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Abstract

Autonomous robots are becoming more and more skilled in performing human-scale manipula-
tion tasks, and will soon become common co-workers in our homes. Compared to well-structured
and deterministic factory environments, a human household is much more demanding regarding
the knowledge a robot needs to have: The robot is to perform an open-ended set of tasks in this
unstructured and dynamic environment, thereby interacting with a variety of objects of different
kinds that all need to be handled in special ways. To understand instructions given by humans,
it also needs a large amount of common-sense knowledge to translate the words into the correct
actions and parametrizations.

In this work, we describe a framework for representing the knowledge that an autonomous
robot needs for its tasks that also supports reasoning about this knowledge. We present novel
representations for actions, objects, and the environment which enable a robot to reason about
the effects of actions and processes and to describe changing world states, including the creation,
destruction and transformation of objects which are common effects in human everyday tasks.
The representations are grounded in the robot’s internal data structures and integrated with the
robot’s control program. They allow to write more general and flexible control programs and
help robots to execute incomplete and underspecified instructions.

We further present techniques for acquiring knowledge from Internet sources, namely task
instructions and object models, and for translating them from natural language into formal rep-
resentations in the knowledge base. In addition, we investigate how robots can make use of
observations of human activities. We developed a system that integrates methods for observing
human everyday activities, for splitting the continuous motions into meaningful segments, and
for generating abstract task-level descriptions of actions and their properties from these obser-
vations. The models are represented in the same format that is also used to describe the robot’
plans and are therefore directly usable by the robot in task execution.

Experiments on different robot platforms in different environments demonstrate how these
techniques can help to improve the problem-solving performance of autonomous robots.
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Zusammenfassung

Autonome Roboter sind zunehmend in der Lage, alltägliche Manipulationsaufgaben zu erledi-
gen und werden bald den Weg in unsere Haushalte finden. Im Hinblick auf das Wissen, das
ein Roboter benötigt, um seine Aufgaben zu erledigen, ist der menschliche Haushalt allerdings
erheblich herausfordernder als stark strukturierte und recht vorhersagbare Fabrikumgebungen.
Man erwartet von ihm, dass er ein großes Aufgabenspektrum kompetent beherrscht, flexibel auf
Veränderungen reagiert, sich eigenständig neue Fähigkeiten aneignen und mit einer Vielzahl von
Objekten sicher umgehen kann.

In dieser Arbeit beschreiben wir Methoden um das Wissen, das ein Roboter für seine Aufgaben
benötigt, in einer Weise darzustellen, die es ermöglicht daraus automatisiert Schlussfolgerun-
gen zu ziehen und neue Aussagen abzuleiten. Insbesondere stellen wir neue Repräsentationen
für Aktionen, Objekte und die Umgebung des Roboters vor, die es erlauben, die Effekte von
Aktionen vorherzusagen, sich verändernde Weltzustände zu beschreiben und die Entstehung,
Zerstörung, und Veränderung von Objekten, etwa beim Kochen von Mahlzeiten, darzustellen.
Diese Wissens-Repräsentationen sind in den Datenstrukturen des Roboters grundiert und in sein
Kontrollprogramm integriert. Sie unterstützen den Programmierer dabei, generischere Roboter-
Kontrollprogramme zu schreiben und helfen dem Roboter, sich flexibel auf geänderte Bedingun-
gen einzustellen.

Um neues Wissen zu akquirieren, kann der Roboter zum einen auf Beschreibungen von All-
tagsaufgaben und Objekt-Eigenschaften im Internet zugreifen. Hierzu präsentieren wir neue
Methoden, mittels derer die natürlich-sprachlichen Erläuterungen in für den Roboter verständliche
formale Darstellungen übersetzt werden können. Zum anderen können Roboter aus Beobachtung
des Menschen lernen. Diese Arbeit beschreibt verschiedene Methoden, mit denen beobachtete
Bewegungen zunächst segmentiert und in der Wissensbasis abgelegt werden können, bevor durch
Anwendung von Hintergrundwissen über die Aktionen abstrakte Beschreibungen generiert wer-
den, die der Roboter bei der Planung seiner Aktionen verwenden kann.

Mit Experimenten auf verschiedenen Robotern in unterschiedlichen Umgebungen zeigen wir,
wie die entwickelten Techniken dazu beitragen, die Fähigkeiten autonomer Roboter zu verbessern.
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Nomenclature

In the text, the names of classes, instances, properties, predicates and other identifiers are writ-
ten in italic. For better readability, we use the Manchester Syntax [Horridge et al., 2006] in-
stead of the RDF/XML syntax for OWL examples and omit the OWL name spaces that are
usually described by an Internationalized Resource Identifier (IRI) like http://ias.cs.tum.edu/kb/

knowrob.owl#identifier. Instead, we only use the identifier part of the class or instance behind
the hash sign.

The syntax of the Prolog code examples has been slightly adapted for better readability. Vari-
ables are marked by a preceding question mark like ?A. Identifiers starting with a lowercase letter
or those inside single quotes are considered to be constants. The logical AND is expressed by a
comma, the logical OR by a semicolon. The \+ operator in front of a predicate means “cannot
be proven” and provides negation as failure. Whenever an example of a query is given, the code
starts with the ?- prompt. The percentage sign % starts a comment. For a detailed introduction
to the Prolog syntax see [Sterling and Shapiro, 1994].
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Chapter 1

Introduction

We are seeing more and more robots like the PR2 [Bohren et al., 2011], the Care-o-bot [Reiser
et al., 2009], TUM-Rosie [Beetz et al., 2010b], and Herb [Srinivasa et al., 2010] that are able
to perform mobile pick-and-place and even more sophisticated manipulation tasks like folding
towels or preparing meals. With the hardware, perception and control routines maturing, such
robots will become increasingly common in human everyday environments. However, perform-
ing human-scale manipulation tasks in dynamic environments like a household or a nursing home
remains very challenging since robots often do not have the knowledge to perform them the right
way.

Especially informal instructions given by a human user require a lot of knowledge to be un-
derstood correctly. Ideally, users should be able to explain a task to the robot in the same way
as they would explain it to a human. The problem is that such descriptions are usually lacking
much information that humans consider obvious. For example, a human would never describe
to switch off an oven as part of a recipe for baking a cake, or explain that a bottle needs to be
opened before the water can be poured into a glass. Humans can understand these incomplete
instructions because of their remarkable ability to store an enormous amount of knowledge and
to quickly retrieve everything they need to know in a given situation. Since people can assume
other humans to have this kind of knowledge, they do not have to explain it when describing
how to perform a task or how to handle an object. While this has the advantage of reducing
redundancy in communication, it requires the recipient to be able to interpret the information
correctly. Humans can assign meaning to abstract phrases in the instructions like “cup”, “inside
of” or “picking up” by relating them to knowledge they already have about these things, like
the fact that cups are a kind of container that is used for drinking liquids and should be carried
upright when filled, that things are not visible if they are inside a closed container, or that the
result of picking up an object is that this object is held in the hand.
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CHAPTER 1. INTRODUCTION

Robots are still largely lacking such capabilities. Normally, they follow pre-programmed step-
by-step plans to perform their tasks without having a notion of which effects the actions have,
why they need to be done, and what the objects they are interacting with actually are. The
knowledge about actions and objects is hidden in the program code and only implicitly described
in terms of if-then statements. This makes it hard to re-use the knowledge and to apply it in
different circumstances. The robot only knows that it should do something, but it does not know
why, which other options exist to achieve the same goal, or how to adapt an action to different
situations. A formal knowledge representation helps the robot to make these aspects explicit and
to increase re-usability and flexibility. Having access to such a knowledge base and being able
to quickly retrieve the right pieces of information is required in several situations:

1. Understanding instructions given by humans and translating them into effective task spec-
ifications requires substantial knowledge about the actions involved. Completing the ab-
stract and incomplete instructions means extending them with additional actions and ob-
ject descriptions that are not part of the original descriptions. The robot needs to determine
which information is missing and decide how to obtain it, which requires deep knowledge
about actions, their parameters and outcomes.

2. The robot needs to adapt actions in the correct way depending on the current context. This
includes changing action parameters, adding constraints on the robot’s motions or the order
of actions, or changing which object is to be manipulated. To decide if and how actions
should be adapted, the robot has to integrate information from the perception system with
suitable background knowledge. If for example a cup is to be picked up and the robot later
detects that it is filled with coffee, the system should add a constraint to the action that
the robot should obey a maximum acceleration and should especially keep the cup upright
in order not to spill anything. Detecting that such modifications are needed and deciding
which changes are needed requires a lot of knowledge.

3. The robot is to be able to interpret general control programs in which control decisions
are not hardcoded, but need to be inferred during execution. Often, these decisions cannot
even be taken before the plan is being executed since they depend on the current context
and the robot’s belief state. For example, the decision where to stand to pick up an object
or where to search for it in the environment depends on the robot’s belief about obstacles
and object positions.

If control decisions are inferred based on the robot’s knowledge about the world, they can be
based on all information the robot has accumulated so far. Missing pieces of information can

2



be detected, and based on the type of information that is missing, the robot can decide which
method to use to acquire this information.

This separation of knowledge from program code helps to ensure composability and re-usability:
Composability is facilitated since the robot’s control program does not need to be changed to take
additional knowledge into account. It still sends the same queries, but receives different results
that are now based on the extended knowledge. Depending on which knowledge is added, there
can be more solutions or additional constraints on the results. Re-usability is improved because
knowledge that has been described once can now be used multiple times: The properties of an
object may be relevant for recognizing it, for inferring where to search for it, or for parametrizing
actions that interact with the object. Since the knowledge is separated from the program context,
it can easily be used in all these contexts. If the knowledge is represented in a formal language, it
can further be used for automated inference in order to derive new facts by combining different
pieces of information.

Despite a large body of work on knowledge representation, these techniques have not yet
found their way into today’s robots. One reason is that robotic applications have some very
specific demands that make the construction of knowledge bases for robots a challenging tasks
and because of which much of the work on knowledge representation in general can only partially
be applied.

Grounding Much of the information a robot needs is in some form already present in its control
program. The robot already has a belief about its position, about its environment and about the
actions it performs. This information can be used to automatically derive symbolic knowledge
from the low-level data structures. However, this raises the problem of keeping the abstract,
symbolic knowledge in the robot’s knowledge base consistent with the low-level data and leads
to the grounding problem [Harnad, 1990]. Grounding means establishing the link between sub-
symbolic data and symbolic descriptions, and maintaining this link over time while ensuring
consistency. It is specifically needed when applying symbolic reasoning techniques to systems
acting in the physical world.

Action-centric representations A robots’ main task is to act in the world. For this reason,
many inference tasks are related to determining which actions to take, to decide which parameters
to choose, or to predict which consequences an action will have. These reasoning schemes can be
supported by modeling the knowledge in an action-centric way, i.e. to describe objects, locations
and grasps in terms of their relation to the respective actions. Action-centric representations are

3



CHAPTER 1. INTRODUCTION

especially needed in systems that can deliberatively choose and parametrize their actions and
therefore need to reason a lot about these topics.

Integration of sensed information A large part of a robot’s knowledge is dynamically ac-
quired by sensing and acting, in particular knowledge about objects, about the robot’s environ-
ment, and about the consequences of actions. To reason about this information, the knowledge
base needs methods to access sensor data and to formally represent the perception results.

Uncertainty Robotics is characterized by the inherent uncertainty: Action outcomes cannot
be predicted with certainty, percepts are neither exact nor necessarily correct, human preferences
change, objects get moved. A robot knowledge processing system therefore needs to represent
uncertain knowledge, derive symbolic knowledge from uncertain sensor data, and properly prop-
agate uncertainty by performing probabilistic inference where needed.

Time and Dynamics Human environments dynamically evolve over time: Objects are moved,
split, destroyed, created, devices are switched on and off, containers are opened and closed. Rep-
resentations describing these environments therefore need to explicitly take change into account
and qualify descriptions with the time at which they are valid. This also involves the description
of the relation between actions, processes, and their influence on objects.

Practicality In order to be useful to a robot, a knowledge representation has to be effective
and embedded in the robot’s feedback loops. That is, it has to generate answers that are not
necessarily optimal, but good enough to be useful to the robot, and it has to generate them fast
enough not to slow down the robot’s operation. An “optimal” solution that takes too long to
compute may well be outdated at the time it is available and is therefore not useful for a robot.

In this thesis, we present an integrated framework for acquiring, representing, and using knowl-
edge to enable robots to acquire new tasks and perform them in a more flexible and general
manner. The knowledge is grounded in the robot’s data structures, which enables the robot to
perform reasoning about its internal state, about estimates of the outer world, and about percep-
tions of objects. The system consists of four main components:

Knowledge representation and reasoning system: The robot’s knowledge needs to be explicitly
and unambiguously represented and encoded in a format that supports reasoning, i.e. drawing
conclusions from it to derive novel facts. In addition, the underlying representation needs to
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be scalable enough to cover the large range of knowledge required to competently solve every-
day tasks. There are various approaches for representing knowledge in terms of graphs (Se-
mantic Networks, Topic Maps), as probabilistic graphical models (Bayesian networks, Markov
Networks), or in logical representations like first-order logic or description logics. We chose
a representation based on descriptions logics that is formal, has clear semantics, is expressive
enough for our application, but still supports efficient inference. It can describe general relations
between classes of things that abstract away from concrete entities, like knowledge about classes
of objects. Its clear semantics allow the robot to autonomously combine single pieces of knowl-
edge in order to integrate different information sources. We extended the logical representation
with methods for probabilistic reasoning and special-purpose inference methods for reasoning
tasks that are especially important for autonomous robots, like spatio-temporal reasoning about
objects and the creation of grounded symbols based on the robot’s internal data structures.

Representations for robot-related knowledge: The aforementioned techniques provide basic
methods for representing knowledge, which need to be combined with both general and domain-
specific knowledge to be useful to a robot. In particular, robots need to be capable of reasoning
about their actions, their parameters and effects, as well as about physical processes, events, and
other temporal information. They need to describe objects and spatial information and predict
how they are changed by actions and processes. Robots should have models of themselves and
their own capabilities, and should be able to use these models to determine if they can perform
an action. Such representations have been developed as part of this work and are available in the
knowledge base.

Methods for acquiring knowledge from the Internet: The Internet has become the largest avail-
able resource of knowledge, and there is a trend towards using this information to improve the
problem-solving skills of our robots. All the information is available in digital form and is there-
fore in principle machine-readable, though it often needs to be converted from a format that is
convenient to read for humans into formal descriptions that can be used by robots. We present
methods for acquiring task descriptions and object models from existing sources on the Internet.
Once such conversion methods are available, robots have access to very large sources of infor-
mation and can massively increase the spectrum of tasks they can perform and of objects they
can recognize. Such methods will also help to automate the knowledge acquisition process by
exploiting existing sources of knowledge and thereby alleviate the need for highly skilled human
knowledge engineers.

Methods for observing and analyzing human activities: Not all kinds of information can rea-
sonably be found on the Internet. Apart from environment-specific kinds of information, like
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the locations of objects and pieces of furniture, this especially includes descriptions of how to
perform certain motions. Such information can often be better derived by observing how hu-
mans perform similar activities and transferring the derived knowledge to the task at hand. This
requires the robot to have methods for segmenting observed motions, for enriching them with
additional semantic information, and for relating them to the remainder of its knowledge. In
this thesis, we present novel methods for the different analysis tasks that are involved in the
interpretation of human everyday activities.

1.1 The Assistive Kitchen project

The work presented in this thesis was conducted in the context of the assistive kitchen project
whose goal is to develop assistive robots that are able to act in realistic human environments and
to perform everyday tasks like setting a table, tidying up, or preparing simple meals. By assisting
elderly people and taking over tasks they cannot perform any more, the robots are intended to
help them remain independent and enable them to stay at home for a longer time.

Though most common for humans, the kitchen environment is a highly demanding environ-
ment for robots. In a common household, the kitchen is the place where the most challenging
object manipulation actions are done. Competently performing meal preparation tasks includes
very skilled dexterous manipulation and interaction with fragile and deformable objects. Robots
need to recognize and localize the objects required for a task, pick up tools and calibrate them.
But the challenges are not only in the areas of perception and manipulation: A typical kitchen
is much less structured and much more dynamic than for example an industrial environment. It
contains hundreds of objects of different types that all need to handled in very specific ways, also
depending on the current task context. Objects are stored at different locations in the environ-
ment and need to be retrieved from there before they can be used in a task. Especially cooking
tasks fundamentally change how objects look, behave, and need to be handled.

Acting in human environments also means to interact with humans and adapt to their habits
both in terms of how actions are performed and how the environment is structured. These are
all requirements of the kitchen scenario that make successful operation more challenging than in
other domains.
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1.2 Example scenario

Throughout the thesis, we will use the scenario of making pancakes as an example to show how
the different mechanisms contribute to enabling a robot to perform complex manipulation tasks.
Though a very simple task for a human, it includes several aspects that make it interesting and
challenging as a robot task: The robot needs to determine the sequence of actions to perform,
it has to parametrize the actions in order to achieve the desired effect, and it must reason about
the effects of actions on the involved objects which are changed in a substantial way during the
cooking process.

Imagine that a household robot receives the command “make some pancakes”. Given this
command, it has to create a plan to achieve the given goal, which is usually solved by planning,
i.e. by generating a plan from first principles by searching for a sequence of actions that leads
to the desired goal state. However, doing this for human everyday tasks like cooking is still far
beyond the capabilities of today’s planning systems: The goal state is massively underspecified,
and the robot needs to select the right actions from a large number of candidates and choose their
parameters like the right objects, locations, motions, and the right timing. This makes it difficult
to use classical planning systems in the context of everyday activities.

As an alternative, we propose to make use of existing descriptions that explain how to perform
these activities that are available in their thousands on web sites like ehow.com which explain
them to humans. Instead of trying to generate an action sequence from first principles, the robot
could thus search the Web for suitable instructions, download them and convert the natural-
language instructions like the one exemplarily shown in Figure 1.1 into an executable plan.

The instructions only describe the overall course of actions on a very abstract level, which
is by far not sufficient to actually enable a robot to perform the actions. One important reason
is that they were written for humans and therefore lack a lot of information that a robot has to
supply. Since no single source provides all required pieces of knowledge, the robot needs to
integrate several of them: Encyclopedic knowledge about the properties of actions and objects,
common-sense knowledge, environment models, experience data it has collected like memories
of the outcome of actions or the positions of objects. This knowledge needs to be complemented
with information extracted from observations of human activities or information sources on the
Web. Figure 1.2 visualizes which pieces of information are required to fill in the different gaps
in the original instructions. In the following, we will discuss exemplarily how a robot could
proceed to complete the instructions and where it can obtain the required information from.

In a first step, the robot uses its knowledge about actions and their effects on objects to predict
which results the different actions in the plan will have and which intermediate objects will
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Figure 1.1 The translation of natural-language instructions like they can be found on web sites
into a logical representation and into actually executable robot plans is a very knowledge-
intensive process. Knowledge is needed to resolve ambiguities in the instructions and to fill
in missing information.

appear. Especially in complex tasks like cooking and meal preparation, objects can be destroyed,
created, mixed and transformed. For example, when making pancakes, the egg is destroyed, the
egg white, egg yolk and the egg shells appear as new objects, the dough is created by mixing flour
with milk and is later transformed into a pancake. To manipulate these objects, the robot needs
methods for recognizing them and for computing their poses. The robot therefore needs to know
which object recognition models it has, and should have methods to generate object models if
none are available. This could for instance be done by using information from on-line sources,
like product pictures from online shops, or by exchanging object models with other robots.

In many cases, the plan will refer to some kind of stuff, something that can be split into pieces
which are still of the same type. Flour, milk and dough, for example, are stuff-like since a cup of
milk is still milk. Stuff-like things are very common in the kitchen, and as they are often some
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Figure 1.2 Completed task specification with intermediate objects created by the actions. The
following chapters explain how the different kinds of knowledge can be integrated into the initial
action sequence.

kind of liquid or powder, they are normally stored inside containers. Actions for locating stuff-
like things or for picking them up therefore need to be performed on the surrounding container
instead of the stuff itself. Based on its knowledge about actions and objects, a robot has to decide
if an action needs to be adapted in this way.

After this first step, the robot should know all explicitly and implicitly referenced objects and
has made sure it has all recognition models for each of them. Now it has to decide where these
objects are likely to be found and add actions to search for them in the environment. Normally,
objects like food, cooking utensils or tableware are stored inside cupboards and drawers, so
they are not visible to the robot. To locate these objects in the environment, the robot needs
information about the pieces of furniture as well as information about the different kinds of
objects stored inside of them. Based on this knowledge, it can automatically add additional
actions to the plan to retrieve all required objects from their storage locations, and parametrize
these actions with the position of the respective container and information how to open it like
the pose of the handle and the opening trajectory. This information can be read from a semantic
environment map that combines spatial information about the locations of pieces of furniture
with semantic information about their types and articulation models – the poses and types of
hinges and, if the robot has already opened the respective container, also with the trajectory it
recorded.

Now the robot knows all the objects, can recognize them and locate them in its environment,
and, using its projection mechanisms, has created a first prediction of the effects of actions.
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However, this projection only covers the immediate effects of actions, while indirect effects may
often have even more significant impact. For example, when pouring pancake dough onto a
pancake maker, the immediate effect is that some amount of dough is on top of the pancake
maker, but the more important and desired effect is that the dough is to be baked to a pancake.
This baking process is started when the dough gets in contact with something sufficiently hot
and thereby establishes a heat path through which the dough can heat up and bake. Indirect side-
effects of actions are often caused by processes that become active by the direct effects of an
action. It is thus important for a robot to have qualitative knowledge about processes to predict
the outcome of its actions, to diagnose failures, and to plan actions in order to achieve a given
goal.

Many actions involve special movements that need to be performed, like the motion to push a
spatula under a pancake, to lift and to turn it. These motions can hardly be described verbally, so
this information is missing in the original descriptions and also needs to be inferred by the robot.
Planning these motions is usually very difficult due to the very high-dimensional search space
and the lack of well-defined success criteria. If the robot has the ability to observe how humans
perform a similar task involving the same kinds of motions, it can, however, learn from these
observations how its own movements should look like. This requires it to find the right motion
segments in a large amount of motion tracking data, for which it needs semantic descriptions of
what the human is doing at which time. If these descriptions are in the same language that is also
used to plan the actions of the robot, they can be used to retrieve the motions to use for certain
parts of the plan.

This example shows which different kinds of knowledge about actions, trajectories, objects,
the environment, and processes from very different sources like engineered background knowl-
edge, internal models, experience, observations of humans, and the Internet need to be integrated
to enable a robot to competently perform an underspecified meal preparation task. Most of
these knowledge sources use different representation and different vocabulary to describe simi-
lar things. Integrating them requires to transform them into a common representation with well-
defined formal semantics and a joint vocabulary that ensures that the same kind of information
is described in the same way in all parts of the system. Serving as such an interlingua is one of
the main tasks of a formal knowledge representation system. In addition, it provides inference
methods that can derive novel statements from the existing knowledge. Over the course of the
following chapters, we will come back to this scenario and explain how the different kinds of
knowledge can be acquired and integrated to complete the instructions. Section 7.3 will then
sum up and explain in detail how the different methods contribute to the overall goal.
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1.3 Reader’s guide

Though this work can be read in a linear fashion, the interested reader may also decide to con-
centrate on single parts. The chapters are mainly self-contained, though a basic understanding of
the knowledge representation concepts used is helpful.

Chapter 2 introduces the main concepts and techniques for knowledge representation and rea-
soning and describes the knowledge representation framework that has been developed as part
of this thesis. This chapter is recommended for all readers, especially for those without strong
background in knowledge representation techniques.

Chapter 3 describes in more detail how the different kinds of knowledge about events, actions,
objects, spatial configurations, processes and robots are represented. It will help with a more in-
depth understanding of the methods used in the following, more application-oriented chapters.

Chapter 4 presents methods for acquiring knowledge from Internet resources, namely task
instructions and object descriptions, and their translation from natural language into a logical
format.

Chapter 5 deals with techniques for analyzing and abstracting observations of human manip-
ulation actions in order to make them available to the robot as a source of knowledge. Having
read at least Section 3.3 is recommended since the action representations introduced there are
used to describe observed human actions.

Chapter 6 finally describes how the knowledge processing techniques are integrated into the
robot control system and how the knowledge is used to take decisions. Sections 3.2, 3.3 and 3.5
introduce the concepts used here.

Chapter 7 presents several integrated experiments in addition to the evaluation of the sin-
gle components. Since the different chapters deal with rather diverse topics, there are sepa-
rate sections for experiments, discussion and related work at the end of the respective chapters.
The global evaluation section then puts the different aspects into their context and discusses the
strengths and limitations of the overall system.
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1.4 Contributions

We present an integrated framework for acquiring, representing, and using this knowledge to
enable robots to acquire new tasks and perform them in a more flexible and general manner. The
main contributions of this work are the following:

• We created a large-scale robotics ontology and an ontology of the household domain. The
ontologies allow to describe in a coherent format events, temporal information, actions,
complex tasks, action parameters, objects, spatio-temporal information, processes, and
robot components and capabilities.

• KNOWROB, the state-of-the-art robot knowledge processing system developed as part of
this work is a scalable knowledge base that is embedded into the robot’s control program,
combines various reasoning methods, and provides close links to the robot’s perception
and action system.

• We introduce the concept of on-demand computation of semantic information based on
the robot’s internal data structures. These procedural attachments allow to automatically
derive grounded symbolic representations of different granularity from subsymbolic data
and to compute different abstract views on the same original data. In our experience, this
kind of computation is key to the application of knowledge representations to robotics.

• We created novel representations of change for object poses as an extension of the Fluent
calculus [Thielscher, 1998] that additionally store the source from which a piece of infor-
mation entered the knowledge base, like a certain perception or inference method. To store
this information in KNOWROB, we developed a representation in pure description logic.

• A novel integrated representation of actions and processes that supports both projection
and planning of the effects of actions and processes on the objects they interact with. The
representation combines declarative representations of the inputs and effects with projec-
tion rules.

• Methods for translating task instructions from the WWW into a formal logic-based format,
including semantic parsing, word sense disambiguation and ontology mapping.

• Techniques for the automated generation of an ontology of household products based on
Web information from an on-line shopping web site.

• Integrated, knowledge-based models of human everyday activities that describe observa-
tions of human actions from the level of single motions up to the level of complete activ-
ities. To automatically construct the models from observations of humans, we developed
methods for segmenting, abstracting and analyzing human motions and for learning the
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partial order in human activities.

• To exchange knowledge between robots, we investigated representations to encode ac-
tions, object models, and environment maps in a way that robots can both communicate
the information itself and autonomously verify if the data is usable by them given their
capabilities.

• All developed software, the ontologies and models that have been created and the datasets
that have been used to evaluate the approaches have been released to the public as open-
source and are already being used at several other research institutions.
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Chapter 2

The KnowRob knowledge processing
system

A knowledge base that is being used by a robot during operation does not only need to answer
queries fast enough not to slow down the execution of actions, it also needs to provide the basic
techniques to realize representations for all pieces of knowledge the robot needs. It should pro-
vide suitable representation formalism that allow the robot to assign meaning to the content of
its knowledge base and to draw conclusions based on this information. The representation has
to be expressive enough to cover everything the robot needs to describe, but it still has to sup-
port efficient inference. We propose to extend a classical first-order logical knowledge base with
probabilistic classifiers that translate between continuous observations and discrete symbols, and
with statistical relational models that can describe complex uncertain relational knowledge. This
combination allows to describe continuous and discrete, propositional and relational, determin-
istic and probabilistic knowledge, and ensures scalability by always using the most efficient
description available.

Since the robot needs to perform reasoning about phenomena in the outer world, its represen-
tations need to be grounded in its perception and action systems. This requires mechanisms to
construct abstract symbols from observations, to recognize them later, and to update the robot’s
internal belief about them. We introduce the paradigm of treating the“world as a virtual knowl-
edge base” that allows the robot to forward queries “to the world” in terms of perception tasks
and to use the answer as if it had already been in the knowledge base. This on-demand knowledge
acquisition and on-demand computation of relations helps to ensure that symbols are grounded
in the perception system and in the robot’s internal data structures.

In this chapter, we present techniques to represent the required knowledge and to use it for
inference. In particular, we describe KNOWROB, the knowledge processing system that has been
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developed as part of this thesis. It combines knowledge representation and reasoning methods
with techniques for acquiring knowledge and for grounding the knowledge in a physical sys-
tem and can serve as a common semantic framework for integrating information from different
sources. KNOWROB combines static encyclopedic knowledge, common-sense knowledge, task
descriptions, environment models, object information and information about observed actions
that has been acquired from various sources (manually axiomatized, derived from observations,
or imported from the web). It supports different deterministic and probabilistic reasoning mecha-
nisms, clustering, classification and segmentation methods, and includes query interfaces as well
as visualization tools.

We start with a discussion of the main concepts and design decisions realized in KNOWROB

(Section 2.1). We will then describe the components of the system and the different kinds of
knowledge sources that are being used (Section 2.3), before we describe the main reasoning
methods in more detail: deterministic logical inference (Section 2.4), probabilistic logical infer-
ence (Section 2.5), and procedural attachments to the semantic representations (Section 2.6).

2.1 General concepts

2.1.1 The world as a virtual knowledge base

An important aspect of the KNOWROB knowledge representation system is the tight integration
with the robot’s sensing and acting capabilities. Robots have to perform reasoning based on
information that was perceived from the outer world, and need to take decisions based on the
most current information and at the most accurate (or most appropriate) level of abstraction.
This requires them to have access to sensor data, robot-internal data structures like the plan that
is currently being executed, and to information like the current localization quality.

The common procedure in literature [Lemaignan et al., 2010; Daoutis et al., 2009] is to abstract
the sensed information into symbolic concepts, to assert these concepts to the knowledge base,
and to perform reasoning only on these (already abstracted) pieces of information. For example,
a robot may detect some objects, compute that they are on top of a table, add these new object
instances to its knowledge base and assert the ’on-top-of’ relation with the table instance. While
this method is straightforward, its drawback is that the link between the abstract descriptions
and the original information, in this case the positions of the objects in space, is lost. The robot
has only qualitative information about the object positions and cannot derive any new relations
from the information in the knowledge base, for example to determine which objects are in front
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of which other ones. All relations that could possibly be of interest have to be computed when
adding the objects to the knowledge base.

Our approach is different: We do not pre-compute all knowledge that could potentially be
needed and push this information into the knowledge base. Instead, we give the knowledge
base the ability to compute knowledge on demand when it is actually needed, and to ask other
components if the required information is not available. When seeking a solution to a query,
the knowledge base can forward the query, for example to the perception system to generate an
answer based on information perceived from the outer world. We thus regard the world as a
“virtual knowledge base” to which we can send “queries” in terms of perception tasks that are
answered based on the estimated world states.

2.1.2 On-demand computation

The virtual knowledge base paradigm requires the system to have the ability to load and compute
information on demand. We thus need to provide it with descriptions how to obtain a certain piece
of information when it is needed to answer a query. These descriptions are realized as procedural
attachments to semantic relations. They can either be attached to classes of objects and describe
how the system can compute instances of these classes, or to semantic relations and compute
if the relation holds between two objects. We call these two kinds of procedural attachments
“computable classes” and ”computable properties”.

One important application of computables is to load information into the knowledge base:
Computable classes can for example generate object instances by asking the vision system for the
objects it has detected. Another application is to compute qualitative relations between objects.
If the object poses are known, qualitative spatial relations like “in”, “on”, or “next to” can easily
be computed on demand.

These qualitative relations can be seen as different views on the original position data. The
abstraction is not performed when the data is acquired, but immediately before the abstracted
information is needed, giving the system greater flexibility. Using computables, the system can
compute new relations at a later point in time, abstract information up to different levels, and
also generate a less abstracted version of the stored information. Only those relations which are
actually needed are computed, and are computed when they are needed, which helps to avoid
inconsistencies due to outdated information. The implementation of computables is explained in
more detail in Section 2.6.
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2.1.3 Logic-based representation

We chose first-order logic as representational formalism because of its expressiveness, its capa-
bility to describe relational knowledge, and because of its formal semantics that allow to draw
conclusions from the available knowledge. There are various logical languages for describing
first-order relations in logics, ranging from the generic predicate logics [Frege, 1879] over logi-
cal programming languages like Prolog [Sterling and Shapiro, 1994] to languages that combine
logical with probabilistic representations [Getoor and Taskar, 2007].

All these logic dialects differ in what they can describe and how elegantly different kinds of
facts can be expressed. Choosing the right representation with the right expressiveness is an
important choice for the design of a knowledge representation and reasoning system. In general,
simpler and less expressive representations (e.g. RDF [Beckett, 2004] or OWL-lite [Motik et al.,
2009]) allow more efficient reasoning, often guaranteeing desired properties like decidability.
Their drawback is that important relations may not be expressible in these languages, or cannot
be expressed in an elegant way. On the other hand, very expressive representations (like CycL
[Matuszek et al., 2006], Scone [Fahlman, 2006], or Topic Maps [ISO/IEC 13250:2000, 1999])
are able to model almost everything that can be expressed in natural language, but often have
poor support for efficient reasoning.

In KNOWROB, we chose Description Logics (DL) as formalism to represent the robot’s knowl-
edge. Description logics are a family of logical languages for knowledge representation, consist-
ing of several dialects with different expressiveness, most of which are a decidable subset of
first-order logic. In particular, we use the Web Ontology Language (OWL [Motik et al., 2009])
for storing Description Logic formulas in an XML-based file format. OWL was originally de-
veloped for representing knowledge in the Semantic Web [Lee et al., 2001], but has since be-
come a commonly used knowledge representation format. In the remainder of this section, we
will briefly summarize the main concepts of description logics. An extensive overview can be
found in [Baader et al., 2007], a shorter introduction in [Baader et al., 2008]. Table 2.1 gives an
overview of the DL syntax.

Description Logics distinguish between terminological knowledge, the so-called TBOX, and
assertional knowledge, the ABOX. The TBOX contains definitions of concepts, for example the
concepts Action, SpatialThing, PickingUpAnObject or TableKnife. These concepts are arranged
in a hierarchy, a so-called taxonomy, using subclass definitions that describe for instance that
a TableKnife is a specialization of SilverwarePiece. The ABOX contains individuals that are
instantiations of these concepts, e.g. a concrete knife knife1 as an instantiation of the concept
TableKnife. When modeling knowledge in robotics, the ABOX usually describes detected object
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instances, observed actions or perceived events. The TBOX, in contrast, describes classes of ob-
jects or actions. Note that the differences between ABOX and TBOX are not domain-specificness
or environment-dependency: Individuals in the ABOX can be very general, like an instance of
SpatialThing, and classes in the TBOX be very specific, like the class of action “Grasping an egg
from the refrigerator with the right hand using a pinch grasp”.

Roles can describe the properties of an individual, describe the relation between two individ-
uals, and can also be used in concept definitions to restrict the extent of a class to individuals
having certain properties. For example, the concept OpeningABottle can be described as a sub-
class of OpeningSomething with the restriction that the objectActedOn has to be some instance
of a Bottle.

OpeningABottle v OpeningSomething u ∃objectActedOn.Bottle

A knowledge representation that consists of a taxonomy of concepts and relations between them
is called an “ontology”. The knowledge is formally represented and allows to draw conclusions
using logical inference. OWL is a file format for storing and exchanging description logic formu-
las. The nomenclature in OWL differs slightly from DL: “concepts” are usually called “classes”
in OWL, “roles” are called “properties”, and “individuals” are called “objects” or “instances”.
Table 2.1 compares the language constructs in DL and their correspondences in OWL (taken
from [Baader et al., 2008]).

While OWL has several advantages including the structured descriptions, the decidability, and
the fact that it is standardized and widely used, there are also some limitations with respect to
the representation of the knowledge of an autonomous robot: As a description logic dialect, it
is limited to binary predicates and stores all knowledge in terms of Subject-Predicate-Object
triples. If more complex n-ary relations are to be expressed, one has to resort to reification, i.e.
to creating an intermediate instance that represents the relation to be expressed. Though this is
less elegant than native support for such relations in the language, it is no general limitation,
and we will see later how KNOWROB uses this approach to express for example complex spatio-
temporal relations (Section 3.2.5.1). With the triple structure, one can only express that an object
is at a location, but not that it was at a position at some point in time with a certain probability.
By reifying this relation, such information can be stored.

