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Abstract—Parallel multiple-input multiple-output (MIMO) broadcast
channels have been shown to be separable from an information theoretic
point of view, i.e., capacity can be achieved with a strategy that performs
separate encoding and decoding on each subchannel subject to a power
allocation across subchannels. In this paper, we show that separability does
not necessarily hold if the transmit strategy is restricted to linear trans-
ceivers. The proof will be done by identifying a rate tuple that is achievable
in a certain set of channels with joint treatment of the subchannels, but
lies outside the achievable rate region of separate linear precoding. The
implications of this result are that any algorithm to optimize transmit
strategies in parallel MIMO broadcast channels that is based on both
linear transceivers and separate encoding on each subchannel does in fact
introduce two suboptimalities and not only one.

Index Terms— Linear transceivers, multiple-input multiple-output
(MIMO), multi-user multi-carrier systems, parallel broadcast channels,
rate region, separable and inseparable channels.

I. INTRODUCTION

HE concept of parallel channels is a way to model a commu-
T nication system that consists of a set of orthogonal resources,
such as (groups of) subcarriers of a frequency selective channel or
time intervals in a fading channel. Unlike parallel Gaussian interfer-
ence channels, which are known to be inseparable in general [1], par-
allel Gaussian broadcast channels were shown to be separable for the
single-antenna case in [2] and [3] and for the multiantenna case in [4]
and [5]. Therefore, many algorithms that have been proposed to opti-
mize the transmit strategy in parallel MIMO broadcast channels (e.g.,
[6]-[10]) are based on the assumption that each of the parallel channels
can be treated separately. A mathematical interpretation of separate and
joint treatment of parallel channels will be given together with the in-
troduction of the system model in Section II.

However, recent results on multicarrier broadcast channels have sug-
gested that separate treatment of the subchannels may be suboptimal if
linear transceivers are used [11]. In particular, it was shown that quality
of service requirements might become infeasible due to separation of
the subchannels although they would be feasible for unseparated chan-
nels. Although this observation is rather specific in that it is restricted
to feasibility considerations for quality of service problems, i.e., it only
applies to systems without time-sharing that have more receivers than
degrees of freedom, it motivates further research on the subject.

The main result of this paper is derived in Section III, where we
will show that for a certain channel realization, there exists a rate tuple
that is achievable with linear precoding if the subchannels are treated
jointly, but is no longer part of the rate region if the subchannels are
separated. This result is much more general than the abovementioned
one since it holds for various objective functions that take their optimal
values on the Pareto boundary of the rate region, and it even holds
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if time-sharing is allowed and if the system is not fully loaded. This
generality is somewhat surprising: a potential reason for inseparability
of parallel broadcast channels in the case of quality of service con-
strained problems in overloaded systems without time-sharing could
be an unsuitable combination of the individual requirement sizes [11].
However, this is no longer a possible explanation for the general insep-
arability theorem presented in this paper. Instead, the examples con-
structed in Section III will demonstrate that inseparability for linear
transceivers is a property inherent to certain channel realizations. More
examples for channel realizations that lead to inseparability are given
in Section IV, and the implications of the result will be discussed in
detail in Section V.

Notation: Vectors are typeset in boldface lowercase letters and ma-
trices in boldface uppercase letters. We write O for the zero matrix or
vector and Iy for the identity matrix of size N, and we use AT and A"
to denote the transpose and conjugate transpose of a matrix A, respec-
tively. The notation ||a||- is used for the Euclidean norm of a vector a.

