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ABSTRACT
This paper addresses the optimization of upper and lower
bounds on the capacity of the multiple-input multiple-output
(MIMO) relay channel. In particular, we show that evaluating
the cut-set bound and the maximal achievable decode-and-
forward rate is equivalent to solving convex optimization
problems, where we assume that perfect channel state infor-
mation is available at all nodes. Our optimized bounds thus
improve on previously published results while they can be
efficiently determined using convex programming techniques
at the same time.

Index Terms— Relay channel, MIMO, cut-set bound,
decode-and-forward, convex optimization.

I. INTRODUCTION

In the standard relay channel, one source wants to transmit
information to one destination with the help of a single relay
node whose only purpose is to assist this communication.
A model for this relay channel was introduced by van der
Meulen as early as 1971 [1], but its general capacity remains
unknown. In their pioneering work, Cover and El Gamal [2]
derived upper and lower bounds on the capacity of the full-
duplex relay channel based on a then new cut-set bound
(CSB) and two fundamental coding strategies, respective-
ly. The first coding scheme uses a technique calledblock
Markov superposition encoding and is now referred to as
decode-and-forward (DF). In the second strategy, the relay
reliably forwards an estimate, a compressed version of its
receive signal, to the destination. Therefore, this scheme
is usually termedcompress-and-forward (CF). For wireless
networks, DF achieves gains related to multi-antennatrans-
mission when the relay is close to the source, whereas CF
achieves gains related to multi-antennareception when the
relay is close to the destination [3]. Another relaying strategy
of lower complexity than both DF and CF is calledamplify-
and-forward (AF), which is considered in [4] for example.
When using AF, the relay is restricted to perform linear
operations on its receive signal.

The information theoretic results derived for the relay
channel apply to both nodes with single and multiple an-
tennas. However, a major difference is that multi-antenna
nodes may employ techniques like precoding (beamforming)

that devices equipped with a single antenna are not capable
of. Hence, the multiple-input multiple-output (MIMO) relay
channel offers more degrees of freedom which can be utili-
zed. For example, optimizing the achievable DF rate for the
MIMO relay channel with Gaussian source and relay inputs
requires to solve an optimization problem with respect to the
source covariance matrixRS, the relay covariance matrix
RR, and their cross covariance matrixRSR instead of a
scalar correlation coefficientρ when single antenna nodes
are considered.

Upper and lower bounds on the capacity of the MIMO
relay channel were first studied in [5]. The authors prove
that Gaussian input distributions maximize the CSB and
the achievable DF rate. Furthermore, they exploit matrix
inequalities to establish a generally loose upper bound on the
CSB involving a maximization overRS, RR, and a scalar
parameterρ capturing the cross correlation of the source
and relay inputs. Lower bounds are also derived based on
point-to-point transmission, the cascaded relay channel,and
a suboptimal DF strategy. In [6], twopartial decode-and-
forward (PDF) strategies, where the relay only decodes part
of the source message, are presented using superposition or
dirty-paper coding at the source. While the achievable rates
are shown to improve on the lower bounds of [5], the rate
maximization problems are only formulated but not solved
for the general case.

Assuming perfect channel state information (CSI) at all
nodes, we show that the cut-set bound and the maximal
achievable DF rate for the MIMO relay channel can be
obtained as the solutions of convex optimization problems.
Similar work is presented in [7]. However, it can be verified
that the expressions resulting from those derivations are only
upper bounds to the optimal solutions given here.

The remainder of this paper is organized as follows. The
system model is introduced in Sec. II. Secs. III and IV
address the optimization of the CSB and the achievable DF
rate, respectively. Numerical results are presented in Sec. V
along with a brief discussion before we conclude in Sec. VI.