Reification can create rather complex structures, but using the computables described in the
previous section, these structures can be made transparent to the user, still allowing simple
queries for default cases: If, for example, the user asks for the pose of a bottle without spec-
ifying the time, the system by default returns the current pose. In this case, the query is the same
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OWL Syntax DL Syntax Example
Thing >
Nothing ⊥
intersectionOf C1 u · · · u Cn Human uMale
unionOf C1 t · · · t Cn Doctor t Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john,mary}
allValuesFrom ∀r.C ∀hasChild.Doctor
someValuesFrom ∃r.C ∃hasChild.Lawyer
hasValue ∃r.x ∃citizenOf.USA
minCardinality (6 n r) (6 2hasChild)
maxCardinality (> n r) (> 1hasChild)
inverseOf r− hasChild−

subClassOf C1 v C2 Human v Animal uBiped
equivalentClass C1 ≡ C2 Man ≡ Human uMale
subPropertyOf P1 v P2 hasDaughter v hasChild
equivalentProperty P1 ≡ P2 cost ≡ price
disjointWith C1 v ¬C2 Male v ¬Female
sameAs {x1} ≡ {x2} {Pres_Bush} ≡ {GW_Bush}
differentFrom {x1} v ¬{x2} {john} v ¬{peter}
TransitiveProperty P transitive role hasAncestor
FunctionalProperty > v (6 1P ) > v (6 1hasMother)
InverseFunctionalProperty > v (6 1P−) > v (6 1 isMotherOf−)
SymmetricProperty P ≡ P− isSiblingOf ≡ isSiblingOf−

Table 2.1 Language elements in OWL and DL syntax. Ci are concepts, xi are individuals, r,Pi

are roles, and n is a positive integer. Examples taken from [Baader et al., 2008].

as in a simple system without reification. But, if the user explicitly asks for the pose of this bottle
at another point in time, thus using a more complex query, that position is determined based on
the last observation of that bottle before the respective point in time.
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2.1.4 Prolog-based inference

The inference process has to be adapted to include the additional solutions that are generated by
computables into the result set. In a classical system, all inferences are drawn based on only the
knowledge that is asserted to the knowledge base. It is thus assumed that all knowledge is known
to the system at the beginning of an inference procedure which can thus be optimized for this
case. With computables, the knowledge base grows while answering a query: New instances are
created by computable classes, and new relations between instances are computed by computable
properties.

On the one hand, the inference algorithm has to provide hooks for the computable predicates
to plug in and to provide these additional pieces of knowledge, and on the other hand, it has to be
flexible enough to take these pieces of knowledge into account. We chose Prolog to implement
our system: Inference in Prolog is mainly a search procedure, and it is very easy to add additional
alternatives to each step by just defining an additional predicate. For example, when exploring
all instances of a class, the search first returns all asserted instances, but additionally provides
a hook for computables to provide further solutions. The results of these computables are then
included into the reasoning process in the same way as the normal, asserted instances. Details
about the inference mechanisms can be found in Section 2.4.

2.1.5 Modular design

KNOWROB is designed to be usable on a wide range of robot platforms with different capabilities
(and even on non-robotic systems). To flexibly add, remove, or exchange parts of its functional-
ity, it is implemented in a very modular way. Each module can provide two kinds of extensions:
First, it can contain additional knowledge as an extension of the KNOWROB ontology, and sec-
ond also additional reasoning or computation capabilities, realized as new computable classes or
properties. Dependencies between modules are resolved automatically: Each module initializes
its direct dependencies, which then initialize their dependencies and so on.

When a module is loaded, it loads its local ontology fragment, which makes the contained
knowledge available to the rest of the system, and further announces which computables it pro-
vides for which classes or properties. From that time on, these computables are automatically
included for answering future queries. This allows to easily extend the system’s capabilities by
just loading a module.
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2.2 Ontology layout

The layout of the upper levels of the ontology, including many classes, their hierarchy and prop-
erties, has been adopted from the OpenCyc ontology [Lenat, 1995]. Adopting the ontologi-
cal structure also means to adopt a certain way of thinking since the vocabulary means that a
language provides shape the way how things can be described. The modeling of events and
processes in KNOWROB is similar to the representations in OpenCyc, whereas other parts like
the description of object poses and the models of change have been developed specifically for
KNOWROB.
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Figure 2.1 Layout of the KNOWROB upper ontology, including the main classes for describing
spatial, temporal and mathematical things.

We decided to adopt the OpenCyc ontology for several reasons: OpenCyc has emerged as
quasi-standard for robot knowledge bases, and we would like to remain compatible in order
to facilitate the exchange of knowledge with other systems. There are also many tools and
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links between OpenCyc and other knowledge bases (e.g. the links to WordNet that are used in
Section 4.1) that we can profit from. Another advantage is that the Cyc ontology has been created
by experienced experts with the intention of building a general ontology. We hope that this will
help in case we need to extend the ontology from household robots to a larger domain.

However, since OpenCyc was developed as a general upper ontology with the intention of cov-
ering the whole range of human knowledge, the ontology is broad and extensive, but not always
as detailed as needed for robots. Much domain-specific knowledge is missing, for example in the
areas of mobile manipulation and human everyday activities. We therefore extended Cyc with
more detailed descriptions of e.g. everyday tasks, household objects and robot parts. In addi-
tion, we developed special representations to reason about change, like the changing positions of
objects (Section 3.2.5.1) or objects that change over time.

Figure 2.1 visualizes the uppermost levels of the KNOWROB ontology. The most important
branches are the TemporalThings, containing descriptions of Events, Actions and TimeIntervals,
the SpatialThings, describing abstract spatial concepts like Points or Trajectories as well as all
the different object classes. Most objects in the robot’s environment as well as pieces of furniture
or body parts are subsumed under the HumanScaleObject class. Other notable branches are
MathematicalThings like a Vector or a CoordinateSystem and the InformationBearingObjects

describing data objects like maps.
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CHAPTER 2. THE KNOWROB KNOWLEDGE PROCESSING SYSTEM

2.3 System architecture

This section is to give an overview over the interplay between the different components in
KNOWROB in order to better understand their role in the system. Figure 2.2 groups the com-
ponents by their functionality. Figure 2.3 will later show the flow of knowledge and explain
which kind of knowledge can be acquired from which sources.

KNOWROB consists of several functional modules that can largely be grouped into five cate-
gories. The central component is the knowledge representation that provides the mechanisms to
store and retrieve all the different kinds of information in the system. Robots need very powerful
representations that are expressive enough to describe all aspects of actions, objects, processes,
temporal events, their properties and relations. A detailed description of the different represen-
tational mechanisms can be found in Chapter 3.

There are four groups of components interacting with the representation: First, there are
knowledge acquisition methods to populate the knowledge base with newly acquired informa-
tion. Parts of the robot’s knowledge have been manually encoded, other parts can be acquired

Figure 2.2 Functional overview of the KNOWROB knowledge processing system.
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automatically from sources like web sites on the Internet, or from observations of humans. The
different knowledge sources are described in more detail later in Figure 2.3.

A second important type of component are the reasoning methods which enable the robot to
derive new statements from the existing knowledge. KNOWROB integrates multiple general-
and special-purpose inference methods: Description logic inference is the basic mechanism, and
mainly deals with the types of things and the automatic classification of things based on their
properties. This method is described in more detail in Section 2.4. While pure description logics
inference is completely deterministic, it is often desirable to represent uncertain information. The
Markov Logic Networks and Bayesian Logic Networks in the PROBCOG toolkit allow to draw
probabilistic inferences that combine the expressiveness of first-order logics with the represen-
tation of uncertainty (see Section 2.5 for details). Not all inferences can elegantly be performed
using pure logical reasoning, some require computations or even more complex data manipula-
tion. For these cases, computable classes and properties allow to specify procedural attachments
to the semantic representations. They can be used to generate individuals of a class, to determine
the type of an individual, and to compute relations between individuals (Section 2.6).

The previous methods are general inference methods, while others are more specific for certain
applications. For example, a robot may need to verify whether it is able to execute a novel plan,
or if the actions would require additional capabilities. This decision can be taken based on a self-
model of the robot, in conjunction with methods for matching the robot’s capabilities against the
requirements of the actions in that task. These methods are described in Section 3.5.

KNOWROB further integrates the Weka [Witten and Frank, 2005] and Mallet [McCallum,
2002] libraries for learning and applying statistical classification and clustering techniques. These
methods can be used to integrate continuous sensor data into the symbolic knowledge base. An
example use case is the segmentation and classification of human motion tracking data (Sec-
tion 5.4). Another module computes semantic similarity measures that describe how close two
concepts are in the knowledge base. This similarity value can for instance be used to determine
appropriate storage locations for an object, namely where similar objects are stored (Section 6.2).

The third kind of component are interfaces to other parts of the robot’s control system. On
the one hand, they update the belief state inside the knowledge base based on external infor-
mation, on the other hand, they offer knowledge and reasoning services to other components.
KNOWROB can access information via the ROS communication middleware and include this in-
formation into the reasoning process. An example are the object poses determined by an object
recognition system, which are obtained as described in Section 6.1. KNOWROB also provides a
query interface that allows other components to send queries via a ROS service.
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Finally, there are tools for visualizing knowledge and communicating with humans. Visual-
izations are very useful for inspecting and debugging the content of the knowledge base, but also
to showcase the robot’s belief state. KNOWROB’s visualization canvas accepts arbitrary object
instances and draws them at the position where they are believed to be. The graphics generated
by the visualization tool are used throughout the following sections. For communication with
humans, there is a simple dialog system that receives questions in natural-language (either via a
chat client or via spoken language), translates them into Prolog queries, and converts their result
back into natural-language sentences.

Figure 2.3 gives a different view on the system by showing the different kinds of knowledge
that are represented and the sources from which they are acquired. The basic KNOWROB ontol-
ogy has been created manually and provides the robot with encyclopedic knowledge about the
types of things and their properties as well as common-sense knowledge about the household
domain. This knowledge serves as the basic vocabulary the robot can use to describe the world
it operates in, and is thus very important to integrate the other sources of information.

Since the manual creation of large-scale knowledge bases is very complex and time-consuming,
we created methods to automate the acquisition of knowledge. One important source of knowl-
edge is the Internet: Chapter 4 describes our approaches to using task instructions and object
information from Web sources. Most of the information on the Web has been written for humans
and is thus available in terms of natural-language descriptions. In order to use this information,
a robot has to convert it into a language that is compatible with its knowledge base. Our system
performs this conversion by a combination of semantic parsing, word sense disambiguation, and
mappings of natural-language words to concepts in the ontology.

Once a robot has finished this conversion process, it can share the acquired knowledge with
other robots via the RoboEarth platform. This on-line database is intended to be a “Wikipedia
for robots” that is filled and used by robots and contains information about tasks, objects, and
environments. The representations described in this thesis are used to encode the exchanged in-
formation, and KNOWROB serves as inference engine for different reasoning tasks. A description
of this concept can be found in Section 6.3.

While textual information, like task instructions, and visual information, like pictures of ob-
jects, can easily be found in Internet sources, information about the motions that are needed to
perform a task is more difficult to obtain. One possible source of such information is the ob-
servation of humans performing similar tasks. To make use of this information, the robot needs
methods for observing human motions and for selecting the segments it is interested in (e.g.
the motion for opening a certain cupboard door; see Section 5.4). If higher-level information
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Figure 2.3 Sources of information integrated into the KNOWROB knowledge base.

about the complete task context is desired, the robot should also be able to abstract from the
motion level up to more meaningful actions (Section 5.6), and to learn the structure of tasks from
multiple observations (Section 5.7).

The previous kinds of knowledge were largely independent of the specific robot and its con-
crete working environment, but a robot also needs information about the structure of the envi-
ronment it operates in (Section 6.2), the objects detected by the vision system (Section 6.1), its
own capabilities (Section 3.5), and the current state of its control program. These kinds of in-
formation can only be provided during run-time, and since they strongly depend on the current
situation the robot is in, they are computed on demand based on the robot’s internal data struc-
tures. In KNOWROB, there are computable classes and properties that interface different sources
of knowledge, like the vision system or the robot’s communication middleware, and compute
symbolic views on this often sub-symbolic data.
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2.4 Description logic inference

A knowledge processing system needs methods to store knowledge, to query for it, and to com-
bine pieces of knowledge to perform logical inferences. In this section, we discuss how these
aspects are realized in the KNOWROB knowledge base. Many inferences in description logics
can be reduced to the problems of class subsumption (i.e. to determine if one class is a sub-
class of another one) and classification (i.e. to determine if an individual belongs to a certain
class). These tasks are usually performed by a description logics reasoner. There are several
existing reasoners, including Racer [Haarslev and Müller, 2001], Pellet [Sirin et al., 2007], and
HermiT [Shearer et al., 2008] which are highly optimized for these inference tasks, but unfor-
tunately not well-suited to robotics applications: First, they always keep a classified version of
the knowledge base in memory, and whenever the knowledge base changes, everything needs to
be re-classified. For small knowledge bases, this classification can be done in few milliseconds,
but for larger and more complex ones, it can take significant time. This makes updates to the
knowledge base rather costly, though a robot needs to perform them whenever new sensor data
is acquired. Re-classifying the complete knowledge base every time would be too expensive.
Robots thus need reasoning methods that can handle continuous updates of the knowledge base.

Moreover, the robot’s knowledge is not static, i.e. not all knowledge is known at the beginning
of the inference process. New pieces of knowledge can be generated by on-demand computation
methods and need to be included into the running inference process. The inference methods
have to be modified in order to take these results into account in addition to the knowledge
that is statically asserted to the system. The system should further be able to load and unload
computable definitions during run-time, for instance to allow the robot to compute object poses
from vision information only when the respective vision system is running.

Integrating these techniques into a classical reasoner would have been very difficult, so we
chose a solution based on Prolog: The knowledge is internally represented in terms of Prolog
predicates to which the common Prolog inference methods can be applied. The methods for stor-
ing and querying knowledge thus become very similar, using the same predicates with different
combinations of bound and unbound variables. Introducing additional knowledge sources, like
loading computable definitions, can easily be done simply by adding a new predicate definition
to the Prolog database, which is then automatically included in the reasoning process.

An important difference to common DL reasoners is that KNOWROB uses Prolog’s closed-
world assumption: Everything that is not known to be true is assumed to be false, whereas the
usual DL semantics make the open-world assumption that everything that is not explicitly known
to be false is true. While this conflicts with the usual DL semantics, it proved to be useful for the
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implementation of robot programs in which the non-existence of knowledge is by itself an im-
portant piece of information that can for example trigger actions for knowledge acquisition. With
closed world semantics, representations are more compact since the non-existence of something
does not have to be extensively described but can be concluded from the fact that its existence
cannot be proven. For example, if the robot has to decide whether it can perform a task or if
some component is missing, it can simply check whether all required components are known to
be available and decline otherwise.

Due to the conceptual closeness of the logical representations in description logics and the Pro-
log language, the implementation of the inference predicates for reasoning about OWL classes,
properties, restrictions and individuals is rather simple. Most predicates are realized as a rather
shallow mapping from the OWL properties onto first-order expressions in Prolog describing e.g.
in which cases one class is assumed to be a sub-class of another one. Based on the low-level
predicates described in the following sections, KNOWROB can apply standard Prolog inference
methods to find solutions to more complex problems.

2.4.1 Parsing and storing OWL triples

The static pieces of knowledge in KNOWROB are stored in OWL files using the RDF/XML
syntax, a standardized format that is supported by many established tools and by import and
export routines of several other knowledge bases. In order to load the file, it has to be parsed
and represented in the knowledge base. The implementation in KNOWROB is based on the SWI
Prolog Semantic Web Library [Wielemaker et al., 2003] for loading and storing RDF triples,
and the Thea OWL parser library [Vassiliadis et al., 2009] that provides OWL reasoning on top
of these representations. The general procedure for loading files is to first parse the RDF/XML
file and then assert all triples to the Prolog database using the rdf(?Subj, ?Pred, ?Obj) predicate.
Internally, the Semantic Web Library stores these triples in an efficient database implementation
that combines several indexing schemes (by subject, predicate, object and combinations thereof;
the predicate index also takes sub-properties into account). For this reason, the database scales
very well up to large knowledge bases with more than 10 million triples1. We extended these
libraries to include the results generated by computable classes and properties in the reasoning
process.

1http://www.swi-prolog.org/pldoc/package/semweb.html
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2.4.2 Individuals

The efficient internal database representation is very important to ensure scalability of the overall
system, but does by itself only support queries for knowledge that is already available in exactly
the same form. In terms of expressiveness, this representation does not go beyond the capabil-
ities of a database. To enable the more advanced features of OWL, like hierarchies of classes
and properties, transitivity of predicates and the computable properties for calculating relations
on demand, this representation needs to be extended with predicates that compute complex rela-
tions by combining these single pieces of knowledge. KNOWROB supports a set of increasingly
complex query predicates that add functionality with each layer. The advantage of having this
stepwise increase in complexity is that one can select how much inference is to be included by
choosing the appropriate predicate. Especially computables that forward queries to other com-
ponents like the perception system can slow down the inference process, though it may often be
sufficient to answer a query based on the already available knowledge.

The following hierarchy of predicates allows to query for individuals and their properties.
Note that in OWL classes and properties themselves are also represented as NamedIndividuals,
which means that the following predicates can also be used for inspecting descriptions of classes
and properties.

• rdf(?S, ?P, ?O) returns only exactly matching triples from the internal triple database.

• rdf_has(?S, ?P, ?O) also takes the subPropertyOf relation into account, returning matches
for all specializations of ?P

• rdf_reachable(?S, ?P, ?O) further considers transitivity of the predicate ?P

• rdf_triple(?P, ?S, ?O) additionally includes results generated by computable classes and
properties

• owl_has(?S, ?P, ?O) is the most general query predicate, also returning results of the OWL
inference process (e.g. inferred class membership of an individual)

2.4.3 Classes

While a class hierarchy can in principle be explored using the predicates listed in the previous
section, there are specialized predicates like owl_subclass_of(?Sub, ?Super) that are more con-
venient to use. Depending on the combination of bound and unbound variables, this predicate
reads all classes derived from ?Super or computes super-classes of ?Sub.

The classification of individuals links information in the ABOX and TBOX by determining
if an individual is part of a certain class. In the simplest case, this relation has been asserted to
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the knowledge base (A is of type B) and can simply be retrieved. However, classes in OWL can
also be described implicitly by a set of properties all individuals of this class need to have. For
example, one could define that all individuals must be of a certain type and must be related to a
minimum number of other individuals of a specific type. These specifications are called “restric-
tions” – they restrict the set of potential class members to those having the required properties.

Figure 2.4 explains the concept of restrictions on the example of the class CoffeeCup. In the
left part of the figure, the cup in the picture is asserted to belong to the class CoffeeCup. The
system has no further knowledge about a CoffeeCup beyond the subclass relation, so the only
way to determine if an object belongs to this class is to check if the user asserted it. Restrictions
describe the properties all members of a class need to have and thus add knowledge that can
be used to determine if a novel object belongs to the respective object class. In the right part
of the figure, the class CoffeeCup is described using a restriction saying that a coffee cup is a
subClassOf Cup that contains Coffee. Based on this knowledge about a CoffeeCup, the system
can now automatically assign all detected cups that contain coffee to this class.

Figure 2.4 Example of an OWL restriction. Left: The cup is asserted to be a CoffeeCup. Right:
If the properties of CoffeeCups are described by restrictions, the system can infer the class mem-
bership based on the cup’s properties.

There are different kinds of restrictions to describe the properties of the class members in more
detail: Existential restrictions, described using the keywords someValuesFrom, specify that each
member needs to have at least one relation of the respective kind. For example, the restriction
∃hasChild.Lawyer specifies that each member of the class needs to have at least one child of
type Lawyer. In contrast, universal restrictions like ∀hasChild.Doctor specify that all individ-
uals related to any member of the class by the hasChild relation have to be of typeDoctor. They
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however do not imply that there are any such individuals. Universal restrictions are described
in OWL using the allValuesFrom keyword. While existential and universal restrictions describe
that class members need to be related to an arbitrary individual matching the specification, value
restrictions, specified by hasValue, require that each member is related to a specific individual.
Furthermore, one can define cardinality restrictions like (6 2hasChild) or (> 1hasChild) to
describe that each member of the class needs to have at most two or at least one child.

If a class is described by a set of restrictions, the system can infer that an instance belongs
to this class if it fulfills all of them. This can be queried using the owl_individual_of(?Ind,

?Class) predicate that either returns instances ?Ind of a class ?Class or returns all classes that
can be inferred for an individual based on its properties and the class restrictions. The expression
owl_individual_of(?Restr, owl:’Restriction’), owl_subclass_of(?Class, ?Restr). reads all restric-
tions that are defined for ?Class.

2.4.4 Properties

Similar to the class hierarchy, there is also a taxonomy of sub-properties and super-properties.
The advantage of this hierarchical structure is that knowledge can be described as concise as
possible, using very specific properties, while queries can use more generic relations and will
return all relations asserted for any of the sub-properties. The property hierarchy is exploited
by all of the above query predicates except the very basic rdf(...) predicate. To inspect the
property hierarchy, one can use the rdfs_subproperty_of(?SubProp, ?Prop) predicate that lists all
sub-properties of ?Prop.
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2.5 Probabilistic inference

Not all knowledge a robot encounters can reasonably be described in a deterministic knowledge
base. Many facts are either not certainly known, for instance due to uncertain sensor information,
or only true to a certain degree, like fuzzy human preferences. Statistical models have become an
indispensable tool in robotics for representing such uncertain information [Thrun et al., 2005],
for example to solve the localization and mapping problem by representing the probability dis-
tribution over the robot’s location using particle filters. While these models are well-suited to de-
scribe probabilistic information about concrete entities, the representation of generic principles
and knowledge about types of or relations between objects requires the greater expressiveness of
first-order representations. Statistical relational models [Getoor and Taskar, 2007] combine the
expressiveness of first-order logical representations with the ability of statistical models to rep-
resent uncertain information. The extension towards relational models is similar to the transition
from propositional logical descriptions to first-order logics: These models are able to abstract
away from concrete entities in the domain and to represent relational knowledge that can also
be applied in different circumstances. In order to efficiently perform inference, probabilistic
models need to compactly represent the probability distributions; a problem for which graphi-
cal models are an established solution. Therefore, many statistical relational models are real-
ized as extensions of undirected (Markov Logic Networks [Richardson and Domingos, 2006])
or directed graphical models (Multi-Entity Bayesian Networks [Laskey, 2008], Bayesian Logic
networks [Jain et al., 2009]) and can therefore make use of inference methods that have been
developed for these underlying representations.

On the one hand, the combination of high expressiveness with the ability to represent uncer-
tainty makes statistical relational models well-suited for the uncertain, partially observable and
dynamic environments autonomous robots are acting in. On the other hand, inference in such
models becomes very hard, often even unfeasible, especially when the models are large and cover
many relations between a lot of instances. Completely representing every piece of information in
terms of statistical relational models is therefore usually unfeasible. In KNOWROB, these models
are thus only used for those kinds of information that require this combination of expressiveness
and uncertainty, which are often related to human behavior. In the remaining cases, we resort
to approximating relations with deterministic models or use classical (non-relational) statistical
models to translate uncertain, continuous data into the most likely symbol in the knowledge base.
An interesting aspect of the models is that they can derive logical knowledge from observations,
which is for example being used to describe which utensils humans use and which food they
consume in a meal context and to bring the right items to the table (Section 7.6).
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2.5.1 Bayesian Logic Networks

In KNOWROB, Bayesian Logic Networks (BLNs) [Jain et al., 2009] are used to represent un-
certain relational knowledge. BLNs are expressive enough to describe the complex interactions
between actions, parameters of these actions, and their relative ordering, can at the same time
handle the inherent uncertainty, and still have reasonable learning and inference complexity. We
will only briefly describe BLNs and refer to [Jain et al., 2009] for details.

A BLN is formally described as a tuple B = (D,F ,L) consisting of the declarations of types
and functions D, a set of fragments of conditional probability distributions F , and a set of hard
logical constraints L as formulas in first-order logic. The fragments F describe dependencies of
abstract random variables. An example of such a fragment is shown in the left part of Figure 2.5,
in which the oval nodes denote random variables and the rectangular nodes contain preconditions
for the respective fragments to be applicable. Each random variable node contains a table of the
conditional probabilities of its value given the values of the surrounding nodes.

For a given set of entities, the BLN gets instantiated to a ground mixed network to which
Bayesian network inference techniques can be applied. The abstract description of a BLN can
thus be thought of as a template for the construction of the ground mixed network including
probabilistic and deterministic dependencies. Such a ground network can become reasonably
large as can be seen in Figure 2.5 (right), in which hundreds of nodes are arranged in a circular
shape. Practically, the declarations D, the fragments F and logical constraints L are defined
manually, while the probabilities are learned from data. For learning BLNs, the conditional
probability tables in the fragments inF need to be determined, which reduces to simply counting
the relative frequencies of the relations.

Figure 2.5 Example fragment of a Bayesian Logic Network (left) and the very large ground
Bayesian network consisting of hundreds of nodes that is generated from this template given an
actual domain (Pictures courtesy of Dominik Jain).
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2.5.2 Integration with KNOWROB

The implementation of the statistical relational learning methods was realized by interfacing the
PROBCOG system by Dominik Jain with the KNOWROB knowledge base. PROBCOG provides
a variety of learning and inference algorithms for both Markov Logic Networks and Bayesian
Logic Networks, all integrated in a common framework.

The integration of the PROBCOG inference engine with KNOWROB is realized in a bi-directional
way: On the one hand, there are methods for sending queries to the PROBCOG inference engine
from within KNOWROB and to retrieve the results. On the other hand, the PROBCOG engine
can read evidence that is needed for performing the inference from KNOWROB. Reading this
information from the KNOWROB knowledge base gives the probabilistic inference methods ac-
cess to all the knowledge that is available in the system or which can be derived using any of
KNOWROB’s inference methods, including logical inference or computables. Since all evidence
is read from the same original representation, inconsistencies in the knowledge are avoided.

Figure 2.6 describes how the integration is realized technically. The statistical relational mod-
els in PROBCOG form a kind of statistical knowledge base that uses a different set of predicates
with different semantics than the KNOWROB system. A generic interface module (depicted on
the left side) provides predicates to send queries to the PROBCOG inference engine. In addi-
tion, this module has to decide which PROBCOG model to load for an inference task: There
are different models specialized for different use cases, describing for instance the table setting
context or the partial order in human activities. Predicates can be part of multiple models in
which they play different roles: The objectActedOn, for example, may be the main outcome of
a model, in which case that model is the one to be selected, but can also be a peripheral piece

Figure 2.6 Integration of the PROBCOG inference system into the KNOWROB knowledge base.
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of information that is rather considered as input. The decision for a model is taken using the
probcog_model(?QueryPredicates, ?Model) predicate that selects the appropriate model for a
given set of query predicates. The implementation of this predicate can be as complex as neces-
sary, also taking the current context into account, but can also simply select a default model.

Once the right model is determined, a Prolog wrapper module is loaded that contains all model-
specific interfaces (in Figure 2.6 exemplarily described for the models kitchenlayout, partialorder

and tablesetting). Each of these modules contains four main components: Mappings between
the predicates in PROBCOG and KNOWROB, mappings between identifiers in PROBCOG and
KNOWROB, meta-query predicates for advanced queries, and methods to set the open/closed
world property on a per-predicate basis.

The mapping between the predicates in both knowledge bases needs to translate both the pred-
icate names and their semantics. This is realized by one wrapper module per PROBCOG model
that implements the PROBCOG predicates using the KNOWROB methods. These implementa-
tions map the respective predicate semantics and allow PROBCOG to read evidence values from
KNOWROB. The mapping of evidence values is performed by the probcog2knowrob() predi-
cate. Each module can further provide convenience predicates that combine several queries and
compute more advanced concepts. One example is the post-processing of the PROBCOG re-
sponse to select the answer with highest probability, to combine the inference results with other
information from KNOWROB, or to combine the results of different PROBCOG queries
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2.6 Computable classes and properties

Computables are a kind of procedural attachment to OWL classes or properties. They effectively
extend the reasoning capabilities beyond pure description logics inference, e.g. to compute more
complex relations or to load information from external sources. There are two kinds of computa-
bles: Computable classes, which create instances of their target class, and computable properties,
which compute relations between instances.

2.6.1 Realization

Figure 2.7 describes how computables are attached to OWL relations: The OWL relation ob-

jectActedOn is modeled as usual including specifications of its domain and range (here: Ac-

tionOnObject and SpatialThing). An instance computeObjActOn of a ComputableProperty that
has this property as its target specifies a binary Prolog predicate that can be used to compute this
relation, in this case objectActedOn.

Figure 2.7 The computable property computeObjActOn is attached to the OWL property objec-
tActedOn and describes procedurally how this relation can be computed.

Since computables can trigger reasonably complex calculations, one does not always want to
include them in the reasoning process. Therefore, there is a special predicate rdf_triple(?P,?S,?O)

that returns the union of results from the asserted knowledge (via owl_has(?S,?P,?O)) and those
obtained via computables (rdfs_computable_triple(?S,?P,?O)), and further provides a hook for
custom predicates. Results are calculated for all sub-properties of the property that is being
queried.

r d f _ t r i p l e ( ? Prop , ? Subj , ? Obj ) : -
s u b p r o p e r t y _ o f ( ? SubProp , ? Prop ) ,
( owl_has ( ? Subj , ? SubProp , ? Obj ) ;

r d f s _ c o m p u t a b l e _ t r i p l e ( ? Subj , ? SubProp , ? Obj ) ;
r d f _ t r i p l e _ h o o k ( ? Subj , ? SubProp , ? Obj ) ) .
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The predicate rdfs_computable_triple combines the results of all computables of all kinds. In
addition to the Prolog computables described here, there are also SQL computables that calculate
results based on SQL database queries instead of calling a Prolog predicate.

r d f s _ c o m p u t a b l e _ t r i p l e ( ? Subj , ? Prop , ? Obj ) : -
r d f s _ c o m p u t a b l e _ p r o l o g _ t r i p l e ( ? Subj , ? Prop , ? Obj ) ;
r d f s _ c o m p u t a b l e _ s q l _ t r i p l e ( ? Subj , ? Prop , ? Obj ) .

The attachment of computables via the target property has several important advantages: First,
it separates the semantic modeling (the OWL relations to be computed) from implementation
aspects. Second, it allows to easily load and unload computables for a relation, and to attach
multiple computables to the same semantic relation. This helps to ensure modularity of the
whole system.

2.6.2 Computable properties

There are two ways how computable properties can be evaluated, either by calling a Prolog
predicate that computes the relation, or by sending an SQL query to a database.

2.6.2.1 Prolog properties

Let us consider the after relation between two points in time as an example which is defined as:

ObjectProperty : a f t e r

SubPropertyOf : t e m p o r a l l y R e l a t e d
Domain : T imePoin t
Range : T imePoin t

If this relation is to be computed, we can attach a computable property and specify that the
relation can be computed by the comp_after(..) predicate:

I n d i v i d u a l : c o m p u t e A f t e r

Types : P r o l o g P r o p e r t y

Facts : t a r g e t a f t e r
command c o m p _ a f t e r

If the after relation is queried using the rdf_triple(..) predicate, the system thus calls the comp_after(..)

predicate with the respective values for the subject and object. The implementation of the pred-
icate should be able to handle the different combinations of bound/unbound variables (read all
objects for a subject, all subjects for a given object, or all valid combinations of subjects and ob-
jects related by the after relation). The implementation of the comp_after(..) predicate is given
below. This predicate first checks if the subject and property have the correct types, then trans-
forms the time points into numerical values using term_to_atom(..), and finally compares them
to check if ?Pre is really earlier than ?After.
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c o m p _ a f t e r ( ? Pre , ? A f t e r ) : -
owl_has ( ? Pre , type , ’ T imePoin t ’ ) ,
owl_has ( ? A f t e r , type , ’ T imePoin t ’ ) ,
t e rm_ to_a tom ( ? P , ? Pre ) ,
t e rm_ to_a tom ( ?A, ? A f t e r ) ,
?P<?A.

Prolog computables can also be used for more advanced tasks than just comparing numerical
values: The import of instructions from the Web (Chapter 4) or interfaces to perception systems
(Section 2.6.4) can transparently be integrated. Computables can also be used to integrate rule
knowledge – the computable implementation becomes the body of the rule, the target forms the
head of the rule.

2.6.2.2 SQL properties

The definition of a computable SQL property consists of the target property, some authentica-
tion information to access the database, and most importantly three SQL queries. Depending on
which variables in the query are bound (subject, object, or none of them), the system automati-
cally chooses one of them: If the subject is bound and the object unbound, it uses valueSelect,
if the object is bound and the subject unbound, it uses the frameSelect query, and if both are
unbound, it uses the frameValueSelect query.

I n d i v i d u a l : computeX

Types : S q l P r o p e r t y

Facts : t a r g e t xCoord
v a l u e S e l e c t s e l e c t robX from p o s i t i o n s where t ime = ~ frame ~
f r a m e S e l e c t s e l e c t t ime from p o s i t i o n s where robX = ~ v a l u e ~
f r a m e V a l u e S e l e c t s e l e c t t ime , robX from p o s i t i o n s
u s e r d b _ u s e r
password db_pwd
d a t a b a s e db_db

2.6.3 Computable classes

The definition of computable classes is very similar to the specification of computable properties.
Again, there are two kinds of computables evaluated by a Prolog predicate or an SQL query.

2.6.3.1 Prolog classes

The target property describes the class for which instances can be computed, the command sp-
eficies the predicate that is to be called. Again, different combinations of bound/unbound pa-
rameters are possible in order to generate instances of a class or determine the class of a given
instance.
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I n d i v i d u a l : computeObjec t sOnTab le

Types : P r o l o g C l a s s

Facts : t a r g e t HumanScaleObjec t
command comp_objec t sOnTab le

2.6.3.2 SQL classes

An important use of computable SQL classes is to read human motions from a database, for
example all poses labeled as “Reaching”. Here, we need to give one command for creating
instances (command) and one for checking if an instance belongs to a class (testCommand).

I n d i v i d u a l : computeReaching

Types : S q l C l a s s

Facts : t a r g e t Reach ing
command s e l e c t i d from tab_arm where t y p e = Reaching
testCommand s e l e c t t y p e from tab_arm where i d =~ i n s t a n c e ~
u s e r d b _ u s e r
password db_pwd
d a t a b a s e db_db

2.6.4 Computables for interfacing external data sources

Computables can also be used to load data from external sources of information. For example,
the import of instructions from the Web (Chapter 4) is integrated by computables that return
a plan for a command given in natural language. From a user point of view, the retrieval of
instructions and the translation into a logical plan representation appears to be a simple query
to the knowledge base, and only the slightly longer response time indicates if the plan already
existed in the knowledge base or had to be generated first.

Another important use of computables is the interface to perception components. The internal
representation of objects is introduced in Section 3.2.3. In this context, computables are used
to build up these data structures based on information from the perception. To generate object
instances of objects from perception, we define a computable class for a reasonably generic target
class, e.g. the HumanScaleObject, which is a class containing practically all objects the robot
encounters in its environment.