II. SYSTEM MODEL AND MATHEMATICAL INTERPRETATION OF
SUBCHANNEL SEPARATION

We consider a set of C' parallel broadcast channels such as, e.g., car-
riers in a multicarrier system. Each subchannel ¢ € {1,...,C} is char-
acterized by a set of channel matrices (Hf,f)’H e CNk X‘”)kg{lw,K}
and noise covariance matrices (Cy, € CNE XN Jke{1,...,icy- Here, M
is the number of transmit antennas, K is the number of receivers, and
N is the number of antennas at receiver k. To characterize the overall
system, these matrices can be written in block-diagonal channel ma-
trices

HS ),
HE _ c cNkOxMC )
HiC),H
and noise covariance matrices
1
cy
Cyy = € CNEOXNC @)
)

(cf., e.g., [12]). The data transmission with linear transceivers can now
be described by the equation

K
#n=VIH] Z Bz + Vi, 3)

k'=1

for all receivers k, where x; ~ C./\/'(O, Is A_) is the vector of circularly
symmetric complex Gaussian data symbols intended for receiver k with
Sk < C'min { Ny, M} being the number of independent data streams,
and &, € C°* is the corresponding estimate. Moreover, the matrices
B, € CM*5k are the beamforming matrices, and V € Co%*Me¢
are the receive filters. Note that x, is a concatenation of all symbols in-
tended for user &£ no matter across which subchannel(s) they are trans-
mitted.

If we do not impose any constraints on the structure of the beam-
forming matrices By, we allow that a transmit symbol is spread over
several subchannels. This corresponds to the case of joint encoding
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over the parallel channels and was called carrier-cooperative trans-
mission in [12]. However, we could also impose the constraint that
the matrices By, (and consequently, the matrices V1) have to match
the block-diagonal structure of the channel matrices and the noise co-
variance matrices. This case, which corresponds to separate treatment
of the subchannels, was called carrier-noncooperative transmission in
[12] and is equivalent to an independent data transmission

K
g7 =V EON ST B VIO @

k=1

on all subchannels c. In this case, the only coupling between the sub-
channels is that each receiver achieves a data rate . that is the sum of
its rates r,(cu) on each subchannel, i.e., ry = Zle 7“,(f), and the total
transmit power P is distributed into subchannel powers P according

to a certain power allocation strategy.

III. INSEPARABILITY IN THE CASE OF LINEAR TRANSCEIVERS

In order to precisely define the notion of separability, we first
introduce the rate region C(P), i.e., the set of all rate vectors
r = [r1,...,7x]T that can be achieved with sum power P, and the
rate region for separate coding on each subchannel Csep, (P), i.e., the
set of rate vectors that can be achieved using separate transmission
with sum power P. Note that C(P) is a convex set since the applied
strategy can involve time-sharing between different operation points,
which is equivalent to allowing convex combinations between different
transmit strategies.!

Definition 1: We call a set of parallel channels separable if for
all transmit powers P and all rate vectors r € C(P), it holds that
r € Coep(P), i.e., r can be achieved using separate transmission with
transmit power I°. On the other hand, if there exists a power I’ such
that there are rate vectors r € C(P) with r ¢ Cscp (P), the parallel
channels are called inseparable.

The main result of this paper is stated in the following theorem. As
the proof is performed by construction of an explicit example, it is not
very technical, but rather insightful. In fact, the aim of this section is not
only to prove the inseparability, but also to give some intuition about
why this phenomenon occurs.

Theorem 1: Parallel MIMO broadcast channels with linear trans-
ceivers are not always separable.

Proof of Theorem 1: We provide a proof by construction. We
first choose the system parameters of an example system as well as
a rate vector p, and we compute the sum transmit power P such that
p lies on the Pareto boundary of Csep (P). To prove inseparability, it
is not necessary to know C(P). Instead, we will find a rate vector
r € R(P) C C(P) with r, > pj Yk, which implies 7 ¢ Ceep (P).
Here, R(P) is used to denote a subset of C(P), which contains the rate
vectors that can be achieved with a certain type of suboptimal strate-
gies. In our case, such a potential suboptimality will be introduced by
refraining from the use of time-sharing and by the restriction to &A™ data

INote that time-sharing can be defined in two ways: either with a short-term
average power constraint, i.e., the power constraint has to be fulfilled in each
time slot, or with a long-term average power constraint, i.e., the power constraint
only has to be fulfilled after averaging over all time slots. In both cases, the rate
region becomes convex. Whenever time-sharing is applied in this paper, it turns
out that the optimal time-sharing strategy for the case of a long-term average
power constraint uses constant power so that it also fulfills the corresponding
short-term average power constraint. Thus, the results presented in this paper
hold for both types of time-sharing.
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streams. As will be seen, it is possible to find a vector r that is a scaled
version of the chosen vector p.