II. SYSTEM MODEL

Consider the full-duplex MIMO relay channel illustrated
in Fig. 1. The signals received at the relay and the destination
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Fig. 1. MIMO relay channel.

can be expressed as

yR = HSRxS + nR,

yD = HSDxS + HRDxR + nD,
(1)

whereHSR ∈ CNR×NS, HSD ∈ CND×NS, HRD ∈ CND×NR

represent the channel gain matrices assumed to be per-
fectly known at all nodes, andnR ∼ NC(0, INR), nD ∼
NC(0, IND) denote complex white Gaussian noise of unit
variance that is independent of the transmit signalsxS and
xR. Moreover, the source and the relay are subject to transmit
power constraints given byE[xH

SxS] = tr(RS) ≤ PS and
E[xH

RxR] = tr(RR) ≤ PR, respectively.
The joint transmit covariance matrix of the zero-mean

source and relay inputs is determined by

R = E

[

[

xS

xR

] [

xS

xR

]H
]

=

[

RS RSR

RH
SR RR

]

. (2)

By defining the two selection matrices

DS =
[

INS 0NS×NR

]

, DR =
[

0NR×NS INR

]

, (3)

we see that the source and the relay transmit covariance
matrices can be expressed as linear functions ofR:

RS = DSRDH
S , RR = DRRDH

R . (4)

III. CUT-SET BOUND

In their pioneering work, Cover and El Gamal [2] proved
that the capacity of the relay channel is upper bounded by

CCSB = max min
{

I(XS; YRYD|XR), I(XSXR; YD)
}

, (5)

where the maximization is with respect to the joint distribu-
tion of the source and relay signals. In this section, we show
that evaluating this cut-set bound is equivalent to solvinga
convex optimization problem.

The source and relay inputs optimizing the CSB are
known to be Gaussian from [5]. WithxS ∼ NC(0, RS)
and xR ∼ NC(0, RR), the mutual information expressions
defining the cut-set bound read as

I(XS; YRYD|XR) = log det
(

I + H1RS|RHH
1

)

, (6)

I(XSXR; YD) = log det
(

I + H2RHH
2

)

, (7)

where H1 =
[

HH
SR HH

SD

]H
, H2 =

[

HSD HRD
]

, and
RS|R = RS − RSRR

†
RRH

SR is the conditional covariance

matrix of XS given thatXR = xR. Here R
†
R denotes the

Moore-Penrose pseudoinverse ofRR which is equal toR−1

R
if RR is non-singular. Hence, computing the cut-set bound
requires to solve the following optimization problem:

max
R�0

CCSB (8)

s.t. CCSB ≤ log det
(

I + H1RS|RHH
1

)

, (9)

CCSB ≤ log det
(

I + H2RHH
2

)

, (10)

tr(DSRDH
S ) ≤ PS, tr(DRRDH

R) ≤ PR. (11)

In the present form, this optimization problem is non-convex
due to the termRS|R = RS − RSRR

†
RRH

SR in (9). However,
it is possible to reformulate the problematic constraint by
means of a slack variable:

CCSB ≤ log det
(

I + H1QHH
1

)

(12)

s.t. 0 � Q � RS − RSRR
†
RRH

SR. (13)

While (12) is concave inQ � 0, as we desire, the additio-
nal constraints that have been introduced can once more be
reformulated by making use of the following lemma:

Lemma 1: Iff RR � 0, (RS−Q)−RSRR
†
RRH

SR � 0, and
(INR − RRR

†
R)RH

SR = 0, then
[

RS − Q RSR

RH
SR RR

]

= R − DH
SQDS � 0. (14)

Proof: Note that(RS − Q) − RSRR
†
RRH

SR is the (ge-
neralized) Schur complement ofRR in R − DH

SQDS. The
lemma simply follows from the Schur complement condition
for positive semi-definite matrices [8, A.5.5].

Clearly, the first two conditions of the lemma are satisfied
asRR � 0, sinceRR is the relay transmit covariance matrix,
and(RS−Q)−RSRR

†
RRH

SR � 0, which follows from (13).
It remains to verify that(INR − RRR

†
R)RH

SR = 0. To this
end, we require another lemma.