I n d i v i d u a l : c o m p u t e T a b l e t o p O b j e c t

Types : P r o l o g C l a s s

Facts : t a r g e t HumanScaleObjec t
command t a b l e t o p _ o b j e c t
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With this definition, the system now checks for new object detections whenever a query asks for
instances of HumanScaleObject. The generated object instances thereby have the more specific
types that have been returned by the object recognition system. The implementation of the Prolog
computable is sketched below: First the predicate calls the perception service to get the list of
detected objects. For each object, it determines the type and pose and builds up the internal
object representation shown in Figure 3.5.

t a b l e t o p _ o b j e c t ( ? Obj , ? Type ) : -

% c a l l p e r c e p t i o n s e r v i c e t o g e t o b j e c t d e t e c t i o n s
p e r c e p t i o n _ c l i e n t ( ? O b j L i s t ) ,
member ( ? Match , ? O b j L i s t ) ,

% s p l i t i n t o o b j e c t ID and pose
? Match = [ ? ID , ? Pose ] ,

% c r e a t e o b j e c t i n s t a n c e
i d _ t o _ t y p e ( ? ID , ? Type ) ,
c r e a t e _ o b j e c t _ i n s t a n c e ( [ ? Type ] , ? ID , ? Obj ) ,

% c r e a t e p e r c e p t i o n i n s t a n c e
c r e a t e _ p e r c e p t i o n _ i n s t a n c e ( ? P e r c e p t i o n ) ,

% s e t pose
s e t _ p e r c e p t i o n _ p o s e ( ? P e r c e p t i o n , ? Pose ) ,

% l i n k o b j e c t and p e r c e p t i o n
s e t _ o b j e c t _ p e r c e p t i o n ( ? Obj , ? P e r c e p t i o n ) .

Using computables to generate object instances works best if the perception component detects
objects on demand. For passive perception modules, which continuously detect objects in e.g.
video images, a different interface that listens to these detections in a parallel thread and cre-
ates the object representation for each detected object. These interfaces are further described in
Section 6.1.
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2.7 Discussion

In this chapter, we introduced KNOWROB as a practical knowledge processing system for au-
tonomous robots. Its system design follows the “world as a virtual knowledge base” paradigm we
introduced. Instead of adding all available information to the knowledge base and pre-processing
it in way that all possible queries are covered, we rather use on-demand computation of the re-
quired information. If the knowledge base needs to answer a query about something that is not
yet known, it can forward the query to “the world”, for example in terms of perception tasks,
to get the desired information. The on-demand computation of information can also be used
to compute a different, often more abstract “view” on information that is already present in the
knowledge base, for example to compute qualitative spatial relations based on absolute object
positions. It proved to be an extremely useful tool in robotics, where most information is already
present in some form in the robot control program.

We explain the logical formalism, description logics, that is used as the basis for representing
knowledge in the system. Description logics allow to represent knowledge in a very structured
way and are a good compromise between sufficient expressiveness and still good support for
automated reasoning. The knowledge about classes of objects and actions is represented in form
of an ontology, a taxonomy of classes that are inter-related by properties. The layout of the upper
ontology was described in Section 2.2 and explained how the information about actions, events,
objects, spatial and temporal information is organized in the ontology.

The overall system architecture and the main components for knowledge acquisition, for au-
tomated reasoning, for visualization and for querying for information that are integrated in the
KNOWROB system are explained in Section 2.3, as well as the different sources of knowledge
that can be used.

There are three main inference techniques in KNOWROB which are each suited for different
kinds of knowledge: Description logics inference forms the backbone of the overall system and is
used for all deterministic information, including the large class ontologies. For reasoning about
probabilistic information, we integrated the PROBCOG toolkit that provides various inference
methods for reasoning in statistical relational models which combine the expressiveness of first-
order logics with the ability to represent uncertainty. The “computables” described in the last
section of this chapter allow to perform a procedural computation of semantic information on
demand during the inference procedure. They are the main tool for loading information from the
perception system and for computing relations between entities based on the information in the
knowledge base.
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Knowledge representation for robots

A knowledge processing systems is to equip a robot with all knowledge it needs to take informed
control decisions, to parametrize its actions in the right way, and to understand incomplete and
ambiguous human instructions. This requires formal descriptions of many different aspects of
the actions the robot is to perform, the objects it interacts with, the environment it operates in,
and the components and capabilities of the robots itself. All these aspects need to be described in
a common formal language that allows the robot to understand their meaning, to combine them
and to draw conclusions.

In the pancake scenario, for example, the robot needs to infer which pieces of information are
missing in the instructions, i.e. to first notice that something is missing at all, and then to decide
how to fill in this missing information and where to obtain it from. Drawing these inferences
requires the robot to have detailed descriptions of the properties of actions and objects, to have
methods for predicting the effects of actions, and to reason about its own capabilities to determine
if they suffice to perform the task at hand.

The problem when developing the representation language is how to abstract away from the
complexity of the world, how to appropriately structure the information and how to develop
compact, abstract representations that cover all important aspects while still allowing efficient
inference. While the area of knowledge representation has a long tradition in artificial intelli-
gence research, the application of these methods to robotics still creates its very own challenges.
Some of them are caused by the large number and the complexity of the topics that need to be
described, which requires expressive representations that integrate time and space, discrete and
continuous information, and goal-directed actions as well as physical processes. Other chal-
lenges are the need for representing change and to account for the dynamics in the world caused
by actions and processes, with a focus on spatio-temporal reasoning. For pick-and-place tasks,
a representation of the changes in object positions over time is sufficient, but more sophisti-
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cated manipulation actions, as they occur for example in cooking tasks, require more expressive
descriptions of how objects are changed, created or destroyed by actions. These explicit repre-
sentations of actions and their effects should further support planning, projection and diagnosis.
Moreover, the representations should be able to deal with inconsistencies which can hardly be
avoided if information is acquired from inaccurate sensors. Therefore, they should be handled
in a way that they do not render the whole knowledge base unusable. Often, inconsistent beliefs
about object positions are resolved once the robot detects the respective objects again.

While the previous chapter introduced the basic concepts for the technical implementation,
we now describe the language that has been developed to represent the complex information
required by robotic systems and the inferences that can be drawn from it. The first section deals
with temporal information, the second one with spatial information about objects, their poses,
and spatial relations between them. Actions and processes are the topic of the following sections.
We conclude with a description of robot self-models and methods that use them to decide if the
robot has all required capabilities to perform an action.

3.1 Events and temporal information

Robots are acting in dynamic environments: Actions are performed, objects change their po-
sitions and properties over time. Therefore, the robot’s knowledge representation should be
capable of describing and reasoning about temporal information like the start time of an event,
the duration of an action, or relations like contemporaneity.

The main specializations of a TemporalThing are Situation, Event, TimeSpan and TimePoint.
An overview of the upper ontology of temporal things is shown in Figure 3.1. We use the term
Event as defined in OpenCyc:

“Each instance of Event is a dynamic situation in which the state of the world changes; each

instance is something one would say ’happens’. [...] Events should not be confused with TimeIn-

tervals. The temporal bounds of events are delineated by time intervals, but in contrast to many

events time intervals have no spatial location or extent.” 1

Events can be instantaneous (like the moment when a perception is made) or temporally ex-
tended (like the execution of a trajectory for reaching towards an object). Note that actions are
described as specializations of events, namely those events that are caused by an agent acting in
the world. This allows to describe actions using the same vocabulary as events like the startTime

or temporal relations like after. Other important sub-classes are MentalEvents, events that (at

1Definition from OpenCyc http://sw.opencyc.org/concept/Mx4rvViADZwpEbGdrcN5Y29ycA
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Figure 3.1 Excerpt of the ontology of temporal things, describing time points, time intervals,
and events.

least partially) happen in a person’s (or robot’s) mind like a reasoning process or a decision that
is being made. In KNOWROB, this class of events is used to describe how the robot obtained
a certain belief, for example the belief that an object is (or was, or should be, or could be) at a
certain location. They are described in more detail in Section 3.2.5.1. If the belief was the result
of some kind of perception, the event is at the same time a SensoryEvent.

Objects can change over time: they can be created, destroyed, combined into new objects,
and can change their intrinsic state (like the temperature or aggregate state). The events causing
such changes are described as specializations of PhysicalEvent and IntrinsicStateChangeEvent.
In Section 3.4, we will discuss how KNOWROB uses these event descriptions to reason about the
consequences of actions and processes.

Each event has a startTime and, if its duration is finite, also an endTime. Both relations link
an event to a TimePoint. A TimeInterval is the time between two TimePoints. Instances of time
points contain the time as UNIX timestamps (i.e. the seconds since 1.1.1970). For performance
reasons, time points are internally stored as a concatenation of the prefix ’timepoint_’ and the
numeric timestamp value.

This event representation allows temporal reasoning using computable properties operating on
the start- and end times. They can compute the duration of a TemporallyExtendedThing, and
can compute qualitative temporal relations. Already two relations suffice for describing most
possible relations between two time intervals: after(TimePoint, TimePoint) and temporallySub-
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X<Y after
∃Ex, Sy.endT ime(X,Ex) ∧ startT ime(Y, Sy) ∧ (Ex < Sy)

Y >X before

XmY meets
∃T. endT ime(X,T ) ∧ startT ime(Y, T )

YmiX meetsInv

XoY overlaps ∃Sx, Sy, Ex,Ey. startT ime(X,Sx) ∧ startT ime(Y, Sy) ∧ endT ime(X,Ex)
∧ endT ime(Y,Ey) ∧ (Sx < Sy) ∧ (Sy < Ex) ∧ (Ex < Ey)Y oiX overlapsInv

XsY starts ∃T,Ex,Ey. startT ime(X,T ) ∧ startT ime(Y, T ) ∧ endT ime(X,Ex)
∧ endT ime(Y,Ey) ∧ (Ex < Ey)Y siX startsInv

XdY during ∃Sx, Sy. startT ime(X,Sx) ∧ startT ime(Y, Sy) ∧ endT ime(X,Ex)
∧ endT ime(Y,Ey) ∧ (Sx < Sy) ∧ (Ey < Ex)Y diX duringInv

XfY finishes ∃T, Sx, Sy. endT ime(X,T ) ∧ endT ime(Y, T ) ∧ startT ime(X,Sx)
∧ startT ime(Y, Sy) ∧ (Sy < Sx)Y fiX finishesInv

X=Y equal ∃S,E. startT ime(X,S) ∧ startT ime(Y, S) ∧ endT ime(X,E) ∧ endT ime(Y,E)

Table 3.1 Allen’s interval algebra [Allen, 1983] and its implementation in our system.

sumes(TemporalThing, TemporalThing). Note that both predicates can also compute their inverse
(’before’ and ’temporallyContained’) if the arguments are swapped.

By combining these two relations with the startTime and endTime properties, all of Allen’s
13 temporal relations [Allen, 1983] between time intervals can be computed. All of them can
be defined using only the start time and end time of the two time intervals (Table 3.1) and can
easily be evaluated using computables. This on-demand computation allows to easily perform
reasoning about observations made over time.
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3.2 Objects, stuff and the environment

Acting in human environments means interacting with objects of many different kinds. In order
to competently perform everyday tasks, robots have to represent knowledge about object classes
and their properties as well as information about concrete object instances which have been
detected in the environment. Multiple object instances can form a semantic environment map
which, in combination with maps the robot can use for self-localization, allows the robot to
locate objects in the environment. Robots further need to describe the relations between object
classes and models that allow them to recognize objects of this kind.

We are distinguishing objects from stuff-like things. Stuff, in contrast to objects, is something
that can be divided into parts over and over again while still maintaining its type. Positive exam-
ples are water, flour, or sand, negative ones, which are object-like rather than stuff-like, are cars,
apples, or knives.

3.2.1 Classes of objects and stuff-like things

All classes are organized in a taxonomic structure, from very general classes like SpatialThing

to specific ones like Refrigerator-Freezer. Figure 3.2 gives an overview over the most important
classes describing objects and stuff in KNOWROB. Like in other parts of the ontology, we use
multiple inheritance to reflect the different aspects of an object: A MicrowaveOven, for example,
is a FoodOrDrinkPreparationDevice as well as a kind of Oven and an ElectricalHouseholdAp-

pliance. It therefore inherits all properties that are specified for any of these super-classes. This
multi-faceted modeling is very important to capture the complexity of real-world environments.

The classes are further described by properties, e.g. that the primary function of an Oven is
HeatingFood, and that it has a Handle as properPhysicalPart. As described in Section 2.4, these
restrictions can also be used to classify objects: If something has all properties required for a
certain kind of object, it can automatically be classified as being an instance of the respective
object class. The taxonomy has the advantage that knowledge can be represented at different
levels of granularity: For instance, the fact that a Container can contain SpatialThings can be
described on this abstract level and gets inherited by all specialized classes.
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Figure 3.2 Ontology of objects and stuff-like things.
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3.2.1.1 Relation between stuff and objects

Things that can be split in pieces while maintaining their type are commonly described as being
stuff-like, rather than object-like. Examples are water, flour, dough, or sugar. A portion of sugar
can be split into two parts, still being a portion of sugar. An apple or a cup, in contrast, are
object-like in that splitting them into pieces results in qualitatively different objects.

While having many things in common, stuff needs to be handled differently than objects,
especially with respect to actions. First, the amount of stuff needs to be specified, in terms of
weight, volume, etc. Then, we often have to translate between the stuff itself and the container it
is stored in. In many cases, these two are used interchangeably: If milk is required as part of a
recipe, for example, the plan may refer to the milk, while the pick-up action has to be performed
on the bottle containing the milk.

Pieces of stuff are modeled as instances of the respective class, e.g. as an instance of Water,
with the amount specified using the properties volume, weight, etc. Some default rules allow to
convert between stuff and the containing entities. To search and locate stuff, a recognition model
for a container that contains this kind of stuff can be used instead of a model for the stuff itself.
Actions like picking up or putting down something stuff-like are performed on the container
containing the stuff instead of the stuff itself.

3.2.1.2 Object recognition models

In order to recognize an object, a robot typically needs a detailed model that describes the ob-
ject’s shape, texture, appearance, or salient feature points. Such a model can be used by an
object recognition system to detect, recognize and localize the object. Recognition models usu-
ally provide recognition services for objects of a certain type, they are thus linked to the re-
spective object classes. Recognition models can be of various different kinds, so they need to
specify which recognition system can load and use them. Since the recognition models can be
quite large and complex, and since the knowledge base does not need to perform reasoning on
the details described inside the model (for instance, some image feature descriptors that do not
serve any other purpose than recognition), we do not represent the content of the model itself
in OWL, but store only meta-data describing its properties and link it to the classes of objects it
can recognize. The model itself is still stored in the object recognition system’s binary format.
Figure 3.3 exemplarily shows the description of a model that refers to a description of the object
IkeaExpeditShelf2x2.
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Figure 3.3 Description of an object recognition model (upper block) and the detection of an
object using that model (lower blocks).

3.2.2 Object instances

Object instances in KNOWROB are interpreted as designators [McDermott, 1992], symbolic de-
scriptions of objects in the real world. It is important to draw this distinction between the physical
object itself and its representation in the knowledge base. An object instance is only the internal
representation describing the object, but is not interpreted as denoting the object itself.

Distinguishing between the physical object and a description of it becomes especially impor-
tant when describing processes in which objects are created or destroyed. The designator is
usually created at the time of the first detection of an object, though the object itself may have
been created earlier. Also, when objects are destroyed, one still wants to keep the designator de-
scribing that the object had existed and ceased to exist at some point in time in order to describe
what happened.
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We therefore have two kinds of creation and destruction times: The time of the creation and
destruction of the object itself, and the time at which the internal representation was created
(usually after the first perception of the object) or destroyed.

3.2.3 Positions, orientations and dimensions

Information about the poses and dimensions of objects is crucial for finding and manipulating
them. In KNOWROB, object dimensions are described as simple bounding boxes or cylinders
(specifying the height, and either width and depth or the radius). While this is clearly not suf-
ficient for grasping, we chose this description as a compromise in order not to put too many
details like point clouds or meshes into the knowledge base. Such information is rather linked
and stored in specialized file formats.

Object poses are described via homography matrices. Per default, the system assumes all
poses to be in the same global coordinate system. Pose matrices can, however, be qualified with
a coordinate frame identifier. The robot can then transform these local poses into the global
coordinate system, for example using the tf library2.

Since robots act in dynamic environments, they need to be able to represent both the current
world state and past beliefs. A naive approach for describing the pose of an object would be
to add a property location that links the object instance to a point in space or, more general, a
homography pose matrix. However, this approach is limited to describing the current state of the
world – one can express neither changes in the object locations over time nor differences between
the perceived and an intended world state. This is a strong limitation: Robots would not be able
to describe past and (predicted) future states, nor could they reason about the effects of actions.
Memory, prediction, and planning, however, are central components of intelligent systems.

The reason why the naive approach does not support such qualified statements is the limitation
of OWL to binary relations that link exactly two entities. These relations can only express if
something is related or not, but cannot qualify these statements by saying that a relation held
an hour ago, or is supposed to hold with a certain probability. For this purpose, we need an
additional instance in between that links e.g. the object, the location, the time, and the probability.

In KNOWROB, these elements are linked by the event that created the respective belief: the
perception of an object, an inference process, or the prediction of future states based on projec-
tion or simulation. The relation is thus reified, that is, transformed into a first-class object. These
reified perceptions or inference results are described as instances of subclasses of MentalEvent

2http://www.ros.org/wiki/tf
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Figure 3.4 Ontology of mental events. Each of these events can result in changes in the robot’s
belief state about object poses.

Figure 3.5 Visualization of the internal object representation. Based on information from the vi-
sion system, KnowRob generates VisualPerception instances that link the object instance icetea2
to the different locations where it is detected over time.
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(Figure 3.4), for instance VisualPerception or Reasoning. Object recognition algorithms, for in-
stance, are described as sub-classes in the VisualPerception tree. Multiple events can be assigned
to one object, describing different detections over time or differences between the current world
state and the state to be achieved (Figure 3.5).

This representation is similar to the fluent calculus [Thielscher, 1998], in which fluents are
objects that represent the change of values over time. In our case, however, the reified objects
contain more information than just a changing value: the current and all past states of the relation,
including the times at which state changes were detected, and the type of event that established
the relation. Using our representation, we can describe multiple “possible worlds”, for example
the perceived world, a description of how the world is supposed to look like, and the world state
a robot predicts as the result of some actions it performs. Since all states are represented in the
same system, it becomes possible to compare them, to check for inconsistencies or to derive
the required actions, which would be difficult if separate knowledge bases would be used for
perceived and inferred world states.

3.2.4 Environment maps

Environment information has been described in various ways in robotics, just to name a few:

• Occupancy grid maps describe obstacles and free space in a grid-based structure.

• Topological maps describe the environment as a graph in which the vertices correspond to
points of interest and the edges mean that one vertex can be reached from an adjacent one.

• Point cloud maps describe the surface of the environment by a set of points in 3D space.
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Figure 3.6 Part of the ontology of different kinds of environment maps.
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• Maps of visual landmarks contain (often only visually distinctive, but otherwise meaning-
less) points in space that can serve for localization.

• Object maps consist of localized, typed objects that have been recognized in the environ-
ment.

The KNOWROB ontology contains a section describing different kinds of environment maps –
both as a spatial description of the environment and as an information-bearing object (Figure 3.6).
Specific maps can be described as a combination of these concepts, for example as a three-
dimensional semantic environment map.

Some of these maps can easily be described in the knowledge base, especially object maps
and maps consisting of meaningful landmarks. In these cases, a map is effectively a collection
of object instances. In other cases, such an explicit representation does not make much sense,
either because of the large amount of data in the map or due to the lack of structure that can be
semantically interpreted. For these maps, KNOWROB allows to link a shallow description of the
map to an external (binary) file. In both cases, there is an OWL description that specifies the
type of the map and its properties so that the robot is aware of having this map. Both approaches
can be combined: For example, an occupancy grid map that serves for describing free space,
localization and path planning, can be combined with a set of objects and their positions in the
environment, as illustrated in Figure 3.7.

3.2.5 Qualitative spatial relations

Often, objects are not described by their metric positions, but using qualitative spatial relations
to other objects, like inside, on top of, or underneath. Such relations are commonly used for
communicating with humans, but can also help to generalize spatial knowledge: If the system
knows that an object is inside a cupboard or drawer, it can infer that the robot first has to open the
respective container before it is able to see and manipulate these objects. Qualitative relations
are also useful for describing plans since they leave the robot more freedom to select appropriate
positions when actually executing the plan.

In KNOWROB, these qualitative relations are usually not asserted, but rather computed on
demand using computables. As described earlier, the system stores the quantitative object poses
and dimensions, which is sufficient to compute qualitative descriptions as a more abstract view on
the data. We intentionally chose to store numeric poses and compute the qualitative descriptions
on demand for several reasons: First, the numeric information has to be stored only once and
allows to compute multiple qualitative relations, whereas storing all pairwise relations between
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Figure 3.7 Encoding of an environment map that combines a binary file (linked using the link-
ToMapFile property) with an object that was recognized in the respective environment.

a larger number of objects would not be very efficient. Furthermore, maintaining consistency
for asserted qualitative relations can become difficult: An external module needs to compute all
relations that hold between two objects, check if already asserted relations are still valid and
retract outdated ones. This computation has to be done whenever a change in the world occurs
and can become quite costly – though many of these relations will never be needed. Storing
the object poses instead reduces redundancy and helps ensure consistency by only taking those
relations into account that hold for the object configuration at query time.

Qualitative spatial relations can largely be split into two groups: topological and directional
relations. Directional relations, like left of or behind, are relative to the position of an agent.

outsideOfaboveOf behind-Generally

spatiallyRelated

hingedTo

inCenterOf

connectedTo

toTheLeftOf

on-Physical

toTheRightOf

inFrontOf-GenerallyrotationallyConnectedTo

directionalRelations topologicalRelations

toTheSideOf in-ContGenericbelowOf

Figure 3.8 Taxonomy of qualitative spatial relations including directional and topological
relations.
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Topological relations like in or on, in contrast, can be computed based on only the configuration
of objects. In addition, the connectedTo relation can describe articulated objects and hinges. All
relations are arranged in a hierarchy (Figure 3.8) which enables queries like “Where is object
A?” using the spatiallyRelated relation to obtain all spatial relations of this object.

In the current implementation, the computables for qualitative spatial relations are purely di-
agnostic: They can check whether a relation holds, but cannot generate appropriate locations.
While there are straightforward solutions for simplified problems, a solution to generate posi-
tions that are actually usable by a robot is quite complex and has to take much information into
account: The shapes and poses of the bottom and top object, obstacles, the purpose of the lo-
cation, reachability etc. This is done in a parallel research project [Lorenz Mösenlechner and
Michael Beetz, 2011].

3.2.5.1 Relations between objects at different points in time

The aforementioned representation of object poses using MentalEvents forms the basis to evalu-
ate how qualitative spatial relations between objects change over time. For example, if a robot is
to recall where it has seen an object before or which objects have been detected on the table five
minutes ago, it has to qualify the spatial relations with the time at which they held.

We use the holds(rel(?A, ?B), ?T) predicate to express that a relation rel between ?A and ?B

is true at time ?T. Such a temporally qualified relation requires the description of the relation rel

between the objects ?A and ?B and the time ?T, which cannot be expressed in pure description
logics. We thus have to resort to reification, for which we use the mental events described in
Section 3.2.3. Based on these detections of an object, the system can compute which relations
hold at which points in time.

Since objects are usually perceived only occasionally, the robot does not have a continuous up-
date on their positions. Even when an object has been detected just an instance before its position
is needed, this time point is already in the past, so the robot always has to interpolate between
the poses. There are several different options, for example using the persistence assumption
that objects do not move unless detected otherwise, performing linear interpolation between two
poses, or using learned models that take the actions that are performed into account and can bet-
ter predict how objects move. The current implementation uses the persistence assumption and
assumes that the last perceived pose of an object is still valid at the time the relation is evaluated.
However, this simple method can easily be replaced by a more sophisticated solution.

Let us consider the computation of the “inside” relation as an example (see the following list-
ing for the implementation). The code computes the relation in a simplified way (not taking the
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rotation of the objects into account) by comparing the axis-aligned bounding boxes of the inner
and outer object to check whether one contains the other. First, the latest perception of each ob-
ject before time ?T is determined using the object_detection predicate. The poses where objects
have been perceived in these events are read using the eventOccursAt relation. Then, the sys-
tem reads the objects’ positions and dimensions, and compares the bounding boxes. Figure 3.9
exemplarily shows how the holds predicate operates on a set of VisualPerception instances.

h o l d s ( i n _ C o n t G e n e r i c ( ? Inne rObj , ? Oute rObj ) , ?T ) : -

o b j e c t _ d e t e c t i o n ( ? Inne rObj , ?T , ? VPI ) ,
o b j e c t _ d e t e c t i o n ( ? OuterObj , ?T , ?VPO) ,

r d f _ t r i p l e ( even tOccur sAt , ?VPI , ? I n n e r O b j M a t r i x ) ,
r d f _ t r i p l e ( even tOccur sAt , ?VPO, ? O u t e r O b j M a t r i x ) ,

% r e a d t h e c e n t e r c o o r d i n a t e s o f t h e l e f t e n t i t y
r d f _ t r i p l e ( m03 , ? I n n e r O b j M a t r i x , ? IX ) ,
r d f _ t r i p l e ( m13 , ? I n n e r O b j M a t r i x , ? IY ) ,
r d f _ t r i p l e ( m23 , ? I n n e r O b j M a t r i x , ? IZ ) ,

% r e a d t h e c e n t e r c o o r d i n a t e s o f t h e r i g h t e n t i t y
r d f _ t r i p l e ( m03 , ? Oute rObjMat r ix , ?OX) ,
r d f _ t r i p l e ( m13 , ? Oute rObjMat r ix , ?OY) ,
r d f _ t r i p l e ( m23 , ? Oute rObjMat r ix , ?OZ) ,

% r e a d t h e d i m e n s i o n s o f t h e o u t e r e n t i t y
r d f _ h a s ( ? OuterObj , wid thOfObjec t , ?OW) ,
r d f _ h a s ( ? OuterObj , h e i g h t O f O b j e c t , ?OH) ,
r d f _ h a s ( ? OuterObj , dep thOfOb jec t , ?OD) ,

% r e a d t h e d i m e n s i o n s o f t h e i n n e r e n t i t y
r d f _ h a s ( ? Inne rObj , wid thOfObjec t , ?IW ) ,
r d f _ h a s ( ? Inne rObj , h e i g h t O f O b j e c t , ? IH ) ,
r d f _ h a s ( ? Inne rObj , dep thOfOb jec t , ? ID ) ,

% compare bounding boxes
>=((? IX - 0 . 5 * ? ID ) , ( ?OX - 0 . 5 * ?OD) + 0 . 0 5 ) , = <((? IX + 0 . 5 * ? ID ) , ( ?OX + 0 . 5 * ?OD) - 0 . 0 5 ) ,
>=((? IY - 0 . 5 * ?IW ) , ( ?OY - 0 . 5 * ?OW) + 0 . 0 5 ) , = <((? IY + 0 . 5 * ?IW ) , ( ?OY + 0 . 5 * ?OW) - 0 . 0 5 ) ,
>=((? IZ - 0 . 5 * ? IH ) , ( ?OZ - 0 . 5 * ?OH) + 0 . 0 5 ) , = <((? IZ + 0 . 5 * ? IH ) , ( ?OZ + 0 . 5 * ?OH) - 0 . 0 5 ) ,
? I n n e r O b j \= ? OuterObj .

3.2.5.2 Default: current point in time

The holds(rel(?A, ?B), ?T) predicate is not part of the common OWL reasoning procedure, so
spatial relations that have been computed using this predicate, for example holds(in_ContGeneric(

?InnerObj, ?OuterObj), ?T), are not linked to the respective OWL relations like in-ContGeneric.
In particular, the mechanism is not backwards compatible, i.e. the manual assertion of a spatial
relation and the result of the holds computation are not equivalent. To integrate the two infer-
ence schemes, we implemented a set of computables that calculate the OWL relations, listed
in Figure 3.8, by evaluating holds(in_ContGeneric(?InnerObj, ?OuterObj), ?T) for the current
time:

comp_in_ContGener ic ( ? Inne rObj , ? Oute rObj ) : -
g e t _ t i m e p o i n t ( ?NOW) ,
h o l d s ( i n _ C o n t G e n e r i c ( ? Inne rObj , ? Oute rObj ) , ?NOW) .
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Queries often deal with the current state of the world, so using it as the default has proven to be
a sensible assumption. This way, users do not always have to specify the time when querying
for current relations. This also shows one of the strengths of computables: On the one hand, the
expressive and complex representation of object poses remains in the background, but users can
ask simple queries that are translated by the computables.

Figure 3.9 Computables operating on the KNOWROB object representations. The holds predi-
cate compute the on_physical relation for a given point in time. For queries about the current
state of the world, a simplified query scheme has been realized that evaluates the relation at the
current point in time and maps the holds(on_physical(?A, ?B), ?T) predicate to the on-Physical
OWL property using computables.
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3.2.5.3 Relations between objects over time spans

In some cases, one may be interested in verifying if a relation holds over an extended time
interval, e.g. if an object has been on the table continuously over the last hour. This can be
computed by evaluating the holds() predicate at the start and end of the interval and for all
detections of the respective objects during the interval. Obviously, this does not guarantee that
the object has not been moved in between two detections, but, based on the robot’s knowledge,
it is the best answer a robot can give.

We thus define the holds_tt predicate (for “holds throughout”) as follows: holds_tt(?Goal,

[?Start, ?End]) is true for an interval [?Start, ?End] iff holds(?Goal, ?Start), holds(?Goal,

?End), and holds(?Goal, ?T) for each detection of each of the involved objects in between ?Start

and ?End. The following code example first temporarily saves the time interval the user has
queried for in order to be able to use the computables to reason about temporal relations like
temporallySubsumes. Then the system reads the arguments of the ?Goal and reads all detections
of either of these objects. The forall statement makes sure that for all time points when either of
these objects is detected between the ?Start and ?End time, the relation ?Goal still holds.
h o l d s _ t t ( ? Goal , [ ? S t a r t , ?End ] ) : -

r d f _ a s s e r t ( h o l d s _ t t , type , ’ T i m e I n t e r v a l ’ ) ,
r d f _ a s s e r t ( h o l d s _ t t , s t a r t T i m e , ? S t a r t ) ,
r d f _ a s s e r t ( h o l d s _ t t , endTime , ?End ) ,

h o l d s ( ? Goal , ? S t a r t ) ,
h o l d s ( ? Goal , ? End ) ,

% f i n d a l l d e t e c t i o n s o f t h e o b j e c t s a t hand
arg ( 1 , ? Goal , ? Arg1 ) , arg ( 2 , ? Goal , ? Arg2 ) ,
f i n d a l l ( [ ? D_i , ? Arg1 ] , ( ( r d f _ h a s ( ? D_i , ob jec tAc tedOn , ? Arg1 ) ;

r d f _ h a s ( ? D_i , ob jec tAc tedOn , ? Arg2 ) ) ,
r d f s _ i n d i v i d u a l _ o f ( ? D_i , ’ Men ta lEven t ’ ) ) , ? D e t e c t i o n s ) ,

f o r a l l ( ( member ( ?D_O, ? D e t e c t i o n s ) , n th0 ( 0 , ?D_O, ? D e t e c t i o n ) ,
r d f _ t r i p l e ( s t a r t T i m e , ? D e t e c t i o n , ?DStT ) ,
r d f _ t r i p l e ( t empora l lySubsumes , h o l d s _ t t , ?DStT ) ) ,

h o l d s ( ? Goal , ?DStT ) ) ,

r d f _ r e t r a c t a l l ( knowrob : ’ h o l d s _ t t ’ , _ , _ ) .
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3.3 Actions and tasks

A very special kind of events – probably the most important ones for a mobile robot – are actions.
Actions are intentionally performed by an agent to achieve a certain effect. This effect can either
be to achieve physical changes of the outer world, for example to move an object, or to change
the internal belief state, for example by actively perceiving an object.

There are two different ways how actions can be described: First, there are plans, descriptions
of an action schema, which can be executed multiple times. By being executed, they create a
grounded instantiation, the second kind of action description. While plans describe the abstract
structure of an action, including references to the objects that are to be manipulated or the lo-
cations that shall be used, these instantiations describe concrete executions that happened at a
specific point in time.
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Figure 3.10 Part of the ontology of action classes.

60



3.3. ACTIONS AND TASKS

In Description Logic, plans are described as terminological descriptions (in the TBOX), whereas
instantiations are described as assertional knowledge (ABOX). Such instances of actions can
describe actually observed or performed actions (something that happened at a certain time),
planned actions (something the robot intends to do), inferred actions (something the robot imag-
ines that happens or happened), or asserted actions (some action someone told the robot has
happened). We will start with the description of actions on the class level and continue with the
representation of action instances.

3.3.1 Action classes

The KNOWROB ontology provides a taxonomy of more than 130 actions that are commonly ob-
served in everyday activities. Figure 3.10 shows an excerpt; we omitted several classes for the
sake of clarity. Note that, while the classes in Figure 3.10 are all rather general, class definitions
can also be very specific and describe, for instance, the action PuttingDinnerPlateInCenterOf-

Placemat. Usually, the generic descriptions are part of the main ontology, while the speficic
classes are often defined as part of a concrete plan definition. In addition to the specialization hi-
erarchy in Figure 3.10, there is another hierarchy describing the composition of complex actions
from more basic ones. As an example, the action PuttingSomethingSomewhere for transporting
an object from one position to another involves picking up an object, moving to the goal posi-
tion, and putting the object down again. These sub-actions are described in the following OWL
fragment:

Class : Pu t t ingSometh ingSomewhere
SubClassOf :

Movement - T r a n s l a t i o n E v e n t
T r a n s p o r t a t i o n E v e n t
s u b A c t i o n some Pick ingUpAnObjec t
s u b A c t i o n some Car ry ingWhi l eLocomot ing
s u b A c t i o n some Put t ingDownAnObjec t
o r d e r i n g C o n s t r a i n t s v a l u e SubEven tOrde r ing1
o r d e r i n g C o n s t r a i n t s v a l u e SubEven tOrde r ing2

The ordering of subActions in a task can be specified by the partial ordering constraints given
below which describe the relative pair-wise ordering among the sub-actions.

I n d i v i d u a l : SubEven tOrde r ing1
Types :

P a r t i a l O r d e r i n g - S t r i c t
Facts :

o c c u r s B e f o r e I n O r d e r i n g Pick ingUpAnObjec t
o c c u r s A f t e r I n O r d e r i n g Car ry ingWhi l eLocomot ing

I n d i v i d u a l : SubEven tOrde r ing2
Types :

P a r t i a l O r d e r i n g - S t r i c t
Facts :

o c c u r s B e f o r e I n O r d e r i n g Car ry ingWhi l eLocomot ing
o c c u r s A f t e r I n O r d e r i n g Put t ingDownAnObjec t
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Using these constructs, one can describe actions, encode knowledge about their hierarchical
composition and about ordering constraints that need to hold among the parts of an action. In
KNOWROB, this knowledge is mainly part of the main ontology. In the next section, we will
look in more detail at how single actions can be composed to task descriptions in order to form a
plan.

3.3.2 Composing actions to plans

Complex robot tasks are usually composed of many lower-level actions and movements. There-
fore, plans can be hierarchically nested in order to keep the high-level plans short and concise,
and to maximise code re-use. A typical plan definition derives specialized classes from the ac-
tion classes in the KNOWROB ontology and extends them with task-specific action properties.
These derived action classes are then arranged in a (partially) sequential order to form the task
description. The code below is an excerpt of a plan for setting a table.

Class : Se tATable
A n n o t a t i o n s : l a b e l " s e t a t a b l e "

SubClassOf : A c t i o n
EquivalentTo :

s u b A c t i o n some P u t P l a c e M a t I n F r o n t O f C h a i r
s u b A c t i o n some P u t P l a t e I n C e n t e r O f P l a c e M a t
s u b A c t i o n some P u t K n i f e R i g h t O f P l a t e
s u b A c t i o n some [ . . . ]
o r d e r i n g C o n s t r a i n t s v a l u e [ . . . ]

Class : P u t P l a c e M a t I n F r o n t O f C h a i r
EquivalentTo :

Pu t t ingSometh ingSomewhere
ob j ec tAc tedOn v a l u e PlaceMat1
t o L o c a t i o n some P l a c e 1

Class : P l a c e 1
EquivalentTo :

i n F r o n t O f - G e n e r a l l y some Chai r - P i e c e O f F u r n i t u r e

I n d i v i d u a l : P laceMat1
Types : P laceMat

Class : P u t P l a t e I n C e n t e r O f P l a c e M a t
EquivalentTo :

Pu t t ingSometh ingSomewhere
ob j ec tAc tedOn v a l u e D i n n e r P l a t e 1
t o L o c a t i o n some P l a c e 2

Class : P l a c e 2
EquivalentTo :

i n C e n t e r O f v a l u e PlaceMat1

I n d i v i d u a l : D i n n e r P l a t e 1
Types : D i n n e r P l a t e

[ . . . ]

The upper part describes the task SetATable as a subclass of Action with a set of subActions.
The lower part consists of definitions of task-specific subclasses of generic action classes. The
class PutPlaceMatInFrontOfChair, for example, is defined as a subclass of the PuttingSome-
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thingSomewhere action, with the additional restriction that the objectActedOn needs to be a
PlaceMat, and the toLocation has to fulfill the requirements described for the class Place1, which
by itself is described as some Place which is inFrontOf-Generally of some Chair-PieceOfFurniture.