Consider a set of parallel broadcast channels with C' = 2, M = 2,
K = 3, and N, = 1 VE. In this case, the noise covariance matrices are
reduced to scalars, which we assume to be a,(f) = 1VEk, Ve, and the
channel matrices become row vectors hg,c)’ﬂ. We choose the channel
realization

R 1 1 000

HHI 1 2) =

T RPM ] T [0 0 1 0] ©)
RV 1T &= % 0 o0

Hy =" Lew|=|0 7 1} ©)
L > L vz V2
[RLDH 1 7 & 0 o0

g =™ o] = {)7 f ) ﬂ}. (7
L s 1L Vol

We will now derive the minimal transmit power that is needed to
achieve the rates p, = p = 1 Vk with separate treatment of the sub-
channels. Using the power minimization algorithm from [10], which
can compute the globally optimal solution numerically up to an arbi-
trarily small error tolerance, it can be easily verified that the strategy
derived in the following is the globally optimal one.

Note that all channel vectors have unit norm and that the setting on
each subchannel is totally symmetric in that the absolute value of the
inner product of two channel vectors is given by

O (e 1, if k = j,

‘hi) hg')‘z{%, ik # j, ®)
forall k,j € {1,2,3} and ¢ € {1,2}. As the vectors are normalized,
this measure can be interpreted as the cosine of a generalized angle
between two complex vectors, i.e., cos 9,55)] = |h§f)’ﬂh§-c) |. Following
the nomenclature of [13], we call 92% = 45° the Hermitian angle
between the vectors h{* and hgc).

Since we have two transmit antennas, no more than two users should
be scheduled on each subchannel in each time slot. For reasons of sym-
metry, one of the following two strategies must attain the minimal sum
transmit power: either using three time slots with equal length, where
each possible pair of users is scheduled on both subchannels during one
of the time slots, or exclusively serving one user in each of the three
time slots. In the latter case, the sum power can be easily calculated by
equally dividing the rate and the power between the two subchannels:

P =2 (Q%P - 1) ~ 3.6569. ©)

The former possibility will be discussed in the following paragraphs.

As the three time slots, two subchannels, and two spatial dimensions
correspond to twelve degrees of freedom, each of the three users is
scheduled four times, always with a duration of one third of the total
time. In each time slot, the same sum transmit power is used on each
subchannel, so that the average power is P = 2P where P° is the
power needed to serve a user pair (k, j) at the rates pg:) = pg-“‘) = % P
on one of the subchannels. For reasons of symmetry, this power has to
be distributed equally among the users such that for each of the two
users, the power ? is spent on that subchannel. The transmit strategy
is visualized in Fig. 1.
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Fig. 1. Visualization of the symmetric time-sharing solution.

Using a dual uplink formulation [14], the rate of user k£ on sub-
channel ¢ can be expressed as

P c),H P c c),H -t c
= log, <1+ o <1M + hR > A

2 |, (e),Hy () ]?
(f) k)'HhE')

Pp(c)Hy(c)
1+ ThJ h]

P
14 =
+4

P P2

7137

=log, [1+ 232
c;( 1_’_;

where j is the user that is scheduled together with user % in the re-
spective time slot. The third line is due to the matrix inversion lemma,?
and the last equality follows from (8). Solving this for P, we get PP ~
3.5684 < 3.6569 =~ P;. Thus, the solution with two users per time
slot on each subchannel is optimal for the given setting. Due to the op-
timality of I, the rate vector p = [1,1,1]" lies on the Pareto boundary
of the rate region Csep () for separate coding on each subchannel with

hE(‘) ’HhE,C) _

= log,

(10)

sum power P.