Lemma 2: For all possible joint transmit covariance ma-
tricesR, the following holds:

(INR − RRR
†
R)RH

SR = 0. (15)

Proof: If RR is positive definite,R†
R = R−1

R and (15)
is trivially satisfied. Hence, suppose thatRR ∈ CNR×NR is
positive semi-definite with rank(RR) = r < NR. In this
case, there existsS ∈ CNR×r such thatRR = SSH. With
xR = Sz, z ∼ NC(0, Ir), it follows that xR ∼ NC(0, RR)
andRSR = E

[

xSz
HSH

]

= RSZS
H. Consequently,

(INR − RRR
†
R)RH

SR = (INR − SSH(SSH)†)SRH
SZ.

Since S has full column rank, it can be shown that
(SSH)† = SH,†S† andSHSH,† = Ir. Thus,

(INR − RRR
†
R)RH

SR = (INR − SSHSH,†S†)SRH
SZ

= (S − SS†S)RH
SZ

= (S − S)RH
SZ = 0.



We can conclude that (15) is satisfied for every joint transmit
covariance matrixR.

Applying Lemma 1 and Lemma 2 to our problem, it is
evident that condition (13) may be replaced by

R − DH
SQDS � 0. (16)

Therefore, we may substitute constraint (9) in the original
optimization problem by conditions (12) and (16) to arrive
at the following equivalent formulation:

CCSB =max
Q,R

min
{

log det
(

I + H1QHH
1

)

,

log det
(

I + H2RHH
2

)}

(17)

s.t. tr(DSRDH
S ) ≤ PS, tr(DRRDH

R) ≤ PR, (18)

Q � 0, R − DH
SQDS � 0. (19)

Note that the objective function is concave since it is
the pointwise minimum of two concave functions (in
Q � 0, R � 0) [8]. The constraintR � 0 is redundant here
because it is implied by (19). Furthermore, all constraintsare
affine which means that this optimization problem, which
determines the cut-set bound, is convex.

IV. ACHIEVABLE DECODE-AND-FORWARD (DF)
RATE

A lower bound on the capacity of the relay channel is
given by the rate that can be achieved with the decode-and-
forward protocol derived by Cover and El Gamal [2]. If the
relay uses DF, all achievable rates satisfy

RDF ≤ maxmin
{

I(XS; YR|XR), I(XSXR; YD)
}

, (20)

where the maximization is again with respect to the joint
distribution of the source and relay signals. Note thatRDF

differs fromCCSB only in the first mutual information term,
whereas the second one is the same.

What is more, Gaussian inputs have also been proven to
optimize the achievable DF rate [5]. WithxS ∼ NC(0, RS)
andxR ∼ NC(0, RR), it hence follows that

I(XS; YR|XR) = log det
(

I + HSRRS|RHH
SR

)

, (21)

where the only difference to (6) is thatH1 =
[

HH
SR HH

SD

]H

is replaced byHSR. Using the same arguments as for the
calculation of the cut-set bound, it can thus be shown that

RDF ≤max
Q,R

min
{

log det
(

I + HSRQHH
SR

)

,

log det
(

I + H2RHH
2

)}

(22)

s.t. tr(DSRDH
S ) ≤ PS, tr(DRRDH

R) ≤ PR, (23)

Q � 0, R − DH
SQDS � 0. (24)

Consequently, the maximal achievable DF rate is also obtai-
ned as the solution of a convex optimization problem.
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Fig. 2. Line Network.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results for the achievable DF rate
and the cut-set bound are provided, where particular attention
is devoted to the comparison of the latter to the upper bound
derived in [5]. We discuss under which conditions this upper
bound is equal to the cut-set bound, and subsequently, we
also touch upon the results presented in [7].

As an example scenario, consider the geometry depicted
in Fig. 2, which is also used in [3] and [5]. HeredSD = 1 is
fixed, whereas the relay is positioned on the line connecting
the source and the destination such thatdSR = |d| anddRD =
|1−d|. We assume that the channel gain matrices are random
and independent, and the entries ofHSR, HSD, andHRD are
independent and identically distributed complex Gaussian
random variables with zero mean and varianced−2

SR , d−2

SD ,
and d−2

RD, respectively. All numerical results presented here
are averaged over independent channel realizations, where
perfect CSI at all nodes is assumed for every realization.