Though most of the plan is described as part of the TBOX, i.e. using restrictions on the
properties of action classes, the involved objects are described as instances. The reason is that,
in order to ensure that subsequent actions are performed on the same object, one has to use an
instance instead of a class restriction. A class restriction could otherwise be resolved to different
instances so that the robot may choose to pick up one bottle and open another one. This kind
of description is better suited to describe plans that are to be executed; before execution, the
temporary object instances have to be grounded in the actually perceived objects in the robot’s
environment. Another option is to also describe the objects in terms of class restrictions, for
example as

Class : P u t P l a t e I n C e n t e r O f P l a c e M a t
EquivalentTo :

Pu t t ingSometh ingSomewhere
ob j ec tAc tedOn some D i n n e r P l a t e
t o L o c a t i o n some P l a c e 2

Class : P l a c e 2
EquivalentTo :

i n C e n t e r O f some PlaceMat

This representation does not guarantee that all actions are performed on the same object instance,
but has different advantages: First, it can more easily be used to classify observed actions, i.e.
to check whether they fit a task description. Second, this representation does not suffer from a
problem that can arise when a plan described using the first method is executed several times
on different objects: At the beginning of the first execution, the object instance in the plan, e.g.
PlaceMat1, is unified with a perceived object, e.g. PlaceMat2675. The problem arises when
the same plan is executed using a different object instance: Now, PlaceMat1 is unified with e.g.
PlaceMat4231, and the system could conclude that PlaceMat2675 and PlaceMat4231 were the
same objects. Description Logics do not support variables, which would be needed here, but
the problem can be circumvented by retracting the unification axiom after the plan has been
executed.

3.3.3 Action instances

Whenever the robot is reasoning about actually performed actions, either by itself or by a human,
it needs to describe action instances. These instances can, for example, be generated by an action
recognition system that interacts with the knowledge base and populates the set of action in-
stances based on observations of humans, or by the robot’s executive that logs its actions into the
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knowledge base. Based on these observations, the system can set properties like the startTime,
the objectActedOn, or the bodyPartUsed.

Having the observations in the same language as the other pieces of knowledge in the knowl-
edge base is important to relate the observations to background knowledge. Chapter 5 describes
how action instances in the knowledge base can be used to interpret observations of humans
performing everyday tasks.

3.3.4 Effects of actions on objects

With service robots extending their task spectrum, they need to reason about more and more
complex effects of actions. Simple pick-and-place tasks already require the robot to represent
changes in the positions of objects, but still keep the notion of “an object” as something that
keeps on existing while the robot performs its task. When it comes to more complex activities,
like cooking meals, this assumption is no longer valid since these activities affect objects in
a much more fundamental way: Objects are created, destroyed, and can substantially change
their types, appearance, and aggregate states. For example, vegetables are being cut into pieces
(which appear as new objects while the original objects disappear), substances are mixed to
cookie dough, which is transformed by the baking process from some liquid stuff to a rigid
object.

To describe which effects an action has, a robot has to represent the world state both before
and after the action has been performed, and it needs to track which objects got transformed into
which other objects. Figure 3.11 visualizes the effects of a cracking and two mixing actions.
After having cracked an egg, the egg ceases to exist and (at least) two pieces of eggshell, the egg
yolk and the egg white appear. In parallel, the milk and flour are mixed to a dough, to which the
eggyolk is added.

There are two use cases of the description of action effects that both have different require-
ments: When planning its actions such that they lead to the intended goal state, the robot needs
declarative specifications of the inputs and outputs of an action. Using these specifications, it can
search for actions that have the desired effects and verify that all required inputs are available.
The properties for describing the relations between the actions and objects, namely their in- and
outputs, pre- and postconditions, are described in the next section. The second main use case is
projection, i.e. the prediction of the outcome of an action. To perform this prediction, the system
needs methods to compute the changes the action induces to the world. In KNOWROB, this is
realized using procedural descriptions of the effects of actions which are described in more detail
in Section 3.3.4.2. That section further explains how structures like the one in Figure 3.11 can be
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Figure 3.11 Object changes in a simple baking task: An egg is cracked, egg shells and egg yolk
appear as single objects, and are mixed to a dough together with some milk and flour.

built up automatically as the result of the projection procedure. Section 3.3.4.3 will then discuss
how these structures can be used for reasoning about object transformations.

3.3.4.1 Declarative descriptions of action effects

To perform reasoning about the effects of actions and the changes of the involved objects, it
is necessary to describe the exact relation between actions and objects. KNOWROB therefore
provides a detailed set of properties as shown in Figure 3.12. The sub-properties of preActors,
displayed in the upper part of the figure, describe action properties that are supposed to hold
before the action takes place. They include the agent (doneBy), the initial locations and states
(fromLocation, fromState), and the different roles an object can play in an action. An object can
be incorporated (thingIncorporated) into another one (objectAddedTo), can be removed from
something, like the dirt in a cleaning action (objectRemoved), and can undergo state changes
like freezing or melting (objectOfStateChange). Perceptual actions can detect an object (detecte-

dObject), and actions can substantially change objects by transforming them into another one
(transformedObject), destroying them (inputsDestroyed) or integrating them into another one
(inputsCommitted). The postActors describe the outcome of an action: Outputs that are created
by the action, for example a dough that emerges from flour and water (outputsCreated), or that
were modified, but remained the same kind of object, like a bread from which a slice is cut off
(outputsRemaining). Body movements lead to a targetPosture, transport actions move something
to a toLocation, and state changes attain a target state (toState). In addition to the properties in
Figure 3.12, actions can further be described using the event properties like startTime, after, or
temporallySubsumes described in Section 3.1.
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transformedObject

inputs

fromLocation

objectAddedTo

inputsCommitted

objectOfStateChange

inputsDestroyed

preActors

outputsRemaining

detectedObjectobjectRemoved

doneByobjectActedOn fromState

thingIncorporated

targetPosture

postActors

outputs toLocation

outputsRemaining outputsCreated

toState

Figure 3.12 Hierarchy of action-related properties. The upper part lists specializations of pre-
Actors, which describe the inputs of an action and the situation at its beginning. The postActors
describe the outputs and post-conditions.

By defining class restrictions using these properties, one can describe the inputs, outputs,
pre- and postconditions of an action in terms of a declarative specification that can easily be
queried to find an action that has the desired properties. For example, the robot can search for an
action that turns a PhysicalDevice from DeviceStateOff to DeviceStateOn and receive the action
TurningOnPoweredDevice which is defined as follows:

Class : TurningOnPoweredDevice
SubClassOf :

C o n t r o l l i n g A P h y s i c a l D e v i c e
o b j e c t O f S t a t e C h a n g e some P h y s i c a l D e v i c e
f r o m S t a t e v a l u e D e v i c e S t a t e O f f
t o S t a t e v a l u e Dev iceS t a t eOn
[ . . . ]

3.3.4.2 Temporal projection of action effects

Assuming a robot is about to perform an action on a given object instance, it can predict the
outcome of the action and the resulting world state using its knowledge about the effects of
actions. These effect axioms are described as predicates that create the links between the action
instance and the involved objects in order to describe inputs, outputs, newly created or destroyed
objects. In the current implementation, the projection rules are realized as prolog rules that
describe the effects of an action on a rather coarse, symbolic level.

Below are two examples of projection rules for the actions “cracking an egg” and “mixing
baking mix to a dough”. In the first lines, the predicate checks its applicability conditions: The
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action needs to be of the expected type, the manipulated object has to be specified, and the
outputs should not have been computed already. Then it creates the new object instance that
are generated by the action using the rdf_instance_from_class predicate which generates a new
instance with a unique name and the given type. Afterwards, the predicate asserts the relations
between the input objects, the action, and the generated outputs. Before this projection, the
generic objectActedOn was the only known relation, which can now be described in more detail
using properties like inputsDestroyed or thingIncorporated.

% C r a c k i n g an egg
p r o j e c t _ a c t i o n _ e f f e c t s ( ? Ac t i on ) : -

o w l _ i n d i v i d u a l _ o f ( ? Act ion , ’ C r a c k i n g ’ ) ,
\+ owl_has ( ? Act ion , o u t p u t s C r e a t e d , _ ) ,

owl_has ( ? Act ion , ob jec tAc tedOn , ? Obj ) ,
o w l _ i n d i v i d u a l _ o f ( ? Obj , ’ Egg - Chickens ’ ) , ! ,

% new o b j e c t s
r d f _ i n s t a n c e _ f r o m _ c l a s s ( ’ E gg S h e l l ’ , ? S h e l l ) ,
r d f _ i n s t a n c e _ f r o m _ c l a s s ( ’ EggYolk - Food ’ , ? Yolk ) ,

% new r e l a t i o n s
r d f _ a s s e r t ( ? Act ion , i n p u t s D e s t r o y e d , ? Obj ) ,
r d f _ a s s e r t ( ? Act ion , o u t p u t s C r e a t e d , ? S h e l l ) ,
r d f _ a s s e r t ( ? Act ion , o u t p u t s C r e a t e d , ? Yolk ) .

% Mixing ba k i ng mix t o a dough
p r o j e c t _ a c t i o n _ e f f e c t s ( ? Ac t i on ) : -

o w l _ i n d i v i d u a l _ o f ( ? Act ion , ’ Mixing ’ ) ,
\+ owl_has ( ? Act ion , o u t p u t s C r e a t e d , _ ) ,

% a t l e a s t one ob jec tAc t edOn i s a MixForBakedGoods
owl_has ( ? Act ion , ob jec tAc tedOn , ?Mix ) ,
o w l _ i n d i v i d u a l _ o f ( ? Mix , ’ MixForBakedGoods ’ ) ,

f i n d a l l ( ? Obj , owl_has ( ? Act ion , ob jec tAc tedOn , ? Obj ) , ? Objs ) , ! ,

% new o b j e c t s
r d f _ i n s t a n c e _ f r o m _ c l a s s ( ’ Dough ’ , ?Dough ) ,
r d f _ a s s e r t ( ? Act ion , objec tAddedTo , ?Dough ) ,
r d f _ a s s e r t ( ? Act ion , o u t p u t s C r e a t e d , ?Dough ) ,

% new r e l a t i o n s
f i n d a l l ( ?O, ( member ( ?O, ? Objs ) ,

r d f _ a s s e r t ( ? Act ion , t h i n g I n c o r p o r a t e d , ?O) ) , _ ) .

While these simple descriptions help the robot to predict if objects appear, get destroyed, or
change their types, they do not cover all effects and do not describe actions in sufficient de-
tail. Moreover, they are still somewhat over-specialized for certain combinations of actions and
objects. We thus intend to use them as the place where other, more advanced prediction mech-
anisms like physical simulation [Kunze et al., 2011a; Mösenlechner and Beetz, 2009] or more
generic projection mechanisms can be plugged in.
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The projection rules are implemented as computables for the postActors relation, which makes
the projection transparent to the user, who just queries for the effects of an action. If they have
not yet been computed, they are generated on demand during the reasoning process by the im-
plementation of the computable, e.g. the rules shown before.

? - r d f _ t r i p l e ( p o s t A c t o r s , ’ put - mix - on - pan1 ’ , ? P o s t ) .

3.3.4.3 Reasoning about object transformations

The result of applying the projection methods is an object transformation graph like the one in
Figure 3.11 that describes how the involved objects are transformed by the actions in task. The
projection predicates assert the predicted outcome of the action and can further describe the input
in more detail (e.g. asserting that the objectActedOn is in fact an inputsDestroyed). Due to the
arrangement of the input and output properties in a hierarchy, one can query for the preActors or
postActors and get the results for all sub-properties since the rdf_has query predicate also takes
sub-properties into account.

? - r d f _ h a s ( ’ put - mix - on - pan1 ’ , p r e A c t o r s , ? P o s t ) .

? - r d f _ h a s ( ’ put - mix - on - pan1 ’ , p o s t A c t o r s , ? P o s t ) .

To track the changes made to an object over a sequence of actions, we defined the transformed-

Into predicate as a transitive relation that covers all modifications of objects, including destruc-
tion, creation, and transformation. It is defined via a computable as a relation between all spe-
cializations of the objectActedOn of an action and all of the outputs:

t r a n s f o r m e d _ i n t o ( ? From , ?To ) : -
( owl_has ( ? Event , t h i n g I n c o r p o r a t e d , ?From ) ;

owl_has ( ? Event , objectAddedTo , ?From ) ;
owl_has ( ? Event , i n p u t s D e s t r o y e d , ?From ) ;
owl_has ( ? Event , i npu t sCommi t t ed , ?From ) ;
owl_has ( ? Event , t r a n s f o r m e d O b j e c t , ?From ) ;
owl_has ( ? Event , objectRemoved , ?From ) ;
owl_has ( ? Event , o b j e c t O f S t a t e C h a n g e , ?From ) ;
owl_has ( ? Event , ou t p u t s R e ma i n i n g , ?From ) ) ,

( owl_has ( ? Event , o u t p u t s R e ma i n i n g , ?To ) ;
owl_has ( ? Event , o u t p u t s C r e a t e d , ?To ) ) .

Figuratively speaking, this relation steps over the action and directly links the inputs and outputs,
and due to its transitive definition, can create whole chains of transformation applied to an object.
It allows, for instance, to retrieve all ingredients of a product, or to explain into which other
objects an input object has been converted:

? - r d f _ t r i p l e ( t r a n s f o r m e d I n t o , ?From , ?To ) .
From = ’ pancake - dough1 ’ ,
To = ’ Baked1 ’ .
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3.4 Processes and their effects

In the previous section, we have discussed how to model the direct effects of actions. Actions
can also have indirect effects: When pouring liquid pancake dough into a hot pan, the direct
effect is that the dough is in the pan, while the transformation from a liquid dough into a solid
pancake is caused by an indirectly caused baking process. This process will only become active
if its preconditions are fulfilled. There are external preconditions, namely that there needs to be
a thermal connection between the dough and a heat source, as well as continuous preconditions,
namely that the heat source needs to be hot enough for the dough to bake. In general, processes
describe changes that happen in the world which are not directly and intentionally caused by an
action. Examples are the process of melting ice, or the process of dough being transformed into
cake by the surrounding heat. With our notion of processes we largely follow the Qualitative
Process Theory (QPT) by Forbus [Forbus, 1984], the standard work for qualitative reasoning
about processes.

The classical QPT only considers processes that happen more or less automatically because
their preconditions become true for some reason. Its focus is on physical processes in industrial
settings like the steam production in a boiler. In robotics, we are also strongly interested in the
interaction between actions and processes: Robots can actively change the state of the world and
either accidentally or intentionally start processes by their actions. Therefore, the representation
should both include the effects of processes into the prediction of the outcome of actions, and
support planning with processes, i.e. to perform an action in order to start a process.

Therefore, we extended the QPT representation in two ways: First, we added declarative de-
scriptions of the requirements and outputs of processes that the robot can use in a planning
context. These descriptions are very similar to the descriptions of the inputs and outputs of ac-
tions described in Section 3.3.4.1. Second, we included the process effect axioms into the action
projection procedure: Each time the robot predicts the effects of an action, it also checks whether
processes got started because their preconditions became true.
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3.4.1 Process ontology

Similar to action classes, we also arrange the classes describing processes in an ontology whose
upper part is visualized in Figure 3.13. In the upper half, the IntrinsicStateChangeEvents de-
scribe processes that mainly change the state of an object, e.g. if a device is switched on or
off (ChangingDeviceState) or if a container is open or closed (OpeningSomething/ClosingSome-

thing). This branch further comprises changes in temperature (HeatingProcess/CoolingProcess)
and resulting changes in the aggregate state. The lower part, subclasses of PhysicalEvent, de-
scribes processes that result in the creation, destruction, or a different arrangement of objects.
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Figure 3.13 Part of the ontology of processes. For better readability, we omitted some branches
of the ontology and did not fully expand the class hierarchy.

The process classes can be used like action classes in conjunction with the properties described
in Section 3.3.4.1 to declaratively describe the required inputs for the process to become active
and the outputs that are generated by the process. The limited expressiveness of description logics
prohibits a complete and exact description of the changes induced by a process (for example, the
lack of variables makes it hard to describe how a specific object is being changed using only pure
description logics). For this reason, we combine the declarative descriptions with the projection
rules described in the next sections.
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3.4.2 Process definition

We adopt the definition of processes from Forbus’ Qualitative Process Theory, which describes
a process as follows (see [Forbus, 1984], p.105):

1. “the individuals it applies to;

2. a set of preconditions [...];

3. a set of quantity conditions [...];

4. a set of relations the process imposes beween the parameters of the individuals, along with
any new entities that are created;

5. a set of influences imposed by the process on the parameters of the individuals.”

The preconditions (2) are thereby external circumstances, not described inside the QPT, that
need to be fulfilled for the process to become active, while the quantity conditions (3) are rela-
tions between the properties of the involved individuals that are part of the process theory. In a
baking process, for example, the thermal connection between some dough and a heat source is an
external precondition, while the relation of the temperatures (the temperature of the heat source
needs to be above the baking temperature of the dough) is described as quantity condition.

Like in the QPT, we represent qualitative relations between values (like larger than or smaller

than) instead of discretizing continuous values into concepts like Hot, VeryHot etc. First, those
discrete concepts are not very well-defined: For humans, touching something of 70 degrees
centigrade feels VeryHot, while this temperature may not even be Hot in the context of melting
metal. Apart from that, qualitative relations go well with computables, which can easily derive
them from numerical values.

3.4.3 Implementation

The representation of processes needs to provide a declarative description of the inputs and out-
puts as well as some procedural implementation that can be used for projection. The former
is realized using a light-weight representation of the inputs and outputs of a process in OWL,
which does not completely cover all effects, but is sufficient to enable some basic planning (e.g.
to search for a process that creates the desired effects). On the other hand, there are detailed
projection rules, written in Prolog, which are attached to the OWL class and which can be used
to predict the outcome of a process that operates on a concrete set of entities. The combination
of these two methods allows to search for suitable processes and to estimate their approximate
effects.
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Below is an example of a projection rule for a baking process. Like in QPT, it first describes the
external preconditions (namely that some dough is thermically connected to a heat source, list the
individuals that are changed (the dough), and describe the quantity conditions (the temperature
of the heat source needs to be above the baking temperature of the dough). If these conditions
are true, the process converts the Dough into some Baked, creates an instance of a BakingFood

process linking them, and assigns the current time as the start time of the process. We simplified
the QPT in several respects, for example by not yet looking at equivalence relations between
values (the relations slot is empty here). However, this is no general limitation; these aspects are
simply not yet implemented in the projection rules.

% Dough becomes Baked d u r i n g a ba k i ng p r o c e s s
p r o j e c t _ p r o c e s s _ e f f e c t s : -

% P r e c o n d i t i o n s ( o u t s i d e o f QP)
r d f _ t r i p l e ( t h e r m i c a l l y C o n n e c t e d T o , ?Dough , ? Hea tSource ) ,

% I n d i v i d u a l s changed i n t h e p r o c e s s
o w l _ i n d i v i d u a l _ o f ( ? Dough , ’ Dough ’ ) ,

% Q u a n t i t y C o n d i t i o n s ( p r e r e q u i s i t e s f o r t h e p r o c e s s t o be a c t i v e , i n s i d e o f QP)

% r e a d t e m p e r a t u r e o f t h e dough ; d e f a u l t t o 20 deg
( ( r d f _ t r i p l e ( t e m p e r a t u r e O f O b j e c t , ?Dough , ?TempDough ) ,

t e rm_ to_a tom ( ? TDterm , ?TempDough ) ) ;
? TDterm=20 ) ,

% r e a d t e m p e r a t u r e o f t h e h e a t s o u r c e o b j e c t ; d e f a u l t t o 20 deg
( ( r d f _ t r i p l e ( t e m p e r a t u r e O f O b j e c t , ? HeatSource , ? TempHeatSource ) ,

t e rm_ to_a tom ( ? THSterm , ? TempHeatSource ) ) ;
? THSterm=20 ) , ! ,

? TempBaked = 120 ,
? THSterm > ?TempBaked ,
? THSterm > ? TDterm ,

% R e l a t i o n s ( p r o p o r t i o n a l i t y , newly g e n e r a t e d i n s t a n c e s l i k e gas o r a f low r a t e )
% none

% I n f l u e n c e s o f t h e p r o c e s s on t h e i n d i v i d u a l s
r d f _ i n s t a n c e _ f r o m _ c l a s s ( ’ BakingFood ’ , ?Ev ) ,
r d f _ i n s t a n c e _ f r o m _ c l a s s ( ’ Baked ’ , ? Res ) ,

r d f _ a s s e r t ( ? Ev , i n p u t s D e s t r o y e d , ?Dough ) ,
r d f _ a s s e r t ( ? Ev , o u t p u t s C r e a t e d , ? Res ) ,

% remove r e f e r e n c e s t o t h e Dough ( s p a t i a l r e l a t i o n s )
u n l i n k _ o b j e c t ( ? Dough ) ,

g e t _ t i m e p o i n t ( ?NOW) ,
r d f _ a s s e r t ( ? Ev , s t a r t T i m e , ?NOW) .

To facilitate reasoning about temperatures, we defined some default temperature values that
cover most cases in kitchen activities. Specifying the exact temperature for each object is usually
not feasible, but few approximate values are already sufficient for many tasks: On the one hand,
we specify the workingTemperatures of the most important heating and cooling devices, namely
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the refrigerator (+5°C), the freezer (-18°C), the oven (+180°C), a hot plate (+150°C) and the
pancake maker (+150°C). On the other hand, the system knows the minTempForProcess and
maxTempForProcess for some relevant processes: Water-like substances freeze at about 0°C,
boil at about +100°C, and most dough starts to bake at around +120°C. The default temperature,
which is used if no temperature is specified for an object, is set to 20°C.

3.4.4 Relation to actions

The original QPT does not deal with actions, but only considers processes that take place as a
natural consequence of a given situation, e.g. a boiler heating up and producing steam. In a
robotics context, however, it is crucial to take intentional actions into account, and to include the
results of processes when reasoning about the consequences of actions.

We thus extended the QPT and combined it with our action representation. We regard pro-
cesses as something that can be triggered as a side-effect of an action, in that the direct effects
of an action make the processes’ preconditions or quantity conditions true and thereby start it.
The computation of process effects is realized as part of the action projection procedure: Having
computed the direct effects of an action, the method calls the generic process projection predicate
to check whether any processes became active.

In a planning context, the knowledge about processes can also be used to perform actions
with the intention of starting a process that achieves a certain result. Actions and processes are
both events that, given some preconditions are true, produce a certain output. Therefore, the
planning system can handle them in a very similar way, with the distinction that actions need to
be actively performed by the robot, while processes start automatically once their preconditions
become true.

Forbus also described an extension of the QPT to include actions into the predictions [For-
bus, 1988]: The system computes “action-augmented envisionments” by considering actions as
changes in the background assumptions made by the QPT (the prerequisites and quantity condi-
tions). This view on actions is somewhat different from ours: Actions are seen as something that
influences processes, while we rather see processes as side-effects of actions. His representation
also does not cover the planning aspect to determine which actions to perform in order to achieve
the desired effect via processes.
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3.4.5 Planning with actions and processes

In this section, we describe in more detail how the completion of action sequences, i.e. the
planning using both actions and processes, works. Since the requirements of processes and the
inputs of actions are described using the same properties, they can be handled equivalently. In the
following, especially in the predicate names, we often refer to ’actions’ when we mean ’actions
and processes’. We will first introduce some predicates for reading the in- and outputs of an
action or process and for checking whether a resource is available on the robot (i.e. if there is an
instance of the respective kind in the knowledge base that has not yet been destroyed). Missing
inputs are defined as inputs that are not available in the knowledge base at the current point in
time.

a c t i o n _ i n p u t s ( ? Act ion , ? I n p u t ) : -
c l a s s _ p r o p e r t i e s ( ? Act ion , p r e A c t o r s , ? I n p u t ) .

a c t i o n _ o u t p u t s ( ? Act ion , ? Outpu t ) : -
c l a s s _ p r o p e r t i e s ( ? Act ion , p o s t A c t o r s , ? Outpu t ) .

a c t i o n _ m i s s i n g _ i n p u t s ( ? Act ion , ? Miss ing ) : -
f i n d a l l ( ? Pre , ( a c t i o n _ i n p u t s ( ? Act ion , ? Pre ) ,

\+ r e s o u r c e _ a v a i l a b l e ( ? Pre ) ) , ? Mis s ing ) .

On top of these basic query predicates, one can perform more advanced reasoning to infer
if missing inputs of an action can be provided by adding (a sequence of) other actions. The
add_subactions_for_action predicate succeeds if either there are no missing inputs, in which case
the action is immediately feasible, or if it can find a sequence of actions that, starting from the
currently available set of objects, can generate the missing inputs. The implementation iterates
over all members of the list of missing inputs and calls the resource_provided_by_actionseq pred-
icate to see whether they can be generated by a sequence of actions. The resource_provided_by_

actionseq predicate first tries to find actions that produce the desired output and then verifies their
feasibility by calling add_subactions_for_action again for this sub-action.

a d d _ s u b a c t i o n s _ f o r _ a c t i o n ( ? Act ion , [ ] ) : -
a c t i o n _ m i s s i n g _ i n p u t s ( ? Act ion , [ ] ) , ! .

a d d _ s u b a c t i o n s _ f o r _ a c t i o n ( ? Act ion , ? SubAc t ions ) : -
a c t i o n _ m i s s i n g _ i n p u t s ( ? Act ion , ?Ms ) ,
s e t o f ( ? Sub , ( ( member ( ?M, ?Ms ) , r e s o u r c e _ p r o v i d e d _ b y _ a c t i o n s e q ( ?M, ? Sub ) ) ; f a i l ) , ? Subs ) ,
f l a t t e n ( ? Subs , ? SubAc t ions ) .

r e s o u r c e _ p r o v i d e d _ b y _ a c t i o n s e q ( ? Resource , [ ? SubAc t ions | ? SubAct ion ] ) : -
a c t i o n _ o u t p u t s ( ? SubAction , ? Resource ) ,
a d d _ s u b a c t i o n s _ f o r _ a c t i o n ( ? SubAction , ? SubAc t ions ) .

The predicate for planning which additional actions to perform in order to generate the inputs
required for an action can be combined with the projection methods to complete whole action
sequences. The integrate_additional_actions predicate iterates over the sequence of actions and
first makes sure that all inputs of the current action are available by calling the add_subactions_
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for_action predicate. If this first step is successful, the procedure computes the effects of the
current action to predict the world state after its execution and continues the completion with
the next action in the sequence. The projection step is required because to correctly evaluate the
queries for available resources for the following actions, including those resources that have been
generated by earlier actions.

i n t e g r a t e _ a d d i t i o n a l _ a c t i o n s ( [ ] , [ ] ) .
i n t e g r a t e _ a d d i t i o n a l _ a c t i o n s ( [ ?A | ? ActSeq ] , ? R e s u l t A c t S e q ) : -

a d d _ s u b a c t i o n s _ f o r _ a c t i o n ( ?A, ? AddAct ions ) ,
p r o j e c t _ a c t i o n _ c l a s s ( ?A, _ , _ ) , ! ,
i n t e g r a t e _ a d d i t i o n a l _ a c t i o n s ( ? ActSeq , ? Res tAc tSeq ) ,
append ( ? AddActions , [ ?A] , ? R e s u l t A c t S e q 1 ) ,
append ( ? Resu l tAc tSeq1 , ? RestActSeq , ? R e s u l t A c t S e q ) .
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3.5 Robots and their capabilities

Self-models are a very important source of information for autonomous robots: Based on these
models, they can determine which components they consist of and which capabilities they have
in oder to decide if they will likely be able to perform a certain action. In the context of the
pancake scenario, the robot needs information about its capabilities, especially in terms of object
recognition. Robots also need this ability when they are to autonomously acquire new tasks,
for example from task instructions found on web sites (as described in Section 4.1). Also when
they exchange information, they need to check whether the information another robot sends
can actually be used (see Section 6.3 for more information). Another example is a multi-robot
scenario in which the distributions of actions in a task depends on the robots’ capabilities. In all
of these cases, the robot has to decide whether it thinks it can execute an action or if important
components are missing.

Today’s robot description formats like the commonly used URDF3 already describe the kine-
matics and dynamics of a robot and allow to specify a collision model as well as a surface model
for visualization purposes. What they are lacking is a description of the robot’s semantics: Which
of the components are sensors, which group of components forms a hand? [Kunze et al., 2011b]
recently presented the Semantic Robot Description Language (SRDL) as a semantic extension
of these languages. SRDL allows to semantically describe the components of a robot and to
match them against the requirements of an action in order to check if something is missing. They
introduce the notion of Capabilities as an intermediate layer between Actions and a robot’s Com-

ponents. Capabilities describe that a robot is able to perform an action, and can depend either
on other capabilities (so-called CompositeCapabilities) or on components (as PrimitiveCapabili-

ties). Since there are often different ways how a capability can be realized, the additional concept
of a CapabilityProvisionAlternative is introduced.

We adopted some of these concepts and extended the system to better suit our requirements.
Our main use case is the autonomous exchange of knowledge about tasks, objects, and environ-
ments between robots which is described in more detail in Section 6.3. Since the robots are to
act autonomously and exchange descriptions of real-world tasks, we require the representation
language to be on the one hand very expressive, and on the other hand easy to use, so that de-
scriptions of new robots or new tasks can easily be created. To meet the challenges posed by this
scenario, we had to extend the system in several respects:

3http://www.ros.org/wiki/urdf
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Figure 3.14 Overview of the different sub-ontologies of the SRDL2 language. The modular
design allows to use only parts of the system, for example to describe only the hardware compo-
nents of a robot.

Generality: We dropped the distinction between primitive capabilities, which can only have
dependencies on components, and composite capabilities, which can only depend on other capa-
bilities, in favor of a more flexible scheme in which actions, capabilities and components can all
depend on components, and both actions and capabilities may have dependencies on capabilities.

Composability and modularity: In order to keep the descriptions of actions short, require-
ments can now be specified at a coarse level of granularity (e.g. that all actions involving arm
motion depend on an ArmComponent), and are inherited by all derived action classes. The de-
scriptions of components, capabilities and actions have been separated in order to facilitate the
description of robots and actions, and to keep the system as modular as possible. Figure 3.14
shows the dependencies between the different parts of the ontology:

• srdl2: Generic relations like the dependsOn property

• srdl2-comp: Classes describing hardware and software components, and properties for the
composition of components and their aggregation to kinematic chains,

• srdl2-cap: Classes of capabilities, including their dependencies on components or other
capabilities

• srdl2-action: Dependency specifications for common action classes
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• Robot model: Description of a concrete robot instance including its kinematic structure
(auto-generated from URDF file using the tool by [Kunze et al., 2011b]), other hardware-
and software components as well as capabilities the robot is asserted to have

• Task model: Description of the task at hand using the action classes defined in the srdl-

action ontology

Expressiveness of requirement specifications: Often, it is not sufficient to define a depen-
dency on a component of a certain class, but one needs to describe its properties in more detail,
like the minimum resolution of a sensor, or the object class that an object recognition model can
recognize. Such dependencies can now be described using OWL restrictions and are checked
during the inference process.

Simplicity: To be practically usable, creating a description of a new robot should be as little
effort as possible, and task instructions should ideally be free of anything else than the description
of the involved actions. This allows, for example, to use the system for checking the capability
requirements of task instructions that have been autonomously generated from web sites (see
Section 4.1). We thus replaced the CapabilityProvisionAlternatives with simple sub-classes of
capabilities (which they effectively are), and made full use of OWL features like transitivity and
sub-properties to simplify the descriptions.

3.5.1 Robot components

In contrast to [Kunze et al., 2011b], we do not distinguish any more between robots and com-
ponents. First, this makes the inference easier, and second, it also makes sense from a semantic
point of view: Many of today’s mobile manipulation platforms are assembled from components
that can also be used as standalone robots, e.g. the arms and the robot’s base.

3.5.1.1 Hardware components

Like in the original SRDL, the robot’s hardware is, on the lowest level, described in terms of
links and joints that can be imported from a URDF description (Figure 3.15 left). These links
and joints can be composed to semantic components like arms and hands, assigning meaning to
them (Figure 3.15 right). This association has to be done manually, see [Kunze et al., 2011b] for
details.

78



3.5. ROBOTS AND THEIR CAPABILITIES

Figure 3.15 Common robot descriptions cover the kinematic and dynamic aspects (left) as well
as surface models of a robot (center). A semantic robot description further adds information
about the meaning of the different robot parts (right).

Some of the links may correspond to sensors: In these cases, we can assign an additional type
to this link and assert that it is, in fact, a camera or a laser scanner. Especially for those sensors
that perceive the outer world, it is important to know their type as well as their pose, for example
to compute if a robot can see an object from a certain position, or to provide the robot with a
custom map that fits the pose of its laser scanners. Sensors are often mounted on moving parts of
the robot, like a pan-tilt unit. In these cases, their poses need to be determined during run-time
based on the ID of the sensor’s coordinate frame (which is part of the SRDL description).

3.5.1.2 Software components

Many of a robot’s capabilities are determined by the software it runs. Including software compo-
nents into the matching process is especially interesting since the robot can react on a negative
result and try to retrieve the missing components somehow. While missing hardware compo-
nents mean that an action can definitely not be performed, an unmet dependency on a software
component can often be fixed by starting a program or downloading additional information. Im-
portant examples of software components are object recognition models (Section 3.2.1.2), which
are required by all kinds of actions that somehow interact with objects, and environment models,
which are crucial for navigation and for locating objects in the environment (Section 3.2.4).
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3.5.1.3 Realization

We re-arranged all properties for describing relations between components to be specializa-
tions of the subComponent property, for example the successorInKinematicChain and its sub-
properties succeedingLink and succeedingJoint. This facilitates querying for subcomponents
without having to take their types or the exact kind of link into account. The subComponent

property is also transitive, allowing to obtain all subsequent components with a single query.
Robots are considered to be complex components, so all components of a robot can be retrieved
by asking for sub-components of the robot instance:

? - sub_component ( ’ TUM_Rosie1 ’ , ? Sub ) .
Sub = ’ TUM_Rosie_WheeledOmnidirPlatform1 ’ ;
Sub = ’ TUM_Rosie_Torso1 ’ .

The availability of a component of a certain type on a given robot (or, in general, as part of
another component) can be checked using the comp_type_available predicate:

? - c o m p _ t y p e _ a v a i l a b l e ( ’ TUM_Rosie1 ’ , ?CompT ) .
CompT = ’ V e c t o r F i e l d A r m C o n t r o l l e r ’ ;
CompT = ’ Ar m Mo t i on Co n t r o l l e r ’ ;
CompT = ’ M o t i o n C o n t r o l l e r C o m p o n e n t ’ ;

3.5.2 Robot capabilities

There are three possibilities to express that a capability is available on a robot: Either it is asserted
to be available for the whole class of robots, for a specific robot instance, or it can be concluded
that the capability should be available because all specified dependencies are fulfilled. Capability
dependencies can be described using OWL restrictions that do not only specify the type of a
required component or capability, but can further specify the required properties in more detail.

% c a p a b i l i t y a s s e r t e d f o r r o b o t i n s t a n c e
c a p _ a v a i l a b l e _ o n _ r o b o t ( ? Cap , ? Robot ) : -

c l a s s _ p r o p e r t i e s ( ? Robot , h a s C a p a b i l i t y , ?Cap ) .