Let us now consider the unseparated case. To prove the theorem,
it is sufficient to derive a suboptimal strategy without separation that
achieves a strictly larger rate tuple with the same sum transmit power.
As will be shown in the following, this can even be done without using
time-sharing. As the overall system has 4 degrees of freedom, we de-
cide that the number of data streams should not exceed 4. Thus, for
reasons of symmetry, we serve each user with only one data stream.
The receive filters are reduced to row vectors 1)2, and, again for rea-
sons of symmetry, they have to be

5§
. . (2 1 ;
vy = Hv\;in [e“’gcl) SEOA )] = 2 [1 e¥F] (11)
for £ € {1,2,3}, where ||v1,3”Z = 1 and pg) = 0 were chosen

without loss of generality. Applying these receive filters, we get an

A+ BCD)"* = A~' — A-

[15D).

'B(C~' 4+ DA'B)~'DA"! (e.g.

effective vector broadcast channel with channel vectors

hk =V HH (12)
Note that hk hk = 1 due to ||'u,C ||2 = 1. For given values of ¢, and
given per-user powers py, the rates of all users can be computed as

—1
) l”zk) (13)

in the dual uplink [14] of the effective vector broadcast channel.

Applying the matrix inversion lemma, these equations can be
rewritten such that they only depend on the powers pi and on the inner
products h h between the effective channels. As functions of the
phases ¢, the values of these inner products are given by

~H - -H
ri = log, <1 + prhy, <IMC + Z]}jh]’hj

7k

He 1 jle1—¥2)
hth—Zﬁ(l—i—e ) (14)
Hy _ eI ilp2—v3+3)

hhy = s (1+e ) 15)
~H =~ 1

he by = 1 (w3 —e1)

3 ha 2\/—( +e ) (16)

To obtain high rates, the absolute values of these inner products should
be as small as possible for ¢ # j, and from symmetry considerations,
it can be concluded that they should all be equal, which is fulfilled for
w1 — @2 = w2 — (g3 — 5) = @3 — @1. This leads to the choice
01 =0,09 = —5” ,and 3 = 5—" , which is visualized in Fig. 2.3 This
particular choice ylelds hl%h angular separations between the channel
vectors, i.e., cos 8 ; = |hL h;| is given by

1, ifk=j,
- %cos(—_’z) ~ 0.1830, ifk #j,

an

forall k,j € {1,2,3}.

3The choice is only symmetric with respect to user 2 and user 3 due to the
phase shift + g in (15).
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¥3
®1
- 1
COS Py,
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Fig. 2. Visualization of the choice for ¢y,.

Choosing the symmetric power allocation p;, = P/3 Yk, which ful-
fills Zle pr = P, we achieve the rates r, = 1.0986 Vk. Clearly,
the rate vector r =~ 1.0986p lies outside of the rate region for separate
coding on each subchannel with sum power P. |

Note that instead of increasing the rates, the advantage of joint
transmission over separate transmission can also be used to reduce the
transmit power. After choosing the phases ¢, the minimal transmit
power needed to achieve the rate vector p in the effective vector
broadcast channel can be computed numerically using one of the
methods proposed in [16] and [17]. In the case discussed above, this
would lead to a sum transmit power Pioint & 3.1174 < P.

To get some intuition about why the (potentially suboptimal) scheme
with joint treatment of the subchannels achieves higher rates than the
optimal scheme with subchannel separation, it helps to look at the Her-
mitian angles between the channel vectors. With the proposed choice
for the phases ¢y in the case of joint encoding, the data can be trans-
mitted across very dissimilar effective channels that enclose Hermitian
angles A% ; = 79.5° [cf. (17)] while the Hermitian angles 9;3 = 45°
between the original channel vectors on each subchannel are signifi-
cantly smaller [cf. (8)]. Apparently, the loss in performance resulting
from the small angular separation of the channels in the separate case
cannot be compensated by the fact that two subchannels are available
and by the use of optimal time-sharing.

To show that (in)separability is a property inherent to the channel
realization, we also state the following proposition, which can again be
proven by construction.

Proposition 1: For certain channel realizations, parallel MIMO
broadcast channels with linear transceivers are separable.

