Freidberg [3], the simplest shape of the magnetic field �B is linear

( �B = B · êZ) along the Z-axis (êZ) and homogeneous. Particles within this field have a
high flexibility in motion along the Z-Axis but are well confined radially by the magnetic
field. This so-called θ-pinch has a good radial confinement and stability, but the high
particle losses due to the open ends in Z-direction makes it unfavorable as basis for a
fusion device. Bending to a torus-like shape to reduce end losses is not possible, without
losing radial confinement.

The alternative approach for a one dimensional device is the Z-pinch. In this case,
the current �I = I0 · êZ is applied externally and a poloidal magnetic field is induced.
Radial confinement is maintained by balancing the particle and magnetic pressure with
the tension force, that origins from the curvature of the magnetic field lines. Overall
confinement is also very poor because of the end losses. This concept can be bent to a
torus, but suffers from stability problems.

1.2.2 2D confinement

Low-β Tokamak: One possible solution to the end loss problem is a toroidal plasma
combining both concepts, the θ- and the Z-pinch, resulting in helically twisted magnetic
field lines. In a Tokamak a strong toroidal field is applied by external coils (see figure 1.3)
similar to the θ-pinch. The poloidal part of the magnetic field is induced by a toroidal
plasma current �Jtor driven by a transformer. Radial confinement and heating is provided
by this current, similar to the Z-pinch. One way to maintain toroidal confinement is by
applying an additional vertical magnetic field �Bv. Forces pushing the plasma against the
outer wall (e.g. forces arising from the toroidal magnetic field) are now balanced by an

inward �Jtor × �Bv force. The strong toroidal field maintains the stability of the plasma.
However, this setup is still not desirable as fusion power device, because the Z-pinch like
confinement results in a low β:

β =
2μ0P

B2
t +B2

p

. (1.3)

β is the ratio of kinetic pressure P to magnetic pressure, given by the square of the
total magnetic field (toroidal Bt and poloidal Bp component) divided by two times the
vacuum permeability μ0.[4] Additionally, the plasma heating is limited by the maximal
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Figure 1.3: Sketch of a Tokamak[1]

magnetic field lines
flux surfaces

Figure 1.4: Nested magnetic flux
surfaces[1]

current due to technical and stability reasons as well as the plasma resistivity ∝ T− 3
2 ,

that decreases with increasing temperature.

High-β Tokamak: Improvements to this concept can be achieved by applying external
heating sources. Increased plasma temperature leads to a higher pressure and therefore
increases β. Confinement now is sustained, θ-pinch like, by arising poloidal diamagnetic
currents. The shape of the plasma can be visualized by creating nested surfaces enclosing
a constant amount of magnetic flux, so-called flux surfaces (see figure 1.4). Important
plasma parameters like temperature, pressure or density can be assumed to be constant
on these surfaces. In the low-β case, these are nested concentric circles in a poloidal
projection, but in the high-β case, there is an outward shift (the Shafranov-shift) of
more inwardly situated surfaces relative to outer ones. This results in a compression of
flux surfaces on the low field side. The direction from the plasma center to the outer wall
of the torus is called low field side and the direction from the plasma center to the center
of the torus is called high field side. The reason for this is the decaying magnetic field
directed from the torus center outwards. The effects due to non equidistant flux surfaces
are discussed in detail in section 2. Increasing β also requires a stronger vertical magnetic
field to maintain the toroidal force balance and also an increasing plasma current to avoid
a β limit.

Divertor devices: In a real fusion experiment, the vacuum vessel has to be protected
from the hot plasma. This can be accomplished with a special shaping of the magnetic
field. A separatrix is created, which separates closed magnetic field lines from open ones
that lead particles in a separate region, called divertor chamber. Unconfined particles hit
special divertor plates, which can manage a high heat flux. Additionally, neutral particles
sputtered from the divertor plates have reduced probability of reaching the plasma and
causing energy losses due to line radiation.
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Figure 1.5: Sketch of ASDEX Upgrade

R

Z

Figure 1.6: Reconstruction of flux sur-
faces

ASDEX Upgrade: This work was done at the Max-Planck-Institut for Plasma Physics
in Garching, Germany. Since 1991 this institute runs the ASDEX Upgrade (Axial Sym-
metric Divertor EXperiment) fusion device (see figure 1.5). It is a full tungsten device
with a poloidal divertor. Typical discharges last about 10 s and have a toroidal plasma
current of about 1 MA. The magnetic field is about 2 T. The additional heating systems
(neutral particle injection, ion cyclotron heating and electron cyclotron heating) can ap-
ply up to 27 MW to the plasma. With a typical plasma volume of 14m3 and a plasma
mass of 3 mg it is a mid-size Tokamak in an international comparison. In figure 1.6 one
can see the typical magnetic field configuration. The thin black line indicates the vacuum
vessel containing the first wall, the grey elements. The red circles are the flux surfaces
introduced in the ”high-β Tokamak” paragraph. The Shafranov-shift, also introduced in
that paragraph, leads to the outward shift of the inner flux surfaces, which results in a
concentration of flux surfaces on the low field side. The separatrix, the blue solid line,
marks the plasma boundary. The outer flux surfaces lead down to the divertor region of
ASDEX Upgrade where the heat load is distributed on the divertor plates to protect the
vacuum vessel, the built in heating systems and the diagnostics.[5]

1.3 Confinement modes

In the previous sections, the word “confinement” was often used, but never discussed in
detail. One can derive different quantities for that purpose. One of them is the energy
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confinement time τE :

τE =
EP

PV

. (1.4)

EP is the plasma energy and PV is the total power loss of the system.[4] During a
discharge the power loss has to be compensated either by auxiliary or by internal fusion
α particle heating. High values of τE are favorable. The ratio of external heating Pext

compared to α particle heating Pα defines the Q value for a D-T-plasma:

Pext

Pα
=

5

Q
. (1.5)

The fact, that only one fifth of the fusion power is carried by alpha particles is already
included in this definition.[1]

1.3.1 Transport processes

As already discussed, movement of charged particles perpendicular to magnetic field lines
is strongly reduced. The remaining perpendicular transport can be separated in particle
transport and heat transport. Therefore, the perpendicular particle transport coefficient
D and the heat conductivity coefficient χ are introduced. In the following, an overview
of different theories for determining these coefficients is given.

Classical transport: In a plasma with more than one particle and non-vanishing con-
finement time, there are particle collisions. These collisions lead to radial displacements
in the order of one gyration radius �rg = m

qB2�v× �B, if the mass differs significantly. There-
fore, only electron-ion collision can cause radial transport. Together with the collision
frequency νei this defines the classical perpendicular particle transport coefficient [3]:

Dc,ei = r2
g · νei. (1.6)

Energy transport can also occur at inter species collisions

χee ≈ χei ≈ χie ≈
√
me

mi

· χii. (1.7)

The dominant heat transport is given by ion-ion collisions due to the large gyro-
radius.[2]

Neoclassical transport: The just presented transport coefficients do not include effects
due to the magnetic topology of the plasma. In a Tokamak, the toroidal magnetic field
is decaying with 1/R, where R is the radial coordinate. Due to the invariant magnetic
moment μ = (mv2

⊥) / (2B), parallel velocity of particles, which is mainly toroidal, is
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Figure 1.7: Schematic of free (red)
and trapped (blue)
particles[8] Figure 1.8: Neoclassic transport regimes[1]

converted to perpendicular velocity during their inward motion following the helically
twisted magnetic field lines

v2
‖
v2
⊥
< 2ε, with ε =

r

R
. (1.8)

The points with vanishing parallel velocity are the return points in the Banana orbit.
ε is the inverse aspect ratio of the Tokamak. In figure 1.7 [8], a sketch of the poloidal
projection of the so-called trapped particles can be seen, but one has to bear in mind, that
the leading component of the velocity is in toroidal direction. The width of these Banana
orbits is determined by particle drift-motion caused by the gradient in the magnetic field.
The radial excursion of trapped particles is larger than that of free particles, therefore
the transport coefficients have to be adapted. Dependent on the fraction of the trapped
particles and the increased displacement for each collision, a significantly higher radial
particle transport is present in the plasma:

Dn ≈ q2

ε
3
2

Dc. (1.9)

The safety factor q is a measure for the slope of the field lines (the number of toroidal
circulations divided by the number of poloidal ones). This result is only valid, if the colli-
sion frequency is low enough that the particle can complete many banana orbits without
collision.[3] Introducing the collisionality ν∗ by normalizing the collision frequency to the
time, a particle needs to finish a Banana orbit. The validity criterion for the transport
coefficient derived above is given by ν∗ < ε

3
2 . For higher collisionalities the influence of

trapped particles is reduced.

Anomalous transport: The use of the neoclassical transport theory has led to much
more realistic calculations of transport processes than by simply using classical theory.
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But there is still a discrepancy in calculation and experiment. The reason for this is, that
in typical discharges the transport is dominated by turbulence, small, fast and strongly
anisotropic fluctuations of most of the plasma parameters. The interested reader can
find more information on this topic in chapter 2.5 and also for example in [9], [24], [25]
and many other publications.

1.3.2 H-mode plasma, a motivation for this thesis

In 1980, a large step towards a fusion device was made. At the ASDEX tokamak (pre-
decessor of ASDEX Upgrade), a new operational regime with strongly improved energy
confinement was discovered. Due to the installation of a divertor and the application of
sufficient heating power, the plasma switches from low-confinement mode (L-mode) into
a so-called high-confinement mode (H-mode), which is characterized by steep gradients
of density and temperature at the edge.[6] In an overview plot in figure 1.9 from ASDEX
Upgrade, a typical L-H transition can be seen. In the first plot on the left side one can
see, that during the flat top phase of the plasma current, there is a period of increased
confinement triggered by switching on the electron cyclotron resonant heating system
(ECRH). On the right side of this figure, a comparison of L- and H-mode radial edge
profiles of the electron density and electron temperature is presented. The H-mode elec-
tron temperature profile shows a “pedestal” at the separatrix at ρpol = 1.0.1 This leads
to an offset for the core temperature which increases in L- and in H-mode with nearly
the same slope. In the density profile, the top of the pedestal is outside of the measuring
range of the Li-beam diagnostic, but in the time evolution on the left side, measured by
a Deuterium-Cyanide interferometer (DCN), a clear jump can be seen by switching into
H-mode. The formation of this so-called edge transport barrier (ETB) is the basis for
nearly all scenarios of future fusion devices and the understanding of this plasma regime
has advanced to one of the main topics in plasma physics, since it is not fully understood
even 30 years after its discovery.

Edge transport barrier: A commonly accepted theory identifies a strong reduction of
transport as reason for the steep gradients at the plasma edge. Due to a very localized
change in certain plasma parameters, the high anomalous transport for ions is suppressed
and the neoclassical transport χi becomes the leading process for the ion channel in this
small shell within the plasma. It is assumed, that the formation of a strong shear in
the radial electric field suppresses turbulent transport by tearing apart or tilt turbulent
eddies.[46] This gives the radial electric field and its shear a key role in edge physics.
Measurements with high spatial and temporal resolution are essential due to the narrow
width (≈ 2 cm) of the transport barrier and the strong time dependence of the edge pro-
files, which is discussed in the next paragraph. At ASDEX Upgrade, lately, big effort was

1ρpol is a radial coordinate, which has a value of 1.0 at the last closed flux surface (see chapter 2.1).
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Figure 1.9: Left: Time traces of selected plasma parameters, in which the L-H transition
and the H-L back-transition is marked by a yellow bar;
Right: Comparison of two radial edge profiles of L- and H-mode

put into improving the edge plasma diagnostics. Therefore, a new diagnostic of deter-
mining the radial electric field from passive He+ line emission was implemented within
the framework of this thesis, next to the already operating Doppler reflectometry system.
While the doppler reflectometry system is designed to cover the whole plasma edge, the
newly implemented method focuses on the small region containing the edge transport
barrier.[26] One of the main goals of the new diagnostic is to investigate, whether the
neoclassical predictions for the radial electric field agree with the measurements or not.

Edge localized mode: As mentioned just above, the edge profiles during H-mode have
a strong time dependence. The reason for this is a periodic plasma edge instability called
edge localized mode (ELM), which is not fully understood up to now. A short overview
on commonly accepted findings is given in the following.
In the left graph of figure 1.10, one can see simulations by an edge stability code called
ELITE for JET2-like plasmas [7]. It is shown, that the stable region for a given normalized

2The Joint European Torus (JET) is a fusion device, operated by Culham Centre for Fusion Energy
in the United Kingdom.
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Figure 1.10: Left: Stability calculation for JET plasma together with simplified models
of the ELM cycles of different ELM types [7]
Right: Variation of stability limits for different plasma shapes [7]

plasma βN and the ratio of the edge current Jedge to the average current Javerage is limited
on the one hand by the ballooning instability driven by the pressure gradient and on the
other hand by the peeling instability driven by the plasma current. βn is defined as
βn = βaB/I, where β is the plasma beta (see equation (1.3)), B is the magnetic field
and I the total plasma current. The influence of stronger plasma shaping on these
limits is shown in the right part of the figure. The limits are shifted to higher βN and
higher edge current. The development of plasma edge parameters is also illustrated in
figure 1.10. Due to the continuous heating and the reduced transport, the edge gradients
steepen up, resulting in an increasing plasma pressure and β. This leads to an increase of
plasma edge current by the neoclassical bootstrap current3, caused by the edge pressure
gradient. For low β (red ELM cycle), the current limit is reached first and small Type III
ELMs are triggered. Stronger heating reduces the ELM frequency. Further increase of
heating power lead to large type I ELMs with increased frequency due to higher heating
because of the ballooning limit. The small type II ELMs can only occur, if the current
limit is not reached within the cycle. This is the case either for strong shaping or for
high density and collisionality. A good indicator for ELMs is the Hα signal at ASDEX
Upgrade, which is a measure for the particle flux to the divertor. During an ELM, the
flux is significantly higher due to the collapsed transport barrier. This can be seen in the
time evolution in figure 1.9. During H-Mode, the sharp peaks in this flux indicate the
occurrence of ELMs. Affecting all plasma edge profiles and especially the radial electric
field, which also collapses during an ELM, the time evolution of the analyzed plasma has
to be correlated with the ELM cycle. This makes ELM synchronization to one of the

3The bootstrap current is caused by the toroidal component of the banana orbits of trapped particles.
In the presence of a radial pressure gradient, the particle density between neighboring Banana orbits
slightly varies, which leads to a diamagnetic current. Friction forces due to collisions with passing
particles amplify this effect.[12]
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leading topics within this work. A detailed discussion is presented in chapter 4.

1.4 Contents of this work

The main task of this work is to analyze the radial electric field at the plasma edge at
ASDEX Upgrade Tokamak. Therefore, a new method of measuring this field is presented,
using passive He II emission. The basic principles of a magnetically confined plasma in
a toroidal device was already discussed in this chapter. In the following two chapters, a
closer look is taken on the essential theoretical topics for this work. Chapter 2 focuses
on particle movement in a magnetically confined plasma, including the reconstruction
of the confining magnetic field lines, the drift motion of charged particles and a basic
over view on neoclassical theory. The atomic processes are discussed in chapter 3. A
collisional-radiative model is presented, which is then used to model the observed emission
line. Starting with chapter 4, the focus is shifted to the experimental part of the work.
The plasma edge of ASDEX Upgrade and the most important diagnostics are introduced.
Additionally the treatment of the ELMs, which is essential for edge physics, is discussed in
detail. The presentation of the new radial electric field diagnostic is divided in chapter 5
and 6. While chapter 5 focuses on the experimental setup, chapter 6 gives an introduction
to Bayesian statistics, on which the data evaluation is based. One first result, its accuracy
and its sensitivity on other measurements and assumptions is discussed in the sensitivity
study in chapter 7. The results are presented in chapter 8. This includes the effect
of ELMs on the radial electric field, variations of different plasma parameters and the
development of the Er during an L-H transition. All results are compared to predictions
from neoclassical theory. This work closes with a short summary of the main findings in
chapter 9.
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2 Particle movement

In the introduction of this work, a very short overview of the development of fusion
devices was given. Within this scope some fundamental concepts in plasma physics, like
flux surfaces or particle drifts were brought up, but were not discussed in the required
depth, necessary for this work. The following chapters will pick up selected topics and
go into more detail, starting with the movement of a single particle and its underlying
forces in this chapter.

2.1 Coordinate system

As a starting point for discussing forces and velocities, a coordinate system has to be
introduced. Due to the complex structure of a Tokamak, different sets of coordinates are
required for the various physical effects.

Full 3D coordinates: The most general coordinate system without any implicit sim-
plifications is a full 3D coordinate system (X, Y, Z). As origin, the center of the torus is
chosen, with an upwards pointing Z-coordinate. Figure 2.1 a) shows a top view of the
torus, illustrating the orientation of the X- and Y-axis. The vacuum vessel of ASDEX
Upgrade is divided in 16 sectors also marked in this figure. By defining the X-axis on the
border-line between sector 1 and 16 and the Y-axis perpendicular to it, an orthogonal
coordinate system is created. Additionally, port 9 is highlighted in yellow, in which the
optical head, used in this work, is mounted.

Simplified 2D coordinates: One basic feature of Tokamak devices is rotational sym-
metry in toroidal direction (ϕ in figure 2.1 a)). Therefore, a 2D coordinate system (R, z),
shown in figure 2.1 b) can be set up defined by the following coordinate transformation:

X = R cosϕ (2.1)

Y = R sinϕ (2.2)

Z = z, (2.3)

if ϕ is held fixed. In order to allow three dimensional intersection calculations required
for line of sight integration, a third dimension t normal to R and Z, is added.
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Figure 2.1: a) Top view of the torus vessel with Z coordinate pointing upwards;
b) The rotational symmetric 2D coordinate system with a sketch of the
Separatrix (purple);
c) Sketch of AUG vessel with flux surfaces (red) and Separatrix (blue); line1
and 2 visualize the different spacing of the flux surfaces at different positions

1D flux surface coordinates: As already mentioned in the introduction, most plasma
parameters are constant on flux surfaces, which can be identified by the normalized
poloidal radius ρpol:

ρpol =

√
Ψp − Ψ0

ΨS − Ψ0
. (2.4)

Ψ0 represents the poloidal flux on the magnetic axis (this means the center of the plasma)
and ΨS is the flux at the separatrix4. Normalizing the poloidal flux Ψp at the given flux
surface, a 1D coordinate is defined which varies from 0.0 at the plasma center to 1.0 at
the separatrix and > 1.0 in the scrape-off layer. The radial plots in figure 1.9 presented
in the introduction already utilized this coordinate system.
An impression of the distribution of the flux surfaces at ASDEX Upgrade is given by
figure 2.1 c). The closed flux surfaces, confining the plasma, are separated from the
open ones, leading the escaping particles to the divertor by the separatrix (plotted in
blue). Additionally, two linear paths 1 and 2 are also included in the figure to illustrate
the fundamental difference between the first two coordinate systems, compared to this
one. If one chooses equidistant grid points in the three dimensional and two dimensional
systems, they would not be equidistant in ρpol. Therefore, to be consistent, coordinate
transformations to other coordinate systems are always done on the mid plane (path 1)

4The separatrix is the last closed flux surface (see blue line in figure 2.1 c). It separates the confining
flux surfaces from the open ones in the so-called scrape-off layer (SOL). The separatrix can have one
or two X-points. The lower single null configuration (LSN) has one X-point in the lower divertor
chamber and the upper single null configuration (USN) has one X-point in the upper divertor.
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and gradients are never calculated in ρpol in this work.

2.2 Equilibrium reconstruction

Until now, the equilibrium, which includes the shape and position of flux surfaces in
a plasma is assumed to be known, but it is a complicated task to calculate the exact
trajectories of the magnetic field in a Tokamak. In plasma physics, a simplified set of
equations was derived, called ideal magneto-hydro-dynamic (MHD), with main focus on
the magnetic geometry and the macroscopic equilibrium. Mass, momentum and energy
conservation is included as well as Ohm‘s law and the Maxwell equations to account for
the strong magnetic field. A fluid model is used to describe the plasma, in which the
plasma current �J together with the magnetic field �B is used to balance the pressure
gradient ∇p:

�J × �B = ∇p. (2.5)

The magnetic field itself can be split in a toroidal �Bt and a poloidal �Bp component,
where the poloidal component using the axis-symmetric assumption of a Tokamak, can
be expressed as function of the poloidal flux Ψp [4]:

BR = − 1

R
· ∂Ψp

∂Z
Bz =

1

R
· ∂Ψp

∂R
, (2.6)

which is defined as Ψp =
∫
�Bp · d �A. In the stationary MHD equilibrium ( ∂

∂t
= 0), the

magnetic field �B as well as the current �J is perpendicular to the pressure gradient

�B · ∇p = 0 �J · ∇p = 0 (2.7)

and therefore the pressure is constant on flux surfaces p = p (Ψp) as well as the poloidal

current �Ip (Ψp). This leads to a second-order nonlinear partial differential equation, called
Grad-Shafranov equation, which defines the axis-symmetric toroidal equilibrium [3]:

�∗Ψ = −μ0R
2 dp

dΨ
− F

dF

dΨ
where F (Ψp) ∝ �Ip (Ψp) . (2.8)

�∗Ψ is defined as the elliptic operator �∗Ψ = R2∇· ∇Ψ
R2 . For a more detailed description

on ideal MHD, the book ”Ideal Magneto-Hydro-Dynamics” from Jeffry P. Freidberg [3]
is recommended.
At ASDEX Upgrade, the Grad-Shafranov equation is solved numerically for equilibrium
reconstruction using the CLISTE ( CompLete Interpretive Suite for Tokamak Equilibria)
code.[10] It uses the given poloidal field coil currents and the limiter structures to adjust
the free equilibrium parameters to match the measured data as close as possible. These
are magnetic measurements and optionally kinetic profiles to constrain the pressure.
MSE measurements of the local magnetic field can also be used to constrain the q-profile.
Soft X-ray measurements can additionaly constrain the position of the plasma center.
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In this work, the ρpol-coordinate and therefore the equilibrium reconstruction is inten-
sively used for alignment of the radial profiles of different diagnostics (see chapter 4) and
for mapping of radial profiles to the lines of sight (see chapter 6). Uncertainties in the
equilibrium reconstruction therefore enter the calculations in this work at various points,
which leads to very complex interdependencies that cannot be propagated consistently
through the whole model. The impact on the results is explored by a sensitivity study
presented in chapter 7.