% c a p a b i l i t y a s s e r t e d f o r r o b o t c l a s s
c a p _ a v a i l a b l e _ o n _ r o b o t ( ? Cap , ? Robot ) : -

r d f s _ i n d i v i d u a l _ o f ( ? Robot , ? R o b o t C l a s s ) ,
c l a s s _ p r o p e r t i e s ( ? RobotClass , h a s C a p a b i l i t y , ?Cap ) .

% c a p a b i l i t y depends on ly on a v a i l a b l e components o r c a p a b i l i t i e s
c a p _ a v a i l a b l e _ o n _ r o b o t ( ? Cap , ? Robot ) : -

r d f s _ s u b c l a s s _ o f ( ? Cap , ’ C a p a b i l i t y ’ ) ,

f o r a l l ( c l a s s _ p r o p e r t i e s ( ? Cap , dependsOnComponent , ?CompT ) ,
c o m p _ t y p e _ a v a i l a b l e ( ? Robot , ?CompT) ) ,

f o r a l l ( c l a s s _ p r o p e r t i e s ( ? Cap , d e p e n d s O n C a p a b i l i t y , ? SubCap ) ,
c a p _ a v a i l a b l e _ o n _ r o b o t ( ? SubCap , ? Robot ) ) .
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3.5.2.1 Dynamic computation of capabilities

Which capabilities are actually available on a robot often depends on the current situation, e.g.
which software modules are started. In the original SRDL implementation, the capabilities of
a robot were either statically asserted, or the system could infer a capability to be available if
it did not have any unmet dependencies. We extended the system by adding a third alternative:
computing the currently available capabilities using computables.

The computables read information from the robot’s communication middleware to determine
which software packages are started and which services are available. We extended the descrip-
tion of capability classes with sets of indicators that can be used to check whether the respective
capability can be assumed to be available. In the ROS middleware, for example, the actionlib

interface4 provides an abstraction layer that allows to easily check if certain kinds of capabili-
ties are offered. If for instance the move_base action is available, one can assume that the robot
has the capability to move in 2D while avoiding obstacles, and include this capability into the
reasoning process.

Apart from a more flexible adaptation to changing software configurations, this system has
the additional advantage that the setup of a new robot that uses standard software components
becomes much easier: The robot’s URDF description can be converted automatically, many
higher-level capabilities can be inferred from the software infrastructure. Obviously, this requires
the system to know the kind of software running on the robot, but since there is a trend towards
using standard software for common skills like navigation, this will become less and less of a
problem.

3.5.3 Action requirements

To check whether an action can be performed, its prerequisites need to be made explicit in a
way that they can be checked against the robot’s capabilities. In our system, actions can both
depend on capabilities (like an object recognition capability) and on specific components (like
an object recognition model for the specific kind of object that an action interacts with). Action
requirements are usually specified on the most abstract level possible, for instance for the whole
class of arm movements which all depend on some ArmComponent. Plans, on the other hand,
will normally be described using more specific action classes that are derived from these generic
ones and inherit their requirements. Therefore, the description of the plan can focus on the
description of the action itself and does not have to deal with specifying the requirements. The

4http://www.ros.org/wiki/actionlib
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set of capability dependencies of an action is composed of capabilities the action itself depends
on and the capability dependencies defined for any sub-action:

r e q u i r e d _ c a p _ f o r _ a c t i o n ( ? Act ion , ?Cap ) : -
c l a s s _ p r o p e r t i e s ( ? Act ion , d e p e n d s O n C a p a b i l i t y , ?Cap ) .

r e q u i r e d _ c a p _ f o r _ a c t i o n ( ? Act ion , ?Cap ) : -
p l a n _ s u b e v e n t s _ r e c u r s i v e ( ? Act ion , ? SubAct ion ) ,
c l a s s _ p r o p e r t i e s ( ? SubAction , d e p e n d s O n C a p a b i l i t y , ?Cap ) .

Component dependencies of an action can either be described directly for the action, or indirectly
via capabilities that are required for the action and which depend on some components. They
can be queried using

? - r e q u i r e d _ c o m p _ f o r _ a c t i o n ( ’ T a b l e S e t t i n g ’ , ?Comp ) .
Comp = ’ Mobi leBase ’ ;
Comp = ’ Ar mM ot i on Co n t ro l l e r ’ ;
Comp = ’ ArmComponent ’ ;

Like capabilities, action requirements can also be computed automatically: Assuming that a
robot needs a method to recognize each object it manipulates, a dependency on a suitable object
recognition model can be added to each action.

3.5.4 Matching requirements to capabilities

Using the methods described in the previous sections, the system can determine which capa-
bilities and which components are available, and by comparing them to the requirements of an
action, determine which ones are missing for the action to be executable. A missing capability is
thus defined as one that is required by an action, but not provided by the robot:

m i s s i n g _ c a p _ f o r _ a c t i o n ( ? Act ion , ? Robot , ?Cap ) : -
r e q u i r e d _ c a p _ f o r _ a c t i o n ( ? Act ion , ?Cap ) ,
\+ c a p _ a v a i l a b l e _ o n _ r o b o t ( ? Cap , ? Robot ) .

Missing dependencies can be queried using
? - m i s s i n g _ c a p _ f o r _ a c t i o n ( ’ T a b l e S e t t i n g ’ , ’ TUM_Rosie1 ’ , ?Cap ) .
Cap = ’ P u t t i n g D o w n A n O b j e c t C a p a b i l i t y ’ ;
Cap = ’ P i c k i n g U p A n O b j e c t C a p a b i l i t y ’ ;

? - m i s s i n g _ c o m p _ f o r _ a c t i o n ( ’ T a b l e S e t t i n g ’ , ’ TUM_Rosie1 ’ , ?Comp ) .
f a l s e .

Missing capabilities can often be provided by launching a software program, e.g. for object
recognition, while missing software components can sometimes be downloaded from the Web
(see Section 6.3).
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3.6 Discussion and related work

In this chapter, we described our representations of actions, events, objects, environments and
robot components and will now discuss how they relate to other methods in the literature. Al-
ready decades ago, projects like Cyc [Lenat, 1995] or SUMO [Niles and Pease, 2001] started
to collect encyclopedic knowledge on a large scale in order to build a general upper ontology.
To this end, researchers manually encoded very large amounts of knowledge in a machine-
understandable format, usually variants of first-order logic. Recent efforts tried to automate
the construction of knowledge bases by extracting encyclopedic knowledge from sources like
Wikipedia [Wu and Weld, 2007; Suchanek et al., 2007], mainly focusing on already structured
pieces of information such as categories and info-boxes. However, the knowledge bases mainly
contain information about people and historic events and are thus not directly useful for robot
manipulation tasks.

Cyc and SUMO have become huge, covering a wide range of phenomena. However, this
increase in size came at a cost: Inference became rather slow, and ambiguities were created by
adding knowledge – much of which a robot will never use. For example, “center” will mostly be
meant as a spatial concept in a household robot context, not as a position in American Football.
So neither Cyc nor SUMO are specialized for robotics, but were developed with the intention
of understanding texts. For robot applications, it is thus often desirable to have less broad but
deeper knowledge of the domain the robot is working in, like descriptions of different grasps
or the concept of a “manipulation position” as the location where the robot should stand to
manipulate objects.

In addition to the required knowledge, robots also need appropriate representations and rea-
soning methods for temporal reasoning, projection, and change modeling. Work coming from
the area of knowledge representation, using robotics as application scenario, is unfortunately
often over-formalized while lacking features needed in real-life scenarios: [Thielscher, 2000],
for example, does not support any temporal reasoning, no detailed spatial representations, and
neither information about object types nor about processes in the environment.

This was the motivation to develop specialized knowledge bases for autonomous robots, like
KNOWROB or ORO [Lemaignan et al., 2010]. In KNOWROB, we integrate solutions from many
areas into a coherent, implemented system. The upper ontology is partly taken from Cyc [Lenat,
1995], which emerged as quasi-standard, was extended with robotics-specific concepts and partly
adapted to the limited expressiveness of description logics, our underlying representation for-
malism. The description logics way of representing knowledge in terms of classes and instances
allows to separate between general principles and entity-specific information, with clear seman-
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tics for the instantiation of a concept, for object instances as well as for actions and processes.
These representations have been combined with powerful spatio-temporal representations and
reasoning methods. Procedural attachments compute qualitative spatial and temporal relations.
The temporal relations are realized according to Allen’s interval calculus [Allen, 1983].

Object poses, the object properties that are changing most frequently in mobile manipulation,
are represented by the event that created the robot’s belief. Compared to similar approaches like
the Fluent calculus [Thielscher, 1998], our representation carries additional information like the
types of the “fluent” instances. This allows to further interpret the information, and also grace-
fully handles the description of multiple possible worlds in a single knowledge base. Describing
different world states that are the results of different perception or prediction methods is possible
without causing conflicts in the knowledge base.

The changes in object poses described before do not affect the objects by themselves: The
objects remain the same, only their location changes. More substantial changes to objects can
however happen, especially in the context of cooking activities, and are described using the
actions or processes that induced these changes. This representation can describe the creation,
destruction, aggregation and modification of objects in relation to the respective actions and
processes. The methods for modeling processes are strongly inspired by the Qualitative Process
Theory [Forbus, 1984], which we extended with actions as goal-directed intentional activities.

The action representation as hierarchical partially-ordered plans with prerequisites, effects,
and temporal information is powerful enough to describe many real-world everyday activities,
and is more expressive than for example STRIPS [Fikes and Nilsson, 1971] and rather related to
hierarchical task network representations [Erol et al., 1994].

The description of inputs and outputs, however, is somewhat limited by the capabilities of
OWL, and could be improved. Especially the lack of variables in description logics prevents the
detailed description of the changes an action causes to the involved objects. This limitation has
been overcome by the two-fold representation combining OWL descriptions with effect axioms
in Prolog. These projection methods are still quite simple and mainly intended to be used in
some very coarse-grained projection. They do however provide a well-defined interface to more
sophisticated inference engines, for example using physical simulation [Kunze et al., 2011a], to
predict the effects of actions with higher accuracy.

Since the representation of change is crucial for robots acting in real-world environments, we
conclude with a discussion of the general properties of our approach. [Shoham, 1985] discusses
which requirements a representation of change needs to fulfill and coined them into ten main
properties – all of which are realized in KNOWROB or can be added with limited effort.
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• Interval semantics: KNOWROB represents time in terms of intervals and supports reason-
ing about them.

• Continuous change: At the moment, continuous changes like a slowly filling container
or the motion of an object are not explicitly represented. They could, however, be handled
by the projection rules as well as by an a-posteriori analysis that interpolates between
observations, for example of different poses of a moving object.

• No inter-frame problem: The question which parts of the world state change when per-
forming an action is addressed by making the persistence assumption (the world remains
static unless we conclude otherwise). Side-effects like changes in qualitative spatial rela-
tions induced by moving an object are avoided by computing these relations on demand
based on the object’s current position.

• Concurrent actions: There is no restriction preventing concurrent actions.

• No intra-frame problem: This problem refers to the influences of concurrent actions on
each other. If two actions are performed on the same object, they can modify or annihilate
the effect of the respective other action. Taking such side-effects into account is possible
by checking for them in the action projection rules.

• Suppressed causation: Events that end without any apparent reason or that start at some
later time, seemingly not directly triggered by an action, can be caused by incomplete
knowledge about the processes taking place. They can be described and predicted by the
projection rules.

• Possible worlds: The representation based on MentalEvents allows to describe multiple
worlds like the results of different projection methods, the current and past world states,
planned states etc. Since all of them are described in the same system, they can be com-
pared inside KNOWROB, and can even be mixed to describe that an object is perceived at
one location and intended to be somewhere else.

• No cross-world identification problem: This problem does not apply since KNOWROB

represents different projected worlds inside the same system.

• Modularity: Adding new laws of change is easily realized by providing additional projec-
tion rules for actions and processes. Their results are combined with those the older rules
generated.

• Computational framework: KNOWROB exists as implemented computational frame-
work, including the methods for representing changes, for building up these representa-
tions based on the information the robot perceives, and for performing reasoning on these
structures.
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Chapter 4

Knowledge acquisition from the WWW

Figure 4.1 Performing complex tasks like mak-
ing pancakes requires a lot of knowledge. In this
section, we present some approaches to acquire
such knowledge from public web resources.

Skillfully performing everyday manipulation
tasks like setting a table, doing the dishes, or
cooking simple meals is highly challenging
for autonomous robots and proved to be an ex-
tremely knowledge-intensive problem. Solv-
ing these problems means to scale the capabil-
ities of today’s robots in several dimensions:
the number of tasks to perform, the parame-
ters of actions (like different grasps to be used
in different circumstances), the number of ob-
jects and required knowledge about their prop-
erties, and the necessary knowledge about the
environment, to just name a few.

The classical approach to solving such
robot tasks is to generate a plan as a sequence
of atomic actions which leads from the initial state to the goal state, taking the prerequisites and
effects of the actions into account. The more complex a task is, the more difficult this gets: For
common household activities, both the start and goal state are underspecified, there is no com-
plete description of the prerequisites and effects of actions, and often, the mere generation of a
sequence of actions is not sufficient, but more complex control structures including parallelism,
timing etc. are needed.

Instead of generating a plan in this way, web-enabled robots can simply look up the appropriate
courses of action on the web, making use of websites like wikihow.com. After having read the
instructions and transformed them into a plan, the robot must find the ingredients and tools to
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perform the task. To do so, it can use other websites such as online shops to find out how an
object looks like. The robot also has to know the properties of these objects, e.g. if they are
perishable, in order to decide where to search for them or how to handle them. Such information
can also be found on the web, often on the same page as the product picture.

The web thus provides plenty of knowledge a robot can use to accomplish everyday tasks:
ehow.com and wikihow.com contain thousands of step-by-step instructions for everyday activi-
ties like cracking and separating an egg, cooking different types of omelets, etc: about 92,000 on
wikihow.com and even more than 1.5 million articles on ehow.com. Lexical databases like word-

net.princeton.edu group verbs, adverbs and nouns semantically into sets of synonyms (synsets),
which are linked to concepts in encyclopedic knowledge bases like opencyc.org. These en-
cyclopedic knowledge bases, which are represented in a variant of first-order logic, contain
an abundance of knowledge about concepts such as eggs. They can inform the robot about
the nutrition facts of eggs or tell it that eggs are products of birds and fish. However, they
typically lack action-related information, e.g. the information that eggs can break easily and
that they should be cooked or baked before consumption. This kind of knowledge is avail-
able at other websites such as the OpenMind Indoor Commonsense website (openmind.hri-

us.com). But the web does not only contain knowledge about object usage, a robot could also
retrieve appearances of objects (images.google.com, germandeli.com) and even geometric mod-
els (sketchup.google.com/3dwarehouse).

The following sections describe how robots can make use of these sources of knowledge, in
particular how they can translate natural-language task instructions into executable robot plans,
and how they can automatically generate large ontologies from information found on online
shopping websites.

In the context of the pancake scenario, the work presented in this chapter serves for generating
the initial, incomplete task descriptions that is used as a starting point to generate an effective
robot plan. The object information derived from on-line shopping websites can then be used to
generate missing object models, and to reason about storage locations of objects that need to be
retrieved.
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4.1 Task instructions from the WWW

In this section, we will present our approach to translating natural-language task instructions into
formal representations that can be used by the robot. The resulting formal task descriptions need
to be completed by adding missing actions, missing object information, and by inferring the right
action parameters as described in the other sections. The different steps from the instruction in
natural language to an executable plan are in the following explained using the example sentence
“Place the cup on the table”. Figure 4.2 explains the structure of our system, which is also
described in [Tenorth et al., 2010b].
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word
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N13619168,...
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N04379243

Figure 4.2 Overview of the import procedure for natural-language task instructions. After de-
termining the syntactic structure, the system resolves the meaning of the words and builds up a
formal task representation which can afterwards be transformed into an executable robot plan.

4.1.1 Semantic parsing

The first step after obtaining the natural-language instructions from the web site is to deter-
mine the parts of speech and the sentence structure using a natural-language parser. We employ
the Stanford parser, an open-source Probabilistic Context Free Grammar (PCFG) parser [Klein
and Manning, 2003], to perform the part-of-speech tagging and to generate the syntax tree (see
Figure 4.3 left). Starting from this syntax tree, increasingly complex semantic concepts are gen-
erated in a bottom-up fashion using transformation rules similar to the approach in [Kate et al.,
2005].
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The leaves of the parse tree are words Word(label, pos, synsets), consisting of a label, a part-
of-speech (POS) tag and the synsets they belong to (see Section 4.1.2). Examples of POS tags are
NN for a noun, JJ for an adjective or CD for a cardinal number. In the following, an underscore
denotes a wildcard slot that can be filled with an arbitrary value.

Words can be accumulated to more complex structures, for example to quantifiers Quant(

Word(_,CD,_),Word(_,NN,_)) consisting of a cardinal number and a unit, or to objects Obj(

Word(_,NN,_),Word(_,JJ,_), Prep, Quant) that are described by a noun, an adjective, preposi-
tional statements and quantifiers. A prepositional phrase contains a preposition word and an
object instance Prep(Word(_,IN,_),Obj), and an instruction is described as Instr(Word(_,VB,_),

Obj, Prep, Word(_,CD,_)) with a verb, objects, prepositional postconditions and time constraints.

This approach allows to represent complex relations like “to the left of the top left corner of
the place mat” by recursively combining these elements. Figure 4.3 exemplarily shows how the
parse tree is translated into two Obj instances, one Prep and one Instr.

i1

o2 p1

o1
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VB NP

IN NP

DT NN

DT NN

PP

Place

the cup on

the table

i1 = Instr ( 
Word ( “Place“, VB, 01452069, 02321167, …),
{ o2 },
{ p1 },
null)

p1 = Prep ( 
Word ( “on“,   PP, …), 
{ o1 } )

o1 = Obj ( 
Word ( “table“,    , 07766677, 04209815, …),

, 
null)

o2 = Obj (
Word ( “cup“,  , 12852875, 12990335, …),

NN
null

null)
null

NN
,

Figure 4.3 Parse tree for the sentence “Place the cup on the table” (left) and the resulting data
structures representing the instruction that are created as an intermediate representation by our
algorithm (right).

In an automatic post-processing of the generated data structures, object names consisting of
multiple words (like “stove top”), phrasal verbs (like “turn on”), and pronominal anaphora (ref-
erences using pronouns like “it”) are resolved. Currently, we assume that “it” always refers to
the last mentioned object, which proved to be a sensible heuristic in most cases. The system also
handles conjunctions and alternative instructions (“and”, “or”), negations, and sentences starting
with modal verbs like “You should...”, as long as the remainder of the sentence is an imperative
statement. The slight difference in meaning presented by the modal verbs cannot be represented
in the robot plan language and is therefore currently ignored.
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4.1.2 Word sense retrieval and disambiguation

After this first processing step, the system has identified the structure of the instructions (i.e.
the described actions, objects, prepositions, and their relations), but the instructions are still
described using the original English words. The next step is to resolve their meaning by mapping
these words to the corresponding concepts in the knowledge base. This mapping procedure
combines the WordNet lexical database [Fellbaum, 1998] and the OpenCyc ontology [Matuszek
et al., 2006]. The concepts in the KNOWROB ontology are largely derived from OpenCyc, i.e.
they have the same identifiers and taxonomy, so the result of the mapping procedure can be used
to represent the instructions both in KNOWROB and OpenCyc.

The WordNet database assigns words to one or multiple “synsets”, corresponding to the differ-
ent meanings a word can have. For thousands of synsets, there exist mappings from the synset in
WordNet to the corresponding ontological concept in OpenCyc. “Cup” as a noun, for instance, is
part of the synsets N03033513 and N12852875, which are mapped to the concepts DrinkingMug

and Cup-UnitOfVolume respectively.
Most words are part of multiple synsets, so a word sense disambiguation method has to se-

lect one of them. We use a very simple algorithm that is based on the observation that the
word sense of the action verb is strongly related to the prepositions (e.g. “taking something
from” as TakingSomething up vs. “taking something to” as PuttingSomethingSomewhere). Let
concepts(w) be the set of ontological concepts to which the word w could be mapped. For a
single instruction (ai, oi, pi) consisting of an action verb ai, an object oi and a set of prepositions
pi ⊆ {on, in, to, from, of, next_to, with, without}, we are interested in the most probable pair
of concepts (Ai, Oi) ∈ concepts(ai) × concepts(oi). Because the most appropriate concept
for the action is, as mentioned above, largely dependent on the prepositions it co-occurs with,
whereas it is reasonable to assume that the object sense is independent of the prepositions given
the action sense, we compute the pair by maximizing

P (Oi, Ai | pi) = P (Oi|Ai) · P (Ai|pi)

∝ P (Oi, Ai)

P (Ai)
· P (Ai, pi) (4.1)

The required probability values appearing in the above formulas are determined based on a
manually annotated training set. If there is no statistical evidence about any sense of a word, the
algorithm chooses the meaning with the highest frequency rank in WordNet.
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4.1.3 Formal instruction representation

With the ontological concepts being resolved, the instructions can be formally represented by
creating the action description in KNOWROB that was introduced in Section 3.3. Action verbs
are translated into specializations of the corresponding action concept in the ontology, e.g. sub-
classes of PuttingSomethingSomewhere. These action classes are further described by restric-
tions generated from the rest of the instructions: Locations where an object shall be taken from
or where it shall be placed are described as restrictions on the fromLocation or toLocation. The
object that is to be manipulated is linked by the objectActedOn relation. Temporal constraints,
like waiting for a certain amount of time, are represented by the WaitForPredefinedTimeInterval

action with a specified duration.

This formal instruction representation can be used for reasoning about the robot’s capabilities
with respect to this task (Section 3.5), for exchanging task instructions (Section 6.3), or for
matching them against observed human behavior (Section 7.5). For executing the instructions on
a robot, they have to be converted into the robot’s plan language.

4.1.4 Plan generation

The imported instructions can be translated into plans in the CRAM Plan Language (CPL, [Beetz
et al., 2010a]). CPL is a language for programming cognition-enabled control systems which
includes data structures, primitive control structures, tools and libraries that are specifically de-
signed to enable and support mobile manipulation as well as cognition-enabled control. Besides
KNOWROB, CPL is the second main component of the CRAM (Cognitive Robot Abstract Ma-
chine) architecture.

CPL allows to describe abstract, high-level plans that are, during execution, decomposed into
smaller, lower-level plans. For being able to successfully execute tasks based on the imported
web instructions, the robot needs to have a library of plans for basic tasks like picking up objects
or navigating to a position inside the environment, which we assume to exist.

In CPL, objects and locations are described by designators, qualitative specifications which
are resolved during the plan execution. Designators do not directly reference specific objects in
the environment, but rather describe necessary properties an object needs to have. This approach
makes the plans more flexible because the robot can postpone the decision which objects to use
until they are finally needed, and take the decision based on all information that is available at
that moment. The designator concept also matches well with the action and object representation
in KNOWROB, where object and location properties are described by restrictions that are concep-
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tually similar to designators. The example sentence “Place the cup on the table” gets translated
into the following plan, which first defines the designators cup1, table1, and location1, and then
creates an achieve statement to specify that the loc of cup1 shall be location1.

( d e f - t o p - l e v e l - p l a n p u t - c u p - o n - t a b l e 1 ( )
( w i t h - d e s i g n a t o r s (

( cup1 ( an o b j e c t ’ ( ( t y p e cup ) ) ) )
( t a b l e 1 ( an o b j e c t ’ ( ( t y p e t a b l e ) ) ) )
( l o c a t i o n 1 ( a l o c a t i o n ‘ ( ( on , t a b l e 1 )

( o f , cup1 ) ) ) ) )
( a c h i e v e ‘ ( l o c , cup1 , l o c a t i o n 1 ) ) ) )

A more complex example are the following instructions for making pancakes. These instructions
have been used in the “making pancakes” demonstration during the CoTeSys workshop in Octo-
ber 2010 to show the system’s capability to make use of natural-language information from the
Web.

1. Take the pancake mix from the refrigerator

2. Pour the mix into the frying pan.

3. Wait for 3 minutes.

4. Flip the pancake around.

5. Wait for 3 minutes.

6. Place the pancake onto a plate.

In the resulting plan, the six commands have been translated into four achieve and two sleep

statements. Objects are described by their respective types, and locations relative to objects like
in the original instructions.

( d e f - t o p - l e v e l - p l a n ehow-make-pancakes1 ( )
( w i t h - d e s i g n a t o r s (

( r e f r i g e r a t o r 2 ( an o b j e c t ’ ( ( t y p e r e f r i g e r a t o r ) ) ) )
( l o c a t i o n 1 ( a l o c a t i o n ‘ ( ( i n , r e f r i g e r a t o r 2 )

( o f , mix fo rbakedgoods2 ) ) ) )
( mix fo rbakedgoods2 ( some s t u f f ‘ ( ( t y p e pancake -mix ) ( a t , l o c a t i o n 1 ) ) ) )

( c o o k i n g v e s s e l 2 ( an o b j e c t ’ ( ( t y p e pan ) ) ) )
( l o c a t i o n 2 ( a l o c a t i o n ‘ ( ( i n , c o o k i n g v e s s e l 2 )

( o f , mix fo rbakedgoods2 ) ) ) )

( pancake2 ( an o b j e c t ’ ( ( t y p e pancake ) ) ) )

( d i n n e r p l a t e 2 ( an o b j e c t ’ ( ( t y p e p l a t e ) ) ) )
( l o c a t i o n 0 ( a l o c a t i o n ‘ ( ( on , d i n n e r p l a t e 2 )

( f o r , pancake2 ) ) ) ) )

( a c h i e v e ‘ ( o b j e c t - i n - h a n d , mix fo rbakedgoods2 ) )
( a c h i e v e ‘ ( c o n t a i n e r - c o n t e n t - t r a n s f i l l e d

, mix fo rbakedgoods2
, l o c a t i o n 2 ) )

( s l e e p 180)
( a c h i e v e ‘ ( o b j e c t - f l i p p e d , pancake2 ) )
( s l e e p 180)
( a c h i e v e ‘ ( l o c , pancake2 , l o c a t i o n 0 ) ) ) ) )
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4.1.5 Plan debugging and optimization

As mentioned in the scenario description, the result of the instruction import procedure is not
yet an effective task description that contains all information needed for actually executing the
task. The natural-language instructions have been written by humans in a way that other humans
can understand them, which often means that information that seems obvious has been omitted.
Robots that are to execute these tasks need to detect and fill these gaps using different kinds
of knowledge: Common-sense knowledge bases provide information about missing parameters
or potential problems [Kunze et al., 2010], projecting the effects of actions using the methods
described in Section 3.3.4 or executing the plan in a physics simulation can indicate plan flaws
related to unexpected collisions [Mösenlechner and Beetz, 2009]. When such flaws are detected,
the robot can try to acquire the information by downloading missing object models or by includ-
ing missing actions into the plan. Section 7.3 describes in more detail how the different pieces
of knowledge and inference methods are combined to complete the task instructions.

4.1.6 Evaluation

We tested the implemented system on 88 instructions from a training set and another 64 from a
test set of howtos which are taken from ehow.com and wikihow.com1. Since many of the
errors are caused by the syntax parser, we evaluate the system both with automatically parsed
syntax trees and manually created ones in order to better show the performance of the other com-
ponents. For the training set, we manually added 72 missing mappings from WordNet synsets
to Cyc concepts; the test set was transformed without such manual intervention. We manually

1The complete training and test set can be downloaded from http://ias.cs.tum.edu/∼tenorth/icra10_ehow.txt

aut. parsed man. parsed
Training Set:
Actual Instructions 88 100% 88 100%
Correctly Recognized 59 67% 72 82%
False Negative 29 33% 16 18%
False Positive 4 5% 2 2%
Test Set:
Actual Instructions 64 100% 64 100%
Correctly Recognized 44 69% 58 91%
False Negative 20 31% 6 9%
False Positive 3 5% 6 9%

Table 4.1 Summary of the evaluation on instruction level
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determined the translation correctness by verifying that all relevant information from the natural
language instruction was transformed into the formal representation.

First, we trained the disambiguator on the training set using manually created parse trees. Af-
terwards, we ran the system including the syntax parser on the same set of howtos, the results are
shown in the upper part of Table 4.1. With correct parse trees, the system achieves a recognition
rate of 82% on the training set and even 91% on the test set before the ontology mapping and the
transformation of the instructions into the formal representation.

The remaining 18% resp. 9% have either been recognized incorrectly (missing object or prepo-
sition in the instruction) or not at all. The latter group also comprises instructions that are not
expressed as imperative statements and, as such, are not supported by the current implementa-
tion. In both test runs, errors caused by the syntax parser result in a significant decrease in the
recognition rate (15 percentage points in the training set, 22 in the test set).

Table 4.2 shows the results of the translation into the formal instruction representation. In
the training set, 70 of the 72 instructions which have been recognized in the previous step could

aut. parsed man. parsed
Training Set:
Actual Instructions 88 100% 88 100%
Import Failures 31 35% 18 20%
Incorrectly/Not recognized 29 94% 16 89%
Missing WordNet entries 0 0

caused Import Failures 0 0% 0 0%
Missing Cyc Mappings 0

caused Import Failures 0 0% 0 0%
Misc. Import Errors 2 6% 2 11%
Disambiguation Errors 0 0
Correctly imported into KB 57 65% 70 80%

.
Test Set:
Actual Instructions 64 100% 64 100%
Import Failures 33 52% 28 44%
Incorrectly/not recognized 20 61% 6 21%
Missing WordNet entries 3 3

caused Import Failures 2 6% 2 7%
Missing Cyc Mappings 14 23

caused Import Failures 11 33% 20 71%
Misc. Import Errors 0 0% 0 0%
Disambiguation Errors 2 3
Correctly imported into KB 31 48% 36 56%

Table 4.2 Summary of the evaluation on knowledge base level
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successfully be transformed, the two errors were caused by mappings of word senses to concepts
that cannot be instantiated as objects in Cyc: the concept PhysicalAmountSlot in the commands
“Use the amount that...” and the relation half in “Slice in half“.

The results of the translation of the test set show that two external components are the main
sources of error: 40% of the import failures are caused by the syntax parser, since a decrease
from 61% to 21% of failures in the initial recognition step can be observed when switching to
manually created syntax trees. In this case, missing Cyc mappings and WordNet entries are the
main problem, causing about 78% of the remaining errors.

Test set of Howtos Instr. Level KB Level KB+maps
How to Set a Table 100% 100% 100%
How to Wash Dishes 92% 46% 62%
How to Make a Pancake 93% 73% 81%
How to Make Ice Coffee 88% 63% 88%
How to Boil an Egg 78% 33% 57%

Table 4.3 Per-Howto evaluation of the import procedure.

An evaluation per howto (Table 4.3) shows that a reasonably large number of the instructions
can be recognized correctly. The last column contains the results after having added in total eight
mappings, including very common ones like Saucepan or Carafe, which will also be useful for
many other instructions. The generation of a robot plan from the formally represented instruction
is a simple translation from Cyc concepts to CPL statements which did not produce any further
errors.
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4.2 Object properties

For executing imported task instructions, robots need information about the referenced objects:
On the one hand, they need to be able to recognize them, and on the other hand, they are supposed
to handle them correctly, meaning they need to have at least basic knowledge about what these
objects are. In the context of the scenario, the methods presented here can be used to generate
object models that are needed for the task at hand; the knowledge about object properties is
further useful to reason about where to search for objects. A large source of information about
commercial products are online shopping websites: [Pangercic et al., 2011] show how images
obtained from such websites can enable robots to recognize these objects in real life. They
mined product pictures from the germandeli.com shopping website, extracted image features
and learned recognition models that can be used to detect these objects in the image stream from
the robot’s camera.

We complement the system by additionally importing information about the object types and
their properties, extracted from the website’s category structure and from information on the
product pages. To this end, we implemented a system that automatically translates the category
structure of the website into a subclass structure in the knowledge base: For example, Dall-

mayr Prodomo Coffee is represented as a sub-class of Dallmayr coffee, Coffee (German Brands),
Beverages, and finally Groceries.

In addition to the category structure, online shops also provide detailed descriptions of the
properties of products, such as pictures, the perishability status, price, ingredients, etc. Often,
this information is already presented in a semi-structured way in form of tables or image icons.
This information can easily and automatically be extracted and added to the knowledge base as
properties of the respective object classes.

Using only the germandeli.com website, we generated an ontology of more than 7,000 object
classes (Figure 4.4) which the robot can both recognize and reason about. For most of the objects,
there is also information about the weight, the price, the brand, the country of origin, and product
IDs like the EAN number (European Article Number) that link to external databases. Depending
on the product, there can also be information if it is frozen, perishable (e.g. dairy products), or
heat sensitive (e.g. chocolate products). In this case, the semantic information and the pictures
that were used to construct the recognition model originate from the same source, so they can
easily be combined and allow the robot not only to recognize objects, but also to know their
properties and relations to other objects. Otherwise, establishing this correspondence can be
very difficult since the products in an online shop are called slightly different from objects in
WordNet, OpenCyc, ehow.com or other sources.
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Figure 4.4 Ontology of about 7,000 object classes generated from information on the german-
deli.com shopping website
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This procedure allows to semi-automatically create large, domain-specific ontologies provid-
ing information about the objects a robot has to know about. Some adaptation to different web
sites, some matching rules or some links to the existing ontology need to be added manually, but
in general, the semi-automatic import greatly speeds up the generation of large knowledge bases.

4.3 Discussion and related work

On the one hand, the World Wide Web is the biggest resource of knowledge that has ever been
available to a robot, consisting of billions of pages that cover a huge range of topics for many
different audiences, and which are all, in principle, machine-readable: digital text, pictures, and
videos. On the other hand, most web pages are intended to be used by humans – that is, they
are written in different natural languages and in a way that humans find them convenient to read.
This makes it difficult for machines to use the information because they first need to understand
the meaning of the words and sentences in natural language.

The semantic web initiative [Lee et al., 2001] was founded to overcome this problem by cre-
ating a world wide web for machines. In the semantic web, information is encoded in machine-
readable form instead of natural-language text, i.e. in a way that computers can retrieve, under-
stand, relate and process the information in the documents. Briefly, the semantics of a document
are not hidden in the text, but explicitly described in a logic-based format computers can under-
stand. In theory, this allows computers to autonomously answer queries by searching the web
for information. In practice, however, only a very small fraction of the information on the web
is available in the Semantic Web or as web services [Paolucci et al., 2002], especially hardly any
information required by autonomous robots in household environments. Therefore, we needed
to develop techniques to translate the information from human-readable form – instructions in
natural language, pictures, and 3D models of objects – into representations the robot can use –
formally described knowledge, task descriptions and object models that can be used for recogni-
tion.

Unfortunately, most current work in web-mining and information retrieval does not provide
these formal representations [Banko et al., 2008], mines information only from pre-structured
sources like the Wikipedia infoboxes [Wu and Weld, 2007], or focuses on finding information
for humans rather than understanding its content [Manning et al., 2008]. A closely related sys-
tem by [Perkowitz et al., 2004] also used task descriptions from ehow.com, but only extracts
sequences of object interactions for activity recognition purposes. For actually executing the in-
structions, robots need a much deeper understanding and need to convert the information from
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the web into a formal representation to relate it to other pieces of knowledge. Kate et al. [Kate
et al., 2005] use similar methods as we do for the semantic parsing, but do not apply them to
web instructions and do not provide details of the knowledge processing and symbol grounding.
Speech interfaces for robots also deal with the problem of converting natural language into com-
mands, but can control the language that is being used and can thus afford to be quite limited in
terms of vocabulary or allowed grammatical structures ([Zelek, 1997], [Tellex and Roy, 2006],
[Mavridis and Roy, 2006]). [Smith and Arnold, 2009] recently presented very interesting results
on the generation of hierarchical plans from short step-by-step instructions in the OpenMind In-
door Common Sense database. The system also translates the natural language instructions into
a logical representation, though without ontology mapping. To the best of our knowledge ours is
the first work that mines complex task descriptions from the web, maps natural-language words
to ontological concepts, and translates the instructions into executable robot plans.