Proof of Proposition 1: Consider a channel realization where for
all ¢ # 1, the channel matrices are given by H }CC)’H = OVE. As trans-
mission over the zero-channels is neither possible with separate nor
with joint treatment of the subchannels, the parallel broadcast chan-
nels are obviously separable for this channel realization. |

IV. EXAMPLES FOR INSEPARABLE CHANNEL REALIZATIONS

In order to get more intuition about when inseparability does occur,
we keep considering the system introduced in the proof of Theorem 1,
but we look at more channel realizations. If we ignore negligible rota-
tions that change only the absolute, but not the relative spatial directions
of the channel vectors, all possible channel realizations on subchannel
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c can be parametrized as follows:

mt =711 0] (18)

héC)’H = (‘(ZC) [cos CY(IC) sin a(lc) ] (19)

hgc)ﬂ = fff;") [COS ag") S iy ozg") ] . 20)

Restricting ourselves to channels with norm ,€§CC) = 1Vk, Ve, and
choosing

cos t?
_ cos’ a‘(;) — cos® “(1(“) cos? af;“) — sin? a&") sin? ag(?) 21)
2 CcOS (}’gc) Ccos 0,::(;‘) Sin (}ZSC) Sin (}éc) [

the channel on subchannel c is parametrized by three Hermitian angles

61} = arccos [R{HAL) | = o{? € [0, g] 22)
6’(20% = arccos hf;)’thc) = ckgc) € [(), g] (23)
Hgti = arccos hgc)‘nh({‘)‘ = (}'E;") € [O, g] 24)
which have to fulfill
3 3
Z(}Ec) <7 and 2(}5:) — Z“'E’,C) <0 Vk (25)
=1 i=1

for (21) to be feasible. Note that y’)(l) can be assumed to be positive
without loss of generality, but then, the positive as well as the negative
solution of (21) have to be considered for () with ¢ > 1.

For a parametrization of the considered system with two parallel
channels, we would need six angles and the choice for the sign of
¢ . As the aim of this section is only to find examples for insepa-
rable channel realizations, we will restrict ourselves to the special case
of symmetric channel realizations, where the angles a*%,c) have the same
value « for all users and on both subchannels. In this case, the scenario
can be parametrized by one angle* « < % and the sign of ¢ The
channel realization considered in the proof of Theorem 1 is obtained
for a = 45° and ® = —y),

For other values of «, the optimal separate strategy can be computed
by inserting the respective value of the inner product |h}€C)’Hh§vC)| =
cos « into (10). If the resulting P is smaller than P; from (9), it is the
minimal power for separate transmission. Otherwise, I’; is the optimal
power. In Fig. 3, the interval where the solid curve is constant corre-
sponds to P; being the optimal power, i.e., in this interval, single-user
transmission on each subchannel is optimal.

If the aim is to use the advantage of joint transmission to reduce the
transmit power, a suboptimal power minimization algorithm for MIMO
broadcast channels with linear transceivers as proposed in [18], [19], or
[20] can be applied. If the aim is to increase the per-user rates, as was
done in the proof of Theorem 1, a suboptimal rate balancing algorithm

4The inequality is due to (25).
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Fig. 3. Transmit power needed to achieve p = [1, 1, 1]T with optimal separate
and with suboptimal joint transmission.

as proposed in [18], [19], or [21] can be used. All these algorithms
refrain from using time-sharing.

For the results presented in Fig. 3, we have used the power mini-
mization algorithm from [20]. The terms “reversed phase” and “equal
phase” refer to the sign of L/,(Q) ,1.e., the curves refer to different channel
realizations with the same angle «.. For separate transmission, the sign
of L;’;(Z) does not play any role.

It can be seen that especially for the channel realizations with re-
versed phase on the second subchannel, there is a large angular range
where the suboptimal joint transmission can outperform the optimal
separate transmission. For the channel realizations with equal sign of
¥(®) on both subchannels, this observation applies at least for a small
angular range. If a lies within these intervals, the parallel broadcast
channels with linear transceivers are inseparable. The example dis-
cussed in the proof of Theorem 1 can be found in the plot by comparing
the solid curve and the dashed curve at o = 45°.

