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ABSTRACT that devices equipped with a single antenna are not capable
This paper addresses the optimization of upper and lowerf. Hence, the multiple-input multiple-output (MIMO) regla
bounds on the capacity of the multiple-input multiple-aittp channel offers more degrees of freedom which can be utili-
(MIMO) relay channel. In particular, we show that evalugtin zed. For example, optimizing the achievable DF rate for the
the cut-set bound and the maximal achievable decode-andMO relay channel with Gaussian source and relay inputs
forward rate is equivalent to solving convex optimizationrequires to solve an optimization problem with respect & th
problems, where we assume that perfect channel state infasource covariance matriRs, the relay covariance matrix
mation is available at all nodes. Our optimized bounds thudir, and their cross covariance matrisgr instead of a
improve on previously published results while they can bescalar correlation coefficient when single antenna nodes
efficiently determined using convex programming technéqueare considered.
at the same time. Upper and lower bounds on the capacity of the MIMO
relay channel were first studied in [5]. The authors prove
that Gaussian input distributions maximize the CSB and
the achievable DF rate. Furthermore, they exploit matrix
I. INTRODUCTION inequalities to establish a generally loose upper boundhen t

In the standard relay channel, one source wants to transnfitSB involving a maximization oveRs, Rg, and a scalar
information to one destination with the help of a single yela Parameterp capturing the cross correlation of the source
node whose only purpose is to assist this communicatior@nd relay inputs. Lower bounds are also derived based on
A model for this relay channel was introduced by van deCint-to-point transmission, the cascaded relay chareme,
Meulen as early as 1971 [1], but its general capacity remain@ Suboptimal DF strategy. In [6], twpartial decode-and-
unknown. In their pioneering work, Cover and El Gamal [2]forward (PDF) strategies, where the relay only decodes part
derived upper and lower bounds on the capacity of the full©f the source message, are presented using superposition or
duplex relay channel based on a then new cut-set bourfirty-paper com_:ilng at the source. While the achievablesrate
(CSB) and two fundamental coding strategies, respectived'® shown to improve on the lower bounds of [5], the rate
ly. The first coding scheme uses a technique cabietk ~ Maximization problems are only formulated but not solved
Markov superposition encoding and is now referred to as for the general case.
decode-and-forward (DF). In the second strategy, the relay ~Assuming perfect channel state information (CSI) at all
reliably forwards an estimate, a compressed version of it§odes, we show that the cut-set bound and the maximal
receive signal, to the destination. Therefore, this schem@chievable DF rate for the MIMO relay channel can be
is usually termectompress-and-forward (CF). For wireless obtained as the solutions of convex optimization problems.
networks, DF achieves gains related to multi-antetnaas- Similar work is presented in [7]. However, it can be verified
mission when the relay is close to the source, whereas Cithat the expressions resulting from those derivations ale o
achieves gains related to multi-antemeaeption when the ~UPper bounds to the optimal solutions given here.
relay is close to the destination [3]. Another relaying tetg The remainder of this paper is organized as follows. The
of lower complexity than both DF and CF is calladhplify- ~ System model is introduced in Sec. Il. Secs. lll and IV
and-forward (AF)' which is considered in [4] for examp|e_ address the Optimization of the CSB and the achievable DF

When using AF, the relay is restricted to perform linear'ate, respectively. Numerical results are presented inec

operations on its receive signal. along with a brief discussion before we conclude in Sec. VI.
The information theoretic results derived for the relay

channel apply to both nodes with single and multiple an- IIl. SYSTEM MODEL

tennas. However, a major difference is that multi-antenna Consider the full-duplex MIMO relay channel illustrated

nodes may employ techniques like precoding (beamformingh Fig. 1. The signals received at the relay and the destinati

Index Terms— Relay channel, MIMO, cut-set bound,
decode-and-forward, convex optimization.



Relay matrix of Xs given that Xg = xg. Here R,L denotes the
Moore-Penrose pseudoinverse®g which is equal toRg1
Hsr Hrp if Rg is non-singular. Hence, computing the cut-set bound
requires to solve the following optimization problem:

-
Source Hep Destination max Cess (8)
. s.t. Ccsg < logdet (I + HiRsrHY), (9)
Fig. 1. MIMO relay channel. Cess < log det (I+ HQRHy), (10)

tr(DsRDY) < Ps, tr(DrRD{) < Pr.  (11)

can be expressed as In the present form, this optimization problem is non-conve

yr = Hsrs + ng, due to the termRgr = Rs — RsrRLRE: in (9). However,
D s possible to reformulate the problematic constraint by

means of a slack variable:
where Hsg € (CNRXNS,HSD S (CNDXNS,HRD € CNox AR

H
represent the channel gain matrices assumed to be per- Cesg < log det (I + H1QHY) (12)
fectly known at all nodes, andz_R ~ J\/@((_),INR),_nD ~ st. 0=XQ = RS—RSRRERQR. (13)
Nc(0,In,) denote complex white Gaussian noise of unit _ , . .
variance that is independent of the transmit signajsand While (12) is concave iQ = 0, as we desire, the additio-

zr. Moreover, the source and the relay are subject to transnfd! constraints that have been introduced can once more be
power constraints given by[zHas) = tr(Rs) < Ps and reformulated by making use of the following lemma:

E[zHazg] = tr(RR) < Pr, respectively. Lemma 1. Tlﬁ }gR = 0,(Rs— Q) - RsrRiRE: = 0, and
The joint transmit covariance matrix of the zero-mean({ns — BrBg)Rsg = 0, then

yp = Hspxs + Hrpxr + np,

source and relay inputs is determined by Rs—Q Rsr H
y [ RY. RR} =R—-DsQDs - 0. (14)
e | [ R @
ZTR| [TR Rgr  Rr Proof: Note that(Rs — Q) — RsrRLRER is the (ge-

neralized) Schur complement dtg in R — DQQDS. The
lemma simply follows from the Schur complement condition
Ds=[In; Ongxng|, Dr=[Onaxns Ing]. (3) for positive semi-definite matrices [8, A.5.5]. |
) ] Clearly, the first two conditions of the lemma are satisfied
we see that the source and the relay transmit covarianGg - - 0, sinceRg is the relay transmit covariance matrix,

By defining the two selection matrices

matrices can be expressed as linear function®of and(Rs— Q) — RSRRTRRER > 0, which follows from (13).
Rs = DsRDY, Rr= DgrRDf. (4) It remains to verify that(Iy; — RrRL)RY, = 0. To this
end, we require another lemma.
1. CUT-SET BOUND Lemma 2: For all possible joint transmit covariance ma-

In their pioneering work, Cover and El Gamal [2] provedtrices R, the following holds:
that the capacity of the relay channel is upper bounded by (Ino — RRR;;)RSR _o. (15)

Proof: If Rg is positive definite, R, = Ry I and (15)
where the maximization is with respect to the joint distribu is trivially satisfied. Hence, suppose thRg € CNr*Nr js
tion of the source and relay signals. In this section, we shoyositive semi-definite with rarfiRr) = r < Ng. In this
that evaluating this cut-set bound is equivalent to sohdng case, there exist§ € CV?=*" such thatRg = SS". With
convex optimization problem. xr = Sz,z ~ Nc(0, I,), it follows thatzr ~ N (0, RR)
The source and relay inputs optimizing the CSB areand Rsg = E [zs2"SH] = RszS". Consequently,
known to be Gaussian from [5]. Witles ~ N¢(0, Rs)
and zr ~ N¢(0, Rgr), the mutual information expressions

CCSB = max min{I(XS; YRYD|XR), I(XsXR; YD)}, (5)

(Iny — RRRY)REr = (In, — SSY(SS™)T)SRY,.

defining the cut-set bound read as Since S has full column rank, it can be shown that
H _ QH, HQH,T _
I(Xs; YRYD|XR) _ 10gd€t (I+ HlRS\RH{-l) ’ (6) (SS )T =8 TST and S"S T = I,. ThUS,
I(XsXr; Yp) = logdet (I + HyRHY), @) (In, — RRRL)RE: = (I, — SSHSH1ST)SRY,

_q_ aataypH
where H, = [HY% HZ" H, = [Hsp Hro), and =(§-S58§ ?RSZ
Rsr = Rs — RsrRLRY: is the conditional covariance = (8- S)Rgz = 0.



We can conclude that (15) is satisfied for every joint traismi 1

-t -
-¢ -

covariance matrixR. [ |
Applying Lemma 1 and Lemma 2 to our problem, it is . d . 1-d .
evident that condition (13) may be replaced by S R D

H
— ~ 0. . .
R-DsQ@Dsz 0 (16) Fig. 2. Line Network.

Therefore, we may substitute constraint (9) in the original
optimization problem by conditions (12) and (16) to arrive

at the following equivalent formulation: V. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results for the achievable DE rat
Ccsg = 1hax min{logdet (I + H1QHY), and the cut-set bound are provided, where particular @tent
" H is devoted to the comparison of the latter to the upper bound
logdet (I + HyRHy)} (A7) derived in [5]. We discuss under which conditions this upper
st t{DsRDH) < Ps, tr(DgRDY) < Px, (18) bound is equal to the cut-set bound, a_md subsequently, we
H also touch upon the results presented in [7].
Q=z0, R-DsQDs=0. (19) As an example scenario, consider the geometry depicted