2.3 Guiding-center approach

The trajectory of a charged particle within the strong magnetic field of a Tokamak is very
complex. One possible simplification is to apply the guiding-center approach, mentioned
in the introduction. The gyration of a particle around a field line with the gyro-radius
rg and the frequency ωc

rg =
mv⊥
qB

ωc =
qB

m
, (2.9)

due to the Lorentz-force, is separated from the movement of the center of the gyration.
Being dependent on particle charge q and mass m, the gyration direction and radius
differs for ions and electrons.

Parallel motion of the gyro-center: The movement of the gyro-center parallel to mag-
netic field lines is not affected by the Lorentz-force. Therefore, it can reach very high
velocities. Following the helically twisted magnetic field lines, a particle can reach every
position of a flux surface within a very short time5. This strongly reduces the ability
to built up gradients within a flux surface, which is a result already discussed in the
introduction and in section 2.2 from a different point of view.

Perpendicular motion of the gyro-center: At the first sight, there is no perpendicular
motion of the gyro-center, due to the Lorentz-force. But if an additional force F is added
to the system, a drift of the particles perpendicular to the field and the force with the
constant velocity vD arises:

�vD =
�F × �B

qB2
. (2.10)

In figure 2.2 a sketch of the driving mechanism is shown. The additional force F disturbs
the gyration motion in such a way, that in one half of the rotation the gyro-radius is
diminished by decelerating the particle (blue) and in the other half of the rotation,
the gyro-radius is enlarged by accelerating the particle (red). This leads to a constant

5This is not valid for rational flux surfaces. The magnetic field lines in these surfaces close with
themselves after a finite number of toroidal rounds.
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Figure 2.2: Illustration of drift motion
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Figure 2.3: Sketch of Pfirsch-Schlüter
currents

displacement of the particle after finishing one gyration and therefore to a motion with
constant velocity perpendicular to the force F and the magnetic field.

∇B-drift: In a Tokamak, there are various forces which are superimposed to the mag-
netic field. The just introduced drift concept can be used to explore particle confinement
in a Tokamak from the point of view of a single particle.
An important drift, inherent to all toroidal devices is the ∇B-drift. If parallel magnetic
field lines, like the ones present in the θ-pinch, are bent to a torus, they get more dense
to the center of the torus. On the one hand, this leads to trapped particles discussed in
chapter 1.3.1 and on the other hand, it acts as a force F = −μ∇B on particles resulting
in the ∇B-drift [2]

�vD = −mv2
⊥

2qB3
∇B × �B, (2.11)

where the magnetic moment μ of a particle, gyrating around a magnetic field line, is given

by μ =
mv2

⊥
2B

. Due to the charge dependence, this drift would lead to charge separation in
the case of a toroidal θ-pinch. But for a Tokamak with its helically twisted magnetic field,
parallel compensation currents, the so-called Pfirsch-Schlüter currents arise to maintain
the quasi neutrality. This is illustrated in figure 2.3. These currents are directed parallel
to the magnetic field, due to the high parallel mobility of charged particles and the small
poloidal component. They are oppositely directed on the high field side and the low field
side of the torus.
In contrast to this drift which leads to the mainly toroidal Pfirsch-Schlüter currents,
there are further drifts which cause mainly poloidal rotation. Therefore, these drifts are
of high interest to the new Er diagnostic, measuring poloidal rotation velocity.

Er × B-drift: The first mainly poloidal drift discussed here is caused by the radial
electric field. Its origin is analyzed in detail in the next two sections:

�vD =
�Er × �B

B2
. (2.12)
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In the region with negative Er and due to the negative magnetic field �B, a positive
velocity is driven (ions and electrons move in positive z-direction on the low field side).
As it will be shown later, this drift has a key position in deriving the radial electric field
from the measurements of the poloidal plasma rotation.

Diamagnetic drift: A gradient in the temperature and the density can also cause a
drift motion, called diamagnetic drift:

�vD = −∇p× �B

qnB2
. (2.13)

Compared to the last two drifts, this is not a single particle effect due to a force acting
on the gyro-motion, but it is a fluid-drift caused by the combined gyro-motion of all
particles of one species in a volume element. In the presence of a density gradient, there
are more particles gyrating in one direction with the gyro-center further inward, than
in the other direction with the gyro-center further outward, leading to an apparent drift
motion. The contribution due to the temperature gradient can be derived in the same
way. Depending on temperature and density, this drift can differ strongly for different
ion species. In the case of He+-ions, which is not a fully ionized species, the particle
pressure is rising looking from the scrape off layer to the center, until a maximal value
is reached and then decreasing again. This leads to a change in the direction of the
diamagnetic drift. The negative pressure gradient in the region further outward leads to
a drift in negative z-direction. Regions further inward have a positive gradient leading to
a positive drift velocity. This is in strong contrast to the diamagnetic drift of the main
ions of the plasma. Fully ionized Deuterium typically drifts in the negative z-direction
within the whole plasma due to a monotonically increasing pressure towards the plasma
center.

Gradient in excitation probability: A similar effect compared to the diamagnetic drift
is the drift caused by a gradient in the excitation probability. In the following chapter,
electron impact excitation will be identified as the leading process causing the observed
line radiation. In general one has to assume, that the excitation probability has a radial
gradient, which leads to a “pseudo” particle drift. The reason for this is, that particles
which are excited outside the observed volume element move into the volume element
by gyration motion and then emit line radiation. Due to the gradient in the excitation
probability, there are more excited particles gyrating through the observed volume ele-
ment in one direction than in the other because the gyro-centers are on different radial
positions. This leads to a shift of the observed wavelength and therefore to a “pseudo”
drift velocity. In reference [11] this drift is discussed in detail. The apparent drift for the
He+ line is found to be negligible.
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2.4 Transport theory

In the last section the drift motions were introduced, enabling particle motion perpendi-
cular to the magnetic field due to gyro-motion. Also the consequences of this “classical”
transport on toroidal confinement were discussed by introducing the toroidal Pfirsch-
Schlüter return flows. Within this section a more formal approach is presented, which
also includes effects from neoclassical theory and justifies the selection of drifts considered
by the presented radial electric field diagnostic. Additionally, a theoretical prediction of
the radial electric field can be derived. This section is based on the book of Helander
[12] and also on considerations from the article of Hinton and Hazeltine [13]. A short
outlook of possible corrections due to turbulence, which is neglected in the following
considerations, is given in the next section.

In kinetic theory a partial differential equation called Boltzmann-equation is used to
describe the number of particles within a spatial volume, centered at �r, and a velocity
interval, centered at �v, by the density function f = f (�r, �v, t):

∂f

∂t
+

3∑
j=1

vj
∂f

∂xj
+

3∑
j=1

Fj

m

∂f

∂wj
=

(
∂f

∂t

)
coll

. (2.14)

The effects of magnetic confinement can be added by the
(

∂f
∂t

)
coll

term, which includes

particle collisions, and by including the Lorentz-force �F = q �E + q�v × �B. E and B are
the macroscopic averaged fields. Small scale fluctuations due to forces raised by atomic
charges are moved to the collision operator C (f) =

(
∂f
∂t

)
coll

. Additionally, non-relativistic
particle velocities are assumed. This leads to the Fokker-Planck equation [12]

∂fa

∂t
+ �Va · ∇fa +

qa
ma

(
�E + �V × �B

)
· ∂fa

∂�V
= Ca (fa) , (2.15)

where the subscript a is the particle species (e stands for electrons, i for ions and Z for
impurity ions). The collision term Ca is a Fokker-Planck operator, which expresses the
effect of Coulomb collisions. Therefore, it has to be defined as the sum over collisions
with all other species within the plasma Ca =

∑
bCab (fa, fb). The electric field vector

�E = −∇Φ− ∂A
∂t

consists of a static, predominantly radial, electric field ∇Φ and the time

derivative of the vector potential ∂ �A
∂t

, which is induced6 by the magnetic field �BOH = ∇× �A

of the ohmic transformer. �V denotes the macroscopic fluid velocity, which is the average
over the velocity �v of all particles of a species at a certain point. Taking moments
of the Fokker-Planck equation leads to equations for particle, momentum and energy
conservation. The most important one for deriving the radial electric field is momentum
conservation which is given in [12]:

∂

∂t
mana

�Va + �∇Pa + ∇ · �πa − qana

(
�E +

1

c
�Va × �B

)
=

∫
d3 �ma�vaC (f). (2.16)

6The ohmic transformer is the only source from a neoclassical point of view. But there are also turbulent
fluctuations of A, which can produce electric fields.
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The first term on the left side of the equation accounts for inertia of the plasma particles,
the second one is the force driven by the pressure gradient, the third term arises due to
viscosity between the different species and the last one is the Lorentz-force. These are
balanced by the friction force due to Coulomb collisions.

2.4.1 Radial force balance equation

A possible candidate for being a source of the radial electric field might be a difference
in radial particle flux of electrons and ions. An expression for the perpendicular particle
velocity can be directly derived from the momentum equation by taking the cross product
with the magnetic field �B = �b · B [12]:

�Va⊥ =
�E × �B

B2
+

1

(manaΩa)
�b×
[
�∇ · Pa + ∇ · πa − �Ra +mana

(
∂

∂t

)
�Va

]
. (2.17)

The friction forces due to particle collisions are summarized by the �R term and Ωa = qaB
ma

is the cyclotron frequency of the species. In lowest non vanishing order, �V
(1)
a⊥ is only

poloidal (θ), given by E × B- and diamagnetic drift motion:

�V
(1)
a⊥ =

�E(0) × �B

B2
+

�B ×∇P (0)
a

man
(0)
a ΩaB

. (2.18)

The viscosity term can be neglected, if the particle distribution function fa is close to
a Maxwellian, which is always fulfilled, if closed flux surfaces are formed. Assuming a
small collision frequency compared to the cyclotron frequency, collisions do not disturb
the gyration motion of the particles and the friction force �R can also be neglected.
Inertia is small due to low velocities compared to thermal speed. Due to the fact that
lowest order electric field E(0) = −∇Φ and pressure P (0) are constant on flux surfaces
and therefore directed radially, these flows remain within one flux surface. They do not
contribute to radial transport. Equation (2.18) is the radial force balance equation:

VϕBθ − VθBϕ = �V
(1)
a⊥ B =

∂pZ

qZnZ∂r
−Er. (2.19)

In literature on radial electric fields this equation is extensively used. By measuring the
poloidal and toroidal rotation velocity profile, the radial electric field can be calculated,
if density and temperature profiles of the observed impurity species Z are known. Ac-
tive charge exchange recombination spectroscopy is often used to obtain the required
profiles.

2.4.2 Radial particle transport

The question, if the presence of a radial electric field is connected to a difference in radial
particle flux of electrons and ions, raised in the last section, could not be answered by
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analyzing lowest order perpendicular flows. The reason for this was, that these flows are
purely poloidal and therefore do not contribute to radial particle transport. Looking at
the next higher order, the perpendicular flow �Γa⊥ = na

�Va⊥ is given by

�Γa⊥ = na
�Va⊥ = na

�V
(1)
a⊥ + na

�Vc + na
�Vnc +O

(
δ3
)
, (2.20)

�Γc
a = na

�Vc = − 1

maΩ
�b× �R⊥, (2.21)

�Γnc
a = na

�Vnc =
1

maΩ
�b×
[
�R‖ − qana

�E(1)
]
, (2.22)

where �b is a unit vector pointing in the direction of the magnetic field.[13] The first order

electric field �E(1) = �E − E(0) = −∂A
∂t

is given by the induced part, due to the magnetic
field of the ohmic transformer, where A is the vector potential. The total particle flow
can be split up into three terms: The first order term derived in the last section, which
does not have a radial component and two other radial terms, separated due to their
driving mechanism. Viscosity and inertia are again neglected in this order.

Classical radial flow �Γc
a: Transport effects due to the gyration motion of particles are

referred to as “classical” (see section 1.3.1). These effects are caused by different forces
modifying the gyro-orbit. This leads to a drift perpendicular to the magnetic field and
the applied force. As discussed in the last section, lowest order perpendicular particle
flow is poloidal and stays within one flux surface (see equation (2.18)), resulting in a
poloidal friction force

Rfriction
⊥ =

mene

τe

(
V (1)

e − V
(1)
i

)
=
p′i − p′e
τeΩe

(2.23)

between particles of different species due to the relative velocity. Driven by the ∇P
term, it has an explicit dependency on the particle charge q. The electric field term does
not contribute, because it is equal for all species. Additionally, a poloidal thermal force
arises due to a temperature gradient:

Rthermal =
3neT

′
e (r)

2Ωeτe
. (2.24)

Following [12], this leads to a radial particle flow of

Γc
e = Γc

i = −ne
Te

meΩeτe

(
p′e + p′i
pe

− 3

2

T ′
e

Te

)
, (2.25)

which is identical for electrons and ions due to momentum conservation (Rei = −Rie) of
particle collisions. This flow is intrinsically ambipolar and therefore it cannot be a drive
for the radial electric field.
This does not change even if impurities are included, which drastically increase radial
ion particle flux because impurity-ion collisions lead to higher poloidal friction forces:

Γc
i = −ni

Ti

miΩiτiZ

(
p′i
pi

− TZ

ZTi

p′Z
pZ

− 3

2

T ′
i

Ti

)
. (2.26)
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Electron-ion collisions can therefore be neglected. Ambipolarity is again automatically
guaranteed by momentum conservation. The increased outward drift of ions is canceled
by an inward drift of impurities:

∑
a

Γc
a = e (Γc

i + ZΓc
Z − Γc

e) = 0. (2.27)

Neoclassical radial flow �Γnc
a : “Neoclassical” effects are based on Banana orbits of

trapped particles. The concept of particle trapping due to the radially decaying toroidal
magnetic field has been already discussed in section 1.3.1. Due to the predominantly
toroidal motion of trapped particles, neoclassical friction R‖ is parallel to the magnetic
field. It arises due to the fact, that particles of one species have opposite velocities in
one half of the Banana orbit compared to the other half. Neighboring Banana orbits
therefore lead to a friction, which is strongly dependent on the collisional regime. Using
the Fokker-Planck equation and the parallel return flows of neoclassical theory, the
friction force can be related to parallel pressure gradients, given by the first order
term P (1) = P − P (0). The origin of these parallel fluctuations is the deviation of the
guiding-center distribution from a Maxwellian. Due to momentum conservation, the
sum of these friction forces over all species has to be zero:

∑
a
�Ra‖ = 0. Therefore,

this part of neoclassical cross field transport is automatically ambipolar and cannot
contribute to the formation of the radial electric field.
The second term is related to an inward movement of the flux surfaces caused by the
induced electric field ∂A

∂t
, called Ware pinch. Due to the conservation of toroidal canonical

momentum, the bounce points of Banana orbits move with the flux surfaces. Thus,
trapped particles move inward. Passing particles are accelerated in parallel direction by
the parallel field, which leads to an outward drift due to toroidal momentum conservation.
This effect cancels exactly the inward motion of the field lines. Passing particles therefore
experience no drift due to the parallel electric field. The inward drift of the trapped
particles is intrinsically ambipolar due to the quasi-neutrality of the plasma

∑
a naqa = 0.

2.4.3 Parallel particle flux

After having analyzed the perpendicular particle flow in depth, no driving mechanism
for a steady state radial electric field could be found due to the automatic ambipolarity.
In the following it is shown, that the development of the radial electric field is driven by
the parallel particle flow in the plasma.

The reason for the build up of parallel particle velocity is given by the continuity equa-
tion, a moment of the Fokker-Planck equation, in a steady state plasma. It requires a
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divergence free total particle velocity in first order [13]:

∇ · �V (1) = ∇ ·
(
�V

(1)
⊥ + �V

(1)
‖
)

= 0. (2.28)

Therefore, in a toroidal plasma, parallel Pfirsch-Schlüter return currents have to arise
(see section 2.3 for a descriptive derivation). First measurements of these currents
may be presented in the paper of Pütterich et al.[18]. Just inside the separatrix, a
strong increase of the toroidal ion velocity is observed, which might be attributed to
Pfirsch-Schlüter flows.
Recalling first order perpendicular particle velocity (2.18) and combining it with (2.28)
leads to an expression for the first order parallel velocity

n�V
(1)
a‖ =

�B

B
·
(
n�V (1)

a

)
= − 1

mΩ
I

(
dP

(0)
a

dΨ
+ en̄

dΦ

dΨ

)
+K (Ψ)B, (2.29)

where K (Ψ) is an arbitrary integration constant.[13] Solving this equation for the electric
field gives no useful results due to the unknown function K (Ψ). This problem can be
solved by looking again at the Fokker-Planck equation (2.15). By reordering with respect
to the gyro-radius and by averaging over the gyro-phase, the drift kinetic equation can
be derived:

∂f̄

∂t
+
(
�V‖ + �Vd

)
· �∇f̄ +

e

m

[
∂〈Φ〉
∂t

+ V‖E‖

]
∂f̄

∂ε
= C

(
f̄ , f̄
)
. (2.30)

This is a basic equation in plasma physics and is discussed in detail in numerous papers
and books, for example [12],[13] or [19]. f̄ is the phase-space distribution of gyro-centers,

where the bar indicates the gyro-phase average. The coefficient of �∇f̄ is the velocity
of the gyro-center and the last term on the left side is a measure for the rate of energy
change of a gyro-center. In a toroidal confined plasma the drift velocities are given by

�Vd =
�E × �B

B2
+

1

Ω
�b×
(
μ�∇B + V 2

‖ �b · �∇�b+ V‖
∂�b

∂t

)
. (2.31)

The first term is the drift due to the electric field, the second one is due to the radial
decaying magnetic field, the third one due to the curvature of the magnetic field and the
last one combined with the third one is related to acceleration. By Amperes law, the
second and third term can be expressed by a pressure gradient.
Rewriting the drift-kinetic equation only in zeroth order

�V‖ · ∇f̄ (0)
e = Cee

(
f̄ (0)

e , f̄ (0)
e

)
+ Cei

(
f̄ (0)

e , f̄
(0)
i

)
(2.32)

�V‖ · ∇f̄ (0)
i = Cii

(
f̄

(0)
i , f̄

(0)
i

)
, (2.33)

leads to a gyro-center motion, simply following the magnetic field lines. Solving these
two equations in the rest frame of the ions moving with �Vi, it can be derived, that f̄

(0)
e

and f̄
(0)
i have Maxwellian shape, which is constant along magnetic field lines with equal
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mean velocity. Therefore, �V
(0)
i‖ = 0, because �Vi‖ is not constant along magnetic field lines

(it contains the Pfirsch-Schlüter return flows).[13] For the ions the 0-th order solution is
given by

f
(0)
i = Ni

(
mi

2πTi (ψ, t)

)3/2

exp

(
− miε̄

Ti (ψ, t)

)
, (2.34)

where Ni = ni,0 (ψ, t) exp
(Zie〈Φ (ψ, t)〉)

Ti (ψ, t)
. (2.35)

As expected, the zeroth order parallel velocity does not depend on the radial electric
field, because drift velocities are neglected (compare equation (2.29)). The first order
drift kinetic equations can be written in the following way:

�V‖ · ∇f̄ (1)
e − (C l

ee + C l
ei

)
f̄ (1)

e = −�Vde · ∇f̄ (0)
e −

(
e

Te

)
V‖E‖f̄ (0)

e , (2.36)

�V‖ · ∇f̄ (1)
i − C l

iif̄
(1)
i = −�Vdi · ∇f̄ (0)

i . (2.37)

The collision operators have been replaced by linearized collision operators marked by a
superscript l, in order to simplify further calculations. By solving these equations, one
can identify four thermodynamic forces in the electron case and two in the ion case, that
pushes f away from its Maxwellian shape f (0). For f

(0)
e , this is the pressure gradient of

electrons and ions, the temperature gradient of the electrons, the parallel electric field
and the effect on electrons due to collisions with ions. For f

(0)
i , this is the ion temperature

gradient and the effect on the ions of collisions with electrons. From equation (2.37), the
first order parallel ion velocity is derived [13]:

V
(1)
i,‖ =

(
V 2

th,i

2Ωi,p

)(
μi

h
−
[
∂pi

∂ρ
+

(
Zie

Ti

)
∂〈Φ〉
∂ρ

]
h

)
. (2.38)

It contains the parallel return currents (term in square brackets) necessary to make the
total velocity divergence free (see equation (2.28)) and therefore related to perpendicular
drift motion. Furthermore, the two thermodynamic forces add a divergence free part
(first term) due to friction forces. Applying the “weak-coupling approximation”, which
neglects the effect of electron-ion collisions on the ions, μi is given by the flux created by
the ion temperature gradient

−
(

Ti

ZiTe

)
μi 	 −

(
Ti

ZiTe

)
(β1, g2i)

∂ lnTi

∂ρ
, (2.39)

where (β1, g2i) is the corresponding transport coefficient. In figure 2.4, the parallel force
on passing ions due to friction with trapped ions is visualized in a poloidal projection.
Due to the temperature gradient, two neighboring trapped particles (blue and green)
have different energies. The energy dependence of the collision cross section leads to
a toroidal force on the passing ion (red).[20] Dependent on the collisional regime, the
resulting flux can be positive or negative due to the varying transport coefficient. In [13]
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iT∇

Figure 2.4: Poloidal projection of the parallel ion motion: The force due to friction of
trapped ions (blue, green) on a passing ion (red) due to a temperature gra-
dient is visualized

an approximation dependent on collisionality ν∗ (see section 1.3.1) and plasma aspect
ratio ε is given.