Whenever the curves for suboptimal joint transmission lie above the
curve for separate transmission, this is a result of the suboptimality of
the algorithm applied in the joint case: the optimal separate strategy
is also a valid joint strategy and could be applied instead of the joint
strategy computed by the suboptimal power minimization algorithm.
However, in these cases, there might be an even better joint strategy
that could be found by some other algorithm. Therefore, if « lies in one
of these intervals, it is not clear whether or not the parallel broadcast
channels with linear transceivers are separable. To further study these
intervals, we have also included the curve for separate transmission
with nonlinear dirty paper coding (DPC), which is known to be the
optimal strategy in parallel MIMO broadcast channels (e.g., [4]). In
the case with reversed phase, the (unknown) optimum for joint linear
transmission has to lie inside the gray area as it can never lie below
the DPC curve. Apparently, for small angles o the height of this area
diminishes, which implies that the distance to separability decreases
for small a, i.e., the scenario with linear transceivers must at least be
close to being separable if « is close to zero.

To produce the plot in Fig. 4, we have first computed the transmit
power needed to achieve p = [1,1,1]" with separate transmission.
Then, by means of the algorithm from [21], we have computed a sub-
optimal rate balancing solution using the same power. As expected, we
get an increased rate in the intervals where joint transmission led to a
power reduction in Fig. 3. The example discussed in the proof of The-
orem 1 can again be found in the plot by comparing the solid curve and
the dashed curve at o« = 45°.
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Fig. 4. Per-user rate achieved by suboptimal joint transmission with a transmit
power sufficient to achieve p = [1, 1, 1] with optimal separate transmission.

Even though we have restricted ourselves to symmetric channel real-
izations in this section, we have also been able to observe inseparability
also for asymmetric ones. Just like in the symmetric case, insepara-
bility has happened as long as the channels have been neither close to
being orthogonal nor close to being linearly dependent, i.e., for mod-
erate values of the angles a,.

V. DISCUSSION AND OUTLOOK

By constructing an adequate channel realization, we have proven
that parallel MIMO broadcast channels are inseparable in systems that
employ linear transceivers to transmit circularly symmetric complex
Gaussian data symbols. The result might affect any such system since
no further assumptions on the transmit strategy were imposed. In par-
ticular, the inseparability cannot be resolved by the application of time-
sharing. Quite the contrary, for certain channel realizations, a joint
strategy without time-sharing might outperform a strategy based on
subchannel separation that uses time-sharing.

Allowing time-sharing in the joint strategy can only enlarge the rate
region of the joint case, just as excluding time-sharing in the separate
strategy can only reduce the size of the rate region of the separate case.
From this, it can be easily concluded that inseparability still holds if
both strategies are allowed to employ time-sharing as well as if both
strategies are restricted to not make use of time-sharing.

As the theorem is based on a rate region formulation, it implies that
subchannel separation might, depending on the actual channel condi-
tions, result in suboptimal performance for any reasonable optimization
criterion, including (weighted) sum rate maximization, quality of ser-
vice constrained problems, rate balancing, and fairness based metrics.
This can be easily concluded from the fact that the optimal transmit
strategies for these criteria always correspond to points on the Pareto
boundary of the rate region.

Interestingly, the underlying reasons for the inseparability of par-
allel MIMO broadcast channels with linear precoding seem to differ
significantly from those for the inseparability of interference channels.
As mentioned in [1], interference alignment [22], [23] is a way to find
strategies with joint encoding over multiple frequencies that can out-
perform separate strategies. However, this technique is not applicable
to the broadcast system considered in this paper, so that the reasons for
inseparability must be different. With the following considerations, we
will try to shed some light on them.
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If the rate is to be maximized in a single-user MIMO channel with
block-diagonal channel matrices and noise covariance matrices, the op-
timal strategy according to [24] obviously uses block-diagonal transmit
covariance matrices and is, thus, a separate strategy. Intuitively, it is
not surprising that in a broadcast channel with DPC, the same has to
hold for the user that does not receive any interference. Therefore, the
data transmitted for this user has a block-diagonal covariance matrix,
and the next user, who receives just this one interfering signal, has
a block-diagonal interference-plus-noise covariance matrix at the re-
ceiver, too. Consequently, for the next user, it also makes sense to use
a block-diagonal transmit covariance matrix, i.e., a separate strategy.
This reasoning can be successively applied to all users in order to intu-
itively understand the optimality of separate strategies in parallel broad-
cast channels with DPC.