While our methods are, in general, a step towards increasing scalability, the question is how
well they generalize to new instructions and how much adaptation is needed to translate them.
The translation system itself is very general: It uses a generic natural-language parser, covers
many different language constructs, and reads information about actions and objects from two
of the largest knowledge bases that are currently available. However, different prerequisites are
needed for understanding a novel set of instructions: First, all words need to be in WordNet
(which usually is the case), and there needs to be a mapping from the WordNet synset to the
respective ontological concept. Though there are already mappings for tens of thousands of
words, the coverage for household topics is still not complete. Preliminary investigations showed
that somewhat less than 500 action verbs cover the whole range of food preparation, so creating
mappings for this rather small set of actions seems reasonable. Other requirements for successful
translation are that the corresponding class in the ontology exists and that the robot has a routine
for executing each of the lower-level actions.

As an example, the adaptations that were needed to use the translation system, which had
originally been developed for the set of instructions in Table 4.3, in the pancake experiment were
limited to adding a few mappings from WordNet to Cyc (e.g. for the pancake mix), while the
rest of the conversion process worked without modifications.

Inferring information that is missing in the instructions remains an open challenge: For in-
stance, an instruction for setting a table states that items have to be put in front of the chair, but
does not require them to be on top of the table. Other instructions fail to mention that an oven has
to be turned off after use. Robots will have to detect these gaps and fill them appropriately. To fill
in this missing knowledge, we looked into the acquisition of common-sense knowledge from web
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resources [Kunze et al., 2010]. This common-sense knowledge is completely obvious to humans
and therefore usually not explicitly described. Humans assume that their communication partner
also has this kind of knowledge and therefore usually omit such “obvious” information when
explaining something. The problem is that, since it is obvious to humans, most of this knowl-
edge is typically not written down because humans acquire it already in their early childhood.
Therefore, such knowledge has to be collected specifically for robots. Instead of letting a small
group of experts create a knowledge, projects like the OpenMind Common Sense [Singh et al.,
2002] initiative collect such data from Internet users by presenting them incomplete sentences
and letting them fill in the gaps. While the OpenMind project collects general common-sense
knowledge, the OpenMind Indoor Common Sense project (OMICS [Gupta and Kochenderfer,
2004]) focuses on the kind of knowledge required by robots acting in indoor environments. The
users’ responses are saved in semi-structured form in a relational database as sentence fragments
in natural language. Several projects have started to convert the information into representations
that support reasoning, for instance ConceptNet [Liu and Singh, 2004] or LifeNet [Singh and
Williams, 2003]. [Kunze et al., 2010] translated the knowledge from the sentences in natural
language into a formal logical representation in the KNOWROB knowledge base.

The problem of acquiring large amounts of common-sense knowledge is still an unsolved
issue. “Crowdsourcing” the collection by distributing the task to voluntary Internet users helps to
scale the system but creates other challenges: Ambiguities in natural language are hard to resolve
and even harder when looking at the short sentence fragments provided by OMICS. Relations are
also interpreted completely differently by different people: A sentence fragment like “if A, then
B” is interpreted as either immediate and inevitable effect (switching on a dishwasher changes
its state from “off“ to “on”), long-term effect (switching on a dishwasher results in clean dishes)
or as indirectly related consequence (loading a dishwasher causes dishes to be clean – if, what
is omitted, the soap is filled in, the hatch is closed and the device is turned on), or even as
“implies” (dishes are clean if the dishwasher has been turned on). Furthermore, there are gaps
in the provided knowledge due to the way it was collected: being presented a sentence with
placeholders to be filled in, people tend to enter the most obvious information. Presenting the
same template to many people does not guarantee better coverage; instead, obvious statements
occur several times, less obvious ones hardly ever. Nevertheless, such common-sense databases
are a very useful source of knowledge that can hardly be found elsewhere, and the translation
into semantic networks or description logics turns them into a useful resource for autonomous
robots.
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Even if the translation process works fine, there remains the problem of making sure the robot
does not behave unsafe. Safety issues always arise when using information from other sources.
Humans can usually estimate quite well how reliable a source of information is, and robots will
need to develop such skills as well. For the moment, we only use selected pieces of knowledge,
i.e. only a few websites and manually selected instructions, and the robot discards instructions it
could not understand. This is surely an overly conservative strategy, and we risk that the robot
loses information that would be required to successfully perform a task. More research is needed
to enable the robot to estimate how well it has understood an instruction and to ask clarifying
questions if needed. However, using our conservative strategy, we avoid the problem of the robot
trying to execute either malicious instructions or task descriptions that were misunderstood or
not even meant to be executed (e.g. in fictional texts). Furthermore, we do not see the import of
instructions as a necessarily completely autonomous process, but rather as a semi-autonomous
translation that facilitates the generation of plans using knowledge from the web. In case of
problems, the robot can still ask the human if the result is what he intended to get.
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Chapter 5

Observation and analysis of human
activities

Observations of human activities are an important source of information for robots, especially
for robots in a household environment. Many kinds of information, like the right motions or
trajectories to use for a certain action, are very hard to obtain otherwise.

Acquiring this information by observing humans is a sensible option since humans are the
natural domain experts who easily, naturally, and skillfully perform tasks that are still very com-
plex for a robot. Since they also perform most of these tasks on a daily basis, their motions are
highly optimized and often show very stereotypical behavior. Figure 5.1, for example, shows the
hand trajectories of five table-setting episodes in the upper part, and the trajectories for specific
motions like reaching towards an object, picking up an object, and opening a cupboard door in
the lower three pictures. While the overall trajectory looks rather unstructured, the motions show
a significant stereotypical structure when performing goal-directed activities. This structure sug-
gests that robots can learn important action-related information from observing humans, from
the low level of grasps or trajectories, to different alternative ways of reaching for an object,
sequences of motions to perform in order to achieve a goal, up to actions and their parameters on
the task level. These observations are an especially important source of knowledge since much
of the information they provide – trajectories, motions, accelerations, different alternatives for
achieving a goal, or the selection of the right kind of motion in a given context – can hardly be
obtained otherwise and are hard to describe verbally.

To use this information for their tasks, robots have to relate it to the rest of their knowledge:
If a plan involves a Reaching motion and the robot would like to check how a human performed
this motion, it has to be able to find the right information in the large amount of data it has
observed, which requires expressive semantic descriptions of the data. To maximize the success
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Figure 5.1 Upper picture: Hand trajectory data recorded in five table setting episodes. Lower
pictures: Trajectories for picking an object from the table (left), for reaching towards a cupboard
(center) and for opening a cupboard (right).

probability, a robot should select those that were performed on similar objects at a comparable
position, performed with the same hand and maybe even by an agent of similar size. This raises
the need for a formal description of the observation data, including semantic information like the
agent that is performing a task or the object that is manipulated in an action, and for making it
accessible to the robot’s knowledge base.

Autonomously building up such a representation is a challenging task that involves the seg-
mentation of continuous motions into segments with well-defined semantics, the fusion of the
action data with information from other sensors in the environment to determine the objects the
human interacts with, and the abstraction from the raw motions into higher-level action and task
descriptions. The representation has to be powerful enough to deal with variations in human
activities, from different ways of performing a motion up to different action sequences in an
activity or different action parameters (e.g. different hands to perform the same action).

104



Having such a representation is not only beneficial for robots to learn from humans how to
perform a task, it can also help to understand better how humans perform their everyday activities
and to describe the impact of diseases that affect human motion and task execution capabilities
like apraxia [Liepmann, 1920]. Apraxia is an impairment of motor planning skills that is caused
by damage to certain brain areas. Patients lose the ability to perform motions and tasks they
have already learned, though their muscular and sensory capabilities would still allow them to
perform these tasks. This disorder is often observed after a stroke and results in a variety of
complex effects including (list adapted from [Cooper et al., 2005]):

• Sequence errors: Addition, omission, or anticipation of a step in the action sequence

• Misuse: Actions are performed using an inappropriate object (e.g., hammering with a saw)
or in the wrong way (e.g., cutting an orange with a knife as it if were butter)

• Mislocation: Actions are performed in completely the wrong place (e.g., pouring some liq-
uid from the bottle onto the table rather than into the glass) or in a slightly wrong location
(e.g., striking the match inside the matchbox)

• Tool omission: Using the hand instead of an obligatory tool (e.g., opening a bottle without
using the bottle opener)

• Pantomime: Pantomiming the use of the tool/object instead of actually using it

• Perplexity: A delay or hesitation in performing an action

• Toying: Repeated touching or moving of an object without actually using it

In order to describe and detect such complex effects, a model needs to be able to describe both
low-level motor defects, resulting in inappropriate motions, and high-level errors like a wrong
sequence of actions or actions that are performed with the wrong tool or using the wrong object.

In this chapter, we present our methods for representing knowledge about human activities,
for building up such a representation from observations, and for reasoning on these models. Our
models allow to query for semantically specified observation data, to check if the observed activ-
ities comply with written instructions, and to compare the style how the activities are performed
with models learned from observations. These observations may either be prior observations of
the same subject, which can be used to detect changes in their performance, or observations of a
whole group of subjects, which allows to assess how well a person performs in comparison to a
reference group.
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5.1 Automated models of everyday activities (AM-EVA)

Our approach to creating integrated models of human activities is the AM-EVA framework (Au-
tomated Models of Everyday Activities [Beetz et al., 2010c]). AM-EVA is designed as a system
for automatically observing and interpreting human activities. It includes and integrates in a
common reasoning framework different modules for the observation of human actions and mo-
tion tracking, for learning continuous models of the observed motions, for the segmentation and
classification of the continuous movements, for the abstraction of the resulting action sequence,
and for learning probabilistic relational models of complete activities.

Figure 5.2 illustrates the overall system architecture. Human motions are observed by a full-
body motion tracking system and a sensor network which is embedded in the environment (see
Section 5.2). The data has been manually annotated (Section 5.3) in order to train algorithms for
segmenting and classifying the observed motions (Section 5.4). The result of the segmentation, a
sequence of typed motion segments, is related to simultaneously observed events like object de-
tections in order to determine action parameters, and then formally represented in terms of action
instances in the KNOWROB knowledge base. This combination of knowledge representation with
classification methods allows to automatically generate formal descriptions of observed motions
and perform logical reasoning about the observations. In order to further inspect the segments,
for example to learn different alternatives how a kind of motion can be performed, the system
applies methods for clustering trajectories and for characterizing them based on the context in
which they are used (Section 5.5).

AM-EVA allows to interpret observed actions at very different levels of abstraction: The pose
for performing an action, trajectories of different body parts, the sequence of motions to perform
an action, different actions in an activity, and activity properties like the positions of objects or
people involved are all accessible and semantically described. A central part of AM-EVA is the
hierarchical representation of observed actions and the generation of this abstraction pyramid,
which is described in Section 5.6. The pictures to the left and to the right of the pyramid in
Figure 5.2 illustrate which information is available at different levels of description. Section 5.7
explains how activity-level models can be learned to describe the partial order of actions in a task
as well as action parameters like the object or hand that are used.

In addition to the components described in this work, AM-EVA further comprises methods
for tracking human motions [Bandouch et al., 2008] and for learning probabilistic activity mod-
els [Beetz et al., 2010c] from the observed and abstracted data.
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Figure 5.2 Activity observation, interpretation, and analysis using AM-EVAs. Motions are
tracked from video data and descriptions at several levels of abstraction are generated that can
be used for learning probabilistic relational models of human activities.

5.2 Data acquisition: The TUM Kitchen Data Set

The TUM Kitchen Data Set is the main source of data that is being used in this work and contains
observations of several subjects setting a table in different ways (each recorded sequence is be-
tween 1-2 min). All subjects perform more or less the same activity, including the same objects
and similar locations. Variations include differently ordered actions, a different distribution of
tasks between the left and the right hand, and different poses that result from different body sizes.
Since the subjects are performing the actions in a natural way – apart from the sometimes unnat-
ural transport of only one object at a time – there are fluent transitions between sub-actions, and
actions are performed in parallel using both the left and the right hand. Some subjects perform
the activity like a robot would do, transporting the items one-by-one, other subjects behave more
natural and grasp as many objects as they can at once. There are also a few sequences where the
subject repetitively performed actions like picking up and putting down a cup (∼5 min each).

Due to considerable interest by other research groups, the data has been released in Octo-
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ber 2009 and is publicly available for download at http://kitchendata.cs.tum.edu.
Since then, it has generated more than 460 GB of downloads and attracts around 300 visitors a
month, generating more than 10,000 hits. The data set is actively being used at several universi-
ties and already spawned several papers using the data. Users created additional annotations and
data conversion tools and provided them back to the community.

5.2.0.1 Challenges

There are several requirements that make the acquisition of such a comprehensive data set a
difficult task:

Non-intrusive data collection: Apart from privacy issues, monitoring systems in a house-
hold scenario should be as unintrusive as possible. Attaching accelerometers or markers, as
required by many motion capture systems, to real people in their everyday lives, or asking them
to wear special skin-tight clothes is certainly not feasible. Therefore, the system has to perform
all analyses based on sensors embedded in the environment and has to be able to track people
independently of their body size or their clothing.

Interaction with the environment: Opening doors, picking up objects or being occluded by
pieces of furniture causes significant changes of the human silhouette that may well confuse most
of today’s state-of-the-art markerless motion capture systems.

Variation in performing activities: From the low motion level up to the sequence of actions,
there are many degrees of freedom in how everyday activities can be performed (Figure 5.3).
Both the motion capture system and the subsequent analysis methods need to be able to handle
this high variability.

Continuous motions: People do not stop while performing everyday tasks, so there is no strict
separation between single actions. To deal with this problem, sophisticated methods for motion
segmentation are required, since actions can no longer be considered to be well-separated by
default.

Parallelism: Humans often use both hands in parallel, while sometimes even walking at the
same time (Figure 5.3). Actions performed with the left and the right hand start at different
times, and may overlap both temporally and spatially. Sometimes actions are started with one
and finished with the other hand, resulting in odd motion sequences for each hand.
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Difference in body sizes: Differences in body size are not only challenging for the tracking
system, but may also influence which motions are used to perform a task. For instance, we found
that tall subjects put objects on the table mainly by flexing the spine instead of the elbow joint.

Required semantic information: For detailed analysis of the human activities, we need to
observe the performed motions as well as semantic information like the identity of the objects
and pieces of furniture the subject interacts with.

We therefore chose to use a markerless human motion tracking system (Section 5.2.0.2) that
is able to estimate human motions performed in the context of everyday manipulation tasks,
and to complement the motion capture data with data from sensors that are embedded in the
environment (Section 5.2.0.3).

5.2.0.2 Human motion tracking

A system for the detailed and unintrusive observation of human motions is crucial for a thorough
understanding of everyday manipulation activities. Commercial tracking systems typically rely
on optical, magnetic or inertial markers attached to the human body for estimating its pose, which
requires the instrumentation of the subjects. In addition, they often require quite a lot of post-
processing of the generated data and are sensitive to occlusions as they occur when interacting
with objects and the environment.

For recording the TUM Kitchen Data Set, we used the MeMoMan tracker that has been de-
veloped by Jan Bandouch, a markerless motion tracking system tailored towards application in
everyday environments. Technical details of the tracking system can be found in [Bandouch and
Beetz, 2009]. In the following, we only briefly describe the properties and advantages of the
tracker with respect to our scenario.

Setting up the MeMoMan tracking system only requires to place cameras in the environment,
no further modifications of the environment or instrumentation of the subjects are needed. For
recording the TUM Kitchen Data Set, four fixed cameras were used, see Figure 5.3 for exam-
ples of the video images. Based on the silhouette of the observed human subjects, the tracker
computes their full-body pose for each timestep based on an accurate 51 DOF articulated human
model, providing both joint angles and joint positions in cartesian space (which can be used to
derive trajectories of specific body parts, e.g. hand trajectories during a pick and place action).
If the human silhouette is changed, e.g. when carrying objects or opening cupboards, this can
be filtered out using an appearance model (Figure 5.4 right), which allows the system to accu-
rately estimate the pose even in these challenging situations. Occlusions by static objects like the
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Figure 5.3 The same action performed by different subjects. Notice the use of different hands
for the same action, the fluent transitions or parallelism of actions (e.g. opening cupboard and
grabbing cup), and the difference in motion based on the size of the human. Images taken from
the TUM Kitchen Data Set [Tenorth et al., 2009].

kitchen table are handled by blocking masks that prevent the system from evaluating information
that does not resemble the learned human appearance model.

Figure 5.4 shows the data used in the tracker: The leftmost picture is the inner skeleton model,
which provides the input data for the subsequent processing steps (joint angles and cartesian joint
positions). The center view is the outer model that is adapted to the shape of the human subject
before the experiments, and the right view is the appearance model the tracker learns during
operation.
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Figure 5.4 Human motion tracking (one of four cameras): a) inner model b) outer model c)
virtual 3D view with appearance model. Images courtesy of Jan Bandouch [Bandouch and Beetz,
2009].

The recording of the video images and the actual tracking of the motion capture data has
been done by Jan Bandouch, the creator of the MeMoMan tracker. Whenever tracking problems
occurred (mostly while raising the right hand to reach towards the right outer cupboard, a motion
insufficiently covered by the camera setup), the data was manually post-processed to ensure high
quality.

5.2.0.3 Sensor-equipped kitchen environment

Data from RFID (Radio Frequency IDentification) readers for detecting objects and magnetic
reed sensors that detect if doors or drawers are being opened was recorded using the sensor
network in the assistive kitchen described in [Beetz et al., 2008]. Objects equipped with RFID
tags are the place mat, the napkin, the plate and the cup. Metallic items like pieces of silverware
cannot be recognized by the RFID system, and are therefore not recorded in the data set. The
approximate positions of the RFID sensors and the cameras are given in Figure 5.5.

The subjects were asked to set the table according to the layout shown in red in Figure 5.5,
plus a place mat and a napkin (which are not shown here). Initially, the place mat and the napkin
were placed on the stove top (large yellow ellipse on the left), the cup and plate in an overhead
cupboard (yellow ellipse on the right). Silverware was in a drawer, marked by the yellow ellipse
in the center. There were two recording sessions in which the exact placement on the table shifted
along the long side of the table, while the relative arrangement of the objects remained the same.
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Figure 5.5 Spatial layout during the recording sessions: approximate camera locations (red ar-
rows), RFID sensors (yellow ellipses), and approximate layout of the items on the table (red
objects).

5.2.0.4 Modalities provided by the data set

The data has been recorded in the TUM kitchen [Beetz et al., 2008], a sensor-equipped kitchen
environment used to perform research on assistive technologies for helping elderly or disabled
people to improve their quality of life. The recorded (synchronized) data consists of calibrated
videos, motion capture data and recordings from the sensor network, and is well-suited for eval-
uating approaches for motion tracking as well as for activity recognition. In particular, the fol-
lowing modalities are provided (see also Figure 5.6):

• Video data (25 Hz) from four static overhead cameras (Fig. 5.5, 5.3), provided as 384x288 pixel
RGB color image sequences (JPEG) or compressed video files (AVI). Additionally, full
resolution (780x582 pixel) raw Bayer pattern video files are available.

• Motion capture data extracted from the videos using the markerless full-body motion track-
ing system [Bandouch and Beetz, 2009]. Data is provided in the BVH file format which
contains the 6 DOF pose and the joint angle values. In addition to the joint angles, global
joint positions are available as a comma-separated text file (CSV, one row per frame, the
first row describes the column datatype). The data has been post-processed when neces-
sary.
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Figure 5.6 Illustration of the information provided by the TUM Kitchen Data Set, including
annotated pose and trajectory data and RFID readings.

• RFID tag readings from three fixed readers embedded in the environment (sample rate
2Hz).

• Magnetic (reed) sensors detecting when a door or drawer is opened (sample rate 10Hz).

• Each frame has been labeled manually, as explained in Section 5.3. These labels are also
provided as CSV files with one row per frame.

5.3 Labeling

The recorded data is to be used in the context of our knowledge representation. To integrate
the observations with other pieces of knowledge in the system, they need to be described in a
compatible format that relates the continuous motion data to a semantic description of the action
that is being performed. Therefore, we manually annotated the data by assigning semantic la-
bels to motion segments. The labels correspond to the action classes in the KNOWROB ontology
(Figure 5.7), i.e. the observed motions are represented as instances of these classes. This seg-
mentation into different kinds of actions provides ground truth for segmentation algorithms and
also allows to train the algorithms in a supervised way. The primary goal of the segmentation is
to obtain a sequence of short motion primitives that forms the basis for further, more semantic
analysis. For this reason, unsupervised segmentation approaches are not usable as they cannot
provide this link between the segments and their semantics required in the subsequent processing
steps.
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Figure 5.7 Excerpt from the action ontology used for labeling the data set. Special motions like
ReachingUpward are defined as subclasses of the more general Reaching motion.

To account for the high degree of parallelism in the activities, we labeled the left hand, the
right hand and the trunk of the person separately: In a common action, the subject is opening
a cupboard door with one hand, while the other one is reaching towards a cup, and while the
body is still moving towards the cupboard. The set of labels describing the hand motion consists
of Reaching towards an object or the handle of a cupboard or drawer, TakingSomething, Low-

eringAnObject, ReleasingGraspOfSomething after having put down an object or having closed a
door, OpeningADoor, ClosingADoor, OpeningADrawer, ClosingADrawer, and CarryingWhile-

Locomoting. To take the very different postures for object interactions with the overhead cup-
boards into account, we added the classes ReachingUpward and TakingSomethingFromAbove

which are specializations of the respective motion classes. The motion of the person in the
environment is described by the trunk label sequence which only has two possible values: Stand-

ingStill and HumanWalkingProcess, which indicates that the subject is moving.

The class CarryingWhileLocomoting describes all frames when the subject is carrying an item
or, since the difference in the pose is often negligible, when the subject is moving from one place
to another without carrying anything. It further serves as a catch-all class and contains the back-
ground motion between the actions. When acting naturally, humans perform surprisingly many
irrelevant movements, such as swinging the arms or reaching halfway towards an object, thinking
about it, retracting the hands and doing something else first. If these motions are not long and
articulated enough to be reliably recognized, they are put into the catch-all class, which therefore
comprises rather diverse movements. The alternative, labeling every short, partial motion, would
result in a large set of classes, ambiguities in the labeling, and hardly detectable short motion
segments.
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An important choice when annotating data is the selection of which granularity to use. We
chose to label the data at a rather fine-grained level, and use the methods described in Section 5.6
to generate coarser, more abstract descriptions when needed.

5.3.0.5 Labeling tool

A visual labeling tool has been developed in order to efficiently annotate the tracking data (Fig-
ure 5.8). Labeling three streams of action using very fine-grained annotations can be a tedious
task, and the tool helps to significantly speed up the process. Compared to the paper-based
method used before, the data annotation became about six to nine times faster.

The upper part of the program displays the images of the four cameras for the current time
frame to provide the user with the best possible view on the scene. Below, there is a timeline
to quickly sift through the sequence, and three label sequences for the left hand, the right hand,
and the trunk. The lowest part are radio buttons to select which label to set. During the labeling
process, the user sets a mark at the last frame of a segment by clicking on one of these buttons;
this label is then assigned to all frames since the previous mark.

In order to verify if the labeling is correct, the tool also supports loading and visualizing label
segments, so that a user can jump between the labels and inspect if they are correct.

5.3.0.6 Linking actions to manipulated objects

For semantically interpreting the data, knowing only the type of a motion segment is usually not
sufficient but more detailed information about objects and locations is needed. The motion seg-
ments can thus be related to simultaneously observed sensory events from the RFID tag readers
or the door sensors, in order to determine action properties, e.g. which object is being picked up
or which cupboard is being opened.

This assignment is being done automatically using the computable classes and properties de-
scribed in Section 2.6 that allow to read external data sources, like the RFID events, and related
them to properties in the knowledge base, like the objectActedOn. We define a computable class
to read instances of RFID events (Section 3.1), use a computable property to compute which
events occur during an action segment, and compute the objectActedOn of an action by the ob-
jects detected in simultaneous RFID events. The same method is used to assign the door that is
being opened to the correct action segment based on information from the magnetic sensors.

Locations, like the fromLocation or the toLocation of a transport action, can be approximately
determined by the locations of the RFID tag readers. When a reader does not detect an object
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Figure 5.8 Screenshot of the labeling tool developed for annotating the human motions in the
TUM Kitchen Data Set.

any more while performing a pick-up action, we assume that object has been picked up from the
location of the RFID tag reader.

5.4 Segmentation

This section is about our approach to automatically segment and classify the motion capture data,
i.e. to infer the start time, the end time and the label of a segment from the data. These methods
allow to transform newly observed data into the semantic representation used for further analysis.

In theory, many segments can be defined by the observable events that happen at either their
beginning or their end: For instance, when an object has been picked up, it is not detected any
more by the respective RFID tag reader, resulting in an RFID event. In reality, this simple
segmentation approach is not possible because the sampling rates of the sensors are too low
compared to the average duration of the motions (many motions only take about half a second,
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which is the sampling rate of the RFID readers). Moreover, the rather large detection range of the
RFID sensors lets them detect objects that have already been picked up, further delaying the end-
of-detection signal. For this reason, the sensor data can only be used as one indicator amongst
others and needs to be combined with further information in order to reliably and exactly estimate
the beginning and end of each segment.

The features used for classification combine information from the RFID and door sensors with
additional pose-related and environment-related information. Despite the timing problems, the
RFID and door sensor data still provide valuable information to distinguish between actions that
comprise very similar motions, but have different semantics. Putting an object down on the
counter top and closing a drawer, for example, both include a rather straight forward motion
of the hand, while they have completely different meaning. An RFID event registered at about
the same time suggests a put-down motion, while the detection of the respective drawer being
opened indicates an OpeningADrawer motion. If the events are used in this way, their exact
timing becomes less of an issue.

The pose-related features denote e.g. if the human is extending or retracting the hands, if the
hands are expanded beyond a certain threshold, or if they are lifted above a certain limit. We
also use discretized angles of the joints that are significant for the task at hand, like shoulder and
elbow joints. In particular, we use the following pose-related features:

• Joint angles, discretized into ten bins, of the spine (Joints ULW, OLW, BRK, KO in
[Tenorth et al., 2009]) and the respective shoulder, arm and hand (SBL, OAL, UAL, HAL,
FIL for the left hand)

• Finger joint position in a shoulder-centric coordinate system and gradient of the hand mo-
tion in the same coordinate system above or below zero (binary feature, separate for x,y,z
components)

• Velocity of the hand in local coordinates above or below 0.35 m/s (empirically determined)

• Arms being extended or retracted (relative to the shoulder position)

• Person moving with more than 0.35 m/s (in global coordinates)

These features are to capture aspects like ’hand moving’, ’hand in front of person’, ’hand above
shoulder’, and ’arm being extended’. Some of them are a rather rough approximation, but com-
puting them in a more principled way would be very difficult due to the many degrees of freedom
and the deformable human body. For example, if the shoulders are not parallel to the hips, the
notion of “in front of” becomes quite hard to define. The pose-related features are combined
with information from the environment model and the sensor network, namely:
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• Doors that are currently open (detected by the magnetic door sensors)

• Handle of a cupboard or drawer a hand is close to (read from the environment model)

• Object that is being carried (in the time span between two RFID readings)

We tested different classification methods on this feature set. In each case, we performed an
leave-one-episode-out cross validation, i.e. the classifier is trained on all sequences but one and
tested on the remaining one. Randomly sampling the frames to use for the test set yields wrong
results for sequential data since for each element of the test set, the neighboring frame in the
original motion sequence, that is almost identical, will be in the training set. The classification
then effectively becomes a kind of nearest-neighbor matching with very close neighbors being
available, leading to overly positive results.

The classifiers we chose are a C4.5 decision tree [Quinlan, 1993], a support vector machine
(SVM, [Platt, 1999]), and a conditional random fields-based classifier (CRF, [Lafferty et al.,
2001]). The former two classify each frame independently, while the CRF takes the sequence
of labels into account. For the decision tree and SVM, we used the implementation from the
Weka library [Witten and Frank, 2005], for the CRF the implementation in Mallet [McCallum,
2002]. Both libraries are integrated into KNOWROB and can be called from within the knowledge
processing system.

The decision tree is a rather simple classifier that has the advantages of producing human-
readable models and of performing inherent feature selection. We use the weka.classifiers.trees.J48

class with the parameters -C 0.25 -M 2. The classifier achieves an accuracy (correctly classified
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Carrying 15893 69 77 353 41 214 753 881 167

ClosingADoor 46 939 0 27 181 0 127 84 3
ClosingADrawer 216 0 367 31 0 165 301 72 55

LoweringAnObject 472 9 44 435 0 51 110 198 169
OpeningADoor 6 143 0 5 1470 0 362 67 7

OpeningADrawer 245 7 140 7 0 797 130 162 83
Reaching 777 107 90 109 170 185 1260 106 197

ReleasingGrasp 862 130 108 146 51 79 177 1057 300
TakingSomething 291 21 34 25 14 80 81 250 371

Table 5.1 Confusion matrix for the J48 decision tree and the data of the left hand. The classifier
reaches a per-frame accuracy of 0.68.
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frames divided by the total number of frames) of 0.68 – the detailed results are listed in Table 5.1.
There is a noticable bias towards the CarryingWhileLocomoting class that is due to two reasons:
First, this class is much larger than all the others, in fact containing more frames than all other
classes together. Second, this class is also the most diverse one that contains all in-between mo-
tion the subject exhibits while not performing any goal-directed activity. Therefore, it contains
a large variety of motions, increasing the likelihood that an observed frame is classified as be-
longing to this class. The same bias can be observed in the results of the other classifiers, though
much less for the CRF. The reason is that the CRF does not only consider the single frames
(which may be similar to frames in the CarryingWhileLocomoting class), but also takes the se-
quence context into account that can make an idle frame much less likely at many positions in
the sequence.

The SVM achieves the best overall accuracy correctly classifying 77% of the frames (trained
using the weka.classifiers.functions.SMO class with the parameters -C 1.0 -L 0.0010 -P 1.0E-

12 -N 0 -V -1 -W 1 -K "weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0").
The confusion matrix in Table 5.2 shows a significant improvement compared to the decision
tree. However, the results do not show a problem both classifiers share: The strict per-frame
classification tends to create many short segments, and the mis-classified frames are scattered
throughout the sequence. Though this leads to a high overall per-frame accuracy, the resulting
sequence differs quite a lot from the actually performed sequence of actions. This is problematic
for the intended higher-level processing, in which a correct action sequence is more important
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Carrying 17565 18 65 108 56 115 257 194 70

ClosingADoor 30 949 3 35 184 0 92 112 2
ClosingADrawer 50 0 742 33 0 86 172 97 27

LoweringAnObject 436 0 28 653 0 4 122 233 12
OpeningADoor 13 143 0 15 1657 0 159 59 14

OpeningADrawer 110 0 127 1 0 1112 107 91 23
Reaching 831 71 226 151 141 76 1416 47 42

ReleasingGrasp 955 94 117 165 57 106 41 1243 132
TakingSomething 273 13 58 92 3 124 105 242 257

Table 5.2 Confusion matrix for the support vector machine and the data of the left hand. The
classifier reaches a per-frame accuracy of 0.77.
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Figure 5.9 Structure of the CRF for segmenting human motions.

than the exact segment borders.
For this reason, we finally chose the segmentation based on a linear-chain conditional random

field (Figure 5.9, Table 5.3). Its per-frame accuracy of 0.73 is slightly lower than for the SVM,
but the errors in the resulting sequence are rather shifted boundaries between the segments or
segments that have been missed completely. In total, this better reflects the actual sequence of
actions what is what we are interested in here.

The classifiers are called from within KNOWROB and return a sequence of labeled pose in-
stances. Consecutive poses with the same label are combined into one instance of the respective
motion class (e.g. an instance Reaching1 of type Reaching with all pose observations as sub-
events, the time stamp of the first pose as startTime, and the one of the last pose as endTime.
This is depicted in the lower part of Figure 5.12, where the transition from pose vectors to typed
motion segments via the CRF-based segmentation procedure is shown.
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Carrying 13598 2 24 617 10 14 636 618 208

ClosingADoor 2 808 22 0 85 11 59 148 24
ClosingADrawer 1 0 467 38 0 90 187 125 37

LoweringAnObject 406 0 0 424 0 0 110 260 60
OpeningADoor 54 159 0 0 1186 0 168 48 31

OpeningADrawer 12 0 92 8 0 874 39 106 137
Reaching 539 65 71 42 59 25 1498 149 81

ReleasingGrasp 572 66 67 255 17 40 154 1173 115
TakingSomething 230 4 64 0 27 59 131 121 326

Table 5.3 Confusion matrix for the CRF and the data of the left hand. The classifier reaches a
per-frame accuracy of 0.73.
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5.5 Trajectory models

The segmentation procedure splits the continuous motions into short segments and assigns them
a semantic class label. These classes, however, are rather coarse descriptions: For instance,
there can be very different ways of Reaching towards an object, like reaching into an overhead
cupboard or reaching straight down towards an object on top of the table, and each of these
trajectory styles may be more or less appropriate in a given context. The context may thereby
depend on different things: the type of the object to be manipulated, its position (e.g. on the
counter or in an overhead cupboard), the size of the human subject performing the task, or also
the action that is to be performed next with that object.

In this section, we describe methods for (1) discovering different ways how an action can be
performed, leading to different shapes of the resulting trajectories, and (2) for learning seman-
tic characterizations that describe which of these trajectory clusters are used in which context.
The proposed system consists of two main components: A trajectory clustering module, and
models that describe the semantics of those clusters. For learning the semantic models, we em-
ploy the GrAM (Grounded Action Models) framework described in [v. Hoyningen-Huene et al.,
2007]. GrAMs have been applied to the analysis of soccer games and for learning places used
in manipulation actions [Tenorth and Beetz, 2009]; here, we learn trajectories instead. The in-
put data for the following methods are pre-segmented trajectories for motions like Reaching or
LoweringAnObject that have been created by manual annotation or by the segmentation methods
described earlier.

5.5.1 Clustering trajectories

The algorithm used for clustering was developed in collaboration with Daniel Nyga and is de-
scribed in more detail in [Nyga et al., 2011]. It is motivated by Classification and Regression
Trees (CART [Breiman, 1984]), a classification method to create binary decision trees by itera-
tively partitioning a data set into two cuboid sub-regions, each time taking only few dimensions
into account that allow to distinguish the two sub-sets with high accuracy. This splitting rule
is typically given by a simple threshold (also called decision stump, a decision tree with only
one node). The process is repeated until a stopping criterion is reached, in our case when the
cohesion within a cluster, the mean value of the average distances of each member to each other
member, does not significantly improve any more.
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The Hopkins index [Hopkins and Skellam, 1954] indicates if clusters exist in a data set and is
used as criterion to select which components to use for clustering. It is computed by uniformly
sampling two sets of m << n points: a set S = {s1, . . . , sm} ⊂ X from the dataset X =

{x1, . . . , xn} ⊂ Rp, and another setR = {r1, . . . , rm} from the convex hull around the data. The
algorithm then computes, for each point in these data sets R and S, the distance to the nearest
neighbor in X:

dR = {dri | min
j
‖ri − xj‖, 1 ≤ j ≤ n}, 1 ≤ i ≤ m (5.1)

dS = {dsi | min
j
‖si − xj‖, 1 ≤ j ≤ n}, 1 ≤ i ≤ m (5.2)

The ratio of these distances yields the Hopkins index h ∈ [0, 1] that describes how the points
inside the data set are distributed with respect to arbitrary points in the convex hull.

h(X) =

∑m
i=1 d

p
ri∑m

i=1 d
p
ri +

∑m
i=1 d

p
si

(5.3)

If there is no significant cluster structure, the distances inside the data set do not differ much
from those between random other points in the convex hull. The resulting Hopkins index is thus
near to h ≈ 0.5. A very small Hopkins index h ≈ 0 results from data that exhibits a regular
structure, whereas a Hopkins index h ≈ 1 is a sign that significant clusters are present in the
data. Intuitively, a large Hopkins index means that the distances from arbitrary points in the
convex hull to the nearest data point are large, while most points in the data set have a neighbor
nearby. Since the Hopkins index highly depends on the sets R and S, it is recommended to
sample several different sets R and S and average over the results.