Banana-plateau regime: (β1, g2i)bp 	 1.17 − 0.35ν
1/2
∗i

1 + ν
1/2
∗i 0.7

(2.40)

Plateau-collisional regime: (β1, g2i)pc 	
(β1, g2i)bp − 2.1ν2

∗iε
3

1 + ν2
∗iε3

(2.41)

The mean parallel ion velocity, averaged over a magnetic surface, can now be written
as

〈Vi‖〉 = 〈V (0)
i,‖ + V

(1)
i,‖ 〉 =

cTi

ZiqiBp

[
(β1, g2i)

∂ lnTi

∂r
− ∂ ln pi

∂r
+
Ziqi
Ti

Er

]
, (2.42)

where from now on, the radial electric field ∂〈Φ〉
∂r

is labeled as Er.

2.4.4 Parallel ion velocity

Knowing the average parallel ion velocity, equation (2.42) can be used to calculate the
radial electric field from the ion temperature and density profiles. In the following it
is assumed, that the parallel mean ion velocity 〈Vi‖〉 can be neglected compared to the
other terms in equation (2.42), like it is done for instance in reference [22]. This lead to
the following equation for the radial electric field:

Er =
Ti

Ziqi

[
∂ ln pi

∂r
− (β1, g2i)

∂ lnTi

∂r

]
. (2.43)

In reference [14] it is shown by numerical simulations, that this equation is also valid at
the plasma edge in the region of steep gradients even for vanishing toroidal ion velocities,
which is the relevant region in this PhD work. This has to be shown explicitly, because
the assumption, made during the derivation of (2.42) that the orbit width has to be
small compared to the plasma gradients, is not given in this region. In the results part in
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Figure 2.5: Edge toroidal ion velocity measured by charge exchange compared to Pfirsch-
Schlüter return flows; the used electron and ion temperature as well as the
electron density are also shown [18]

chapter 8 the neoclassical predictions are compared to measured data. This can be used
to identify, if a vanishing mean toroidal ion velocity is justifiable and if the contribution
due to the ion temperature and collisionality is significant or not.

Recent results at ASDEX Upgrade support this assumption. In reference [18] highly
resolved toroidal ion velocity measurements by charge exchange spectroscopy have shown
a dip in the velocity about 1 cm inside the separatrix (see figure 2.5). As suggested in
the paper, the increase of the toroidal velocity towards the separatrix origins from the
Pfirsch-Schlüter return flows. If this is correct, measurements on the high field side should
show a velocity profile that should get negative in the region 1 cm inside the separatrix.
The mean toroidal ion velocity then becomes small in the pedestal region at the plasma
boundary and equation (2.43) describes the radial electric field in the edge transport
barrier correctly.

2.5 Flows and turbulence

To close the discussion on transport, a short overview on turbulent effects and its inter-
action with the radial electric field is given. For example, in [23],[24] and [25] reviews on
the actual understanding of turbulence are given. Also possible reasons for the transition
from L- to H-mode are discussed, which are strongly related to this topic. As yet, no
complete and widely accepted theory has been published.

In the introduction of this work the different concepts of particle and energy transport
are mentioned. Starting from classical transport for linear confinement, curvature of
magnetic field lines was introduced leading to neoclassical transport. Both theories
fail in reproducing the measured transport coefficients. Only by allowing fluctuations
in the electric and magnetic field, thus introducing turbulence, sufficiently high radial
transport can be achieved. This anomalous transport is dominated by low frequency
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drift-wave fluctuations. Gradients in the density and temperature act as source for these
collective oscillations due to the drift motion, caused by the gradients in combination
with the magnetic field. Having to separate the motion of electrons and ions, these
type of transport cannot be described by ideal MHD used for neoclassical calculations
like the derivation of the radial electric field or the overview of plasma confinement in
the introduction.[47] Another important phenomenon concerning turbulent transport are
zonal flows, which at the edge can couple due to the curvature of the magnetic field and
create flow oscillations called geodesic acoustic modes (GAMs). Both have zero poloidal
(n = 0) and zero toroidal (m ∼= 0) mode numbers and with a finite radial wave number.
Turbulent fluctuations in the electric and magnetic field lead to layers of poloidal E×B
velocity with opposite directions. The connection to drift waves is given by the “drift
wave-zonal flow turbulence” theory, describing the energy transfer from drift waves to
zonal flows. Not being able to drive radial flow, zonal flows cannot use radial gradients
as energy source, but draw their energy from drift waves by modifying the wave vector,
forming a self-regulating system.[48] A second mechanism which can drive zonal flows,
is momentum exchange between the mean flow and the turbulence, called Reynolds
stress.[23],[24]

A layer of sheared flows, which is created at the plasma edge by the steep gradients
in the radial electric field, by zonal flows and also by Reynolds stress, can affect the
just described turbulence in two ways. On the one hand, transport can be reduced
by turbulence decorrelation and on the other hand, modes can be stabilized, which is
summarized in [46]. In figure 2.6 one can see the impact of sheared flow on a turbulent
eddy. The resulting deformation leads to a reduction in radial transport.[46] Furthermore,
small eddies can be absorbed by the shear flow by extreme elongation, shown in figure
2.7 b) and thus leading to a self-amplification of the zonal flows. A decorrelation of large
eddies, as shown in figure 2.7 a), which can not be directly absorbed by the sheared flow,
may also have a key role in starting the self-amplification. However this is still under
discussion, due to limited experimental evidence.[21]
Furthermore, in [24] it is shown that the turbulence for example by Reynolds stress, can
have a feedback on the radial electric field, which was neglected in the discussion in the
last section.

In the rest of this work, only neoclassical theory will be used for comparisons to the
measurements. This is based on the assumption, that turbulent effects for the main ions
are reduced in the H-mode transport barrier at the plasma edge. Good agreement of
the predicted depth of the radial electric field with the measurements presented in the
chapter 8 corroborates this assumption.
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Figure 2.6: b) shows the color coded contours of turbulent radial flux in a cylindrical (r, θ)
geometry; created by turbulent eddies, which couple with the background
density profile; a) shows the radial flux averaged over the θ-coordinate; in c)
and d) the transport reduction due to a shared velocity is visualized [46]

a) b)

Figure 2.7: Left: Decorrelation of large eddies by sheared flow
Right: Small eddies are absorbed by the sheard flow [21]
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3 Atomic physics

Having discussed particle motion in detail, the focus will now be shifted to the atomic
processes within the plasma, which are responsible for plasma radiation. The Er diag-
nostic, presented in this work, measures the passive line emission of He+ at 468.57 nm
and therefore depends strongly on atomic processes. The impact of these processes on
line intensity, width and position will be explored.

3.1 Line emission

In order to calculate line radiation in a plasma, a collisional-radiative model is set up,
which describes the transitions between the different ionization levels of one atom. It also
covers excited states of ions and the transitions between them. The Max-Planck Insti-
tute for Plasma Physics, at which this work was done, is a member of the ADAS project
(Atomic Data and Analysis Structure). Therefore, the ADAS cross-section data and the
computer codes for modeling radiative processes in plasmas could be used. More infor-
mation on this project is given on the homepage of the project: http://www.adas.ac.uk.
In the following, the collisional-radiative model is presented on which all the utilized
ADAS routines are based on.[34]

3.1.1 Collisional-Radiative model

Following reference [28], a basic approach of modeling atomic processes of impurities in
a plasma is to use the coronal picture, which assumes low density and an optical thin
plasma. Collisions of electrons e− with impurity ions A of charge Z lead to excited ions
A∗ and radiation processes of these excited ions:

Impact excitation: e− + AZ −→ AZ∗ + e−

Spontaneous emission: AZ∗ −→ AZ + hν.
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Transitions between the different ionization stages are realized by including impact ion-
ization with electrons and radiative recombination:

Impact ionization: e− + A(Z−1) −→ AZ∗ + e− + e−

Radiative recombination: AZ + e− −→ A(Z−1)∗.

In 1962, a paper was published [27], that presents an extension to the coronal approach
to drop the condition of low densities, the collisional-radiative theory. It was extended
a second time to the generalized collisional radiative theory in 1984 by McWhirter and
Summers[29], to include the latest developments like divertor plasmas and high Z impu-
rities. Now, the impurity atom A is separated into different ionization stages AZ with
the charge Z. Each stage AZ is split into different levels of excitation AZ

i , labeled by a
subscript Roman letter. In this work, the impurity of interest is singly ionized Helium.
From now on, all considerations are made for this species: AZ → He+. Furthermore,
collisions with the fully ionized plasma main ions are included. For the most cases at AS-
DEX Upgrade, this is fully ionized Deuterium D+. The transitions within one ionization
stage are given as follows:

Impact excitation: e− +He+i −→ He+j + e− (3.1)

D+ +He+i −→ He+j +D+ (3.2)

Spontaneous emission: He+i −→ He+j + hν. (3.3)

The level of excitation is increased by collisions with electrons and plasma main ions.
Spontaneous emission decreases the level and lead to line radiation. In this work, the
transition from He+4 → He+3 was observed. The population of the ionization stages is
determined by the following four processes:

Impact ionization: e− +He0 −→ He+i + e− + e− (3.4)

D+ +He0 −→ He+i +D+ + e− (3.5)

Secondary ionization: e− +He+i −→ He2+ + e− + e− (3.6)

D+ +He+i −→ He2+ +D+ + e− (3.7)

Charge-exchange: He2+ +D0 −→ He+i +D+ (3.8)

He+i +D0 −→ He0 +D+ (3.9)

Recombination: He2+ + e− −→ He+i (3.10)

He+i + e− −→ He0. (3.11)

Impact ionization with electrons and plasma main ions act as a source for He+,
whereas secondary ionizations, which are also included have to be treated as a sink.
Charge-exchange reactions with the main ions as well as recombination processes with
electrons act as both, source and sink, for the population of He+.

The key aspect of the collisional-radiative model is to find a balance between the radiative
transitions, the effects due to collisions and the overall plasma parameters. By introduc-
ing rate coefficients R of collisions and time constants τ of radiative processes, the time
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evolution of such a system is determined. The populating processes of an ionization stage
Z are given by:

d

dt
N

(Z)
i,pop = Ne−

mZ−1∑
j=1

Rion
e− (Z − 1 → Z, j → i)N

(Z−1)
j

+ND+

mZ−1∑
j=1

Rion
D+ (Z − 1 → Z, j → i)N

(Z−1)
j

+Ne−

mZ+1∑
j=1

Rrec (Z + 1 → Z, j → i)N
(Z+1)
j

+ND0

mZ+1∑
j=1

Rcx (Z + 1 → Z, j → i)N
(Z+1)
j

+

mZ∑
j=i+1

N
(Z)
j

τ (j → i)
.

(3.12)

They are dependent on the electron and the two (neutral and fully ionized) Deuterium
densities as well as on the densities of the ionization stage one above and one below of
He+. Due to the rate coefficients R, an additional temperature dependence is introduced.
The depopulation processes can be written in an analog way:

d

dt
N

(Z)
i,depop = Ne−

mZ−1∑
j=1

Rion
e− (Z → Z + 1, i→ j)N

(Z)
i

−ND+

mZ−1∑
j=1

Rion
D+ (Z → Z + 1, i→ j)N

(Z)
i

−Ne−

mZ+1∑
j=1

Rrec (Z → Z − 1, i→ j)N
(Z)
i

−ND

mZ+1∑
j=1

Rcx (Z → Z − 1, i→ j)N
(Z)
i

−
i−1∑
j=1

N
(Z)
i

τ (i→ j)
.

(3.13)

These two sets of equations for the population and the depopulation are formulated
using excitation level resolved rate coefficients. The last term in the populating and
depopulating process is the radiative contribution. The populating term is given by the
populating transitions from all excitation levels above and the depopulating term repre-
sents radiative transitions from the observed excitation level i to all below. The collision
induced populating transitions between excitation levels are included in an analog way
for electrons

d

dt
N

(z)
i,pop ex,e = Ne−

[
i−1∑
j=1

Rexc
e− (j → i)N

(z)
j +

mz∑
j=i+1

Rde−exc
e− (j → i)N

(z)
j

]
(3.14)



32 Chapter 3: Atomic physics

rho poloidal

He +
He ++

He0

Separatrix

Figure 3.1: Sketch of emission shells

Figure 3.2: Comparison of different con-
tributions to the emission
profile

and for protons

d

dt
N

(Z)
i,pop ex,D = ND+

[
i−1∑
j=1

Rexc
D+ (j → i)N

(Z)
j +

mZ∑
j=i+1

Rde−exc
D+ (j → i)N

(Z)
j

]
(3.15)

consisting of impact excitation from lower levels and impact induced deexcitation from
higher levels. The corresponding impact induced depopulation processes are

d

dt
N

(Z)
i,depop ex,e = −Ne−

[
i−1∑
j=1

Rde−exc
e− (i→ j) +

mZ∑
j=i+1

Rexc
e− (i→ j)

]
N

(Z)
i (3.16)

for electron impact and

d

dt
N

(Z)
i,depop ex,D = −ND+

[
i−1∑
j=1

Rde−exc
D+ (i→ j) +

mZ∑
j=i+1

Rexc
D+ (i→ j)

]
N

(Z)
i (3.17)

for proton impact. In a stationary plasma, all these processes are in balance with each
other.

3.1.2 Photon emission coefficients

As a result of solving the just presented radiative collisional model, so-called photon
emission coefficients (PEC) were calculated. These coefficients are a measure for the
number of photons emitted by a given transition, stored in PEC-files, separated by the
emitting process. Together with the electron density and temperature profile as well as
the He+ density profile they are used to calculate the radial emission profile of the He II
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line. In figure 3.1, an overview of the radial distribution of the different ionization stages
of Helium is given.
In this work, the transition from He+ (n=4) to He+ (n=3) at a wavelength λ4→3 =
468.57 nm is measured. In the following, the population processes of the upper level are
explored separately and rated for their importance concerning the emission profile.

Ionization: Starting the discussion from the outermost radial position, which is in the
scrape-off layer, ionization of neutral Helium and Deuterium is the leading process (see
equation 3.4). But only ionization with simultaneous excitation to the n = 4 level of
simply ionized Helium acts as a direct source for the measured radiation process. The
cross-section of this process is only 0.1 % of the cross-section of ionization, leaving the
ion in the ground state.[31] Therefore, it is not directly contributing to the line emission
but it acts as a source of He+ ions (and also further inward He2+ ions).

Impact excitation: The next process gains importance near the separatrix with a suf-
ficiently high density of free electrons ne and He+ ions nHe+ . By collisions He+ ions
are excited to the n = 4 level (see equation 3.1 and 3.2) and therefore contribute to the
measured emission by:

〈P 〉 = nHe+ · ne · PECexcit (ne, Te) · EPh, EPh =
hc

λ4→3
. (3.18)

Looking from the SOL inwards, the emission is increasing due to the rising amount of
He+, free electrons and free protons. Further inward it decays, because of the decay-
ing He+ density due to ionization to He2+. A plot of the density and temperature
dependence of the associated PEC is presented in figure 3.3.

Charge-exchange: Within the same radial region, where D0, He+ and He2+ exist si-
multaneously with a sufficiently high density, another process is possible, charge-exchange
of neutral Deuterium with fully ionized Helium (see equation 3.8):

〈P 〉 = nHe2+ · nD · PECcx (nD, TD) · EPh, EPh =
hc

λ4→3
. (3.19)

The charge-exchange rate is strongly dependent on the excitation state of the neutral
atom (∝ n4). Using ADAS to model the relative population of the excited levels of
Deuterium, which is dependent on electron temperature and density, charge-exchange of
the (n=2) level of Deuterium is the leading process.[32]

Recombination: With increasing He2+ density, recombination processes (see equation
3.10) get more important. There is no sharp inner boundary, because only He2+ and



34 Chapter 3: Atomic physics

HeII n=4->n=3

10 100 1000
Te [eV]

0

2.0•10-17

4.0•10-17

6.0•10-17

8.0•10-17

1.0•10-16

1.2•10 -16

PE
C ex

c [m
3 s-1

]
Elektronendichte
               1  10    m
               5  10    m
               1  10    m

19

19

20

-3

-3

-3

Figure 3.3: Electron temperature and density dependent electron impact photon emission
coefficient of Helium for the n = 4 → 3 transition

free electrons are required which exist in the whole plasma. Only the decay of the cross-
section with increasing electron temperature leads to a reduction of emission towards the
plasma center.

〈P 〉 = nHe2+ · ne · PECrecom (ne, Te) · EPh EPh =
hc

λ4→3
(3.20)

Comparison: The importance of the different contributions to the emission profile is
visualized in figure 3.2, which was created by a STRAHL run. The STRAHL code [33]
is a one dimensional code to calculate the transport and emission of impurities. The
contribution due to impact excitation is about four orders of magnitude higher than
the contribution of the other two processes. To simplify the model and to decrease
computation time only impact excitation is included in the model.

3.1.3 Passive spectrum

Having explored the emission profile, a model of the spectrum of the passive He II
line was set up in the following way. The central wavelength was extracted from the
NIST Atomic Spectra Database (http://www.nist.gov/pml/data/asd.cfm) and corrected
for Doppler-shift due to the velocity of the He+ ions discussed in the last chapter.
The shape of the line was given on the one hand by a Gaussian shaped part due to
Doppler-broadening depending on the He+ ion temperature. And on the other hand by
a Lorentz-shaped part, which is explained in more detail in chapter 6.2.1. This led to a
Voigt-shaped line spectrum. Integrating these profiles along a given line of sight (LOS)
resulted in the observed passive He II line spectra.
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Figure 3.4: Line transitions from the n=4 level to the n=3 level, with respect to l-s
coupling resulting in 13 transitions

3.2 Corrections

In the section just before, a very simple model of a passive line spectrum was presented.
Before it could be applied to simulate the measured data, the effects of various corrections
were investigated in order to check whether they can be neglected or not.

He II fine structure splitting: A more sophisticated atomic model of the He II
(n = 4 → 3) line transition identifies 13 separate transitions due to the fine structure
splitting of the (l-s) coupled n = 4 level and the n = 3 level (see figure 3.4). A
comparison of this exact model (red) to a simple7 Gaussian one (blue) of the resulting
emission spectrum is given in figure 3.5 (a) and (b). The ADAS database was used
to extract the relative intensities and the positions of the single lines. The relative
difference between the simple and the exact model in percent is plotted in green,
where the maximal difference of the left and right wing is given separately as values.
Sub-figures (a) and (b) show, that for increasing temperatures the deviation decreases.
Also the asymmetry caused by the fine structure is strongly reduced for higher tem-
peratures due to the effect of Gaussian-shaped Doppler-broadening of each line. The
consequence of having neglected the fine structure is an increasing overestimation of the
ion temperature towards the scrape-off layer. Fitting a Gaussian with free width to the
line profile at 50 eV leads to an overestimation of 0.923 eV (1.8%). In the case of 30 eV
the overestimation increases to 0.735 eV (2.45%). Using a Voigt-shaped line profile
like it was done in this work does not change the overestimation of the temperature,
because the difference in the relative positions of the single lines of the exact profile are
smaller than the Doppler-broadening due to the temperature. A more serious problem
arises from a temperature dependent shift of the central wavelength due to the fine
structure, plotted in sub-figure (c). For temperatures below 50 eV, it has the same order
of magnitude as the measured line shifts (see chapter 5).

7A Gaussian-shaped profile was assumed with a width defined by the temperature due to Doppler-
broadening. The position and the amplitude was set equal to the exact model to simplify shape
comparison.
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Figure 3.5: Comparison of Gaussian approximation (blue) to a combined line profile using
fine structure splitting and Zeeman / Paschen-Back effect (red) for different
temperatures and magnetic fields (a),(b),(d) and (e). The deviation is plotted
in green. The viewing angle relative to the magnetic field is set to 80◦. (c)
and (f) show the deviation of the central wavelength to the tabulated value
of 468.57 nm for both magnetic fields (black) and the spline fit (red).