If linear precoding is applied, each user receives interference caused
by the signals of all other users, and a successive study as in the DPC
case is no longer possible. Let us instead consider an arbitrary user &.
If all other users apply a separate strategy, we have a block-diagonal
interference-plus-noise covariance matrix at the kth receiver, and intu-
ition tells us to use a separate strategy for user £ as this maximizes the
rate of user k for given strategies of the other users. However, as soon
as one user transmits with a covariance matrix that does not match the
block-diagonal structure of the channels, all other users get interfer-
ence-plus-noise covariance matrices that are no longer block-diagonal,
and it is no longer clear that the transmit covariance matrices of the
signals intended for them should be block-diagonal.

Based on the result presented in this paper, it is clear that any ap-
proach that is claimed to be optimal for parallel MIMO broadcast chan-
nels with linear precoding has to include the possibility of joint coding
across the subchannels, although this possibility is not required for
optimality in systems with optimal nonlinear dirty paper precoding.
The implications of this insight are far-reaching. First of all, the opti-
mization of a transmit strategy without subchannel separation involves
solving mathematical optimization problems in far more variables than
in the case of separate treatment of the subchannels. The reason for this
is that also the off-diagonal blocks of the beamforming matrices By,
and the receive filters V', need to be optimized. Beyond that, allowing
joint encoding across the subchannels might also change the qualita-
tive properties of the optimization problems. In particular, in the case
of parallel vector broadcast channels, i.e., in the case /N = 1Vk, the re-
ceive filters on each subchannel are reduced to scalars, leading to pure
power allocation problems in the dual uplink if the subchannels are
treated separately. For instance, for the power minimization problem
with per-user rate constraints, this simplified problem can be solved in
a globally optimal manner as was shown in [10]. However, due to the
structural difference between scalar receive filters and the receive filter
matrices needed for the case without subchannel separation, these so-
lutions cannot be transferred to the case where joint coding across sub-
channels is allowed.

These examples make clear that finding the optimal linear transmit
strategy is far more involved when the subchannels are not separated.
Therefore, a highly interesting topic for future research is to derive con-
ditions under which a set of parallel MIMO broadcast channels is sep-
arable. Furthermore, it would be interesting to derive bounds on the
maximal loss in performance resulting from separation of an insepa-
rable setting.

REFERENCES

[1] V. Cadambe and S. Jafar, “Parallel Gaussian interference channels are
not always separable,” IEEE Trans. Inf. Theory, vol. 55, no. 9, pp.
3983-3990, Sep. 2009.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 12, DECEMBER 2011

[2] D.N. Tse, “Optimal power allocation over parallel Gaussian broadcast
channels,” presented at the Int. Symp. Inf. Theory (ISIT), Ulm, Ger-
many, Jun. 29-Jul. 4, 1997.

[3] D. N. C. Tse and S. V. Hanly, “Multi-access fading channels—Part
I: Polymatroid structure, optimal resource allocation and throughput
capacities,” IEEE Trans. Inf. Theory, vol. 44, no. 7, pp. 2796-2815,
Nov. 1998.

[4] M. Mohseni, R. Zhang, and J. Cioffi, “Optimized transmission for

fading multiple-access and broadcast channels with multiple an-

tennas,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp. 1627-1639,

Aug. 2006.

P. Tejera, W. Utschick, J. Nossek, and G. Bauch, “Rate balancing in

multiuser MIMO OFDM systems,” IEEE Trans. Commun., vol. 57, no.

S, pp. 1370-1380, May 2009.

[6] N. Hassan and M. Assaad, “Margin adaptive resource allocation in
downlink multiuser MIMO-OFDMA system with multiuser eigen-
mode transmission,” in Proc. Signal Process. Adv. Wireless Commun.
(SPAWC), Jul. 2008, pp. 545-549.