The upper bound on the capacity of the MIMO relay
channel derived in [5] is given by

CUB = max
RS,RR,ρ

min
{

log det
(

I + (1 − ρ2)H1RSH
H
1

)

,

inf
a>0

log det
(

I + (1 + ρ2

a
)HSDRSH

H
SD

+ (1 + a)HRDRRHH
RD

)}

(25)

s.t. tr(RS) ≤ PS, tr(RR) ≤ PR, (26)

RS � 0, RR � 0, 0 ≤ ρ ≤ 1, (27)

where the cross correlation between the source and relay
inputs is captured only by the scalar parameterρ instead of
the matrixRSR. Several restrictions this bound suffers from
are pointed out in [7]. Most importantly, it is only valid for
NS ≤ NR so that our example scenarios are restricted to
this case. What is more, the upper bound is strictly larger
than the cut-set bound in general. However, note that for
scalar channels, i.e., when all nodes have a single antenna,
the upper bound is equal to the CSB [5]. Hence, Fig. 3 only
compares the cut-set bound to the achievable DF rate and
the upper boundCSim

UB from [7] for NS = NR = ND = 1.
It can be observed that the DF scheme achieves the CSB
when the relay is very close to the source. The value ofρ

that maximizesCUB, and thusCCSB, is close to 1 in this
case, which means that source and relay can realize multi-
antenna transmission. More interestingly, Fig. 3 also reveals
a non-negligible gap betweenCCSB and CSim

UB even in the
case when all nodes are equipped with a single antenna.
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Fig. 3. Comparison ofCCSB, C
Sim
UB (from [7]), andRDF for

NS = NR = ND = 1 and PS = PR = 10 (averaged over
10000 channel realizations).

If all nodes are now equipped with multiple antennas,
there are channel conditions for whichCUB is strictly greater
thanCCSB as well. This is illustrated in Fig. 4 for the case
NS = NR = ND = 2. Note thatCUB = CCSB only if ρ = 0.
In fact, it can be shown that this bound is equal to the cut-
set bound if the optimal solution requires independent source
and relay inputs, i.e., ifρ = 0 andRSR = 0 are optimizers
of the respective optimization problems. This result can be
explained as follows. In order to arrive at the upper bound,
the authors of [5] introduce the scalar parameterρ to capture
the cross correlation between the source and relay inputs
normally defined by the matrixRSR. As a result, information
about the structure of the cross correlation is lost. However,
if the optimal solution is obtained for independent source
and relay inputs, the corresponding correlation is completely
determined by the scalarρ = 0. Hence, the upper bound is
equal to the CSB in this case.

A similar statement applies toCSim
UB , which is a loose upper

bound in general, but tight when independent source and
relay inputs are optimal, cf. Figs. 3 and 4. That is because
CSim

UB is obtained fromCCSB by replacingRS|R in (9) with
RS. As log det(I + HRHH) is increasing inR � 0 for
givenH , and sinceRS|R � RS, it follows thatCCSB ≤ CSim

UB
with equality if RS|R = RS, i.e., if RSR = 0. Note that a
corresponding result for the DF rate presented in [7] is not
considered here as any rateR > RDF is not achievable with
the decode-and-forward protocol.

On a different matter, Fig. 4 shows again that the DF
scheme approaches the CSB when the relay is close to the
source. Furthermore, observe that substantial rate gains can
be achieved when multiple antennas are used at each node
without increasing the power at the source and the relay.

VI. CONCLUSION

In this paper, we show that the cut-set bound and the
achievable DF rate, which constitute upper and lower bounds
on the capacity of the relay channel, respectively, can be
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Fig. 4. Comparison ofCCSB, CUB (from [5]), CSim
UB (from [7]),

and RDF for NS = NR = ND = 2 and PS = PR = 10
(averaged over 2000 channel realizations).

obtained as the solutions of convex optimization problems.
These results improve on previously published upper bounds
that are in general strictly larger than the CSB, and in the
case ofCUB not even valid for all antenna configurations,
and several lower bounds derived in [5]. Using our results,
it is hence possible to efficiently determine tighter bounds
on the capacity of the MIMO relay channel, which may for
example serve as benchmarks when studying different relay
strategies or the impact of channel estimation errors.
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