Paschen-Back effect: Within a magnetic field, the shape of a line emission spectrum
undergoes some major changes. These are strongly dependent on the strength of the
magnetic field and the internal structure of the ion. The different regimes are called
normal Zeeman-effect, anomalous Zeeman-effect and Paschen-Back effect (see figure 3.6).
For weak magnetic fields (below 1 T) the Zeeman-effect is present. Dependent on the total
spin S of the ion, normal Zeeman for S = 0 and anomalous Zeeman else, the line is split
in symmetrically shifted σ- and unshifted π-components. For stronger magnetic fields,
which are present at ASDEX Upgrade, the (l-s)-coupling within the ion is destroyed. This
is called Paschen-Back effect. The selection rules (Δms = 0 and Δml = 0,±1) allow only
three possible types of transitions. Analog to the Zeeman effect, the unshifted one with
Δml = 0 is called π-component and the two symmetrically up and down shifted ones with
Δml = ±1, are called σ-components. The relative intensities of these components are
dependent on the viewing angel compared to the magnetic field. For nearly perpendicular
observation, which is relevant for this diagnostic (see chapter 5), all three components
contribute with nearly equal weight, leading to a symmetric broadening of the He II line.
In figure 3.5 (d) and (e) the effect of a 2 T magnetic field on the He II spectrum is shown
for two different temperatures. Analog to the case with no magnetic field, sub-figures (a)
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Figure 3.6: Splitting of the 6 degenerated states of the (n = 3, l = 1) level: −l ≤ ml ≤ l,
ms = ±1/2. Fine structure splitting due to relativistic corrections: coupling
of the angular momentum leads to two states j = l±s. Weak magnetic field:
the −j ≤ mj ≤ j degenerated states are separated (Zeeman splitting). Strong
magnetic field: (l-s) coupling is destroyed, nearly all states are separated
(Paschen-Back effect).

and (b), one can see for both temperatures an asymmetric deviation from the Gaussian
fit (blue). This leads to an overestimation of the temperature and a shift of the central
wavelength. In the case of 30 eV, a free-width Gaussian fit causes a temperature of
37.6 eV, which is an overestimate of 25.3 %. This decreases for higher temperatures due
to the increasing Gaussian shaped Doppler-broadening to 15.6 % in the case of 50 eV.
Again, the introduction of a Voigt shaped line profile, like it is done in this work, reduces
the temperature overestimate only marginally: in the 30 eV case to 22.3 % and in the
50 eV case to 13.4 %. The asymmetry of the left to the right wing is not as strong as
for the case only with fine structure splitting, but due to higher number of lines and a
wider distribution of their CWLs, higher temperatures are necessary to cover this effect
by Doppler broadening. The CWL of a free Gaussian fit deviates from the tabulated
value (see sub-figure (f)). Compared with the case without magnetic field, the deviation
is reduced but still relevant in the region around 50 eV. In chapter 7, Sensitivity study,
the effect on the estimated radial electric field will be discussed.
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4 Diagnostics

The narrow region just inside the separatrix and all available radial profiles within this
region are of great importance for the radial electric field evaluation. This pedestal region
(see section 1.3.2) has a typical width of about 2 cm and is governed by steep gradients
due to the reduction of anomalous transport in H-mode. In this chapter, an overview of
the available edge diagnostics at ASDEX Upgrade is given and also the effect of ELMs
on these profiles is discussed.

4.1 Edge diagnostics

As basis for the discussion on edge physics, the most important edge diagnostics are
introduced. The experimental requirements due to the small spatial extent and the
short time scales in this region are very high. But great effort during the last years has
led to a variety of sufficiently accurate diagnostics and data evaluation methods.

Li-beam (electron density): One way of probing the plasma is to inject a radial beam
of neutral Lithium atoms and measure the Li I (2p → 2s) line emission at 670.8 nm.
Due to collisions, the neutral Li is ionized and confined by the magnetic field, which
leads to a beam attenuation strongly dependent on the electron density, restricting the
measurement region to the plasma edge. A relation to the electron temperature profile is
not given, because of the negligible dependence of the excitation probability on it. With
a spatial resolution of about 5 mm and a temporal resolution down to 50μs, the pedestal
of the electron density can be measured with sufficiently high resolution. [35], [36]

Electron cyclotron emission (electron temperature): The already discussed gyration
of the electrons around magnetic field lines can be utilized to measure the plasma electron
temperature. It is based on measurements of the cyclotron resonance frequency

ω =
eB

me
, (4.1)

which is radiated from these particles due to their accelerated circular motion. In the case
of an optically thick plasma, continuous absorption and reemission leads to a black body
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like radiation profile, where the intensity is only dependent on the temperature. The
necessary link to create a radial profile is given by the relation of the emission frequency
and the radially decaying magnetic field. Highly resolved edge profiles can therefore be
measured until the plasma becomes optically thin. In this “shine through” region too
hot temperatures from further inward are measured.[37]

Thomson-scattering (electron temperature and density): An alternative method of
determining the electron temperature and density is a Thomson-scattering system (TS).
Its advantage is, that density and temperature are measured simultaneously at the same
scattering volume, creating a link between the radial positions of these two profiles. The
basic idea of Thomson-scattering is to inject a laser beam (Nd:YAG, 1 J pulse energy at
120 Hz up to 6 J at 20 Hz, pulse duration ≈ 4 ns) vertically into the plasma and measure
the scattered light from electrons at different positions to get radially resolved profiles.
Using a central beam, the complete area from the center to the plasma boundary is
covered. For pedestal studies, higher resolution in the small region around the separatrix
is required. Therefore, the beam can also be injected vertically at the low field side near
the separatrix, reducing the radial coverage to 0.98 ≤ ρpol ≤ 1.1 and thus increasing the
resolution. The intensity of the scattered light is dependent on the number of electrons
in the scattering volume, which can be used to calculate the electron density. From the
same data, by analyzing the shape of the spectrum, the electron temperature can be
calculated looking at the full width at half maximum.[38]

DCN interferometer (electron density): A third system for electron density mea-
surements is available at ASDEX Upgrade. Five Deuterium CyaNide (DCN) laser
interferometers are used to measure line integrated densities along the lines of sight
visualized in figure 4.3. Due to the low spatial resolution, this system cannot be
used as stand-alone diagnostic for profile reconstruction, but combining it with other
diagnostics leads to more reliable result, because of the very accurate calibration of the
interferometer system.

Charge exchange recombination (ion velocity and temperature): Additionally to
the electron density and temperature profiles, the parallel velocity of the He+ ions is
required for radial electric field determination. The He+ velocity is assumed to be equal
to the impurity ion velocity, determined by charge exchange recombination spectroscopy
(CXRS). Neutral Deuterium atoms, which penetrates the plasma deeply due to the high
energy of the heating beam, collides with an impurity ion (e.g. He2+, C6+) and an
electron from the Deuterium is transferred to the ion, leaving it in an excited state. The
line radiation at a specific wavelength emitted by the decay of this exited state is detected.
From the Doppler-shift and Doppler-broadening of this emission line the velocity and
temperature of the impurity ion can be determined. The link between the velocity of
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Figure 4.1: AUGPed fit of pedestal profiles (ELM synchronized)

different species is given by the assumption, that fully ionized impurities are in thermal
equilibrium with the main ions of the plasma.[40] The edge CXRS system installed at
ASDEX Upgrade has a sufficiently high resolution to resolve the small structures within
the pedestal region, as discussed in detail in reference [39]. Typical ion velocity spectra
show a minimum just inside the separatrix, as already mentioned in section 2.4.3 (see
rightmost graph in the figure 4.1).

4.2 Combined profile reconstruction

Each of the just presented diagnostics covers only parts of the pedestal. By combining
all profiles, benefiting from overlapping diagnostics, a complete set of highly resolved
plasma edge profiles can be derived. Fitting these profiles with analytic functions is
the basis of further edge research. For this purpose, a graphical tool called AUGPed
was written by Lorne Horten. Within this program, profiles of different diagnostics are
combined, clipped to trusted regions and corrected for radial displacements, arising from
uncertainties in the absolute position and from equilibrium reconstruction. The profile
fitting is done by adjusting the parameters of a hyperbolic tangent function which is
extended by polynomials of order up to three at the inner and outer side of the strong
gradient region. In figure 4.1 examples of combined edge profiles together with the
AUGPed fits (purple) are presented. The alignment problem of the electron temperature
is solved by shifting the profiles radially to match the 100 eV at the separatrix, as derived
in [49]. The radial displacement of the Thomson-scattering data then defines the absolute
position of the electron density profile, because Thomson-scattering as already discussed
is measuring density and temperature simultaneously within the same scattering volume.
At the pedestal top, there are no data from edge TS and the Li-beam is already largely
attenuated. Therefore, the line integrated measurements from the DCN interferometers
are included. Having no concrete radial position, the minimal ρpol value along the DCN
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Figure 4.2: IDA pedestal profile fits, using Li-beam data,
DCN interferometer data and ECE data
red: during ELM; black: just before ELM
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LOS is chosen for plotting. For comparison the line integration of the fitted profile is
also plotted (purple crosses).

To ensure a sufficient amount of data points and due to the different time resolutions
of the included diagnostics, AUGPed was only used on large time intervals (of about
100 ms). These time averaged, smooth profiles lead to very accurate and well aligned
edge profiles. But this is also a disadvantage, if the evolution of edge profiles on small
time scales has to be analyzed. Especially in an H-mode plasma, time averaging has to
be done with great care due to ELM activity. The edge gradients change substantially
within the ELM cycle (typical type-I ELM frequencies are about 50 - 150 Hz). Therefore,
the ability of ELM synchronized time averaging was included in AUGPed. More detail
on ELM synchronization is given in the next section.

An alternative way of creating combined pedestal profiles is to apply Integrated Data
Analysis (IDA) to the measured data, which is presented in [41]. No time averaging of
profiles is done, which leads to a time resolution of 1 ms, being sufficiently high to resolve
the profile evolution during the ELM cycle. Only the Lithium beam data, the DCN
interferometer data and ECE data have sufficient temporal resolution to be evaluated
simultaneously on a millisecond time base. Thomson-scattering is excluded leading to
large error bars in the shine through region of the ECE profile and a loss of relative
alignment between electron density and temperature. In figure 4.2 typical profiles can
be seen.

The aim of the two methods of edge profile reconstruction (AUGPed and IDA) is different.
For time evolution analysis, for example L-H-transitions or comparison between two ELM
cycles, it is beneficial to use the fast IDA profiles. The proper aligned AUGPed fits are
better suited for comparisons of H-mode regions with different plasma parameters, for
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Figure 4.4: Time evolution of the gradients of electron temperature and density edge
profiles [45]

example different heating or fueling. In chapter 8, it is clearly pointed out, which method
was used to create the pedestal profiles required for electric field evaluation.

4.3 Consideration of ELMs

The edge profiles of a H-mode plasma, which were primarily analyzed in this work, are
strongly influenced by the ELM cycle. In section 1.3.2, a short overview of the different
types of ELMs and their driving mechanism was given. The gradients of the edge profiles
are increasing due to reduced turbulent transport and continuous heating, until a stability
limit is reached. Therefore, edge profiles are strongly time dependent. Looking at many
different time points, the evolution of these profiles could be analyzed in reference [42]
and [45]. One of the main results was, that the time evolution of the edge profiles is
cyclical with respect to the onset of an ELM. Different states relative to the ELM-onset
could be identified. In figure 4.4 this is visualized. The maximal gradients of the electron
temperature and the electron density are plotted relative to the ELM-onset (red bar).
Five regions in the evolution of the temperature gradient were identified. Therefore, data



44 Chapter 4: Diagnostics

evaluation always has to be done relative to the onset of an ELM. Temporal averages
over many ELM cycles, preserving the internal ELM structures, can only be realized by
considering a narrow temporal region within each ELM cycle. This is shown in the eight
small radial profiles on the right side of the figure. The yellow bars mark the origin of the
data relative to the ELM cycle. Essential for this “ELM-synchronized time averaging”
is a reliable method that identifies the exact time point of each ELM-onset during the
discharge. At ASDEX Upgrade so-called ELM shot files are written, containing the start
and end time point of every ELM during a discharge. The detection method is based
on the algorithm presented in [43], which is now available in a rewritten and improved
version by Andreas Burckhart. Different signals or a combination of them can be selected
for ELM detection. The ELM shot files used within this work are based on the poloidal
currents from shunt measurements in the outer divertor target plates.

The just presented method of “ELM-synchronized time averaging” was applied to all
time averaging processes required for this work. In AUGPed, this feature is already
built in, as mentioned in the last section. But it was also explicitly applied, if averaging
over IDA edge profiles was necessary. Furthermore, mapping of radial coordinates with
respect to the equilibrium reconstruction was done separately for each time step before
the averaging took place. Therefore, it is also ELM-synchronized, which led to strongly
reduced mapping uncertainties due to a radial displacement of the plasma during the
ELM.

These highly resolved edge profiles, on ELM-cycle time scales, are a good basis to analyze
the time evolution of the radial electric field within one ELM. According to neoclassical
theory, discussed in detail in chapter 2, the deep well drastically reduced due to the
breakdown of the temperature and density gradients (see equation (2.43)). Then, within
the recovery phase of the gradients, the well in the radial electric field should deepen
again until the stationary phase is reached. There, it should stay constant until the next
ELM happens. Confirmation of this predicted behavior could be a good evidence for the
assumption, that neoclassical transport is dominant in the pedestal region. Also the focus
could be shifted to longer time scales. Is there a time evolution of ELM cycles during a
constant plasma phase and is it related to the radial electric field? Also the transition
between different plasma regimes could be of great interest like the development of the
radial electric field and the associated ELM-cycles just after the L-H transition.
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5 Experimental setup

In the last three chapters, selected topics of plasma edge physics were discussed in
detail, to provide a basis for presenting a new diagnostic at ASDEX Upgrade. It aims
for determining the radial electric field with high spatial and temporal resolution in
the region around the separatrix. The experimental setup is described in this chapter,
followed by detailed information on the evaluation process in the next chapter.

5.1 Diagnostic design

Sector 9 

Optical head 

Figure 5.1: Setup of the diagnostic

The presented radial electric field diagnostic measures passive emission from He+ ions
at 468.57 nm. An optical head was used in sector 9 of ASDEX Upgrade (see figure 2.1,
marked in yellow). A sketch of the poloidal cross section of this sector is given in figure
5.1, where the optical head and the lines of sight (LOS) starting from it are marked in
magenta. The fiber endings are arranged in two parallel radial rows. 28 channels are
installed on the left side and 27 on the right with a radial resolution of about 6 mm. 17 of
them are connected to the analyzing spectrometers used for data acquisition. These two
Czerny Turner spectrometer systems are called LIA and LIC. The focal length of the LIA
spectrometer (JOBIN YVON) is f = 0.75 m, which is equipped with a 1200 l/mm grating
and a fast EMCCD camera (RoperScientific MicroMax 512BFT) with 512 × 512 pixel.
One pixel has a spectral coverage of 0.0175 nm. The camera can capture the spectra of 11
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by the LIC spectrometer

LOS with a time resolute of 4 ms, using hardware supported amplification and region of
interest (ROI) binning. The second spectrometer (ACTON) is identical in focal length,
but it is equipped with a 1800 l/mm grating and a different type of camera. Capturing
the spectra of 8 LOS, the camera (MicroMax) has also a time resolution of 4 ms but only
supports ROI binning. Due to the smaller number of pixels, 120, the spectral coverage
of a pixel is only slightly increased compared to LIA. It is 0.0129 nm. Together, both
spectrometers are capable of capturing 19 spectra simultaneously. One channel of each
spectrometer is connected to a calibration lamp to improve the accuracy of the absolute
wavelength calibration (more details will be given later in this chapter). Typical passive
spectra measured by the two spectrometers, which are set to a central wavelength of
λc = 468.57 nm, can be seen in figures 5.2 and 5.3. The most obvious difference is
the different spectral coverage due to the finer grating of the LIC spectrometer. In the
spectrum of the LIA spectrometer the neighboring carbon lines can be seen. Therefore,
to avoid distortion of the calculated radial electric field and to save computation time,
only a small region of the spectrum 468.57 nm ± 0.5 nm, marked in yellow, was used in
the following.

Passive spectroscopic measurements, like the one described here, do not disturb or influ-
ence the plasma. Therefore, measurements for every discharge can be done, supported by
a fully automated data acquisition and storage system. Due to the fact, that two other
diagnostics are also using this system, measurements of the He II line are not available
for all discharges. One of them is active charge exchange recombination measurements
using the Li-beam to determine the ion temperature at the plasma boundary.[44] The
other one is a passive method which can determine the electron temperature in the scrape
off layer.
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5.2 Raw data

After having discussed the data acquisition, a first approach to explore the information
content and its accuracy could be done. Therefore, the passive line integrated He II
line was fitted by a single Gaussian in order to determine the line center. The deviation
from the tabulated value λ0 is related to the velocity of the observed He+ ions by the
Doppler-shift, if effects due to line integration are neglected and the Er × B-drift is the
only drift accounted for. Now, one can look either on the time evolution of the line center
of single channels (figure 5.4) or at the relative wavelength shift between the channels
(5.5 a)).
In the first case, the results depend strongly on the observed channel. The most obvious
difference is the presence of a clear shift of the central wavelength between L- and H-
mode of the plasma in channel 3 but not in channel 2. Due to the small radial distance
(about 6 mm) in the launching point of these parallel lines of sight, a strong shear in
rotation velocity has to be present at the plasma edge. This first interpretation of
the measurements is in agreement with the prediction of transport reduction in the
pedestal due to poloidal velocity shear (see chapter 4). Furthermore, the clear difference
in central wavelength of LIA channel 3 demonstrates, that the experimental setup is
accurate enough to measure the small shifts in the order of 0.005 nm even though the
accuracy of the data analyzed by a single Gaussian is about 0.004 nm, estimated from the
scatter. In the next chapter a more advanced method is presented, which substantially
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increases the accuracy.
In the second case (figure 5.5 a)), which compares relative shifts of the channels, it is
possible to make first assumptions on the shape of the radial electric field. The central
wavelength of each channel of the LIC spectrometer, within a short time interval of 0.5 s
during H-mode, is plotted over a radial position. The assignment of a position to a
channel is not trivial due to non-localized line integrated measurements. As a rough
estimate the intersection point of each LOS with a plane of constant Z coordinate was
used. Therefore, from left to right, the LOS penetrates deeper into the plasma. Only
the channels 6 and 2, which are located in the middle of the measuring range, show
a clear jump in central wavelength. This indicates a very narrow shell (∼ 3 cm) of
increased toroidal rotation velocity with steep gradients. The maximal wavelength shift
of δλ = 0.015 nm indicates a depth of the associated radial electric field of −20 kV/m
assuming a magnetic field of −2 T. From channel 7 it can be concluded that the rotation
velocity has to be reduced again further inward. Assumptions on the gradient are not
possible due to a lack of resolution on this side using only one spectrometer. This was
fixed on the one hand by introducing a short radial plasma shift or, on the other hand,
by combining the measurements of both spectrometers. Figure 5.5 b) shows the results
with improved resolution due to a short outward shift of the separatrix of ∼2 cm within
the time interval of 0.5 s. The values characterizing the radial electric field derived in
this chapter have to be used with great care, because essential effects like line integration
or the diamagnetic drift have been neglected.

5.3 Calibration

In the section just above, shifts of the line center of about 0.015 nm were discussed, which
is nearly equal to the resolution of the cameras (0.0175 nm for LIA and 0.0129 nm for
LIC). Therefore, line shifts of one pixel and below had to be measured, which could only
be done with sufficient accuracy by fitting the whole spectrum (58 pixel in the case of
the LIA spectra and 78 pixel in the case of the LIC spectrometer). The model used to fit
the data is described in detail in chapter 6. The absolute wavelength calibration of each
spectrometer and also the cross calibration of the two spectrometers had to be done with
comparable or even better resolution to reduce the error of derived profiles. Accurate
intensity calibration was also required to enable emission profile reconstruction, required
for unfolding the line integrated spectra.

Wavelength calibration: The assignment of a pixel position to the appropriate wave-
length is the most crucial point of the presented diagnostic. The required high level
of accuracy could only be achieved by including corrections for optical effects. Lens
effects, pincushion distortion and a tilt of the camera were analyzed in order to create
correction functions for the wavelength calibration and the profile measurements. The
wavelength calibration itself was performed with a helium spectral lamp, whose spec-
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trum was recorded for a large wavelength region. Identifying the discrete emission lines
by the use of the NIST database [55], a consistent calibration for a large range of central
wavelengths of the spectrometer could be calculated. Furthermore, the accuracy of the
absolute wavelength calibration was increased even more by connecting one spectrome-
ter channel to a Zn-lamp, which has an emission line within the measurement region at
468.01 nm. This results in an in-situ correction factor that was included in the profile
reconstruction. On the one hand it was used for relative alignment of the wavelength
calibration of the two spectrometers. On the other hand the variation of the line center
of the Zn-lamp is a measure for the error of the absolute wavelength calibration, which
was included in the Bayesian data analysis presented in the next chapter.

Intensity calibration: As already mentioned, also an absolute calibration �CA of each
channel n was required. For earlier discharges an Ulbricht rod was used. For the cam-
paigns in the years 2010 and 2011 it was replaced by an Ulbricht sphere. The radiance
of the sphere Rs in

[
W

nm·m2·sr
]

at the wavelength of the He II line is multiplied with the
full solid angle of 4π, with the width of a pixel on the detector and divided by the energy
of a photon h·c

λ
leading to the emission Es of the sphere in

[
Photons

m2s

]
. This emission was

calculated for the observed transition at λ = 468.57 nm and related to the countrate of
the n-th channel of the camera

CA,n =
Es

countraten

[
Photons

m2 · counts

]
, (5.1)

resulting in the absolute calibration factor CA,n for each spectrometer channel. The
measurement noise was taken into account by recording about 2000 samples and taking
the average. The standard deviation gives the uncertainty σCA,n

.