[7] N. Hassan and M. Assaad, “Low complexity margin adaptive resource

allocation in downlink MIMO-OFDMA system,” IEEE Trans. Wireless

Commun., vol. 8, no. 7, pp. 3365-3371, Jul. 2009.

C. Guthy, W. Utschick, and G. Dietl, “Spatial resource allocation for

the multiuser multicarrier MIMO broadcast channel—A QoS optimiza-

tion perspective,” in Proc. Int. Conf. Acoust., Speech, Signal Process.

(ICASSP), Mar. 2010, pp. 3166-3169.

F. She, W. Chen, H. Luo, T. Huang, and X. Wang, “Joint power al-

location and scheduling of multi-antenna OFDM system in broadcast

channel,” in Proc. Int. Conf. Commun. (ICC), Dresden, Germany, Jun.

14-18, 2009, pp. 1-5.

[10] C. Hellings, M. Joham, M. Riemensberger, and W. Utschick, “Min-
imal transmit power in parallel vector broadcast channels with linear
precoding,” IEEE Trans. Signal Process., 2010, submitted for publica-
tion.

[11] M. Joham, C. Hellings, and R. Hunger, “QoS feasibility for the MIMO
broadcast channel: Robust formulation and multi-carrier systems,” in
Proc. WiOpt 2010, May 2010, pp. 610-614.

[12] D. P. Palomar, M. A. Lagunas, and J. M. Cioffi, “Optimum
linear joint transmit-receive processing for MIMO channels with
QoS constraints,” IEEE Trans. Signal Process., vol. 52, no. 5,
pp. 1179-1197, May 2004.

[13] K. Scharnhorst, “Angles in complex vector spaces,” Acta Applicandae
Mathematicae, vol. 69, pp. 95-103, 2001.

[14] P. Viswanath and D. N. C. Tse, “Sum capacity of the vector Gaussian
broadcast channel and uplink-downlink duality,” IEEE Trans. Inf.
Theory, vol. 49, no. 8, pp. 1912-1921, Aug. 2003.

[15] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[16] M. Schubert and H. Boche, “Solution of the multiuser downlink beam-
forming problem with individual SINR constraints,” IEEE Trans. Veh.
Technol., vol. 53, no. 1, pp. 18-28, Jan. 2004.

[17] A. Mezghani, M. Joham, R. Hunger, and W. Utschick, “Transceiver
design for multi-user MIMO systems,” presented at the Int. ITG/IEEE
Workshop on Smart Antennas (WSA), Ulm, Germany, Mar. 13-14,
2006.

[18] S. Shi, M. Schubert, and H. Boche, “Capacity balancing for multiuser
MIMO systems,” in Proc. Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Apr. 2007, vol. 3, pp. 11I-397-111-400.

[19] S. Shi, M. Schubert, and H. Boche, “Rate optimization for multiuser
MIMO systems with linear processing,” IEEE Trans. Signal Process.,
vol. 56, no. 8, pp. 4020-4030, Aug. 2008.

[20] C. Hellings, M. Joham, and W. Utschick, “Gradient-based power min-
imization in MIMO broadcast channels with linear precoding,” IEEE
Trans. Signal Process., 2011, accepted for publication.

[21] C. Hellings, M. Joham, and W. Utschick, “Gradient-based rate bal-
ancing for MIMO broadcast channels with linear precoding,” presented
at the Int. ITG Workshop on Smart Antennas (WSA), Aachen, Ger-
many, Feb. 24-25, 2011.

[22] S. Jafar and S. Shamai, “Degrees of freedom region of the MIMO X
channel,” IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 151-170, Jan.
2008.

[23] V. Cadambe and S. Jafar, “Interference alignment and degrees of
freedom of the K-user interference channel,” IEEE Trans. Inf. Theory,
vol. 54, no. 8, pp. 3425-3441, Aug. 2008.

[24] 1. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur.
Trans. Telecommun., vol. 10, no. 6, pp. 585-595, Nov./Dec. 1999.

[5

—_

[8

—

[9

—