The trajectories are first re-sampled to a length of 100 points using spline interpolation. Since
the provided labels often do not exactly match the beginning and end of a trajectory segment,
we cut off 25% of the frames, namely the first 16% and the last 9%. The trajectories are then
transformed into a person-intrinsic coordinate frame defined by the left and right shoulder SBL

and SBR. This transformation only affects the x and y coordinates, the z coordinate stays unaf-
fected. In the resulting representation, person-related spatial relations like “in front of”, “left of”
or “above” have a direct correspondence to the trajectory values. Since the human body is a de-
formable system, there is no optimal person-intrinsic coordinate frame, but our experience shows
that this shoulder-centric coordinate system yields the best results. Finally, the ending points of
the trajectories, corresponding to the object positions, are aligned. After these pre-processing
steps, the clustering algorithm iteratively selects those components of the trajectories that exhibit
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the highest Hopkins indices and applies the CART clustering. Once the CART tree has been
built up from the training data, it can be used to classify novel test data and assign it to one of the
clusters.

We evaluate the system on the trajectories of the left and right hand from the TUM Kitchen
Data Set. Figure 5.10 shows the trajectory clusters identified for the motions Reaching and
LoweringAnObject. These results indicate that the algorithm is able to distinguish different forms
of trajectories even if they are in similar regions of the environment, like the upwards motions in
clusters 1 and 4. The trajectories for putting down objects are not as well separated as those for
reaching, but their shapes are also well distinguished. The blue cluster, for instance, is mainly
directed to the left, while the green one points to the right.

5.5.2 Context-dependent trajectory selection

Having identified the different kinds of trajectories in a motion class, the system automatically
learns models characterizing their semantics and describing in which context they shall be used.
This semantic model is learned based on an intensional specification of the learning problem
using the Grounded Action Models (GrAMs) method [v. Hoyningen-Huene et al., 2007]. Such an
intensional specification lists a set of features (called observables) which can serve for predicting
the value of a property (called predictable). Given a training set of observed action instances of a
class like Reaching, the system learns the relation between their observable properties and the one
to be predicted. In our case, the observable properties describe things like the manipulated object
or the hand that is used, while the shape of the trajectory (i.e. the cluster ID) is to be predicted.
For example, the intensional model reachTrajModel is defined as an instance of an ActionModel

that is to be learned from the training set reachTraj (all trajectories of type Reaching) with the
observables objectActedOn and bodyPartsUsed:

I n d i v i d u a l : r e a c h T r a j

Types : R e s t r i c t i o n

Facts : o n P r o p e r t y t y p e
hasVa lue Reaching

I n d i v i d u a l : r e a c h T r a j M o d e l

Types : Act ionModel

Facts : f o r A c t i o n r e a c h T r a j
o b s e r v a b l e ob j ec tAc t edOn
o b s e r v a b l e bodyPa r t sUsed
p r e d i c t a b l e t r a j e c t o r y - Mean
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(a) x-y plane (b) x-z plane (c) y-z plane

(d) x-y plane (e) x-z plane (f) y-z plane

Figure 5.10 Cluster assignments, indicated by the trajectory color, for Reaching trajectories (up-
per diagram and center row) and trajectories for LoweringAnObject (lower row).
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The action model is learned as a classifier on top of the cluster assignment that uses the values
of the observable features in order to learn rules that explain the values of the predictable fea-
tures. These rules form the extensional action model and semantically describe in which context
a trajectory cluster is being used. They are equivalent to a sub-class definition in Description
Logic, like a class “Reaching actions performed with the right hand towards a cup inside the
cupboard”. These sub-class definitions are learned autonomously from data as those rules that
best explain the relations in the training set. Action models can either be used for classification
(inferring the context given an observed trajectory), or for selecting a trajectory given a certain
context.

Table 5.5 shows the associations between observable properties and the cluster IDs that are
learned based on the specification of the intensional model. The system is able to distinguish
trajectories with different meaning, though they have similar shapes and are in similar regions
of the environment like reaching for a cupboard handle (Cluster 4) and taking an object out of
that cupboard (Cluster 1). For some objects, our algorithm also found differences in the reaching
behavior of the left and right hand, e.g. for SilverwarePiece (Cluster 2/5 resp.). Other objects
at approximately the same position, such as Cup and DinnerPlate, or Napkin and PlaceMat,
exhibit reaching trajectories that are too similar to be discernible for the algorithm. Since most
of the objects are always picked up with the same hand, there is little variation in clusters for the
bodyPartsUsed property.

bodyPartsUsed objectActedOn Cluster Assignment

LeftHand

PlaceMat 3
Cup 4
DinnerPlate 4
Napkin 3
SilverwarePiece 2
Drawer 3
Cupboard 1

RightHand

PlaceMat 3
Cup 4
DinnerPlate 4
Napkin 3
SilverwarePiece 5
Drawer 3
Cupboard 1

Table 5.5 Extensional action model for Reaching motions
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5.6 Hierarchical models

A fine-grained action segmentation does provide local information, e.g. about the trajectory
used for opening a cupboard, but it cannot be used to determine more abstract, higher-level
information like which objects are moved from where to where in a table-setting task. To obtain
such higher-level action descriptions, we need to combine motions to simple actions, these simple
actions to more complex ones, and subsequently build more and more abstract action models.

The hierarchical action models (HAM) presented here exploit knowledge about sub-actions
that an action can have to recursively create higher levels of abstraction. This knowledge is
available in the knowledge base and was described in more detail in Section 3.3. Figure 5.11
exemplarily shows the information that is available for the class PuttingSomethingSomewhere,
namely that the action PuttingSomethingSomewhere, a transport action, involves picking up an
object, carrying it to its destination, and putting it down. In addition, there are partial-ordering
constraints among the sub-actions requiring that the pick-up action has be done before moving
the object, followed by putting it down again. This knowledge is described on the class level;
observations are instantiated as instances of these classes and thus inherit their properties. In
the following, we describe how this abstract knowledge is used to build up hierarchical action
models like the one in Figure 5.12.

A first step that is performed after the segmentation and before the abstraction into hierarchical

Figure 5.11 Knowledge about classes of actions, events and objects that is represented in
KNOWROB and used in the abstraction process.
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models is to condense the label sequence, i.e. to aggregate all subsequent frames with the same
label to one action instance, to assert its type (based on the label), and its start- and end-times
(based on the times of the first and last frame in the segment). In this step, a sequence of motion
segments is created in the knowledge base (Reaching-14, Moving-27 etc. in Figure 5.12).

Figure 5.12 Hierarchical action model describing the abstraction from motion tracking data to
more and more abstract action instances.

5.6.1 Definition

We start with a formal description of the hierarchical models and the transformation rules that
are used for creating them.
Def. 1: A Hierarchical Action Model is defined as a 4-tuple

H = {{Ai}, Ta, Tp, Tr},

consisting of a set of action sequences Ai, a set of action classes Ta, e.g. Reaching or Taking-

Something, a set of properties Tp which relate the actions to other instances, e.g. to objects with
the objectActedOn property, and a set of relations between actions Tr like subAction or nextAc-
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tion. There can be multiple action sequences on the same level of abstraction (e.g. if the left and
the right hand perform independent actions), and multiple levels of abstraction that also poten-
tially combine independent action sequences into a single one (e.g. when a pick-up action of the
left and a put-down action of the right hand are combined into a joint transport action).

Def. 2: An action a = {t, P} is described by its type t ∈ Ta and a set of properties P = {paj ∈
Tp} that describe for example its start time or the manipulated object.

Def. 3: Let Ak
s = {ak0, ak1, . . . akn} be a sequence of actions ai of length n at abstraction

level k. The lower index s refers to the label sequence, the upper index k describes the level of
abstraction. Then we can describe an activity at abstraction level k as a set of action sequences

Ak = {Ak
s}

Sequences with k = 0 describe the most fine-grained description, potentially even single image
frames (as in Figure 5.12). Activities can consist of more than one action sequence per abstrac-
tion level if there are independent strings of actions, e.g. s ∈ {l, r} for the left and right hand, as
in our implementation.

5.6.2 Construction from action sequences

Hierarchical action models are constructed by iteratively applying two kinds of rules to the seg-
mented action sequence until no further change can be achieved:

• Abstraction rules generate a new action sequence on a higher level of abstraction.

• Transformation rules propagate information inside and among action sequences on a fixed
level of abstraction.

Abstraction rules are, for instance, used to create a pick-up action when a Reaching motion fol-
lowed by a TakingSomething motion is observed. Transformation rules are for example used to
propagate information from instantaneous events, like the detection of an object, to neighboring
actions. This is often needed to set the objectActedOn for a Reaching motion, since the corre-
sponding RFID tag event usually occurs during the following TakingSomething action when the
object is actually removed from the detection range of the reader.

Def. 5: Abstraction rules combine several action segments of one action sequence at level k
to form more abstract representations on a higher level k + 1

RA : Ak
s → Ak+1

s′
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The formulation of the rules is kept very general in order to make them applicable to a large
variety of object manipulation actions. They operate based on the knowledge about sub-actions
that is declaratively specified in the knowledge base like the example given in Figure 5.11. This
allows to easily apply the system to new tasks as longs as a declarative description of actions
and their sub-actions is available. Algorithm 1 describes a slightly simplified version of the
abstraction procedure:

Algorithm 1 abstract(ActSequence, PriorSuperActs, Segment)
Cur← first(ActSequence)
Rest← rest(ActSequence)
SuperActs← compatible_super_actions(Cur, PriorSuperActs)

if ordering_constraints_met(Segment, SuperActs) then
if segment_complete(Segment, SuperActs) then
Super← create_superaction(Segment, SuperActs)
HighLRest← abstract(Rest, [], [])
HighL← append(Super, HighLRest)

else
Segment← append(Cur, Segment)
HighL← abstract(Rest, SuperActs, Segment)

end if
else
HighL← append(Segment, HighLRest)

end if
return HighL

The abstraction procedure iterates over the sequence of low-level actions LowL and creates a
more abstract sequence HighL. It maintains a set of hypotheses of potential higher-level actions
ActHypos that so far fitted to the other actions in the segment. In each step, the system checks
which of these super-action hypotheses can also be a super-action of the current action using
the compatible_super_actions and discards the other alternatives. In the next step, the set of
hypotheses is further filtered by removing those whose ordering constraints would be violated
by the current segment. The algorithm then checks whether the segment is complete, i.e. if
all required sub-actions are there and if all ordering constraints are met for any of the hypothe-
ses. In this case, it creates the super-action and continues the abstraction with a new segment
and an empty set of hypotheses. Otherwise, it continues with the old segment until it is either
complete or until all super-action hypotheses turned out to be wrong. In this case, the system
just adds all actions from the current segment to the higher-level sequence. Often, actions can
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be incorporated later at a higher level of abstraction, for example Moving-27 as sub-action of
PuttingSomethingSomewhere-3 on the second level.

Def. 6: Transformation rules operate on a constant level of abstraction and either change the
sequence of actions, their properties, or combine sequences of actions, thus transform

RT : {Ak
s} → A

k

s′

Transformation rules can also add relations r ∈ Tr between actions, for example to link each
action to the next one in the sequence, or combine two sequences into a single one. These
relations are described by asserting the respective OWL properties that link the action instances
in the knowledge base.

The example in Algorithm 2 is used to propagate RFID events between neighboring actions. If
the event has been detected during the Reaching phase and no object is detected for the following
TakingSomething phase, the detection is propagated. There is an analogous rule for the opposite
case, propagating events from a TakingSomething to the preceding Reaching segment.

Algorithm 2 transform(ActSequence)
First← first(ActSequence)
Rest← rest(ActSequence)
Second← first(Rest)

if (type(First) = Reaching) and (type(Next)=TakingSomething) then
if objectActedOn(First) and not objectActedOn(Next) then
Obj ← objectActedOn(First)
assert(objectActedOn(Next), Obj)
transform(Rest)

end if
end if
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5.6.3 Evaluation

To evaluate our approach, we first show on two real-world data sets of different activities how
hierarchical models can be built from a flat sequence of actions. In addition, we explain how the
hierarchical action representation can be used to answer queries about the observed activities.

5.6.3.1 Abstraction into hierarchical models

We first present the results of the abstraction from a flat segmentation into a hierarchical action
model. The experiments were performed the experiments on two different data sets, the TUM
Kitchen Data Set (see Section 5.2), which mainly contains observations of table setting activities,
and the CMU MMAC data set [De la Torre et al., 2009], which consists of data from different
cooking tasks. The CMU MMAC data set does not provide the data required by our motion
segmentation algorithm (Section 5.4), so this hierarchical model is based on the manual labels
provided with the data.

Figure 5.13 visualizes the models constructed from sequence 1-0 of the TUM data set (sub-
figures (1) and (2)) and the ’Eggs’ sequence of subject 12 in the CMU data set (subfigure (3)).
In sub-figures (1) and (3), the colors correspond to action classes; the pink color on the topmost
level in subfigure (1), for instance, is a PuttingSomethingSomewhere action.

In sub-figure (2), the color describes the manipulated object. This kind of coloring also shows
how actions are combined, e.g. how Reaching, TakingSth, LoweringAnOject and Releasing-

GraspOfSomething form a PuttingSomethingSomewhere action. This is visually apparent as the
’inverted U’ shape. For the object colored in blue, the PuttingSomethingSomewhere action was
started with the right and finished with the left hand; combining these sections is in principle
possible, though not yet implemented. The missing objects in the middle of the sequence are
pieces of silverware that cannot be detected by the RFID sensors, and since the objectActedOn

is missing, the low-level motions are not aggregated to higher-level actions.

In the CMU data, the actions of the left and right hand are not labeled separately, so there is
only one stack of sequences. Since the data is also labeled on an already more abstract level,
the benefit of the abstraction procedure is not as large as for the TUM data. However, it can still
be seen how e.g. the actions OpeningACupboard, TakingSomething and ClosingSomething are
combined to the GettingSomethingFromTheCupboard instances depicted in yellow.
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(1)

(2)

(3)
Figure 5.13 Visualization of the action abstraction on the TUM Kitchen Data set and the CMU
MMAC data set. (Left: TUM data, color based on the action type. Center: TUM data, color
based on the manipulated object. Right: CMU data, color based on the action type. In the TUM
data, there are separate stacks of sequences for the left and right hand, in the CMU data only
one for both. Higher levels correspond to more abstract descriptions, the time dimension points
towards the back.
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Figure 5.14 Locations where a place mat is taken from (dark red) and put to (light green) during
a table-setting task.

5.6.3.2 Queries on HAMs

To demonstrate the usefulness of the models, we now present different queries they enable a robot
to do. We start with asking for everything that is known about the action segment PickingU-

pAnObject100:
? - owl_has ( ’ Pu t t ingSometh ingSomewhere100 ’ , ? Pred , ?O ) .

Pred = type , O= Put t ingSometh ingSomewhere ;
Pred = subAct ion , O= Pick ingUpAnObjec t150 ;
Pred = subAct ion , O= Car ry ingWhi leLocomot ing53 ;
Pred = subAct ion , O= Put t ingDownAnObjec t151 ;
Pred = objec tAc tedOn , O= placemat -1 ;
Pred =doneBy , O= f l o r i a n ;
Pred = bodyPar t sUsed , O= r i g h t H a n d ;
Pred = f romLoca t ion , O= l o c ( 0 . 3 2 , 1 . 9 8 , 1 . 0 8 ) ;
Pred = t o L o c a t i o n , O= l o c ( 3 . 2 , 2 , 0 . 7 4 ) ;
Pred = s t a r t T i m e , O=0.722562 ;
Pred =endTime , O=5.45968

In a robotics context, it is useful to be able to select trajectories based on their purpose, e.g. for
imitation. The trajectory for a TakingSth motion with a fromLocation on the table is obtained
with the following query and visualized in Figure 5.1, bottom left:

? - t y p e ( ?A, ’ Tak ingS th ’ ) , f r o m L o c a t i o n ( ?A, ? From ) ,
o n _ P h y s i c a l ( ? From , ? T ) , t y p e ( ? T , ’ Tab le ’ ) ,
t r a j F o r A c t i o n ( ?A, ’ r i g h t H a n d ’ , ? T r a j ) .

The models also allow to query for action-related information, for example from which location
to which location an object is transported (visualized in Figure 5.14):

? - t y p e ( ?A, ’ Pu t t ingSometh ingSomewhere ’ ) ,
ob j ec tAc tedOn ( ?A, ?O) , i n s t a n c e _ o f ( ?O, ’ P laceMat ’ ) ,
f r o m L o c a t i o n ( ?A, ?FL ) , h i g h l i g h t _ l o c a t i o n ( ? FL ) ,
t o L o c a t i o n ( ?A, ?TL ) , h i g h l i g h t _ l o c a t i o n ( ? TL ) .

We can also query for habits of a person, e.g. if she always opens cupboards with the left hand
? - f o r a l l ( t y p e ( ?A, ’ OpeningACupboard ’ ) ,

bodyPa r t sUsed ( ?A, ’ l e f t H a n d ’ ) ) .
Yes
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The following query asks for objects that are carried with both hands, i.e. where two simul-
taneous PuttingSomethingSomewhere actions, performed by different hands on the same object
instance, exist:

? - t y p e ( ? A1 , ’ Pu t t ingSometh ingSomewhere ’ ) ,
t y p e ( ? A2 , ’ Pu t t ingSometh ingSomewhere ’ ) ,
not ( ? A1=?A2 ) ,
bodyPa r t sUsed ( ? A1 , ’ l e f t H a n d ’ ) ,
bodyPa r t sUsed ( ? A2 , ’ r i g h t H a n d ’ ) ,
ob j ec tAc tedOn ( ? A1 , ?O) , ob j ec tAc t edOn ( ? A2 , ?O) ,
t i m e I n t e r v a l ( ? A1 , ? I1 ) , t i m e I n t e r v a l ( ? A2 , ? I2 ) ,
t i m e O v e r l a p ( ? I1 , ? I2 ) .

O = ’ p lacemat -1 ’
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5.7 Partial-order models

It is surprising how different people cook the same meal: Some people first prepare all the tools
and ingredients, others start to cook and get the things they need just in time, others do some-
thing in between. In addition, people get distracted, perform irrelevant actions like cleaning the
countertop, or forget to take something out of the refrigerator. This is possible since many human
activities allow a lot of freedom in how they are performed: The same goal can be reached by
significantly different action sequences, corresponding to different ’styles’ that are often typical
for a person. Technically speaking, there is usually no total ordering among the actions in a task,
but only a partial order imposed by causal dependencies among the actions, and this partial order
often depends on the person performing the task.

For analyzing human activities, it is desirable to recognize these different styles, to spot dif-
ferences and anomalies, to compare activities, and to find out which actions are relevant for the
task at hand. Models of these activities should not get confused by the variety of different action
sequences, but rather learn the characteristic ordering constraints that need to be met, i.e. the
partial order or dependency structure of the actions in a task.

Figure 5.15 illustrates this on the example of making brownies. The left part shows three
different action sequences for the task. In the leftmost sequence, the subject only retrieves ob-
jects that are immediately needed for the next action. The subject in the center, in contrast, first
prepares all ingredients and tools and then starts with the cooking. The colors indicate the de-
pendencies among the actions, which are also shown in the partial-order graph in the right part
of the picture. The arrows indicate the precedence relation between actions; an arrow from A to
B means that A happens before B. Our goal is to learn the partial-order graph from a multitude

Figure 5.15 From several observations of the same task (left), the system learns the partial order
of actions in that task (right) using statistical relational learning methods.
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of diverse action sequences like those in the left part of Figure 5.15. In many cases, the train-
ing set does not equally cover all alternatives how an action can be performed, but shows some
bias, introducing soft precedence constraints in addition to the causal dependencies between the
actions. These soft constraints can be represented using a statistical model that can describe the
probability of a precedence relation based on how consistently it was observed in the training
data (visualized by the gray arrows in Figure 5.15).

The implementation is based on the Bayesian Logic Networks (BLNs) introduced in Sec-
tion 2.5.1. By learning a BLN, we extract a joint probability distribution over the types of actions
in an activity, their properties and their pairwise ordering constraints. Combined, these pairwise
ordering constraints result in a partial order imposed on all actions in a task. The resulting mod-
els do not only describe the partial order, but general relations between consecutive actions and
their properties. From a diverse training set, the models can learn which actions are relevant
and which ordering relations are important. Actions that occur in all observations of a task are
considered more relevant than those that are only rarely observed, and ordering relations that
consistently hold are also more likely to be important. With this approach, the system can for
example learn that wiping the countertop is less important for making an omelette than cracking
eggs, and that one first needs to take the eggs out of the refrigerator before cracking them. The
learned full-joint probability distribution can thus be used for various inference tasks:

• Classifying and verifying activities

• Identifying relevant actions in the activity

• Inferring missing data, e.g. the type of an action or object given the overall activity model

• Manually analyzing the learned models can show how structured a person performs a task

5.7.1 Modeling partially-ordered tasks

In contrast to the previously described task representations, tasks are now considered to be ab-
stract partially-ordered action descriptions, and are distinct from the (linear) observed action
sequences. Furthermore, the partial-order constraints are no longer assumed to be given and de-
terministic, but are now soft constraints that need to be learned from the training data. We thus
have to extend the prior notation to take this additional information into account and will explain
the notation used for learning partial-oder models in this section. Note, however, that the learned
soft ordering constraints can be translated into the notation used earlier by choosing only the
most likely constraints or those that have a likelihood beyond a certain threshold. We start with
a formal description of the representation of tasks and actions. T denotes a set of tasks, each of
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which is described by a set of actions At, a possibly empty set of action properties Pt and an
ordering relation Ot among the actions.

T = {Tt|Tt = 〈At,Pt,Ot〉} (5.4)

Tasks are not to be confused with the observed action sequences S, which are instances created
by performing a task. A task model describes the partial order inherent in an activity, action
sequences are sequential samples following this partial order. The number of actions they com-
prise may differ due to non-observed actions or additional irrelevant actions. Action sequences
are described as

S = {ST
s |ST

s = 〈a0, a1, . . . 〉} (5.5)

Observed actions in an action sequence are marked with a subscript index ai, the prototypical
actions in a task model have a superscript index ai. Action sequences are related to tasks via the
activityT predicate.

activityT (ST ) = T (5.6)

Each task model comprises a set of n actions, which have one of m different types A0, . . . Am

At = {a0, a1, . . . , an} (5.7)

∀i ∈ [0, n] : actionT (ai) ∈ {A0, A1, . . . , Am} (5.8)

Actions may have different properties like the object manipulated or the hand used. Pt assigns a
probability value to each property πj ∈ Π of each action ai:

Pt : At × Π→ R (5.9)

Π = {π0, π1, . . . , πp} (5.10)

Pij = P (πj(a
i) = True) (5.11)

For action sequences, this reduces to a simple indicator matrix that, for each action-property-pair,
contains a probability value that this combination is present. In the case of reliable observations,
this probability will be 1, in other cases it reflects the observation uncertainty. For tasks, Pt

is more complicated and depends on the properties of the problem at hand, as explained in the
following sections.

The ordering relation Ot for a task T describes the probability that an action ai is executed
before an action aj in the respective task context. In our system, this relation is learned from the
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training set of sequences ST
train and assigns a probability to each pair of actions ai, aj ∈ At

Ot : At ×At → R (5.12)

The relative ordering of two actions is expressed using the precedes predicate defined as

∀ai, aj ∈ Ss : (i < j)⇔ precedes(ai, aj, Ss) (5.13)

Figure 5.16 illustrates how a sequence 1−2−3−4−5 is translated into a set of pairwise ordering
constraints, depicted by the black arrows. Sequences of observed actions are described by giving
the types of actions (actionT ), their ordering (precedes) and optionally their parameters (e.g.
objectActedOn), for instance as

activityT (Act0) = MakeToast

∧ actionT (N1) = N1 ∧ objectActedOn(N1, O1)

∧ objectT (O1) = O3

∧ actionT (N2) = N3 ∧ actionT (N3) = N4 . . .

∧ precedes(N1, N2, Act0) = True

∧ precedes(N1, N3, Act0) = True ∧ . . .

∧ precedes(N1, N2, Act0) = True ∧ . . .

These models are implemented using Bayesian Logic Networks [Jain et al., 2009] from the
ProbCog statistical relational learning library. Section 2.5.1 describes how the ProbCog algo-
rithms are integrated into the KNOWROB knowledge base. Examples of the fragments of con-
ditional probability distributions are shown in Figure 5.18, where the oval nodes denote random
variables and the rectangular nodes contain preconditions for the respective fragments to be ap-

Figure 5.16 Describing the partial order in the sequence 1−2−3−4−5 by pairwise precedence
relations.
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Figure 5.17 Precedence graphs for the fictional activities MakeCoffee (left) and MakeToast
(right) which were used for sampling the synthetic action data .

plicable. Note that the manually specified structure only describes that “some action can precede
some other action”, whereas the actual relations between specific action classes are learned by
the system.

5.7.2 Evaluation

We evaluate the system first on synthetic data, and then on two real-world data sets of human
activities. The synthetic data set allows to test how the methods are affected by different noise
levels in the data and to check if the actual partial-order graph can be reconstructed. The more
complex real data sets, the TUM Kitchen Data Set and the CMU MMAC Data Set, provide
realistic test data to verify that the methods perform well on real observations of human activities.

5.7.2.1 Synthetic Data

First, we tested the methods on synthetic action sequences sampled from the two precedence
graphs in Figure 5.17. Note that both graphs consist of the same actions, i.e. no single action
can be used as a hint which activity is performed, only the order contains information. This
is certainly more difficult than most real-world applications, but required, for instance, when
distinguishing between different styles of performing the same activity.

The sampling is performed using the following procedure: Let N represent the set of nodes
whose ordering constraints are met and who can thus be selected in the next step, and let
prereq(n) be the set of nodes that are prerequisites for node n. The sampling starts with the
set of nodes

N0 = {nn : ∀nk 6= nn ⇒ nn /∈ prereq(nk)}, (5.14)

the set of all actions that are not prerequisites for any other action. At each sampling step i, a
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Figure 5.18 The model structure for the synthetic data (left) and the TUM kitchen data (right)
with dependencies as conditional probability distribution fragments.

random element ni is chosen, and the sampling continues with

Ni+1 = (Ni ∪ prereq(ni)) \ ni (5.15)

All actions occur exactly once in this data set, i.e. for both graphs is m = n = 8, and there
are no action properties, i.e. P = ∅. The data can be modeled with the very simple BLN in
Figure 5.18 (left). The blue, ellipse-shaped nodes represent the random variables, i.e. the logical
terms and predicates. Square nodes are decision nodes that activate or deactivate a fragment.
Here, they indicate if the two actions are identical, in which case an ordering relation would
make no sense.

Learning the partial order The learning algorithm should be able to recover the partial order
from the data. Figure 5.19 visualizes the conditional probabilities inside the precedes-node of the
BLN. In this visualization, redundant relations have been pruned, i.e. when P (precedes(A,B)) =

1, P (precedes(A,C)) = 1 and P (precedes(B,C)) = 1, we did not draw the edge A−C to im-
prove clarity. As can be seen in the picture, the algorithm successfully recovered the partial-order
structure the data was sampled from.

Interconnections that are not present in the original graph, for instance between the nodes N1,
N2, N3, and N4, reflect the properties of the sampling algorithm. It is equally likely to switch
to a different branch of the activity (i.e. between N1 − N2 and N3 − N4) and to continue the
same branch. In observations of humans, such interconnections reflect an alternating behavior,
as opposed to a stringent execution of each string of actions.
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Figure 5.19 Learned dependencies in the synthetic data set. The thickness of the lines depicts
the probability that one action is performed before another. The partial-order structure could
successfully be recovered from the observed data.

Classification in the presence of noise Observations of activities are often obscured by ir-
relevant actions that are performed in between the essential actions for a task, like cleaning the
countertop or drinking some water while cooking a meal. Errors during the segmentation into
single actions also creates such action noise.

To test the influence of irrelevant actions in between the important ones, we modified the
sampling algorithm described earlier so that, in each step, a noise action may be chosen instead
of one of the relevant actions with a certain probability. Formally, equation (5.15) changes to

Ni+1 = (Ni ∪ prereq(ni) ∪ X ) \ ni (5.16)

whereX is a set of noise actions, i.e. actions that are irrelevant to the activity. In the experiments,
we sampled from ‖X‖ = 10 noise actions, denoted x0 . . . x9, with a probability of 10%, 20%
and 50% respectively. The sequences in both the training and the testing set comprised these
noise actions, so the system does not know a priori which actions are actually relevant.

Figure 5.20 (right) shows the classification performance (F1 value) of our system (inference
on the ground BLN performed using the Backward Sampling algorithm [Fung and Favero, 1994]
using 5000 samples). Even with the very noisy sequences, in which about half of the actions
are not relevant to the activity, the system is still able to learn a model that allows for good
classification. If there is few noise (lines without markers), as few as five examples suffice for
reasonable performance, while the more noisy data requires about 15 samples for similar results.

We compare the classification results to those obtained from Hidden Conditional Random
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Figure 5.20 Recognition rates (F1 value) on synthetic data with different noise levels (10%, 20%
and 50% probability of choosing a noise action) and sizes of the training and testing set (5 to 50
samples, see x-axis). Left: HCRF. Right: BLN (our approach).

Fields (HCRF, [Quattoni et al., 2004]), which have shown to outperform Hidden Markov Models
and Conditional Random Fields, which are among the most common methods in action recogni-
tion. HCRFs directly model the sequence of actions, but cannot take longer-range dependencies
like global ordering constraints into account. The results in Figure 5.20 suggest that the model
gets confused by the large variation in the data and the significant amount of noise. While the
results are still rather stable for low noise data (lines without markers), they get much worse
when the proportion of irrelevant actions increases.

Inferring the types of single actions Besides classification, the models can also be used to
infer the type of a single action in a sequence, e.g. in case of an ambiguous classification, as

argmax(P (actionT (ai)|ST )) (5.17)

We randomly sampled sequences from the nosiest version of both activities (50% noise actions),
removed the type of an arbitrary action in the test sequence, and inferred this type given the rest
of the sequence. The exemplary results in Table 5.6 show that it is possible to infer the type of
an action given the type of the activity and the surrounding actions.

ID activityT actionT most likely types
12 MakeCoffee N8 N8(0.5760), N7(0.4135), X5(0.0042)
25 MakeCoffee N7 N7(0.4837), N5(0.2022), N6(0.0846)
33 MakeCoffee N8 N8(0.7667), N7(0.2211), X5(0.0117)
43 MakeCoffee N1 N1(0.5303), N3(0.4243), N2(0.0447)
24 MakeToast N6 N6(0.2867), N3(0.2498), N7(0.1395)
37 MakeToast N4 N4(0.5940), N1(0.3800), N5(0.0220)
48 MakeToast N4 N4(0.3950), N2(0.2860), N5(0.1860)

Table 5.6 Inferring the type of unknown actions in an activity.

In addition, the results show which actions are easy to identify. Action N8, for example, is
always the last non-noise action in every sequence and can thus easily be identified (seq. 12, 33).
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When there is confusion, it is mostly between actions on a similar level of the precedence graph
(e.g. N4 and N1 in seq. 37) or between direct predecessors and successors (as in seq. 25, where
N5 and N6 are direct predecessors of N7).

Identifying (ir)relevant actions A priori, the system does not know which actions are relevant
and which are just noise. Using the proposed models, the probability of an action given the
activity can be calculated to decide which actions are most relevant to the task at hand.

P (actionT (ai) = Aj|activityT (ST )). (5.18)

Table 5.7 shows that, even in the extreme case of 50% noise actions, the relevant actions are more
consistent across the observed episodes and therefore have a higher probability. Since both ac-
tivities consist of the same number of actions, the results are identical for both theMakeCoffee

and MakeToast activity.

action probability action probability
N1 0.83 X0 0.29
N2 0.83 X1 0.31
N3 0.83 X2 0.39
N4 0.83 X3 0.40
N5 0.83 X4 0.27
N6 0.83 X5 0.26
N7 0.83 X6 0.36
N8 0.83 X7 0.34

X8 0.37
X9 0.31

Table 5.7 Relevance of an action as its probability of occurring in an activity.

5.7.2.2 TUM Kitchen Data Set

We further evaluate the system on the TUM Kitchen Data Set described in Section 5.2. Since we
are interested in modeling the actions on a rather abstract level of detail, we do not deal with the
problem of segmenting the continuous motion (Section 5.4), but rather use the manually created
labels provided with the data set.

All subjects in the data set perform the same activity (setting the table for one person), using
the same objects, but in different order: Some behave like an inefficient robot that transports
the objects one-by-one, others are more human-like in carrying several objects at once. On the
one hand, this makes this data set quite structured, but on the other hand, it creates a difficult
classification challenge since all objects and actions are identical for all classes.
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Figure 5.21 Conditional probability distribution of the precedes-node in the TUM data set. Each
curve corresponds to the first action in a pair (a1), the values on the x-axis denote the set o1 ×
a2×o2, and the value of the curve is the conditional probability that a1 performed on o1 precedes
a2 performed on o2. The very peaked distribution indicates distinct ordering constraints.

In total, there are m = 8 classes like Reaching or OpeningACupboard, and the observation
sequences have a length k of about 70 action segments. P = {objectActedOn}, the object an
action is performed on, is the only property. The BLN structure for this data set is shown in
Figure 5.18 (right).

Visualizing the learned model becomes difficult due to the influence of the object on the or-
der. However, when plotting the conditional probability for each action a1 over the object o1
× the subsequent action a2 with object o2, a peaked, sparse distribution can be observed (Fig-
ure 5.21). Many values are zero because several object-action pairs never occur (like opening

a knife). Some actions always occur before others (conditional probability of one), others have
softer ordering constraints as can be seen by the lower peaks in the diagram. We noticed in our
experiments that such sparse, peaked distributions are typical for problems that show a partial
order.

Classification performance We tested the model by discriminating between two different
styles of setting the table, in the following referred to as robot-like (transporting one object at a
time) and human-like (a more natural behavior, including e.g. grasping all pieces of silverware
at once). Due to a lack of sufficient data for the different cases, the test sequences were manually
created to cover the different cases: A typical example of each activity style similar to the train-
ing data, though with a different order of the transported objects, additional noise actions, and
shorter sequences where some object interactions were omitted. One sequence (HumanRobot)
was constructed by concatenating the first half of a human-like and the second half of a robot-like
sequence.

Table 5.8 presents the inference results obtained using Backward Sampling with 5000 sam-
ples and, as a comparison, the classification obtained from the HCRF (identical results for
m = 3, 5, 10, 20 hidden states). Features for the classification were the action class and the
manipulated object.The HCRF fails to classify the sequences and labels all of them as Human,
supposedly because it did not learn the subtle differences in the ordering. Our system correctly
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classified almost all the sequences, only the HumanRobot sequence was classified as Human,
whereas an indecisive result would have been expected. Apparently, the parts of the Human
sub-sequence are more salient than those in the Robot part of the sequence. As mentioned be-
fore, all actions and objects are identical for both classes and only the order differs. In other
cases, the distinction between different activities would obviously become much easier.

BLN HCRF
activityT SttHuman SttRobot SttHuman SttRobot
Human1 1.0000 0.0000 1 0
Human2 1.0000 0.0000 1 0

Human1short 1.0000 0.0000 1 0
HumanRobot1 1.0000 0.0000 1 0

Robot 0.0009 0.9991 1 0
Robot1 0.0001 0.9999 1 0

Robot1short 0.2678 0.7322 1 0
Robot1noisy 0.2680 0.7320 1 0

Table 5.8 Classification results of different table-setting test sequences. Correct results are
printed in bold font.

5.7.2.3 CMU MMAC Data Set

The CMU MMAC Data Set [De la Torre et al., 2009] provides observations of 43 subjects cook-
ing 5 different recipes. So far, only part of the data has been labeled, namely a subset of the
’making brownies’ and the ’cooking an omelette’ recipes, which we use for learning the mod-
els. On this data, we will present some queries that show that the models do not only represent
the ordering, but a complete joint probability distribution over different aspects of the observed
actions.