LOS calibration: A measurement, obtained by passive spectroscopy, is strongly de-
pendent on the path of the LOS in the vessel and also on the path relative to the plasma.
Determining the latter was already discussed in section 2.2 using the CLISTE code. The
absolute viewing path in the vessel was measured using the FARO system. This high
precision 3D measuring system, using a movable mechanical arm, is installed during ves-
sel openings at ASDEX Upgrade. By measuring the position of two points along the
illuminated LOS, the path is completely determined. To combine this method with an
alternative one, that had been used in earlier discharges, a virtual joint starting point of
all LOS was calculated together with the intersection point on a plane with constant z
value equal to that of the Li-beam injection tube. This intersection point, in combination
with the distance to the end of the tube, is also sufficient to determine the path of each
LOS in the vessel. If no FARO measurement was available for one LOS, interpolation at
the Li-beam z-value was used. In figure 5.6, one can see the LOS connected to the two
spectrometers (LOS of the LIA spectrometer in yellow and LOS of the LIC spectrometer
in blue). This plot was created with the AUGddd program written by Tillman Lunt.[50]
The measurements by the outermost channels (LIA 1-3 and LIC 1) have to be used with
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Figure 5.6: Setup of the diagnostic; LOS of LIA spectrometer in yellow; LOS of LIC
spectrometer in blue; reflections of innermost and outermost LOS in black

care in the data evaluation, because there is the possibility of reflections (black lines) at
the passive stabilizer loop (PSL) directly into the upper divertor. This leads to increased
photon count rates and a possible modification of the line shape. In chapter 7 this is
discussed in more detail using measured data. There, it will be shown, that the shift of
the line center used in this chapter is only marginally modified. The innermost channels
(LIA 7-10 and LIC 7-8) suffered also from reflections (black lines in figure 5.6). These
LOS hit the lowest upper divertor plate and are reflected back into the high field side
SOL of the plasma, also leading to increased count rate and modifications of the line
shape.
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6 Probabilistic data analysis

Having discussed the experimental setup and some first results in the last chapter, the
focus will now be shifted to the development of an evaluation method for the radial
electric field, that takes into account the complete physics discussed in the first part of
this thesis (chapters 1 to 4). The main task is to unfold the line integrated measurements
and to separate the contribution of the E × B velocity from the total poloidal velocity.
The first part is normally done by applying Abel inversion to the measured profiles and
the second one by physical considerations (see the radial force balance equation (2.18)).
In this work, an alternative approach was chosen. Integrated data analysis was used to
extract the radial electric field profile from the measured data by Bayesian probability
theory (BPT), implementing a so-called forward model. It calculates modeled emission
profiles for each LOS dependent on the radial profiles, prior knowledge and boundary
conditions. Advantages of this approach are consistent error estimations within this fully
probabilistic framework, integration of prior knowledge and the possibility to include
non-Gaussian-distributed measurement errors.

6.1 Bayesian probability theory

Following the book of Sivia [53], the basic difference of Bayesian probability theory (BPT)
to classical statistics is a different understanding of probability. The definition of proba-
bility as frequency of an event in infinitely many repeated experiments is used in classical
statistic. In contrast to that, in BPT, it represents the degree of belief of the given hy-
pothesis considering all related information available. Basic logical considerations lead
to the usual rules of probability theory:

p (X|I) + p
(
X̄|I) = 1 (6.1)

p (X, Y |I) = p (X|Y, I) × p (Y |I) . (6.2)

X̄ represents the complementary hypothesis to X. The | sign indicates, that the proba-
bility of the hypothesis is conditional on an other hypothesis. As mentioned just above,
I is the background information the probability is based on. Combining these two equa-
tions, Bayes theorem

p (X|Y, I) =
p (Y |X, I) × p (X|I)

p (Y |I) (6.3)
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is derived.[53] Applying this concept to data analysis, Y is replaced by the measured data
�d and X by the physical model M with parameters �η. The term on the left side then
represents a measure for the truth of the chosen physical model (respectively the chosen

model parameters) based on the measurements �d, called posterior probability. This is
related to the likelihood probability, the first term of the numerator. It is a measure
for the likeliness of getting the data �d by using the model M . The posterior probability
also depends on the compatibility of the model parameters with the prior knowledge I,
expressed by the prior probability. The term in the denominator depends on the chosen
model and is therefore often used in model comparison. For parameter estimation using
only one model it can be neglected. The Bayes theorem is now given by

p
(
M (�η) |�d, I

)
∝ p
(
�d|M (�η) , I

)
× p (M (�η) |I) . (6.4)

Another interesting concept, directly derived from equations (6.1) and (6.2) in [53] is
that of marginalization:

p (M (�η) |I) =

∫ ∞

−∞
p (M (�η,�κ) |I) d�κ. (6.5)

Sometimes it is necessary to include parameters �κ in the physical model, whose
exact values are of no particular interest. Such a parameter may be for example the
background of a measured spectral profile. Applying marginalization to these so-called
nuisance parameters reduces the dimension of the posterior PDF, but propagates the
uncertainties of these parameters through the model.

As already motivated in the beginning of this chapter, a direct inversion of the line
integrated measurements presented in this work was avoided by applying Bayes theorem.
Therefore, a model M was developed, that relates the unknown radial profiles, the model
parameters �η, to the measured line integrated data �d. The best estimate of these model
parameters, with respect to the measured data and the prior knowledge, is then given by
the maximum of the posterior PDF. The focus is therefore shifted from a direct analysis
of measured data to the exploration of the posterior PDF.

6.2 Likelihood PDF

The posterior PDF (6.4) consists of two terms. The likelihood PDF, which is discussed
in this section, and the prior PDF which is discussed in the next section. Looking at the
likelihood in detail, on the one hand the model M has to be specified and on the other
hand this model has to be combined with the measured data �d.
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# description
30 He+ density (spline)
10 He+ temperature (spline)
40 e− temperature (correction spline)
35 Er field (spline)
16 intensity calibration
2 count-photon conversion factor
2 wavelength correction

40 e− density (correction spline)
2 Lorentz width of Voigt profile

16 count offset of each LOS
1 ρpol correction

2 · n n additional LOS (intens. & offset)

Table 6.1: Number of model parame-
ters; lower part shows the in-
cluded nuisance parameters

Figure 6.1: Flow chart of the forward model
in white, blue and red together
with the Bayesian fit and MCMC
error estimation in green

6.2.1 Forward model

An overview of the model is given in the flow chart in figure 6.1, where the most important
free model parameters �η are marked in blue. The complete set of parameters is provided
in table 6.1, where the lower ones are nuisance parameters. Each line in this table,
referred to as parameter, is realized by more than one real parameter ηk. The reason for
this is either the fact, that this parameter is different for each line of sight or it represents
a radial profile specified by spline nodes. Furthermore, marked in red, one can see the
most important profiles calculated by the model using the model parameters �η and the
prior knowledge I like atomic data. The model output �r (λ,M (�η)), a line integrated
spectrum, is marked with a color gradient from red to green because it is also an input
for bayesian parameter estimation marked in green (discussed later in this chapter).

The basic task of the presented model is to calculate line integrated emission profiles of
the He II (n = 4 → 3) transition. To simulate line integration, the experimental lines of
sight are discretized by 200 non-equidistant points. The sum of the local line emission
profiles at each point then gives an approximation of a line integrated measurement:

�rk (λ,M (�η)) ∝
∫

LOS

g (λ,M (�η)) |ρpol(l)dl ≈
LOS∑

l

gl (λ,M (�η)) · δl. (6.6)

Therefore, the model can be simplified. It is sufficient to calculate the local line emission
profile gl (λ,M (�η)) only at single points in the plasma. The overall shape of gl (λ,M (�η))
is modeled by a Voigt function specified by the emission Al, the position λ0,l, the width
δλG,l and a factor specifying the width of the Lorentzian part δλL.
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Emission line amplitude A (ρpol): Recalling the physics discussed in chapter 3, impact
excitation was identified as the leading process in populating the excited n = 4 state.
Equation (3.18)

A (ρpol) = 〈P 〉 = nHe+ (ρpol) · ne (ρpol) · PECexcit (ne (ρpol) , Te (ρpol)) ·EPh (6.7)

therefore determines the total emission in [W/ (m3 · nm)], enclosed by the local emission
profile gl (λ,M (�η)). The emission profile A (ρpol) depends on electron temperature, elec-
tron density and the He+ density. As already discussed in chapter 4, the electron density
profile ne (ρpol) at the plasma edge is provided by measurements. Thus, it was treated as
prior knowledge I. To include the measurement errors in the model, a correction spline
with 20 nodes was added to the profile, being allowed to vary within the error bars. The
same concept was used for the electron temperature profile Te (ρpol). It is also measured
and was included as prior knowledge. Again, a 20 node correction spline was added, due
to the measurement errors. Furthermore, the effect of ECE shine through is automati-
cally taken into account, because the uncertainties in this region rise drastically. Being
to some part determined by measurements and to some part a free model parameter,
this profile is marked with a color gradient in the flow chart. The He+ density profile
is not measured at ASDEX Upgrade routinely. Therefore, it was implemented as model
parameter represented by a 10 node spline.

Emission line position λ0 (ρpol): The central wavelength of an emission line is deter-
mined on the one hand by the transition causing it and on the other hand by the velocity
of the emitting ion due to the Doppler shift. The central wavelength of the observed He
transition in the NIST Atomic Spectra Database [55] is8 λC = 468.57 nm. The shifted
wavelength λ0 was determined by the radial velocity profile due to the Doppler shift:

λ0 (ρpol) = λC ·
(

1 − vHe+,P (ρpol)

c

)
. (6.8)

In chapter 2, a detailed discussion on particle movement in a toroidally confined plasma
has been given. It was shown, that in first order the perpendicular motion of ions is
solely determined by the E ×B and the diamagnetic drift:

�vE×B (ρpol) =
�Er (ρpol) × �B (ρpol)

(B (ρpol))
2 �vdia (ρpol) = − ∇pHe+ (ρpol) × �B

qHe+nHe+ (ρpol)B2
. (6.9)

Because the field of view discussed in chapter 5 is not completely perpendicular to the
magnetic field, it was necessary to project these perpendicular velocities on the lines
of sight. Furthermore, the projection of the toroidal velocity has to be included as a
small correction term. It is measured by CXRS and can be treated as prior knowledge
I. Also contained in I is the magnetic field vector �B, which is given by the equilibrium
reconstruction. The two remaining profiles, the radial electric field �Er and the He+

8In the sensitivity study in the next chapter, the influence of the fine structure splitting and the
Paschen-Back effect on the central wavelength is explored.



6.2. Likelihood PDF 55

pressure profile were implemented as model parameters, because at ASDEX Upgrade
there exists no diagnostic that measures the He+ temperature profiles routinely. It was
implemented as a 10 node spline and is required additionally to the already introduce
He+ density profile to calculate the He+ pressure profile. 25 spline nodes are used to
describe the radial electric field profile. By summing up all the contributions

vHe+,P (ρpol) = vHe+ (ρpol) |LOS = �vE×B (ρpol) + �vdia (ρpol) + �vtor (ρpol) |LOS, (6.10)

the projection of the total velocity vHe+ on the line of sight vHe+,P is calculated.

Emission line width δλ (ρpol): The width of the Voigt shaped emission spectrum
gl (λ,M (�η)) is a combination of the width of the Gaussian part (FWHM: δλG) and the
width of the Lorentz part (FWHM: δλL), with which the Gaussian part is convoluted.
Doppler broadening due to the temperature of the He+-ions is Gaussian shaped:

δλG (ρpol) =
λC

c
·
√

8kBTHe+ (ρpol) · ln 2

m
. (6.11)

The radial profile of the He+ temperature has already been introduced as model param-
eter in the last paragraph.

The complete equation for the modeled local emission spectrum in
[

Photons

m3·nm·s
]

can be
written as:

gl (λ,M (�η)) =A (ne, Te, nHe+) ·
· (ς ∗ h)

(
λ, λ0

(
�Er, nHe+, THe+

)
, δλG (THe+) , δλL

)
|ρpol(l,ρcorr),

(6.12)

where h (λ, ...) is a Voigt function with an area normalized to unity. The parameter δλL

was implemented as a constant for each spectrometer without radial dependency. This
assumption was made because it turned out, that fitting both width, δλG and δλL, as
radial profile led to interdependencies due to too little information in the data. The Voigt
shaped line profile is convoluted with the spectrometer function ς (λ). This function was
derived from the spectrum of the calibration lamp connected to one channel of each
spectrometer and assumed to be constant for all channels of a given spectrometer. To
evaluate equation (6.12) at a certain ρpol value specified by the l-th discrete point along
the calculated LOS, a small additive correction ρcorr (≈ 0.005) had to be applied to the
ρpol value. It depends on plasma shape and the side (left (+ρcorr) or right (−ρcorr)) of
the optical head from which the LOS observes the plasma. The reason for this is the
assumption of a shared starting point for all LOS (see section 5.3), which leads to a small
error in the toroidal and poloidal angle of the LOS. A correction of the LOS angle would
have given more accurate results but would also have increased the evaluation time to
inacceptable values, because a time consuming (R, z) to ρpol mapping of all LOS would
have to be done in each iteration instead of doing it at the startup of the program.
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To derive the model output rk in [counts] (see next section for a definition) for the k-th
line of sight, some additional effects had to be included:

rk (λ,M (�η)) ≈ CA,k ·
LOS∑

l

[gl (λ+ λCorr,M (�η)) · δl] +Ok. (6.13)

This was the intensity calibration CA,k (see section 5.3), an offset Ok in each line profile
due to measurement background and an additive wavelength correction λCorr from the
Zn lamp. Looking at table 6.1 one can see, that there are 2 · n parameters reserved for
n additional lines of sight. In section 5.2 the concept of shifting the plasma radially
was introduced to increase the spatial resolution of the measurements. To included this
in the model, it had to be assumed, that all radial profiles stay constant during the
radial shift. Virtual lines of sight were introduced, which only differ in the time point
used to map real coordinates to fux coordinates (ρpol) along a line of sight, using the
equilibrium reconstruction. To relief this strong condition of unchanged plasma, each
of this virtual lines of sight got a background and relative intensity model parameter
on its own. This allowed a balancing of intensity changes of the He II line during
the scan, which is caused by the following effect. Shifting the plasma outward leads
to an increased particle flux to the wall. Therefore, more neutral helium is released
into the plasma, which also increases the He+ density. By decreasing the relative
intensity calibration factor, this effect could be balanced. The small wavelength shift
λCorr of the modeled emission spectrum, introduced in equation (6.13), takes the
in-situ wavelength calibration into account. It was determined by the deviation in
the position of the measured calibration lamp profile compared to the tabulated position.

An important point which should be mentioned here is the influence of the emission
profile A (ρpol) on the shape and shift of the line integrated emission spectrum. Looking
at the model, the line shift of the modeled emission profile seems to be mainly determined
by the velocity profile, which itself is governed by the drift created from the radial electric
field (in the case of He+). But relating the line shift directly to the radial electric field
like it was done in section 5.2 neglects the weighting effect of the emission profile during
line integration. A high emission on positions with a small shift can lead to a stronger
total line shift than a large local line shift with vanishing emission amplitude.

6.2.2 Measured data

To write down an expression for the likelihood PDF, the output of the forward model �r
had to be related to the measured data �d. This relation is given by the probability of
reproducing the measured data �d with uncertainty �σ for a given set of model parameters
�η. The data points dk are measured as positive integer values called counts within a
predefined temporal and spatial interval by the CCD camera. This count number is
related to the number of detected photons N during a given time interval and for a
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given wavelength region by a conversion factor Υ. Applying the same mapping to the
count number calculated from the model rk results in the mean number of photons F
expected for a given set of model parameters �η. The probability of reproducing the data
is given by the Poisson PDF

p (N |F ) =
FNe−F

N !
≈ 1√

2πN
exp

(
−(F −N)2

2N

)
, (6.14)

which is commonly approximated by a normal distribution for high photon counts N .
The derivation of equation (6.14) from the Binomial PDF presented in reference [53],
makes use of a second order Taylor expansion and the Sterling approximation of the
factorial N !. The standard deviation of this normal distribution is given by

√
N .

Photon emission due to line transitions in atoms is a statistical process, therefore the
statistical noise σN of photons counted by the detector N is given by the width of the
normal distribution associated to the expectation value F :

σN =
√
N. (6.15)

This is independent of the expectation value and therefore correct, even if the expected
value is not known exactly.

The final step towards an explicit formulation of the likelihood PDF was to determine
the conversion factor Υ, which relates the counts dk measured by the camera to the
number of detected photons N = dk · Υ. It can be obtained either by calibration of the
CCD camera or directly from the measured spectra of a whole discharge. For the first
possibility, the signal to noise ratio has to be measured for different mean count rates:

Υ =
σ2

d,k

dk

. (6.16)

The other possibility, which was used in this work, has the advantage, that it also could
be applied to older discharges. For all measured data points (each pixel in each spectrum
for all channels) of a discharge the local variation was determined. This is given by the
scatter of the five nearest pixels compared to the tangent at the central point, visualized
in figure 6.2 a). The square of this local variation was sorted by the count rate of the
central pixel, leading to a large dataset of (σ2

d; dk) data pairs. Fitting a regression line
then defines the conversion factor Υ, its uncertainty σΥ and the readout noise σr (see
figure 6.18 b)):

σ2
d,k = Υ · dk + σ2

r . (6.17)

The read-out noise arises from the electronic devices of the experimental setup. A
consistency check was made by comparing it to the measured scatter during the first
frames of each discharge, where the plasma breakdown had not been established yet
(dk = 0).
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Figure 6.2: Left: Sketch of the determination of the local variation
Right: Squared variation plotted over binned count rate

Using equation (6.14), the likelihood PDF of a single point within a measured spectrum
dk is given by

p (dk|M (�η) , I) =
1(√

Υ · dk + σ2
r

)√
2π

exp

[
−Υ2 · (rk − dk)

2

2 (Υ · dk + σ2
r)

]
. (6.18)

The combined likelihood PDF p (dk1 , dk2, ...|M, I),

p
(
�d|M (�η) , I

)
=
∏

k

p (dk|M (�η) , I) (6.19)

is simplified by recalling equation (6.2) and assuming, that the probability of measuring
a data point dk1 is independent of measuring another data point dk2:

p (dk1 |dk2,M, I) = p (dk1|M, I) . (6.20)

Inserting equation (6.18) in (6.19) leads to a very compact way of writing the likelihood
PDF

p
(
�d|M (�η) , I

)
∝ exp

(
−χ

2

2

)
, (6.21)

where χ2 is the square of the normalized residual

χ2
d =
∑

k

(
Fk −Nk

σN,k

)2

, (6.22)

with Nk = Υ · dk, Fk = Υ · rk and σN,k =
√

Υ · dk + σ2
r . In this likelihood PDF Gaussian

error bars �σN are assumed for the measured photon counts �N (see chapter 7.1).

Until now, all considerations in this chapter concerning the measurements �N and the
associated uncertainties �σN assume well behaving normally distributed deviations from
the exact counts. But for real measurements there are data points which are far from their
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Figure 6.3: Comparison of Gaussian and Cauchy shaped probability density functions

expected value, called outliers. These measured values disturb the parameter estimation,
because the error assigned to them using the normal distribution is too small. To account
for this true but unknown error, �̃σN is introduced, that can differ from �σN but should be
of the same order:

p (σ̃N,k|σN,k, I) =
2σN,k√
πσ̃2

N,k

exp

(
−σ

2
N,k

σ̃2
N,k

)
. (6.23)

The unknown error �̃σN is marginalized by equation (6.5)

p
(
�d|M (�η) , I

)
=

∫ ∞

0

p
(
�d|M (�η) , �̃σN , I

)
p
(
�̃σN |�σN , I

)
d�̃σ, (6.24)

resulting in an Cauchy shaped likelihood PDF

χ2
d =
∑

k

2 · log

(
1

2
+

1

2
·
(
Fk −Nk

σN,k

)2
)
, (6.25)

derived in [52]. The main differences of this likelihood PDF to the Gaussian shaped
PDF are the much slower decaying wings (see figure 6.3). These are the consequences of
possible higher error bars and provide a more tolerant behavior if outliers are involved.

6.3 Prior PDF

The second term of the posterior PDF in (6.4), which still needs to be discussed is the
prior PDF. On the one hand, known error estimations for profiles included in the prior
knowledge should be taken into account and on the other hand, reasonable restrictions
on the free model parameters speed up and stabilize the maximization of the posterior
PDF.
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6.3.1 Uncertain prior knowledge

In the presentation of the forward model, some parameters were introduced as model
parameters �η like the absolute calibration factors, even though they were measured and
therefore should have been included in the prior knowledge I. The reason for that is,
that these measured values are uncertain. This was taken into account by including these

parameters as nuisance parameters �ξ in the model M (�η) → M
(
�̃η, �ξ
)

with the associated

Gaussian distributed error �σξ and the reference value �ξ0:

p (ξk|I) ∝ exp

(
−1

2
·
(
ξk − ξk,0

�σξ,k

)2
)
. (6.26)

�̃η is the reduced set of model parameters given by the upper part of table 6.1. Rewriting
equation (6.26) in a way similar to the one used for the likelihood PDF leads to

p (ξk|I) ∝ exp

(
−χ

2

2

)
with χ2

ξ =

(
ξk − ξk,0

�σξ,k

)2

. (6.27)

Marginalizing out these parameters by applying equation (6.5), a direct dependence of
the posterior PDF on these parameters is not given, but the error is propagated correctly
to the uncertainties of the results.

Calibration factors: This method was applied to the calibration factors of the forward
model, which were derived at the end of chapter 5. For each LOS, an absolute calibration
factor CA,k was introduced as nuisance parameter and included in �ξ, together with a
measured value CA,0,k and its measurement uncertainty σCA,k.

Count-photon conversion: Also included in �ξ is the count-photon conversion factor Υ
for each spectrometer. The algorithm presented in the last section provides the reference
value Υ0 with its uncertainty σΥ.

Wavelength correction: Dependent on the experimental campaign, both spectrome-
ter, only the LIA spectrometers or non of the spectrometers were connected to the Zn
calibration lamp. If available for a spectrometer, the measured wavelength correction
λCorr,0 ± σλ was included in �ξ otherwise it was treated as free model parameter.