Note that the objective function is concave since it isin Fi9- 2, which is also used in [3] and [5]. Hedgp = 1is
the pointwise minimum of two concave functions (in fixed, whereas the relay is positioned on the line connecting
Q = 0, R & 0) [8]. The constrainiR - 0 is redundant here the source and the destination such tff@t: |d|_anddRD =
because it is implied by (19). Furthermore, all constrames |1 —d|. We assume that the channel gain matrices are random

affine which means that this optimization problem, which@nd independent, and the entriesidég, Hsp, and Hrp are
determines the cut-set bound. is convex. independent and identically distributed complex Gaussian

random variables with zero mean and variamg, dgg,

IV. ACHIEVABLE DECODE-AND-FORWARD (DF) and dg 3, respectively. All numerical results presented here
RATE are averaged over independent channel realizations, where

perfect CSI at all nodes is assumed for every realization.

A lower bound on the capacity of the relay channel is The ypper bound on the capacity of the MIMO relay
given by the rate that can be achieved with the decode-angnannel derived in [5] is given by

forward protocol derived by Cover and El Gamal [2]. If the

relay uses DF, all achievable rates satisfy Cug = Rglgﬁpmin{log det (I + (1 - p*)H,RsHY'),
Rpr < max min{I(Xs; YR|XVR)7 I(XsXg; YD)}7 (20) ;I;f(') log det(I +(1+ %)HSDRSHED

where the maximization is again with respect to the joint + (1+ a)HroRrHpp) } (25)

distribution of the source and relay signals. Note tRak st t(Rs) < Ps, tr(RR) < Fr, (26)

differs from Ccsg only in the first mutual information term, Rs>=0, Rr=0, 0<p<l, 27)

whereas the second one is the same.
What is more, Gaussian inputs have also been proven tghere the cross correlation between the source and relay

optimize the achievable DF rate [5]. Withs ~ NV:(0, Rs)  inputs is captured only by the scalar paramegténstead of
andzr ~ Nc(0, RR), it hence follows that the matrix Rsg. Several restrictions this bound suffers from

are pointed out in [7]. Most importantly, it is only valid for
I(Xs; Yr|XR) = logdet (I + HsrRsrHSER),  (21)  Ns < Ng so that our example scenarios are restricted to
. _ y  this case. What is more, the upper bound is strictly larger
where the only difference to (6) is thaf, = [Hgr, HEp) than the cut-set bound in general. However, note that for
is replaced byHsr. Using the same arguments as for thescalar channels, i.e., when all nodes have a single antenna,
calculation of the cut-set bound, it can thus be shown thatthe upper bound is equal to the CSB [5]. Hence, Fig. 3 only
) compares the cut-set bound to the achievable DF rate and
For S%%mm{bgdet (I + HsrQHSg), the upper bound>Si from [7] for Ns = Ngr = Np = 1.
log det (I+ HgRHS)} (22) It can be obseryed that the DF scheme achieves the CSB
when the relay is very close to the source. The value of
st. t{DsRDY) < Ps, tr(DrRDf) < P, (23) that maximizesCyg, and thusCcsg, is close to 1 in this
Q>0, R-DHQDs>o. (24)  case, which means that source and relay can realize multi-
antenna transmission. More interestingly, Fig. 3 alsoakve
Consequently, the maximal achievable DF rate is also obtaa non-negligible gap betweeficsg and CSI even in the
ned as the solution of a convex optimization problem. case when all nodes are equipped with a single antenna.
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Fig. 3. Comparison ofCcsg, CSIM (from [7]), and Rpr for  Fig. 4. Comparison 0€csg, Cug (from [5]), C5 (from [7]),
Ns = Nr = Np = 1 and Ps = Pr = 10 (averaged over and Rpg for Ns = N = Np = 2 and Ps = Pr = 10
10000 channel realizations). (averaged over 2000 channel realizations).

If all nodes are now equipped with multiple antennasobtained as the solutions of convex optimization problems.
there are channel conditions for whi€lyg is strictly greater These results improve on previously published upper bounds
than Ccsg as well. This is illustrated in Fig. 4 for the case that are in general strictly larger than the CSB, and in the
Ns = Nr = Np = 2. Note thatCyg = Ccsg only if p = 0. case ofCyg not even valid for all antenna configurations,
In fact, it can be shown that this bound is equal to the cutand several lower bounds derived in [5]. Using our results,
set bound if the optimal solution requires independent@®ur it is hence possible to efficiently determine tighter bounds
and relay inputs, i.e., ibp = 0 and Rsgr = 0 are optimizers on the capacity of the MIMO relay channel, which may for
of the respective optimization problems. This result can be&xample serve as benchmarks when studying different relay
explained as follows. In order to arrive at the upper boundstrategies or the impact of channel estimation errors.
the authors of [5] n_‘]troduce the scalar parameter captur.e VIl. REEFERENCES
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