Electron density profile: Obtained by integrated data analysis, the electron density
profile ne (ρpol) is provided with error estimations σne (ρpol), which were included in the
model by adding a correction spline ñe (ρpol) to the measured electron density profile.
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The spline parameters were treated as nuisance parameters �ξne and included in �ξ. The
squared residual associated to this profile were calculated using a discretized version of
the spline

χ2
ne =

∑
j

(
ñe,j

σne,j

)2

, (6.28)

where the correction ñe,j is expected to be close to 0 within the given error.

Electron temperature profiles: The presentation of the forward model discusses the
special role of the electron temperature profile. On the one hand, the inner part of
the profile is determined by prior knowledge from ECE measurements and on the other
hand, the outer part is treated as free model parameter. This was realized by introducing
a correction spline T̃e (ρpol), which was added to the ECE electron temperature profile
Te (ρpol), comparable to the electron density profile. Again, the spline parameters were

treated as nuisance parameters �ξTe , which were included in �ξ. The squared residual χ2
T e

is given by a summation over the discretized profile:

χ2
Te =

∑
j

(
T̃e,j

σTe,j

)2

. (6.29)

In regions where Te (ρpol) was not defined by the ECE measurement, �σTe (ρpol) was large
(see region just outside the separatrix in figure 4.2) and the influence of the reference
value Te,j on the profile was reduced. Depended on the measurement error of the ECE,

a smooth transition of �ξTe between nuisance and free model parameter was given.

The remaining parameters classified as nuisance parameters in table 6.1 (Lorenz width,
count offset of LOS, ρcorr and the parameters of the additional LOS) were not measured.
Therefore, they were treated as free fitting parameters whose final values are not re-
levant for the interpretation of the results. But they had to be included, to give the
model the required flexibility to adapt to the measured data and to get a realistic error
estimation.

6.3.2 Restrictions on free model parameters

The concept of restricting the variation of the nuisance parameters by the prior PDF is
now generalized to apply restrictions also on the model parameters. This was useful to
increase the numerical stability of the model and helped to avoid convergence problems,
due to interdependencies in an underdetermined model. The explicit realization of each
boundary condition included in the model presented in this work is discussed in the
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following. To simplify the combination of all boundary conditions within the prior PDF,
they were defined as Gaussian shaped functions only differing in the χk:

p (η̃k|I) ∝ exp

(
−χ

2
k

2

)
. (6.30)

Electron temperature profile: As already discussed, the electron temperature was
required for calculating the emission profile, using the He+ density and the PEC data.
An accurate emission profile has a key role in modeling the measured data, due to
the weighting during line integration. Therefore, detailed knowledge of the electron
temperature in the near SOL was required to model the onset of He II emission correctly.
Because at ASDEX Upgrade electron temperatures in the near SOL are not available
with the required resolution, the error of the electron temperature in this region was set
to a constant value of 100 eV. This gave the model the ability to balance inaccuracies of
the model itself and also of the PEC for low temperatures.

He+-temperature profile: The He+ temperature profile, which is not measured at
ASDEX Upgrade and therefore introduced as free model parameter, had to be regu-
larized, because the available information in the measured He+ line profiles was not
sufficiently accurate over the whole radial range, required by the model. Looking from
the plasma center outward, a monotonic decaying profile was assumed, which translates
into the following prior for the discretized spline:

χ2
THe+,s

=
∑

j

{ (
THe+,(j)−THe+,(j−1)

εT
He+

)2

THe+,(j) − THe+,(j−1) > 0

0 otherwise

}
. (6.31)

A constant regularisation εTHe+
= 0.5 eV of the slope at each discrete step was used to

prevent oscillations of the He+ temperature spline near the hot inner boundary of the
profile. Furthermore, a minimal temperature of 50 eV was assumed inside the separatrix.
This prevented the parameter estimation from being trapped at unrealistic emission
profiles due to very narrow calculated emission lines:

χ2
THe+,v

=
∑

j

{ (
THe+,(j)−50 eV

1 eV

)2

ρpol < 1.0 ∧ THe+ < 50 eV

0 otherwise

}
. (6.32)

He+-density profile: Being directly derived from the well determined emission profile,
only the slope of the He+ density at the inner and outer boundary had to be restricted.
Due to the vanishing emission profile, the He+ density is not determined in this region.
The atomic model presented in chapter 3 predicts a vanishing He+ density for both
boundaries, on the outer side due to the too low electron temperature and density and
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on the inner side due to full ionization:

χ2
nHe+

=
∑

j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ñHe+,(j)−ñHe+,(j−1)

εn
He+

)2

nHe+,(j) − nHe+,(j−1) > 0 ∧ ρpol > 1.06(
ñHe+,(j)−ñHe+,(j−1)

εn
He+

)2

nHe+,(j) − nHe+,(j−1) < 0 ∧ ρpol < 0.95

0 otherwise

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(6.33)
The slope restriction is applied to the logarithm of the density ñHe+,(j) =
log
(
nHe+,(j)/m

3
)
, to ensure the regularizing effect in all orders of magnitude (1·1014 m−3−

3 · 1019 m−3). The regularization parameter εnHe+
was set to 0.1.

Radial electric field: The most interesting model parameter for this work is the radial
electric field. It is only determined by the data in the region with non-vanishing He II
emission, analog to the He+-density profile. Therefore, it was necessary to restrict the
shape of the profile in the undefined region. The inner and outer boundary condition is
given by minimal and maximal values:

χ2
Er =

∑
j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Er(j)−0 kV/m

0.5 kV/m

)2

ρpol < 0.95 ∧ Er < +0 kV/m(
Er(j)−60 kV/m

0.5 kV/m

)2

ρpol < 0.95 ∧ Er > +60 kV/m(
Er(j)+20 kV/m

0.5 kV/m

)2

ρpol > 1.04 ∧ Er < −20 kV/m(
Er(j)−20 kV/m

0.5 kV/m

)2

ρpol > 1.04 ∧ Er > +20 kV/m

0 otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (6.34)

Furthermore, the slope in the weakly determined regions with an emission of nearly zero
had to be regularized in order to prevent mathematically possible but physically not
realistic shapes:

χ2
Er =

∑
j

{ (
Er(j)−Er(j−1)

εEr

)2

Er(j) − Er(j−1) > 0 ∧ 0.94 < ρpol < 0.975

0 otherwise

}
. (6.35)

εEr is set to a value of 0.1 kV/m. In order to reproduce the steep gradients, a high
number of spline nodes was necessary. The disadvantage of this is the possibility of
very narrow and too deep structures in the radial electric fields in regions with low LOS
coverage. To prevent this, a weak restriction on the curvature of the radial electric field
was introduced:

χ2
Er,C =

∑
j

(
S ′′

Er,(j)

1 · 109 V/m3

)2

. (6.36)
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6.3.3 Restrictions on calculated profiles

Additionally to the already discussed restrictions on the model parameters �ν, also indirect
restrictions were necessary acting on calculated profiles.

Emission profile: A regularization was necessary for the emission profile to increase
the stability of the parameter estimation. Inside the separatrix (ρpol < 0.99) the spline is
restricted to have a positive slope and outside the separatrix (ρpol > 1.04) to a negative
slope

χ2
Em =

∑
j

⎧⎪⎪⎨
⎪⎪⎩

(
Em(j)−Em(j−1)

εEm

)2

Em(j) − Em(j−1) < 0 ∧ ρpol < 0.99(
Em(j)−Em(j−1)

εEm

)2

Em(j) − Em(j−1) > 0 ∧ ρpol > 1.04

0 otherwise

⎫⎪⎪⎬
⎪⎪⎭, (6.37)

with a regularization parameter of εEm = 0.1 W
m3·nm

. To ensure a vanishing emission
profile at the inner and outer boundary, the solution with the minimal area enclosed by
the spline and the ρpol axis is preferred by adding the prior

χ2
Em =

∑
j

(
Em(j)

300 W
m3·nm

)2

. (6.38)

Furthermore, restrictions on the absolute values of the emission profile had to be made
to prevent the fit from being trapped in local maxima in the starting phase far from the
maximum:

χ2
Em =

∑
j

⎧⎨
⎩
(

Em(j)−200.0W/(m3·nm)
0.1W/(m3·nm)

)2

Em(j) > 200.0 W
(m3·nm)

0 otherwise

⎫⎬
⎭. (6.39)

At the end of the last chapter, the possibility of measuring too high counts for the inner
lines of sight was discussed due to reflections. This can be prevented by introducing a
stronger tendency towards zero emission for ρpol values lower than 0.97, which is further
inward than the edge pedestal and thus has no effect on the minimum in the radial
electric field:

χ2
Em =

∑
j

{ (
Em(j)

5.0W/(m3·nm)

)2

ρpol < 0.975

0 otherwise

}
. (6.40)

Diamagnetic velocity: As already discussed in chapter 2.3, the diamagnetic drift is
given by equation (2.13):

�vD = −∇p× �B

qnB2
.
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The term ∇p/n is numerically unstable for He+, because both the pressure and the
density are vanishing towards the plasma center. To avoid arbitrary high values of the
diamagnetic velocity due to slightly ill shaped estimated profiles in a region with very
little information in the data because of the vanishing He II emission, the value of �vD

was restricted to a maximal value of 50 km/s.

6.4 Posterior PDF

In the last two sections, the likelihood PDF and the prior PDF have been discussed in
detail. Now they are combined to the posterior PDF in equation (6.4)

p
(
�d|M (�η) , I

)
=
∏

k

p (dk|M (�η) , I) ·
∏

i

p (ηi|I). (6.41)

Assuming the independence of the probability of measuring each data point (see equation
(6.19)) and also the independence of the different contributions to the prior PDF, the
following simplification can be made

p
(
�d|M (�η) , I

)
∝ exp

(
−�χ

2

2

)
(6.42)

�χ2 = χ2
d + χ2

ξ + χ2
η̃ (6.43)

by recalling that all p (dk|...), p (ηi|...) and p (ξi|...) are Gaussian shaped PDFs.

6.4.1 Detection of the maximum

The posterior PDF provides the probability, that the modeled profiles (associated to a
specific set of model parameters �η) reproduce the measured profiles, which are disturbed
by measurement noise and meets the provided priors within the specified uncertainties.
Therefore, exploring the maximum of the posterior PDF gives information on the most
probable model parameters η∗ and the associated uncertainties ση. An equivalent and
numerically more stable approach is given by defining the Logarithm of the posterior
PDF

L = c− 1

2

(
�χ2
)

(6.44)

and exploring the maximum of L, where c is an arbitrary constant.[53] A solver for
dense nonlinear programming problems from the NAG (Numerical Algorithms Group)
Fortran90 library [54] was used to find the most probable η∗. No other constraints than
upper and lower values for each parameter had to be specified, because the posterior PDF
(L respectively), which was set as objective function already contained the complete prior
knowledge discussed in the last section. Recalling the flow chart in figure 6.1, determining
the maximum of L is illustrated in green and labeled as “Bayesian fit”.
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6.4.2 Error estimation

One way to determine the uncertainty of the estimated parameters, which maximize the
posterior PDF, is to calculate the curvature at the maximum η∗. This method is only
useful for peaked uni-modal PDF’s. As derived in [53], by applying a Taylor expansion to
equation (6.44), the first order term (...

∑
i

∂L
∂ηi
...) can be neglected because it is zero. The

second order term is the leading one and therefore a good approximation of the curvature
at the maximum. The covariance matrix C̄ is then given by the inverse Hessian matrix,
containing all second derivatives.

C̄ = − (∇∇L)−1 (6.45)

The square root of the diagonal elements
√
Cηη of this matrix are the marginal uncer-

tainties of the model parameters: �η ± �ση. An alternative way to determine these values
is to use equation (6.5) to marginalize all model parameters except the i-th one ηi from
the posterior PDF and fit a Gaussian to get the width ση,i. The off-diagonal elements
are a measure for the correlation of the different model parameters. If the correlations
of a parameter ηi with all others gets too large only dependencies between the correlated
parameters can be derived.

6.4.3 Marcov chain Monte Carlo

Another way of determining the most probable values for the model parameters and
their uncertainties is to construct a Markov chain9 with the posterior PDF as target
distribution. Then, a sufficiently large amount of samples from this Markov chain has
the same features (e.g. mean value, standard deviation) as the posterior PDF.[57] In
1970 W. K. Hastings presented a paper, which showed that an algorithm previously
developed by N. C. Metropolis can be used to draw samples form a high-dimensional
PDF, the target distribution of the Marcov chain. This so-called “Monte Carlo method”
[59] uses random numbers to sample a distribution function.[58] Combining the Monte
Carlo algorithm and the generalizations by Hastings, leads to the “Metropolis-Hastings
algorithm”, discussed in detail in this section.

Metropolis-Hastings algorithm: In general, Markov chain Monte Carlo algorithms
are used to determine the transition probability p (x, y) of the different states of the
Markov chain for a given target density π (x), in this case the posterior PDF. In the
implementation of the Metropolis-Hastings algorithm within this work, a Cauchy shaped

9In the framework of this thesis, a Markov chain is a sequence of states (a specific set of model
parameters) within the target distribution, where the probability of changing to an other state only
depends on the actual state.
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candidate-generating density q (x, y) is chosen. It describes a guess for the probability
of advancing from state x to state y in the Markov chain. Then, the real probability for
x �= y is given by p (x, y) = q (x, y) ·α (x, y), introducing the probability α of making the
proposed step. Thus, the chance of remaining at the same position within the chain is
given by r (x) = 1−∫�n q (x, y)α (x, y) dy. The unknown acceptance rate α is determined
by the reversibility of the Marcov chain, called detailed balance:[56]

π (x) p (x, y) = π (y) p (y, x) . (6.46)

Utilizing the symmetry of the used candidate-generating density q (x, y) = q (y, x), the
required acceptance rate to maintain reversibility is given by π (y) /π (x).[56] This means,
transitions towards the maximum of the posterior PDF are always made, transitions away
from the maximum are possible but only with reduced probability:

α (x, y) = min

(
1,
π (y)

π (x)

)
(6.47)

Step width determination: Defining a suitable candidate-generating density is im-
portant for a fast convergence of the Markov chain towards the target distribution. A
transition is proposed using a random walk chain y = x + z, where z is a random in-
crement given by a Cauchy distributed random number. The spread is defined by the
step-width for this parameter. Therefore, in a preparation phase, the step-width had to
be adjusted for each parameter in a way, that the average acceptance rate was about 0.25.
Independent derivations of this value are presented in reference [56]. If the acceptance
rate for a given parameter was too high, the step width was increased, if it was too low,
the step width was decreased.

Sampling of posterior PDF: In a second phase, samples were drawn from the Markov
chain with constant step-width. These samples were used to calculate the most probable
value and its error, by the mean value of all drawn samples and its standard deviation.
Asymmetrical error bars were also determined by using only values, which are higher or
lower than the mean value. This method was used for most of the profiles presented in
the next chapter. But for some profiles another way was used, because for expectation
values near the upper or lower boundary of the allowed parameter range, mean values can
be misleading. The reason for this is that the candidate-generating density is disturbed
by the boundary condition. An example is the emission profile of He+. It has to be ≥ 0
and for the innermost values it is 0 due to the vanishing He+ density. Deviations due
to uncertainties can only be ≥ 0, leading to a shifted expectation value. A solution to
this is to directly plot the marginal posterior PDF for this profile, represented by all
samples drawn from the Marcov chain. In figure 6.4, a direct comparison between the
mean value with asymmetric error bars and a visualization of the marginal posterior
PDF is shown. The structures at the inner part of the profile in the left figure do not
have a physical meaning. Calculating the mean value and its error from the clipped
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Figure 6.4: Left: Radial plot of the He II emission profile; mean value in black, assy-
metric 1-σ error bars in red;
Right: Histogram of the marginal posterior PDF

parameter space, resulting from applying the boundary condition, lead to these artefacts.

6.4.4 Model run-time

In this and the previous chapters, the forward model, the underlying physics and the
“Marcov chain Monte Carlo”-algorithm were discussed in detail. But in the following
chapters, which will present the results, more practical issues like the required effort of
preparing the necessary edge profiles or the program run-time will gain importance.

At ASDEX Upgrade, there is no automated process to generate well aligned edge pedestal
temperature and density profiles. According to requirements, there are two possibilities of
profile fitting. One of them is to use the IDA fits to the electron density and temperature
with a temporal resolution of 1 ms. The averaging over at least four IDA profiles for
each evaluated time point, due to the exposure time of 4 ms of the new Er diagnostic
was carried out with due care. ELM affected profiles and radially displaced ones were
filtered out manually. The other possibility is to use the AUGPed program. Intensive
user interaction is require to created the ELM filtered well aligned modified hyperbolic
tangent fits. Therefore, in both cases, the edge electron temperature and density profiles
were prepared manually for each evaluated time point.

The run-time of the diagnostic can be separated in 3 phases. The first one is the already
discussed Bayesian least squares fit to get near the optimal solution for arbitrary starting
parameters. In most of the cases, this phase is completed within 5 to 10 minutes. In
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the next phase, the step-with of each model parameter is determined in order to reach
the average acceptance rate of about 0.25. Typically, this was accomplished after about
2 to 4 million iterations. In the third phase, the estimations for the model parameters
were determined by calculating the mean value out of 9 million samples, drawn from the
Marcov chain. The deviation of this samples from the mean value gives the asymmetric
error of each model parameter. Having to calculate the complete forward model for
about 12 million samples10, the run-time of the forward model is crucial. By putting
great effort in run-time optimization and parallelizing on a Linux cluster, it could be
reduced by a factor of 6 to 1.69 ms, which leads to a total runtime of about 5:30 hours.

10Each sample from the Markov chain includes a whole set of model parameters.
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7 Sensitivity study

In the last chapter, Bayesian probability theory was introduced, which is the basis for
the data evaluation in this work. One of the key topics was the integration of known
uncertainties, in the measured data and in the model design (see section 6.2.2 and 6.3).
But there are also additional not exactly known sources for uncertainties. One of them
for example is given by using the equilibrium to map coordinates to ρpol. The effect of
these not directly included uncertainties can be quantified by a sensitivity study.

7.1 First result

In this section, the results of the unmodified model and input profiles are discussed in
detail to create a reference for the sensitivity study. But before that, a closer look on
the underlying discharge #23227 has to be taken.

7.1.1 Discharge #23227

A set of overview plots of the typical parameters of the discharge #23227 can be seen
in figure 7.1. It is a 1.0 MA discharge with an electron density of 4.0 · 1019 m−3 at the
edge and 6.0 · 1019 m−3 at the center. The gas fueling is ramped up at the beginning and
from 0.8 s it is kept constant until it is switched off at 2.5 s. During the discharge, the
NBI heating is increased in several steps. Just after the ramp up at 0.3 s, 2.5 MW NBI
is applied, which is increased at 0.9 s to 5.0 MW. Additionally, 1.3 MW ECRH heating
is added at 1.5 s. From 2.8 s on, the heating power is increased to 7.5 MW and the gas
fueling is switched off. The last step with 10.0 MW NBI starts at about 4.0 s. In each
of these steps, a radial scan of the plasma is included to increase the resolution of the
edge diagnostics (3 cm in 0.6 s towards the outer vessel wall and back again). The end
of the discharge is initiated from 5.5 s on, by a fast stepwise reduction of NBI heating
power, a gas puff and the ramp down of the plasma current. One time-point in each of
the tree highest steps in NBI heating power (vertical lines in figure 7.1) will be analyzed
in this and the following chapter. As indicated by the strong fluctuations in the Hα

signal and a H − L factor of near 1.0, the plasma is in H-mode during the analyzed
time intervals. During the 5 MW phase with gas puff, there is a strong variation in the
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Figure 7.1: Important plasma parameters of the AUG discharge #23227

ELM frequency from 75-200 Hz. In the following two phases without gas puff the ELM
frequency is reduced to 70 Hz with some exceptions up to 130 Hz. As already discussed,
the exposure time of the presented diagnostic is 4 ms, therefore about 2 to 4 frames can
be measured within one ELM cycle.

7.1.2 Results

The first result presented in this work will be discussed at full length to, introduce the
different ways of visualization used in this and the following chapter. This section is
structured in the following way. At first, a closer look on measured values and the
corresponding output of the model is taken. Then, the directly derived radial profiles
are discussed. Finally, the focus is shifted to the remaining radial profiles depending on
the directly derived ones.

Line integrated fitting: In figure 7.2, one can see the measured spectrum (black dots)
together with the assumed errors (solid red line) of one of the 17 LOS . The solid blue
line, which is compared to the measurements, is the output of the model. Next to the
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Figure 7.2: Comparison of measured spectra (black dots) of shot #23227 with the model
output (solid blue line). The solid red line indicates the assumed measure-
ment error from photon statistics and readout noise.

spectrum, the associated residual is plotted, which is given by

Rk =
Fk −Nk

σD,k
(7.1)

(see equation 6.22), where N is the number of measured photons with uncertainty σD. F
is the model output. The overall deviation of the measurements from the model within
one sigma indicates, that the measurement error is defined realistically and that the
model is flexible enough to reproduce all features of the measured data.

Radial profiles: The just presented output of the forward model is, as already described
in section 6.2.1, created by summing up local line emission spectra along the line of sight.
These local spectra are determined by three radial profiles realized as model parameters:
the emission profile, the He+ temperature profile and the He+ velocity profile. In figure
7.3, the estimates of two of these profiles are shown. The He+ velocity profile is not
plotted, because its projection is directly calculated for the discrete points along each line
of sight and therefore the unprojected, LOS independent radial profile is not available.
Looking at the emission profile in figure 7.3, it can be seen that this profile is well
determined by the measurement. The skipping of the outermost LOS, discussed at the
end of chapter 5, leads to an increase of the uncertainties outside the separatrix. From
about ρpol = 1.02, the rapidly decreasing photon emission coefficient, which is dependent
on electron temperature and density, causes a steep gradient in the emission profile. The
error bars are also decreasing, due to the neglected uncertainty11 of the PEC for low

11The uncertainties of the PEC file are not included directly in the model. Therefore, the vanishing
error bars of the emission profile in the scrape off layer are not based on increased accuracy, but only



74 Chapter 7: Sensitivity study

densities and temperatures. This profile defines the range (0.95 < ρpol < 1.05 for this
discharge and time point), in which the different radial profiles can be estimated by the
presented diagnostic. The result for the estimated He+ temperature profile (right picture
in figure 7.3) is consistent with this results, because for ρpol > 1.03 the temperature is
too low to get a significant amount of singly ionized He.

Secondary radial profiles: The radial emission profile, discussed in the last paragraph,
can be used to derive the He+ density profile, taking into account the considerations
from chapter 3. Recalling equation (3.18)

〈P 〉 = nHe+ · ne · PECexcit (ne, Te) · EPh EPh =
hc

λ4→3

the electron density and temperature has to be included in the forward model. For
this discharge (#23227), these two profiles are taken from the IDA diagnostic. Figure
7.4 shows the electron density profile and the electron temperature profile. As already
discussed in chapter 6.2.1 during the introduction of the forward model, a free spline is
added to these profiles. It can be seen, that the deviation from the measured profiles
is very low. The reasons for this are on the one hand, the small error bars of the IDA
profiles and on the other hand, additional information from the measured data as well as
restrictions due to the boundary conditions. Therefore, these error bars do not represent
the absolute error of the electron density and temperature profiles, but only the range
in which they vary during parameter estimation. The effects of larger variations due
to uncertainties in radial position will be discussed later in this chapter. In the left
picture of figure 7.5, the resulting profile of the He+ density is plotted. Being directly
derived from the emission profile, which vanishes for ρpol < 0.95, the He+ density also
has to vanish towards the plasma center. Due to the accurate decaying wing of the
emission profile, the error bars of the He+ density are also very small. In the SOL
for ρpol > 1.02, the error bars are increasing due to the decaying emission profile and
the vanishing electron temperature. The not included uncertainties of the PEC files, the
position uncertainties of the equilibrium reconstruction and the not exactly known shape
of the electron temperature in the SOL lead to a much greater real uncertainty outside
the separatrix. This is discussed in detail in the following section.

Radial electric field: The last model parameter that needs to be discussed is the radial
electric field. It is connected to the total velocity profile, the He+ pressure profile and
the emission profile. Because the emission profile acts as weights in the line integrated
spectrum, the radial electric field can be determined only in those regions which have a
significant emission. In the right plot of figure 7.5, one can see the radial electric field
for the discharge #23227 and for comparison in blue the emission profile together with
the error bars. The minimum in the field, which is the interesting edge structure, this

on the strongly decreasing PEC data. Derived profiles have to be treated with care in this region
due to the underestimated uncertainties.
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Figure 7.6: Different radial shifts of the electron density are shown; this affects only the
He+ density; emission profile and radial electric field vary only within the
error bars

work is concentrating on, is situated in the region 0.96 ≤ ρpol ≤ 1.0, having sufficient
intensity.

7.2 Variation in equilibrium reconstruction

After the discussion of the parameters of discharge #23227 and the output of the un-
modified model, its dependency on the profile reconstruction can be analyzed. This is
done by varying the positions of the electron density, electron temperature and toroidal
velocity profile. As already discussed in section 4.2, the positions of these profiles are
very sensitive to the equilibrium.

Variation of the electron density profile: At the beginning of this chapter and also
in earlier ones, the neglected uncertainties due to equilibrium reconstruction and due to
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position uncertainties of the plasma edge diagnostics were mentioned. The effect of small
shifts (see top left graph in figure 7.6) in the electron density profile on the estimated
profiles are now explored. An important result is, that the radial electric field is not
affected from these variations (see lower right graph in figure 7.6) within the error bars.
The reasons for this are the unchanged emission (top right graph), velocity and He+-
temperature profiles, which are directly dependent on the measurements. The remaining
He+ density profile therefore has to be very sensitive to the electron density variations.
Due to the change in slope of the electron density (top left graph) at about ρpol = 1.01
and also due to the change in slope of the photon emission coefficient at about 100 eV,
which is also at about ρpol = 1.005 (see figure 7.4), the effects on the He+ profile have to
be separated in two regions. One is the region around the separatrix and further inwards
(ρpol < 1.01), the second one is the scrape off layer (ρpol > 1.01). In the inner, well
determined12 region with high temperatures, the large changes in the electron density
due to the steep gradient of the pedestal only lead to small variation in the He+ density.
In the outer, very uncertain13 region with low electron temperatures, small changes in
electron density result in strong variations of theHe+ density. In conclusion, He+ profiles
can only be trusted in the inner region (ρpol < 1.01), assuming that the shape and the
position of the electron temperature and density are accurate enough.

Variation of the electron temperature profile: As well as the just discussed uncer-
tainty of the electron density profile position, also the effects of a uncertain electron
temperature position were analyzed. Figure 7.7 shows the most important profiles. As
already mentioned, due to the strong H-mode, the electron temperature of the reference
was chosen slightly above the 100 eV at the separatrix. As expected, the emission profile
and the radial electric field are stable against variations of the electron temperature,
because of the direct dependence of these profiles on measured quantities. In analogy
to the variation of the electron density, the He+ density profile is strongly affected by
the electron temperature variations. In contrast to electron density variations, only the
scrape off layer part of the profile varies larger than the error bars. Reason for this is
the flat gradient in the photon emission coefficient for electron temperatures higher than
about 100 eV, followed by a steep gradient for lower temperatures (see figure 3.3). This
supports the results from the last paragraph: The estimated He+ densities can only be
trusted in the region ρpol < 1.01. The shape is more sensitive to the position of the
electron density rather than the position of the electron temperature.

12This region is well determined, because the photon emission coefficients are accurate for high densities
and temperatures. Furthermore, the emission profile is covered well by the used lines of sight. Also
the shape and absolute value of the electron temperature and density profiles is more accurate inside
the separatrix than in the SOL.

13This region is very uncertain, because the photon emission coefficients are not accurate for the low
temperatures and densities in the SOL and are governed by steep gradients leading to large vari-
ations for small changes. Furthermore, the shape and absolute values of the electron density and
temperature can only be measured with large error bars. Additionally, the LOS exclusively covering
this region suffer from reflections and have to be excluded from the calculation.
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Figure 7.7: Different radial shifts of the electron temperature are shown; this affects only
the He+ density; emission profile and radial electric field varies only within
the error bars

Variation of the toroidal velocity profile: Finally, to close the discussion of the equi-
librium reconstruction, a closer look on the toroidal velocity profile was taken. The
effects of uncertainties in the equilibrium (ρpol position; blue and green profiles) as well
as variations in the magnitude (vanishing velocity: magenta, doubled velocity: cyan)
and also different shapes (magenta and brown) are analyzed in figure 7.8. One can see,
that radial variations only cause changes in the estimated profiles within the error-bars.
The largest variations, that can be seen in the radial electric field are still within the
error bars. They are caused by neglecting (magenta) and doubling (cyan) the toroidal
velocity. The radial electric field is affected by the variation, because it is the only term
contributing to the total velocity profile along each LOS, that can react to the variation
(see equation 6.10):

vHe+ |LOS = [�vE×B + �vdia + �vtor]LOS .

The total projected velocity is determined by the measurement and the diamagnetic
velocity by the He+ pressure. Both of them do not change during the variation of the
toroidal velocity. Small position uncertainties (blue and green) as well as neglecting
the minimum in the toroidal velocity near the separatrix (brown) lead to no significant
changes in the estimated profiles, reinforcing the assumption, that the toroidal velocity
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Figure 7.8: Variations of the toroidal velocity profile: this includes a radial shift ρpol ±
0.01, an artificial magnitude increase by a factor of two and variations of the
shape

is only a small correction due to the nearly perpendicular lines of sight (see section 6.2.1).

The considerations in this section on variations of the input profiles due to uncertainties
of the equilibrium lead to the conclusion, that on the one hand the determination of the
radial electric field is independent of these variations and on the other hand the shape
of the determined He+ density is very sensitive to these variations. All other estimated
profiles are independent on uncertainties due to the equilibrium.

7.3 Effects due to He II fine structure

As already mentioned at the end of chapter 3.2, the effect of the neglected fine structure
splitting and the Paschen-Back effect on the determined radial electric field is discussed
in this chapter. In figure 7.9, three radial electric fields are compared. The red one is
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Figure 7.9: Variation of the central wavelength of the He II line due to finestructure and
Paschen-Back splitting

the reference case used during the complete sensitivity study. In the blue one, a shift
of the central wavelength by 0.0007 nm is included, which corresponds to the estimated
displacement of the central wavelength for an He+ ion-temperature of 100 eV (see figure
3.5). In green, the doubled shift of the central wavelength is assumed, which would be
caused by a He+ ion-temperature of only 15 eV. It can be seen, that the variation of the
radial electric field is below the error bars. This justifies the simple approach utilized in
this work.

7.4 Possible experimental improvements

Based on the measurement uncertainties and the results of the sensitivity study, the
following improvements to the diagnostic could lead to a significant improvement of the
derived radial electric field. The two most promising modifications of the experimental
setup would be to use only one spectrometer, capable of measuring all LOS, and to in-
crease the temporal resolution to 1 ms or below. The first measure would make the cross
calibration of the wavelength between the two spectrometers obsolete and the second
one would allow to resolve the development of the Er well during the ELM cycle. This
would enable a detailed study of the ELM crash for different ELM types, or to address
the question whether the increased depth of the radial electric field well is the cause or
a consequence of the steep edge profiles in H-mode. An increased number of lines of
sight and thus an increased radial resolution, combined with a better spectral resolution,
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would even more increase the accuracy of the results and release the restriction of only
being able to analyze H-mode discharges.
Another possible improvement of the Er diagnostic, focusing on the run-time of the
“Markov chain Monte Carlo”-code, would be a complete re-implementation of the for-
ward model using the parallel computation power of graphic cards. This new and quickly
developing possibility of performing independent massive parallel calculations is partic-
ularly suitable for drawing samples from Marcov chains.
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8 Results

The sensitivity study in the last chapter has proven the stability of the radial electric field
estimation against small variations of input profiles not covered by the error propagation.
This chapter now will focus on the results for different discharges and time points.

8.1 Previous radial electric field measurements

To introduce the discussion of the results, a short overview of the findings from other
measurements at ASDEX Upgrade and also from other Tokamaks is presented in the
following.

Up to now, the only system, that was capable of measuring radial electric fields just
inside the separatrix at ASDEX Upgrade was Doppler reflectometry. Fluctuation mea-
surements are used to directly derive the radial electric field and its shear.[61],[26] A
minimum just inside the last closed flux surface is measured in H-mode, which has a
fixed width and a depth that is dependent on the confinement. The measured depth for
typical H-modes is about -40 kV/m and in improved H-modes up to -50 kV/m.
Much deeper radial electric fields were measured at the plasma boundary of Alcator
C-Mod by charge exchange recombination spectroscopy.[62] This Tokamak has a high
magnetic field (≈ 5 T) and a very narrow pedestal (2-6 mm). The toroidal and poloidal
rotation velocity of a certain impurity species, together with its temperature and den-
sity is used to calculate the Er-profile, applying the radial force balance equation. The
typical Er fields in H-mode have a depth of about -75 kV/m, but vary dependent on the
plasma parameters between -30 kV/m and -120 kV/m. The width of these fields is about
5 mm and show no variation. In ELM free H-modes the depth of the minimum rises up
to -300 kV/m.
The JT60-U Tokamak also has a high toroidal magnetic field (4 T), but additionally a
high plasma current of up to 5 MA.[63] The radial electric field at the plasma boundary
is measured by charge exchange recombination spectroscopy. In reference [64] a radial
electric field is presented with a minimum up to -80 kV/m in H-mode.
The DIII-D Tokamak [65] has a pedestal width of about 1-2 cm, which is in the same or-
der of magnitude as the pedestal width of ASDEX Upgrade. Also the plasma parameters
like the confining magnetic field and plasma current are very similar. The measured ra-
dial electric fields in H-mode have a typical width of about 1 cm and a depth of -12 kV/m
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up to -30 kV/m.[66] In ELM-free H-modes, a depth of up to -100 kV/m was measured.
Furthermore, it was found, that decreasing triangularity reduces the depth of Er and
increases the width.[67]

8.2 Comparison to theory

In chapter 2, the theoretical background for this work was discussed and a derivation
of the neoclassical radial electric field was given. Additionally, it is possible to make an
approximation for the radial electric field, by analyzing the pressure and density of the
main ions.

∇p/n approximation: The radial force balance equation (2.19) derived in chapter 2
has to be valid for each ion species a separately. But the radial electric field Er, which
is a global plasma property, has to be the same for each species:

�V
(1)
a⊥ =

∂pa

qana∂r
− Er.

If one now assumes, that the velocity perpendicular to the magnetic field lines is small
for the main ions, it is possible to derive an approximation for the radial electric field:

Er [V/m] ≈ ∇PD [Pa/m]

qD [C] · nD [m−3]
· kB [eV/K]

kB [J/K]
· 1.6022 · 10−19

[
C · V
eV

]
. (8.1)

By applying two simplifications, this equation can be solved completely with profiles that
are included in the forward model. Therefore they are easily accessible. The main ion
density nD is assumed to be proportional to the electron density nD = αne and the main
ion temperature is approximated14 by the electron temperature TD ≈ Te. This leads to
the following expression for the ∇p

n
-term:

∇PD

nD
=

∇ (TD · αne · kB)

αne
=

∇ (TDnekB)

ne
≈ ∇Pe

ne
. (8.2)

In the following sections of this chapter, the measured radial electric fields are compared
to the approximated ones in order to verify, if the assumption of small perpendicular
velocity of the main ions is correct.

14At ASDEX Upgrade, this assumption is only applicable for high collisionalities. In general the ion
temperature is higher than the electron temperature but the gradient of the ion temperature in the
pedestal is smaller than the gradient of the electron temperature.
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Neoclassical radial electric field: A more advanced derivation of the radial electric
field, using neoclassical theory was also given in chapter 2 by equation (2.43):

Er,neo =
TD

qD

[
∂ lnPD

∂r
− (β1, g2i)

∂ lnTD

∂r

]
.

This equation corrects the ∇p
n

= T · ∂ ln p
∂r

term, discussed in the last paragraph, by the
internal friction of the main ions, which is dependent on the main ion temperature TD

and the collisionality ν∗. From the Banana regime to the plateau regime (β1, g2i) is given
by equation (2.40):

(β1, g2i)bp 	
1.17 − 0.35ν

1/2
∗i

1 + ν
1/2
∗i 0.7

.

The continuation from the plateau regime to the collisional regime is given by equation
(2.41), which is the relevant one for the plasma analyzed in this chapter:

(β1, g2i)pc 	
(β1, g2i)bp − 2.1ν2

∗iε
3

1 + ν2
∗iε3

.

As already mentioned in the previous paragraph, the main ion density is assumed to
be proportional to the electron density and the main ion temperature is assumed to be
equal to the electron temperature. The collisionality ν∗ is defined by the effective main
ion collision frequency νeff divided by the trapped particle average bounce frequency ωb

[60]:

ν∗ =
νeff

ωb

=
νD/ε

ε1/2vth/ (R0q)
=
νD · R0 · q
ε3/2 · vth

. (8.3)

The thermal velocity of the main ions is given by

vth

[cm
s

]
=

√
kb [J/K] · TD [K]

ma ·mp [kg]
, (8.4)

where ma is the main ion mass divided by the proton mass mp(in the case of Deuterium
ma = 2).[2] The inverse aspect ratio ε associated to a flux surface is defined by

ε = 0.5 · RL − RH

R0
, (8.5)

where R0 is the radial position of the plasma center (ρpol = 0). RL and RH are the radial
positions of the associated flux surface at the mid-plane on the low-field side and on the
high-field side. The radial q-profile is determined by the equilibrium reconstructed by
the CLISTE code. The collision frequency of the main ions νD is given in reference [4]
by

νD [1/s] =
nD [m−3] · Z4

a · ln Λ

6.60 · 1017 · √ma · T 3/2
D [keV ]

, (8.6)
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with a main ion charge qD divided by the electron charge e of Za = (qD/e) = 1 for
Deuterium. ln Λ is called the Coulomb-logarithm and is also defined in [4]:

ln Λ = 17.3 − ln

( √
ne [m−3]

T
3/2
D [keV ] · 1010

)
. (8.7)

Similar to the ∇p/n approximation for the radial electric field, discussed in the last
paragraph, the neoclassical prediction also depends only on parameters that are included
in the forward model. Therefore, it can be easily calculated and compared with the
measured radial electric field. If an agreement between neoclassical prediction and
measurement is found, this would indicate, that in the region with strong shear in the
radial electric field, neoclassical transport is dominant and the turbulent transport is
suppressed, like it is predicted by H-mode theory already discussed in chapter 2.

8.3 Effect of ELMs

The first result presented in this chapter is the evolution of the estimated Er profiles dur-
ing one ELM cycle, which is essential for all further considerations in H-mode discharges.
As already discussed in the introduction, the edge density and temperature profiles col-
lapse on a regular basis, explained by the peeling-ballooning theory. This is connected to
a collapse of the edge transport barrier and also to a collapse of the radial electric field.
In the following, three consecutive ELM cycles of the discharge #23227 will be discussed.
This is the same discharge, which was already used during the sensitivity study. The
most important profiles are shown in figure 7.1 of the previous chapter. The selected
time slice is indicated by the second vertical black line at about 2.55 s. This time, region
was chosen, because it is just after switching off the gas puff and has the lowest ELM
frequency (≈ 80 Hz) of the whole discharge. The integration time of 4 ms allowed the
evaluation of 3 profiles within one ELM cycle. Sub-figure a) in figure 8.1 visualizes the
selected time interval and introduces the color-coding for the other plots in this figure.
The structures in the line integrated intensities (stars), measured by one line of sight and
plotted over the time, show good agreement with the onset of the ELMs (vertical brown
lines). The reason for this is the increased influx of neutral Helium, caused by increased
recycling due to the large energy and particle transport towards the walls. The radial
profiles of the three time-points relative to the ELM onset are plotted in sub-figures b) to
e) of this figure. The break-down of the transport barrier is clearly visible in all of these
profiles: in the density profile, which has a strongly reduced gradient, in the temperature
profile by a reduced pedestal top value, in the reduced radial electric field minimum and
in the emission profile with increased emission in the scrape-off layer. Looking at the
estimated radial electric fields in sub-figure b), one can see a significantly reduced radial
electric field (red). But it has a clear minimum, which is still about 50 % of the inter
ELM value. The reason for this is the relatively long exposure time of 4 ms compared to
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Figure 8.1: Evolution of the measured radial electric field, the electron density profile, the
temperature profile, the emission profile during the ELM cycles of discharge
#23227; the time-points in the same color are evaluated at the same time
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the fast recovery of the edge profiles. In the next time-point (blue), the edge profiles and
the radial electric field have almost recovered their shape from before the ELM crash.
Comparing the positions of the minima of the radial electric fields in sub-figure b), they
are situated in the region 0.98 < ρpol < 1.00 marked by the solid and dashed vertical
lines. No conclusions regarding this position can be made, because the combined un-
certainties of the lines of sight, the input profiles and the equilibrium reconstruction are
about Δρpol ≈ 0.02 (or ≈ 1 cm).

The two sub-figures f) and g) in figure 8.1 show a comparison of the estimated radial
electric fields during the ELM-cycle, with ∇p/n and the neoclassical prediction presented
in the first section of this chapter. ∇p/n agrees well in depth within the error bars in the
time-point containing the ELM (red) and in the one just before the next ELM (green),
indicating that the perpendicular main ion velocity has to be very small (see equation
(2.19)). During the recovery phase of the field (blue) there is a significant deviation.
The radial electric fields predicted by neoclassical theory in plot g) show better agree-
ment than ∇p/n due to the corrections related to the collisionality and the temperature
gradient. The depth of the two time-points within the ELM (red) and just before (green),
which were described well by ∇p/n, were reproduced also by the neoclassical prediction
within the error bars. But with neoclassics, the depth of the blue profile can also be
predicted correctly. The reason for this is the temperature and collisionality dependent
term (see equation 2.43). In figure 8.2 the collisionality profiles and the profiles of the
resulting neoclassical coefficients are plotted. The coefficient is positive for all three cases
at the position of the minimum (ρpol ≈ 0.99), leading to a flatter radial electric field com-
pared to ∇p/n. The two profiles in the recovery phase of the ELM crash are modified
more strongly than the one directly at the crash due to the reduced collisionality and
the steeper edge gradients.
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8.4 Plasma parameter scans

This section concentrates on scans of important plasma parameters in H-mode plasma.
Only time-points just before an ELM are used for data evaluation, to ensure the compa-
rability of these ELM synchronized radial electric fields at maximal depth.

8.4.1 NBI heating power scan

The first parameter scan discussed in this chapter is a variation of the heating power.
Because the stored energy of the plasma increases with heating power, this is an impor-
tant parameter. In figure 7.1, the most important time-traces are plotted and the used
time-points are indicated by black vertical lines. Four time-points were selected, two
at 5 MW NBI heating power with and without gas puff, one at 7.5 MW heating power
and one at 10 MW heating power. The results are presented in figure 8.3. The smooth
and accurately aligned electron density and temperature profiles (sub-figures b) and d))
are determined by ELM synchronized averaging over the complete radial sweep at each
heating power level using the AUGPed program. The time-point with 5 MW NBI heating
and no gas puff did not have a radial sweep, therefore less measurements were available
for profile reconstruction. Sub-figures a) and c) show the results for the radial emission
profile and the radial electric field. The first time-point (black) with the strong gas puff
has on the one hand a much higher He II emission and electron density than the other
time-points, but on the other hand relatively flat edge gradients and a flat radial electric
field. Switching off the gas puff (magenta) without changing the heating scheme does
not change the depth of the measured radial electric field but strongly increases the edge
gradients. A significant change in the Er is achieved by increasing the heating power
from 5 MW to 7.5 MW (orange profile), accompanied by an even steeper edge gradient
in electron temperature. The last step in heating power from 7.5 MW to 10.0 MW (green
profile) does not follow the trend. The radial electric field does not get significantly
deeper and the edge temperature gradient even flattens again.

A comparison of the measurements to ∇p/n and the neoclassical prediction is presented
in sub-figures e) and f). In e) the focus is on the depth of the measured radial electric
field minimum compared to theory, while f) emphasizes the deviation of the measurement
and the neoclassical prediction from ∇p/n. Looking at the first two time-points (black
and red), which differ only in gas puff level, ∇p/n gets significantly deeper if the gas
puff is switched off, due to the much steeper edge gradients. However, the depth of
the measured radial electric field nearly stays constant, which is correctly predicted by
neoclassical theory. Important is the change of sign in the neoclassical coefficient due
to decreased collisionality, visualized in sub-figure g) and h). Increasing the heating
power to 7.5 MW (blue profiles) lowers the collisionality even more and increases the
edge gradients. This leads to a deeper ∇p/n prediction which is over corrected by
neoclassical theory compared to the measurement. A possible reason for this is the
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charge are plotted in the same color. The selected time-point in each dis-
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puff, thus plasma density, and the H98 scaling are equal for this time-points.
It is a 1 MA discharge with 7.5 MW NBI and about 1.0 MW ECRH heating
power. The gas fueling is done using two valves. The time-trace of only one
of them is plotted, because the fueling scheme is identical. The total fuel-
ing rates are zero for #23226, 5.6 · 1021 s−1 for #23221 and 9.0 · 1021 s−1 for
#23225.

Ti = Te assumption which only holds for high collisionalities. Using the ion temperature
gradient, which is flatter than the electron temperature gradient would lead to a better
agreement with the measurement. Increasing the NBI heating power to 10 MW (green
profiles) did not cause a further steepening, but rather a slight flattening of the edge
profiles and a barely unchanged collisionality. Therefore, ∇p/n and the neoclassical
prediction did not change significantly.

8.4.2 Gas puff scan

In H-mode discharges, the H98 factor15 is used to classify the quality of the confinement
compared to ITER. By varying the gas puff level, it is analyzed whether changes in
the H98 factor have an influence on the depth of the radial electric field. Discharges
#23226, #23221 and #23225 each have a phase where all plasma parameters are very
similar except the gas puff level. An overview of the time-traces of relevant plasma
parameters is given in figure 8.4. Discharge #23226 and #23225 are evaluated at 3.27 s
and discharge #23221 at 3.96 s. From one discharge to the other, the fueling level

15H98(y,2) is the enhancement factor of thermal energy confinement τth compared to the ITER scaling
IPB98(y,2).[60]
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increases, 0.0 ·1021 s−1, 5.6 ·1021 s−1 and 9.0 ·1021 s−1, while the H98 factor decreases from
1.02 ± 0.2 over 0.92 ± 0.2 to 0.90 ± 0.2. The results of this gas puff scan are plotted in
figure 8.5. Sub-figure b) and d) show the edge pedestal with an increasing pedestal top
density and decreasing pedestal top temperature for increasing gas puff. The gradients
of these profiles stay nearly constant. Sub-figures a) and c) show the estimated emission
and radial electric field profiles. With increased gas puff, the shape and depth of the
minimum in the radial electric field remains nearly unchanged. The variation in the
position is within the combined uncertainties of the measurements and the equilibrium
reconstruction, mentioned in the last section.

Sub-figure e) shows the comparison of the depth of the estimated radial electric fields to
neoclassical theory as well as to ∇p/n. The effect of the collisionality and temperature
dependent neoclassical correction compared to ∇p/n is emphasized in sub-figure f). The
high collisionality (sub-figure h)) in this series of discharges lead to a negative neoclas-
sical coefficient (sub-figure g)) in the area around the minimum and thus to a deeper
predicted minimum in Er, which is well confirmed by the measurements. Because of the
nearly unchanged collisionalities and edge pressure gradients for all three gas puff levels,
there is only a small variation in the theoretical prediction, which is also reproduced
by the measurement. From the increasing density and unchanged pressure gradient, a
decrease in ∇p/n and therefore also of the neoclassical prediction is expected. Due to
the uncertainties of the edge gradients, a clear trend could not be found but comparing
the discharge with the highest gas puff level to the other two, a small reduction of ∇p/n
and of the measured minimum can be observed.

8.5 L-H transition

After having discussed examples of varying heating power and fueling, this section con-
centrates on the transition from L- to H-mode. The development of the radial electric
field during the transition is very important, because it plays a major role in transport
reduction (see chapter 2.5 for a detailed discussion). In the following, discharge #24923,
which is presented in figure 8.6, is used to analyze the L-H transition. It is a 0.8 MA
discharge with a toroidal magnetic field of -2.5 T. In the observed time-interval constant
NBI heating of 1.2 MW was applied. The L-H transition was started by switching on
1.5 MW of ECRH. The plots on the right-hand side of the figure are a close up of the
L-H transition indicated by the yellow bar in the left-hand side of the figure. One can
see, that after switching on ECRH at 2.0 s, the plasma stays in L-mode for 40 ms. At
2.04 s, there is the typical drop in the signal of the divertor current (Ipolsola), that in-

dicates the start of the L-H transition (see uppermost plot in figure 8.7). Plot b) in
figure 8.7 shows the measured line integrated raw signal for one line of sight in counts.
In L-mode (< 2.04 s) there is a nearly constant emission of about 7500 counts, which
decreases during the L-H transition to 6000 counts. The first clear ELMs that could be
identified by the ELM detection code start at 2.06 s. A correlation between the ELM
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Figure 8.6: Overview of shot #24923 on the left; close up on the L-H transition on the
right

onset and the increased measured emission can be observed. The reason for this is the
already discussed increased transport towards the walls during the ELM.

The results of the radial electric field calculations for this discharge are plotted in graph
c) and d) of figure 8.7. In the L-mode phase, a nearly constant depth of the minimum is
measured at -16 kV/m. AUGPed was used to fit the edge electron density and temper-
ature profiles. All profiles from 1.8 s to 2.0 s were used for the fit. The Er measurement
is in good agreement with the neoclassical prediction. The last time-point of this phase
might already be an indicator for the L-H transition by a deeper well in the radial electric
field compared to the prediction using L-mode edge profiles, because it is the time-point
which indicates the actual L-H transition.

The next two time-points, region B, were calculated using IDA density profiles with the
high time-resolution of 1 ms. But only one electron temperature profile was used, fitted
by the modified hyperbolic tangent function from AUGPed. Averaging over the whole
8 ms was done in order to include one Thomson electron temperature measurement to
reduce the uncertainties in the ECE shine through region of the IDA temperature profile.
By looking at figure 8.7 one can see, that the slightly steeper profiles compared to the L-
mode profiles better match the measurements. The small reduction of the Er-well depth
in the second time-point of this phase may be due to the influence of a small early ELM
(perhaps a type III-ELM), which was below the detection limit of the ELM-detection
software. This is supported by looking at the integrated line intensity.

The edge profiles of region C are aligned and fitted in the same way as in region B. The
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Figure 8.7: Comparison of the depth of the minimum of measured radial electric field to
theory during the L-H transition
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density profile is taken from the IDA diagnostic and the electron temperature profile was
improved by the AUGPed modified hyperbolic tangent fit. The discrepancy between the
prediction in the first time-point of this region and the good agreement with the second
one probably results from the fact, that for both time-points the same temperature
profiles was used and it was too early to apply ELM filtering. Therefore, the gradients,
which are steeper than in the previous regime, are governed by a small early ELM during
the second time-point in this region.

In region D, the first larger ELM’s were detected (vertical magenta lines in sub-figure 2).
This can be seen in the structures in the integrated line intensity, in the Ipolsola signal

as well as in the alternating depth of the radial electric field. The theoretical prediction
agrees only with the time-points containing an ELM, because the interval was too small
to apply ELM synchronization in AUGPed.

The only measurement point in region E was compared to the theory with completely
ELM synchronized AUGPed profiles and shows good agreement to neoclassical theory.
The remaining time-points in this region could not be evaluated, because no Lithium
beam data and thus no IDA data were available.

In the last evaluated region F, there is a clear H-mode plasma with strong and very
low frequent ELMs. The radial electric field for two ELM cycles was calculated and
included in figure 8.7. The ELM crash and the recovery phase of the radial electric field
can be clearly seen, as well as a stable phase around 2.14 s with maximal depth until
the next ELM crash. In this region only IDA profiles were used for electron density
and temperature reconstruction. ∇p/n, the blue dots, show good agreement in the
field development but has constantly too low maximal depth (of about ≈ 20 kV/m).
The neoclassical term, green dots, which is also dependent on the collisionality and the
temperature gradient, shows better agreement with the measurements. Due to the very
uncertain gradient of the edge electron temperature in H-mode caused by ECE shine
through, the agreement with the measured data varies for each time-point.

The lowest plot in figure 8.7 shows the temporal development of the position of the
minimum in the radial electric field. All data points lie in the region 0.98 < ρpol < 1.0,
which is the region with steep gradients in H-mode. This corresponds to the measurement
resolution of the presented radial electric field diagnostic. Therefore, no conclusions could
be drawn regarding the position of the Er minimum relative to the separatrix.

8.6 Dependency of Er on collisionality

Having discussed the depth of the radial electric field for different plasma parameters and
during a L-H transition, it turned out, that the collisionality and temperature dependent
term in the neoclassical prediction of the radial electric field is crucial.
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To discuss the collisionality dependence of the neoclassical theory, all analyzed discharges
in this work are plotted over the pedestal top collisionality (ρpol = 0.97) in figure 8.8. The
measurements, plotted in black with error bars, are compared to ∇p/n (blue) and the
neoclassical prediction (red). The depths of the evaluated radial electric fields obviously
gets deeper for decreasing collisionality. Furthermore, one can see that the neoclassical
factor (β1, g2i) (see equation (2.43) or chapter 8.2) changes its sign at a collisionality of
about ν∗ ≈ 1.0. For discharges with a higher collisionality, the neoclassical prediction
for the minimum of the radial electric field is deeper than ∇p/n and for discharges
with a lower collisionality the predicted field is flatter. This is emphasized in figure
8.9. The minima of the neoclassical and the measured radial electric fields are plotted
against ∇p/n to emphasize the effect of the collisionality and temperature dependent
term in the neoclassical theory. In this figure, the change of the sign of the neoclassical
factor at a collisionality of ν∗ ≈ 1, which corresponds to a ∇p/n minimum depth of about
70 kV/m for the evaluated discharges, is even more obvious. The measurements perfectly
agree with this sign dependence on the collisionality. Furthermore, looking at figure 8.9,
one can see that the depth of the measured radial electric field follows ∇p/n with a
displacement of ≈ −15 kV/m until the collisionality gets too low and the temperature
and collisionality dependent term gets more important.
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9 Summary and Conclusions

This PhD thesis was done at the Max-Planck-Institute for Plasma Physics (IPP) in
Garching, Germany and all measurements used for data evaluation were made at the
ASDEX Upgrade Tokamak. Inspired by a promising feasibility study carried out during
my diploma thesis also at the IPP, a new diagnostic for measuring the radial electric field
Er by passive He II emission was installed at ASDEX Upgrade. The main focus of this
diagnostic is on the edge pedestal region with its distinctive minimum in the Er, which
has an important role in widely accepted theories on turbulence reduction in H-mode.

The radial electric field diagnostic presented in this work is a passive method, that mea-
sures line integratedHe II spectra (λ0 = 468.57 nm) from the plasma boundary. Bayesian
statistics was used to unfold the spectra. Therefore, a forward model was developed, des-
cribing the relation between the plasma properties and these spectra. Furthermore, this
Bayesian approach provided the ability to include a consistent error propagation through
the complete forward model using a Marcov chain Monte Carlo algorithm. The basic
concept of modeling the measured spectra is based on calculating the line shift from the
perpendicular drift motion (ExB and diamagnetic drift), the width from the He+ ion
temperature and the amplitude from the He+ ion density using a collisional-radiative
model. Therefore, it is also possible to make predictions on the He+ density and tem-
perature in the region with high He II emission.

The accuracy of the new radial electric field diagnostic and the impact of uncertainties,
not included in the forward model, was analyzed in a sensitivity study. The most impor-
tant finding was that the determination of the radial electric field is independent of the
relative and absolute alignment of the edge pedestal electron temperature and density
profiles. The estimated He+ density profile, on the contrary, is strongly dependent on
these profiles and their relative alignment. Furthermore, it could be shown that the effect
of fine structure splitting and magnetic splitting on the line center is negligible in the
region with steep edge gradients due to the high He+ ion temperatures and the high
perpendicular rotation velocities.

The newly implemented diagnostic could be used for nearly every discharge, due to the
passive measurement method. Therefore, a wide variety of discharges could be analyzed.
But, because of the long run-time of the Marcov chain Monte Carlo algorithm, the
radial electric field was only evaluated for the most significant time points in the selected
discharges.
In the field of plasma edge physics, the transition from L- to H-mode is a lively discussed
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topic. Hence, an analysis of the temporal development of the depth of the radial electric
field before, during and after the transition was done. It was found that the depth of
the minimum in the measured radial electric field is about 16 kV/m in L-mode. Due to
the fast (< 1 ms) L-H-transition compared to the temporal resolution of the diagnostic
(4 ms), the important question whether the increased depth of the radial electric field
is the cause or the consequence of the transition could not be answered. But in the
following, 40 ms lasting, phase of slowly increasing gradients in the edge temperature
and density of the analyzed discharge, a behavior of the depth of the radial electric field
comparable to the edge gradients was found. This suggested a connection of this depth
to the edge gradients, which is corroborated by neoclassical theory

Er,neo =
TD

qD

[
∂ lnPD

∂r
− (β1, g2i)

∂ lnTD

∂r

]
=

∇PD

qDnD
− (β1, g2i)

∇TD

qD
.

∇PD/nD of the main ions is the leading term, which is corrected by the second term,
that is dependent on main ion temperature, collisionality and the inverse aspect ratio.
In both, the L-mode phase and the transition phase, good agreement in the predicted
depth of the minimum compared to the measurement was found within the combined
error of the diagnostic and the edge profiles. At the end of the phase with steepening
edge gradients and in the following stable H-mode, the edge gradients crashes periodi-
cally due to the ELM-cycle. It was shown, that the radial electric field also breaks down
simultaneously to the edge gradients, but the time resolution was too low to carry out
the temporal development in a single ELM-cycle. By introducing ELM filtering further
studies of H-mode discharges could be done.
By varying neutral beam heating power and gas fueling level, measured radial electric
fields for different edge gradients and collisionalities were compared to neoclassical the-
ory in order to validate the ∇p/n dependence of the minimum and also the collisionality
dependence of the correction term. Good agreement within the combined uncertainties
of the measurement and the edge gradients with neoclassic was found. For lower colli-
sionalities (ν∗ < 1.0) the neoclassical coefficient (β1, g2i) changes its sign and significantly
reduces the predicted minimum, which was also verified by the measurements.

In conclusion, there is evidence, that the radial electric field in the transport barrier at
the plasma edge is governed by the main ions and that neoclassical theory is appropriate
to predict the depth of minimum in this field.
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Glossary

Notation Description
(β1, g2i) Collisionality and plasma shape dependent neoclassi-

cal factor
25, 85

ADAS The IPP is member of the Atomic Data and Analy-
sis Structure project. Therefore, a variety of atomic
data, like atomic cross-sections and associated calcu-
lation tools can be used.

29

Al Amplitude of the Voigt profile used for profile calcu-
lation by the forward model.

53

ASDEX Axial Symmetric Divertor Experiment 5
AUGPed A graphical tool to fit the pedestal profiles using the

combined data from different diagnostics.
41

�B Magnetic field vector: It consists of a poloidal �Bp and

a toroidal �Bt. The poloidal one can be derived from
poloidal flux Ψp and has two components BR and Bz.

15

β Ratio of kinetic pressure to magnetic pressure 3

C̄ Covariance matrix of the posterior PDF. 65
CA,k Absolute intensity calibration factor for the k-th line

of sight.
56

CA,n Absolute intensity calibration factor for the n-th
channel.

49

χ2 Squared normalized residual of the Bayesian para-
meter estimation.

58

CLISTE The CompLete Interpretive Suite for Tokamak Equi-
libria is a Grad-Shafranov solver used to calculated
reconstruct the equilibrium at ASDEX Upgrade.

15

CXRS The electron cyclotron emission diagnostic measures
highly resolved edge electron temperature profiles.

40

DCN interferometer A set of Deuterium CyaNide (DCN) laser interfer-
ometers, which are used to measure line integrated
electron densities.

8, 40

ELM The edge localized mode is a typical edge instability
of H-mode discharges.

9

XVII



Notation Description
ETB The edge transport barrier is a typical feature of H-

mode discharges.
8

δλ0,l Width of the Gaussian part of the Voigt profile used
for profile calculation by the forward model.

55

δλL Width of the Lorentzian part of the Voigt profile used
for profile calculation by the forward model.

55

ECE The electron cyclotron emission diagnostic measures
highly resolved edge electron temperature profiles.

39

ECRH Electron Cyclotron Resonant Heating 8
ε Inverse aspect ratio of a Tokamak 7
Er Radial electric field 25, 84
M Forward model M used for probabilistic data analysis

with the model-parameters �η.
51

�η Parameters of the forward model M used for proba-
bilistic data analysis.

51

F Number of counts, calculated by the forward model,
that are expected for a given set of model parameters.

56

f (�r, �v, t) Time-dependent particle density in a volume in the
6-dimensional phase space.

19

gl (λ,M (�η)) Local line emission profile at a certain ρpol-position,
calculated by the forward model M .

53

�Γa⊥ Perpendicular particle flow of species a. In addition
to the poloidal component, there is also a classical �Γc

a

and a neoclassical�Γnc
a one.

20

h (λ, λ0, δλG, δλL) Voigt function at the position λ0 with a Gaussian
width of δλG and a Lorentzian width of δλL.

55

I Background information I of the forward model M. 51
IDA Integrated Data Analysis 42

�Jtor Toroidal plasma current induced by the ohmic trans-
former

3

JET Joint European Torus 9

kB Boltzmann constant 84

L Negative logarithm of the posterior PDF 65
λ0,l Position of the Voigt profile used for profile calcula-

tion by the forward model.
54
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Notation Description
λC Tabulated un-shifted central wavelength of the ob-

served He II transition from the NIST database.
54

λCorr Correction to the wavelength calibration using a Zn
spectral-lamp.

56

LIA Name of one of the two spectrometers used in this
work to measure He+ spectra.

45

LIC Name of one of the two spectrometers used in this
work to measure He+ spectra.

45

MSE The ... diagnostic ... 15
μ Magnetic moment of a gyrating particle 17

N Number of counts detected by the CCD camera. 56
Na Number of particles of the species a in a given volume. 24
nD Deuterium density, approximated by the electron

density
84

ν∗ Normalized collision frequency of trapped particles to
the bounce frequency of the banana orbit

7

Ok Offset in counts for each line of sight of the forward
model.

56

Ωa Cyclotron frequency of the species a. 20

p (X | I) Probability of hypothesis X under the condition I. X̄
represents the complementary of X.

51

PDF Probability Density Function 52
PEC The photon emission coefficients calculated by an

ADAS routine can be used to calculated the number
of photons emitted by a certain transition.

32

Φ Electrostatic potential leading to a predominantly ra-
dial electric field ∇Φ.

19

π Viscosity tensor between the different particle species. 19
Ψ The Magnetic flux can be separated in a poloidal com-

ponent Ψp and a toroidal component Ψt. Ψ0 repre-
sents the poloidal magnetic flux on the magnetic axis
and ΨS the flux on the separatrix.

15

Q Ratio of external heating compared to internal α par-
ticle heating

6

q Safety factor, which is a measure for the slope of the
magnetic field lines

7

qD Electric charge of Deuterium 84
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Notation Description
�r (λ,M (�η)) Model output: Line integrated spectrum for each line

of sight dependent on the given set of model param-
eters �η

52

ρpol normalized poloidal radius 13

ς (λ) Measured spectrometer function. 55
σCA,n

Standard deviation of the absolute intensity calibra-
tion factor for the n-th channel.

49

σN Statistical noise of the measured photon count. 57
σr Read-out noise due to the applied electronic devices. 57
�σξ Gaussian distributed error of the nuisance parame-

ters.
59

STRAHL This is a code to calculate the transport and emission
of impurities in a plasma.

34

Ta Temperature profile of the species a. 24
τE Energy confinement time 5

Υ CCD camera specific conversion factor from measured
counts to detected photons.

56

vD Drift motion of a charged particle in a magnetic field
�B by an perpendicular external force �F

16

vHe+,P (ρpol) Combined velocity profile projected on the line of
sight, with contributions from the E×B-velocity, the
diamagnetic velocity and the toroidal velocity

55

�ξ Nuisance parameters of the forward model. 59

Za Charge number of species a. 24
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