Identifying (ir)relevant actions and objects The system does not know which actions or
objects are relevant for a task, but can compute it using the learned models which contain infor-
mation about which actions and objects appear consistently across all sequences.

P(actionT(A1) | inActivity(A1, Act)=True

∧ activityT(Act)=MakingBrownies

=〈 TakingSomething:0.25,

PuttingSomethingSomewhere:0.15, Pouring:0.13,

OpeningSomething:0.13, ClosingSomething:0.08,

Stirring:0.08, Walking:0.03, TurningOnDevice:0.04,

Reading:0.03, [...] 〉
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P(objectActedOn(A1) | inActivity(A1, Act)=True

∧ activityT(Act)=CookingOmelette

= 〈 Egg-Chickens:0.19, Cupboard:0.15, FryingPan:0.12,

VegetableOil:0.08, TableSalt:0.06, Bowl-Mixing:0.05,

Fork-SilverwarePiece: 0.05, [...] 〉

Person-specific preferences As mentioned in the introduction, different people show sub-
stantially different behavior when performing the same task. One example are different ways of
cleaning up after finishing a task: Some subjects put the frying pan back onto the stove, others
put it into the sink after cooking. Such preferences are implicitly learned by the models.

P(doneBy(A1) | inActivity(A1, Act)=True

∧ activityT(Act)=CookingOmelette

∧ actionT(A1)=PuttingSomethingSomewhere

∧ objectActedOn(A1)=FryingPan

toLocation(A1)=Sink)

= 〈 P3: 0.32, P5: 0.31, P4: 0.18, P0: 0.17 〉

The subjects P3 and P5 put the frying pan into the sink several times while cooking in order to
drain some spare oil. The remaining subjects put the pan back onto the stove and not into the
sink.
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5.8 Discussion and related work

In this chapter, we presented AM-EVA, an integrated system for the observation and analysis
of human everyday tasks. AM-EVA allows to automatically combine and integrate different
kinds of information and information processing routines and to build up models that describe
actions from the low motion level over the levels of motion segments and actions up to the task
level. The knowledge-based representation allows robots to use the derived information directly
for planning and for improving their own actions since the action classes used for interpreting
human activities are the same as in the planning context.

Data sets The TUM Kitchen Data Set which has been recorded as part of this work was among
the first to provide detailed observations of human everyday activities. The motion tracking data
recorded in real-world scenes is still a unique feature of the TUM dataset. It turned out to be very
well-accepted by the research community, which can be seen by the continously high number of
downloads, but also by the papers that use the data. Though the data set is rather new, there are
already papers at high-quality conferences (ECCV 2010 [Gall et al., 2010], ICPR [Krausz and
Bauckhage, 2010]) and journals (PAMI [Gall et al., 2011]) that use the data for evaluation.

Other datasets of everyday activities, partially larger than ours, do not provide motion capture
data that can be used by robots to learn motions from observations. The CMU Kitchen Data Set
[De la Torre et al., 2009] contains multi-modal observations of several cooking tasks, including
video data from calibrated cameras but only very few episodes have motion capture data. Due to
the large number of actions and the high variation between the actors, this data set is extremely
challenging for action recognition. Furthermore, the actors are heavily equipped with technical
devices, making it difficult to evaluate e.g. markerless motion trackers on the video data. The
Opportunity dataset [Roggen et al., 2010], recorded later than the TUM dataset, provides 25
hours of observations of twelve subjects performing activities of daily living like making sand-
wiches. The human subjects are highly instrumented and the dataset contains 10 modalities of 72
sensors, including accelerometers and microphones attached to the human body and to objects
of interest, cameras, position tracking system, and reed sensors in furniture. The data set is much
larger than the TUM data set, but less detailed in terms of observed motions and therefore less
suited to learning motion models. Uncalibrated video data and RFID readings (without motion
capture data) are provided by the LACE Indoor Activity Benchmark Data Set1, which is mainly
targeted towards a coarser, general description of activities. Even coarser, more higher-level data

1http://www.cs.rochester.edu/∼spark/muri/
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is available in the MIT House_n Data Set2, which is aimed at recognizing activities as a whole,
while we are also interested in modeling the single actions and even different motions an activity
consists of.

Several motion-capture-only data sets such as the CMU Motion Capture Database3 or the MPI
HDM05 Motion Capture Database4 are available that provide large collections of data. These
motions are extremely articulated, well separated, and do not resemble natural everyday activi-
ties, nor do they involve manipulation or interaction tasks. The Karlsruhe Human Motion Library
[Azad et al., 2007] consists of motion capture data specifically recorded for human motion imi-
tation on humanoid robots.

Segmentation of human motions The segmentation and classification of motions is often
referred to as “activity recognition”. An excellent overview of different approaches and repre-
sentations can be found in Krüger’s survey paper [Krüger et al., 2007]. In general, there are
two main kinds of segmentation methods, either working in an unsupervised way, or supervised
based on manually annotated training data.

Unsupervised segmentation methods usually perform either some kind of clustering of similar
recurrent motions [Zhou and De la Torre, 2009; Kulic et al., 2009] or split motions based on
intrinsic properties like a minimum of motion energy [Weinland et al., 2006]. The former class
of systems performs especially well for structured, repetitive motions like walking or running,
since correspondences can easily be found and repetitions are numerous. The latter are well-
suited if actions are well-separated and if foreground actions involve significantly more motion
than background movements. Both is not the case for mobile manipulation actions, which makes
unsupervised methods less suited for this kind of problem. Another reason why we opted for a
supervised method, though this requires manual annotation of training data, is that we would like
the system to identify segments that do not only resemble each other from a kinematic point of
view, but are also meaningful for humans. Such segments with well-defined semantics can only
be obtained by a supervised segmentation technique. In our system, a standard classifier based
on Conditional Random Fields proved to perform well enough for our tests.

Trajectory models The work on learning trajectory models can be seen in the context of imi-
tation learning [Schaal, 1999]: Robots observe human actions, analyze and abstract the observed
data, and use them to imitate the actions. An overview of the research in this area can be found

2http://architecture.mit.edu/house_n/data/
3http://mocap.cs.cmu.edu
4http://www.mpi-inf.mpg.de/resources/HDM05/
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in [Billard et al., 2008]. Recent approaches learn motions for instance as differential equations
[Pastor et al., 2009] or Gaussian Mixture Models [Calinon et al., 2010]. These methods assume
that the motions are explicitly demonstrated, i.e. that everything that has been observed is to be
imitated. In contrast, we approach the problems of deciding what to imitate and of learning in
the task context: The robot observes complete activities like setting a table and extracts models
of single motions from this data. This requires methods to identify distinct trajectory clusters
and to select a suitable one based on its semantics.

An approach for clustering human reaching trajectories using point distribution models (PDM
[Roduit et al., 2007]) has been presented by Stulp [Stulp et al., 2009]. PDMs are learned by
first performing a Principal Component Analysis (PCA) and then clustering the data using the
Mahalanobis distance. However, their experiments use very clean, pre-segmented trajectories
and the approach did not perform well on our more noisy data. Further, both [Roduit et al., 2007]
and [Stulp et al., 2009] assume that high variance implies the existence of clusters, but, as pointed
out by [Ding et al., 2002], the subspace obtained using PCA does not necessarily coincide with
the subspace spanned by the cluster centers, especially in real-world clustering problems without
well-separated clusters.

Hierarchical action models The logic-based action representation helps to overcome the
problem of different granularities at which actions are described, since descriptions on several
levels of abstraction are integrated into a single model. The model further describes the seman-
tics of the actions on the different levels by linking them to objects, locations, and other action
properties. To build up the hierarchy, the abstraction procedure exploits the same action infor-
mation that is also used for planning, i.e. the information about sub-actions has to be provided
only once and can be used both for task decomposition in the planning context and for action
recognition. There are few other systems that use logical representations for interpreting ob-
served actions. Landwehr [Landwehr et al., 2009] uses logical transformation rules for modeling
activities, but without representing a hierarchical structure. Plan recognition systems provide
in-depth action analyses, but require detailed specifications of the complete plans which are then
matched against the observations [Kautz and Allen, 1986; Goldman et al., 1999]. In contrast, our
approach does only require local sub-action relations and no knowledge of the global plan.

Since the abstraction is based on deterministic rules, it can potentially fail if the sequences
do not match completely and that are sensitive to noise in the action sequences. A probabilistic
abstraction method could probably improve robustness: There are approaches to building hierar-
chical models using statistical models, for instance multi-layer Hidden Markov Models [Padoy
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et al., 2009; Luhr et al., 2003] or Dynamic Bayesian Networks [Park and Kautz, 2008]. However,
these systems are limited to two fixed levels of abstraction and are not relational, i.e. the types
of actions they can be applied to needs to be known when creating the model. Statistical rela-
tional models would help, but are likely to suffer from scalability problems, especially for large
numbers of action classes and longer action sequences. Stochastic parsing techniques have been
applied to action recognition and also allow to create hierarchical representations if the gram-
mar supports it [Ryoo and Aggarwal, 2006; Ivanov and Bobick, 2000]. However, the resulting
models do not describe the semantics of the involved actions and their relations to objects.

In the current implementation, the estimated types of the higher-level actions are not used
to improve the analysis on the lower levels of the hierarchy. The combination of the bottom-up
abstraction with some top-down information exchange will be an interesting aspect to investigate
in the future.

Partially-ordered action models Modeling the partial order inherent in human activities is a
rather new topic. Many of today’s approaches for activity recognition are using sequence-based
methods like Hidden Markov Models (HMMs) [Patterson et al., 2005], Conditional Random
Fields (CRFs) [Vail et al., 2007] or Suffix Trees [Hamid et al., 2007]. These models have in
common that they directly describe the observed sequences by local action transitions, and they
are based on the Markov assumption that the transition to the next action only depends on the
current action.

This assumption is valid for actions described on a lower level: After reaching towards an
object, a person is usually either picking it up or, if the object is the handle of a door or drawer,
opens this container. The state transition is rather independent of prior actions in the task, which
is why models that make the Markov assumption (HMM, CRF) work fine for this kind of data.

Interestingly, the Markov assumption does not hold any more on a more abstract level, and
the partial order becomes dominant: The likelihood for picking up a specific kind of object
changes significantly depending on which task is being performed and which objects have been
manipulated beforehand. This is the case for household activities, assembly tasks in a factory, or
many games.

Many of today’s action recognition data sets do not show a partial order since they have been
recorded in a controlled setting in which the sequence of actions is completely determined. In
this case, there is a total ordering among all actions, and no real dependency constraints between
the actions can be learned. This is, however, not due to the structure of the activities, but only
due to the unnaturally constrained recording setting.
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There are a few other systems in the area of action recognition that can deal with partially
ordered tasks, like the one by [Shi et al., 2004] using manually specified Dynamic Bayesian
Networks to represent the partial order, or the system presented by [Gupta et al., 2009]. In that
paper, actions in baseball games are arranged in an AND/OR graph that describes possible action
sequences and alternatives. [Bui et al., 2008] present the “Hidden Permutation Model” that learns
the partial order of actions in a similar way as our system with a focus on increasing scalability.
However, these models do not describe action properties and thus do not allow reasoning beyond
the partial order of action types.

In the field of planning (e.g. [Penberthy and Weld, 1992]) and plan recognition, there is much
work about partially ordered plans. Kautz and Allen’s seminal paper [Kautz and Allen, 1986]
formalizes plan recognition as a logical inference problem. [Goldman et al., 1999] extend this
work to a probabilistic model that can handle partially ordered and interleaved plans. These
approaches rely on a manually created model and have mainly been applied to synthetic problems
so far. The system presented in this paper differs from those approaches in that it learns a model
that is able to describe complex tasks including their partial order from observed data.

The area of preference learning also deals with learning and representing orderings, though
’partial order’ is usually meant as a total order among the top-k elements in a set, as opposed to
a partial ordering of all actions. [Kirshner et al., 2003] learn partial-order relations in astronomic
data.

In terms of scalability, models representing a partial order are much more complex compared
to those describing only a sequence, having huge space requirements depending on the length of
the sequence, the number of actions and the parameters. In practice, the conditional probability
table representing the precedence relation is often sparse: Some combinations of actions and
objects do not make sense and thus have zero probability, see Figure 5.21. Therefore, the table
can efficiently be represented using decision trees [Friedman and Goldszmidt, 1996]. Even with-
out such optimizations, our implementation smoothly handles inference in models of about 40
segments with about 10 action and object classes. Learning BLNs is generally much easier than
inference because parameter learning of Bayesian networks comes down to counting. Training
on 20,000 sequences runs very fast without problems.
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Chapter 6

Knowledge-enabled decision making

This chapter deals with the problem of acquiring information during operation, namely from the
perception system, and combining this information with the robot’s background knowledge for
taking informed decisions. In the example scenario, the robot is at this step supposed to have
generated an effective task description that contains all required actions and objects. To actually
execute this task, it now needs to ground the abstract object descriptions into its perception, make
sure all required object models are available and retrieve them otherwise, and it needs to reason
about how to translate abstract action descriptions like “open the container where you think cups
are stored in” into real-world actions.

While the previous chapters introduced the knowledge processing framework and the repre-
sentations for the different kinds of knowledge, we now focus on those components that are
needed for on-line operation on the robot and the integration with the robot’s perception and
control system that are required to perform grounded symbolic inference about the robot’s per-
cepts and actions. This integration is thereby more than just a technical aspect: The symbolic
descriptions in the knowledge base are only meaningful if they are grounded, that is, if they are
closely linked to the data the robot perceives and the actions it does.

The first section in this chapter discusses how the knowledge base can exchange information
with the perception system, both information about object models and information about the
actually perceived objects. The following one describes how the environment model represented
using the methods described in Section 3.2.4 can help in the decision process. We continue with
a description of RoboEarth, a project that targets at building a large web-based knowledge base
that robots can use to autonomously exchange knowledge between each other. In the pancake
example, RoboEarth could be used to download object models as well as environment models,
and can be used to share the effective task description generated as the result of the process
described here.
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6.1 Integration of perceptual information

Interfacing a knowledge base with a perception system requires integration on two levels: the
level of object recognition models, which enables the robot to reason about which objects can
potentially be recognized, and the level of object detections using these recognition models,
which allows it to describe and reason about object instances in the environment. KNOWROB

includes interfaces to several vision components like the CoP perception system [Klank et al.,
2009], the K-COPMAN system [Pangercic et al., 2010], and the RoboEarth object recognition
component [Waibel et al., 2011].

In the following, we will focus on the integration with the CoP perception system, which is the
most mature and complete one. We created an interface to synchronize CoP’s model database
with KNOWROB to inform the knowledge base about newly created object models. Whenever a
new object is added to the CoP database, the signature of the model is announced to KNOWROB

and added to the set of available models in the knowledge base. Based on this set of models, the
robot can decide if it can recognize a kind of object or not.

Representation of object recognition models and algorithms When introducing our ap-
proach to representing object poses (Section 3.2), we described the taxonomy of MentalEvents

depicted in Figure 3.4. Those classes form the upper level, categorizing the main kinds of events
that can create beliefs about object poses. We thus extended the taxonomy of MentalEvents,
namely the VisualPerception branch, with the variety of vision algorithms provided by the CoP
system, in order to describe in much more detail which algorithm was used in conjunction with
which recognition model to detect the respective object. Figure 6.1 gives an overview of the
various algorithms for detecting objects and for estimating their positions. Most of these are
general-purpose algorithms that need to be parametrized with a suitable object recognition model
to detect objects of a certain kind. The corresponding taxonomy of object recognition models
describes the different kinds of models (Figure 6.2). Detections of objects are linked to instances
of these models using the perceivedUsingModel property, which allows to describe exactly using
which algorithm and which model some belief about an object entered into the knowledge base.

Different algorithms have different properties in terms of input data they require and output
data they produce: Some can only provide information about the presence or absence of objects,
others compute the position in space or even the six-dimensional pose of an object. They further
differ in the sensors they can use and in the computation complexity. If the robot does not intend
to manipulate an object, information if something is present or not may be sufficient and can
often be provided by rather simple methods, while manipulating an object requires to have exact
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Figure 6.1 Classes of perception algorithms provided by the Cop perception library, represented
as specializations of VisualPerception.

information about its pose. Detailed descriptions of models and algorithms are also important for
exchanging information (see Section 6.3). To determine which algorithms are required to make
use of a model, and which models can be used to recognize which object, the system has to be
able to describe them in sufficient detail.

Object perceptions There are different perception systems that need to be interfaced in differ-
ent ways: Some perception methods perform recognition on demand, others continuously match
models against the current sensor data. In the former case, the communication is performed syn-
chronously using a request-response based scheme, in the latter one asynchronously by passively
listening to the published object detections. In the context of the ROS middle-ware, the former is
interfaced using service calls, the latter one by listening to detection results that are continuously
published on a so-called “topic”.
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Figure 6.2 Types of object recognition models in the Cop perception system.

Figure 6.3 visualizes the two kinds of interfaces. In the case of synchronous communication
(upper left), the integration with KNOWROB is solved using computables: A computable class
with an appropriate target is defined which is called automatically whenever someone queries
for objects of that respective type. The computable then sends a request to recognize this kind of
object to the perception system, and creates the object representation described in Section 3.2 for
all detected objects returned in the result set. The types of these object instances are determined
based on the response of the perception system. This allows to create a computable for a generic
class like HumanScaleObject, which then generates instances of more specific classes like cups,
plates, or forks. This kind of interface is for example used to read information from the Willow
Garage tabletop_object_detector 1.

The second kind of interface, based on asynchronous communication, listens to all perception
results and adds them to the knowledge base. This listener is running in a separate thread in
parallel to the KNOWROB engine, receives all object detections that are published on the topic
and creates the respective perception instances for them (lower left block in Figure 6.3). This
second kind of interface is for example used to read information from the CoP vision system.

1http://www.ros.org/wiki/tabletop_object_detector
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Figure 6.3 Query-base and topic-based interface between the knowledge base and the perception
system to include detections of objects into the knowledge representation.

6.2 Environment information

Semantic models of the environment are of major importance to a robot performing object
manipulation tasks. In Section 3.2.4, we explained how environment maps are represented in
KNOWROB and will now report on how this information is used to accomplish tasks. Several
environments have been represented in this format. Figure 6.4 shows some examples how this
information can be used to locate appliances based on their types or the purpose for which they
are used, like a HeatingDevice (left), a device for WashingDishes (center), or a CoolingDevice

(right).

Figure 6.4 Examples of semantic environment maps represented as object instances in
KNOWROB.
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In order to ground the abstract object descriptions that are used in plans, a robot needs to
locate the respective objects in the environment and decide where to search for them. A similar
problem arises when the robot needs to bring something back where it belongs. In both cases, the
robot needs knowledge about the organizational structure of the environment. A simple solution
is to use general knowledge about the types of objects and their properties. Perishable objects,
for example, must be cooled and are stored in the refrigerator, frozen food belongs into the
freezer, silverware into a drawer, and tableware into cupboards. Figure 6.5 explains how such
information can be encoded and used. The upper left part of the picture shows the taxonomy
of household appliances and other super-classes of Refrigerator, while the upper right section is
a part of the food ontology. The description of the concept Refrigerator contains the statement
that refrigerators are storage places for perishable goods. Due to the hierarchical structure and
concept inheritance, this relation applies to all instances of sub-classes of Perishable, namely
DairyProduct and CowsMilk-Product. This kind of inference is especially useful if the robot
does not have much knowledge about the environment it is operating in, apart from generic
class-level knowledge.

If the robot knows the locations of some objects in the environment, it can estimate the cor-
rect locations for novel objects based on their similarity to known objects. If we assume that

Figure 6.5 Locating objects based on knowledge about their properties and about the
environment.

158



6.2. ENVIRONMENT INFORMATION

similar objects are usually placed together, the “semantic similarity” of the object classes in the
ontology proved to be a good indicator where to search for objects. We chose the wup similarity
measure [Wu and Palmer, 1994] that is defined as

sim(C1, C2) =
2 · d(S)

dS(C1) + dS(C2)
(6.1)

where S is the least common superconcept of C1 and C2, d(C) is the (lowest) depth of concept
C in the ontology, and dS(C) is the (lowest) depth of concept C in the ontology when taking a
path through superconcept S ofC. Table 6.1 shows some examples of objects and their similarity
to cups, cooking pots, and cutlery.

glass plate salad bowl platter knife spatula
Cup 0.78 0.67 0.67 0.67 0.52 0.52
Pot 0.67 0.67 0.67 0.67 0.6 0.7
Cutlery 0.58 0.58 0.58 0.58 0.78 0.76

cakepan colander pasta cereals mop detergent
Cup 0.67 0.53 0.5 0.53 0.53 0.53
Pot 0.78 0.7 0.5 0.53 0.6 0.6
Cutlery 0.6 0.6 0.48 0.5 0.6 0.6

Table 6.1 Concept similarity based on the KNOWROB ontology.

After the initial publication in [Tenorth et al., 2010a], the concept of using semantic similarity
measures to discover organizational principles in kitchens has been further investigated after-
wards by Martin Schuster, leading to a paper that compares different techniques for learning the
organizational structure [Schuster et al., 2011].

Having chosen a location for an object using either of the methods presented beforehand,
the robot needs to generate actions to retrieve them. This includes the translation of abstract
instructions like “open the container in which you expect to find a cup” into a trajectory for the
robot to pull open the correct drawer or container door. These trajectories can be obtained from
articulation models that have been generated by the robot that created the semantic environment
map [Blodow et al., 2011], and that are stored in the semantic map as attachment to the respective
containers. Figure 6.6 visualizes the different kinds of opening trajectories (linear, circular, s-
shaped) for the different containers (left picture) and the result for a query for the container in
which the system expects to find a cup (right picture).
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Figure 6.6 Semantic environment maps with opening trajectories for different kinds of contain-
ers in the kitchen.

6.3 Knowledge exchange between robots

The Web 2.0 has changed the way how web content is generated. Instead of professional content
providers, it is now often the users who fill web sites with text and images, forming a community
of people helping each other by providing information they consider useful to others. The free
encyclopedia Wikipedia grew up to millions of articles, sites like cooking.com or epicurious.com

collect tens of thousands of cooking recipes, and ehow.com and wikihow.com offer instructions
for all kinds of everyday tasks. “Crowdsourcing” knowledge acquisition has proven to greatly
speed up the generation of web content, and we are trying to make use of it in order to improve
the performance of our robots. We are working towards a similar “World Wide Web for Robots”,
a web-based community in which robots can exchange knowledge among each other. With
this approach, we intend to speed up the time-consuming knowledge acquisition process and
let robots profit from tasks other robots have already learned, object models they created, and
environments they explored.

If such information is to be generated and used by robots, that is, without human intervention,
it has to be represented in a machine-understandable format. In this respect, we have much in
common with the Semantic Web [Lee et al., 2001], in which computers are to exchange infor-
mation between each other: Content should be separated from rendering, it has to be represented
in terms of logical axioms that a computer can understand, and these logical axioms need to be
well-defined, for example in a central ontology. Such an explicit representation of the semantics
is important to enable a robot to understand the content, i.e. to set different pieces of information
into relation. Only when it knows the semantics of the exchanged information, a robot can decide
if some information can be useful for a task it has to perform, find out which piece of information
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to choose among different alternatives, and decide if it has all requirements for using it.

Conveying these semantics needs to be supported by the representation language, but though
there are several languages for describing different kinds of robot information, they usually do
not provide semantic descriptions. Examples are AutomationML [Drath et al., 2008], used in
industrial applications, the FIPA [O’Brien and Nicol, 1998] standard, which primary deals with
the definition of communication standards for software agents, or XABSL [Loetzsch et al., 2006],
mainly used in the RoboCup soccer context. Object description formats like the proprietary
DXF [Rudolph et al., 1993] or the open Collada [Arnaud and Barnes, 2006] standard describe
objects using meshes and textures, but without further specifying semantic properties.

Here, we describe our approach to defining a semantic representation language which we
realize as a combination of the following components:

• Representation of the information to be exchanged, like sequences of actions and their
parameters, or positions of objects in the environment;

• Meta-information, describing which kind of data is being exchanged (e.g. a CAD model
of an object class, saved as DXF file, together with the units used, etc);

• Specifications of requirements for a piece of information to be usable (e.g. certain sensors
or higher-level capabilities);

• Robot self-models that describe the robot’s configuration and capabilities; and

• Methods for matching the requirements of a piece of information to the capabilities of the
robot to determine what is missing and needs to be retrieved.

The representation language is realized by extending the representations for actions, objects,
and environment maps in KNOWROB with representations for those kinds of information that
are specifically needed in the context of exchanging knowledge. The work on knowledge ex-
change is done as part of the RoboEarth project [Zweigle et al., 2009] which targets at building
a “World Wide Web for Robots” and covers different aspects like the generation and execution
of task descriptions, sensing, learning, a central web knowledge base, apart from the methods
for representing and reasoning about the exchanged knowledge described in this work. We here
assume the other components of the system to exist.

Figure 6.7 shows the part of RoboEarth that is relevant here: On the left is the central RoboEarth
knowledge base, containing descriptions of actions (called “action recipes”), objects, and en-
vironments. These pieces of information have been created by different robots with different
sensing, acting and processing capabilities. Therefore, all of them have different requirements
on capabilities a robot must have in order to use them. The proposed language thus provides
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Figure 6.7 Overview of the RoboEarth system: A central database provides information about
actions, objects, and environments. The robot can up- and download information and determine
if it can use it based on a semantic model of its own capabilities.

methods for matching these required capabilities against those available on the robot. Each robot
has a self-model consisting of a description of its kinematic structure, including the positions of
sensors and actuators, a semantic model that describes the meaning of the robot’s parts (e.g. that
certain joints form a gripper), and a set of software components like object recognition systems.
We use the Semantic Robot Description Language (Section 3.5) to describe these components
and the capabilities they provide, and to match them to the requirements specified for action
recipes. Section 6.3.3 explains the matching process in more detail.

6.3.1 Knowledge representation for exchange

The exchange of knowledge creates additional challenges for the robot’s knowledge representa-
tion in addition to the description of the information itself. First, one needs to ensure that the
uploading and the receiving robots share a common vocabulary to describe information, and that
this vocabulary can be extended in a distributed way. Another requirement is that the descrip-
tions provide meta-data about the information that is being exchanged to allow robots to interpret
the data and decide if it is useful to them at all. Further, the description formats should remain
compatible to existing data formats and rather link to files in established formats than to create
new ones. The following paragraphs discuss these problems and our solution approaches.
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Central upper ontology, distributed extensions RoboEarth is intended to be a large, dis-
tributed system that can be used by various different robots, performing many different actions
in very diverse environments. In such a setting, it is impossible to predict all kinds of actions or
objects that need to be described. Instead, we need a flexible way to extend the language to new
application domains. At the same time, it is important to have a common basic language that
describes the most important and generic concepts (like the relations between actions, objects,
grasps, and trajectories) that is the same for all communicating partners. Otherwise, a robot
would not be able to understand a description it downloads from RoboEarth. We therefore chose
the following setup: A common central ontology describes the main concepts that are required.
This ontology provides the language elements described in this report and supports the reason-
ing capabilities. It can be extended by every user by deriving special classes or properties from
the generic ones. This way, robots still have an approximate idea of the meaning of a piece of
information and can set it in relation to other information. This central ontology is an extension
of the KNOWROB ontology with the exchange-specific concepts described in this section.

Meta-data for describing knowledge Information about the creator of a recipe, the creation
time or the location may be important for selecting a good recipe: If a very similar robot created
it, the likelihood that it will work will be higher. The older a map is, the more likely it is outdated.
This information can be described using the createdBy and creationDateTime properties. The
number of times a recipe has been downloaded, the amount of successful executions, or the
kinds of robots it has been tried on are valuable pieces of information when trying to select
one recipe among several alternatives. Another kind of meta-data are dependencies specified in
SRDL which can be used for matching requirements of pieces of information to the capabilities
of a robot.

Links to external data files While the language provides means to describe various kinds of
information, there are already established and optimized file formats for many applications: Col-
lada [Arnaud and Barnes, 2006], for instance, is a widely used format for describing kinematics.
Other modules, like object recognition systems, have their own file formats that allow to effi-
ciently store the required information. On the one hand, we try to keep these data formats to
ensure compatibility and to profit from existing tools. On the other hand, we need to describe
the semantics of the exchanged data. The language thus allows to add links to external data files
to the OWL representation. In this case, the information content (an object model, an occupancy
grid map, etc) is stored in an external file, and a description in the RoboEarth language adds
meta-information like the prerequisites that are required to use the model.
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6.3.2 Action descriptions

Figure 6.8 visualizes an action recipe for serving a drink to a patient in bed. In this picture,
action classes are visualized as blocks, properties of these classes are listed inside the block, and

Figure 6.8 Representation of a “serving a drink” task, called “action recipe” in the RoboEarth
terminology, which is composed of five sub-actions that themselves can be described by another
action recipe.
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ordering constraints among the actions are shown as arrows between the blocks. There are three
levels of hierarchy: The recipe for the ServeADrink action includes the GraspBottle action that,
by itself, is defined by an action recipe (shown on the right side) consisting of single actions.
Both recipes consist of a sequence of actions that are described as task-specific subclasses of
generic actions, like Reaching or Translation, with additional parameters, like the toLocation or
the objectActedOn as described in Section 3.3. The hierarchical structure allows the robot to
recursively retrieve additional action recipes for sub-tasks if it does not know how to execute
them. If it already has a plan for these tasks, it does not need to download these descriptions any
more.

The action recipe further lists dependencies on components that have to be available on the
robot in order to successfully perform the task. In this example, there is a list of object recognition
models that are necessary for the robot to be able to recognize all objects involved in the task. In
addition to these requirements are those defined at higher levels of the abstraction hierarchy. All
specializations of Translation, for instance, require some kind of moving base to be executable.

6.3.3 Matching available and required capabilities

In order to find out if the robot is able to execute a recipe and, if not, whether the robot can be

enabled to do so by downloading additional information, the system matches the requirements
of the action recipe to the robot’s capability model. If needed, the robot can for instance load
more detailed recipes, object models, or an environment map. While we cannot guarantee that
the robot will be able to successfully execute the action described in a recipe – which can still
fail for various reasons –, we can at least compute if the robot has all information it needs based
on the information we have about the task. The goal is thus not to guarantee that an action can
be executed, but rather to check whether something is definitely missing and if that missing part
can be provided by RoboEarth.

The matching process is realized using the Semantic Robot Description Language (Section 3.5)
and visualized in Figure 6.9. The robot first queries for an action recipe and, together with the
query, sends a description of its own capabilities to the inference engine, which then checks
whether all requirements of the recipe are available on the robot. After the first check, the Envi-

ronmentMap is found to be missing on the robot.

Without semantics, the system would reject the request since it does not know anything called
EnvironmentMap. But knowing the semantics of an EnvironmentMap, it can infer that both maps
are specializations of an EnvironmentMap and can thus be used to fulfill the dependency. The
matching process is applied recursively until the system finds a combination of action recipes,
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Figure 6.9 Matching requirements of action recipes against robot capabilities to determine which
further information is still missing and has to be downloaded. The matching becomes more
flexible by taking the robot’s knowledge into account and selecting the 2DLaserScannerMap to
fulfill the general requirement on an EnvironmentMap.
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object- and environment models that fits the robot and does not have any unmet dependencies.
The result is a set of software components that need to be retrieved from RoboEarth in order to
be able to perform the task.

6.3.4 Grounding abstract descriptions of actions and objects

For executing the abstractly specified action recipes, the robot has to ground the instructions into
its perception and action execution system.

Grounding action descriptions Action recipes can be decomposed hierarchically into more
and more basic actions, but at some point, these action descriptions have to be translated into
executable code on the robot. For executing the recipe, the robot then needs implementations of
all primitive actions the task could be decomposed into, and an execution engine that coordinates
these action primitives. The mapping from action descriptions to executable primitives is done
using the providedByMotionPrimitive property – usually not in the action recipe itself, but on the
next higher level of abstraction. The subclass in the action recipe then parametrizes the primitive
with respect to the task at hand. In the above example, the mapping is defined between the class
Reaching and the move_gripper primitive. This reduces redundancy because the mapping can be
performed for a whole class of actions at once, which helps to keep the exchanged recipe simple.
For the rather simple scenario in the experiment, only three primitives are used: move_gripper,
open_gripper and navigate.

There is intentionally no fixed level of granularity at which the transition between action
recipes and the executable action primitives takes place. Both large, monolithic implementations
of functionality, having the threshold at a rather high level, and combinations of small functions
are supported. The hierarchical structure of recipes allows to flexibly decide if the robot is able to
execute a high-level recipe using implemented functionality or if it has to download specialized
recipes that are further decomposing an action.

Grounding object instances Inside action recipes, objects are described using temporary ob-
ject instances. This description on the instance level is required to ensure that all actions in a plan
are performed on the same object, not on arbitrary instances of an object class. During execution,
these temporary instances need to be unified with perceived objects in the robot’s actual envi-
ronment. New perceptions can easily be incorporated by adding a new perception instance (see
Section 3.2.3), but the system has to decide which object instance to update. In the described ex-
periment, the execution engine makes the simplifying assumption that only one object of a kind
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exists, making the object grounding problem becomes much simpler. Each further detection of
an object, e.g. a bottle, updates the location of the only existing instance of that kind. We are
investigating methods to overcome this limitation: The executive should consciously choose the
objects to use, and a symbol anchoring component should ensure that the same object is being
used throughout the whole recipe [Blodow et al., 2010].

6.4 Discussion

This chapter deals with the integration of the knowledge processing system into the robot control
program. One important aspect is the integration of perception components to generate object
instances in the knowledge base from the object detections the robot makes. There are two kinds
of interfaces for two types of perception systems: One of them uses computables to forward
queries to the vision system, which is used for active, task-directed perception systems. The
other interface is just a passive listener that records all results the perception system generates
and saves them to the knowledge base. Both interfaces build up a detailed internal representation
of the object detection that does not only allow to perform reasoning about the changing poses
of objects, but can also describe the source of information including the vision algorithm and the
object recognition model that was used.

This representation also forms the basis for the semantic environment maps that describe the
poses and types of pieces of furniture in the environment. They are very important for a mobile
robot to plan actions to fetch objects from their storage location. We present two ways to infer
the most likely storage location for an object: If no information about the distribution of other
objects over the different places in the environment is available, the system can use general rules
like “perishable items belong into the refrigerator” to make an informed guess where to search
first. If the robot has information about the storage places of similar objects, it can use a second
kind of inference based on the semantic similarity, assuming that similar objects are often stored
together. This assumption proved to be a very good approximation of the actual organizational
principles in human kitchen environments.

We further presented methods for exchanging knowledge between robots. They are based
on the representations developed in this work, and extend them with meta-data describing the
requirements for the information to be used by a robot. Based on this meta-data, a robot can
autonomously decide if it can use a piece of information given its components and capabilities.
These methods are important components of the RoboEarth system through which robots can
autonomously exchange information about plans, objects and environments.

168



Chapter 7

Evaluation and experiments

Evaluating a knowledge processing system for robots is a complex task for which there are
neither established benchmarks nor evaluation methods so far. Using knowledge processing
techniques on a robot has its specific challenges that are often different from those encountered in
classical, purely symbolic reasoning as commonly investigated in artificial intelligence research.
Part of these challenges are related to using the methods on a physical system, other challenges
are posed by the complex scenarios the robots are acting in.

Since the robot is acting in the physical world, its knowledge base has to operate in real-time
and compute results fast enough not to slow down the other components of the robot. The sym-
bolic knowledge base also needs to be grounded in the robot’s sensing and actuation methods
to enable the robot to reason about objects it has perceived and about actions it has performed.
Abstractly defined actions in the knowledge base need to be linked to parametrizations of exe-
cutable action components on the robot, and the robot must be able to deal with the uncertain
and incomplete information provided by its sensors.

The application in complex realistic scenarios is challenging in terms of scalability, expressive-
ness, extensiveness and usefulness. The knowledge representation needs to be scalable enough
to handle a significant amount of knowledge both on the class level, for instance for describing a
large number of object types, and on the instance level, for example to store all observations of
objects recorded over an extended period of time. The knowledge should be extensive enough
to cover the most important phenomena the robot interacts with including spatial and temporal
information, actions, and robot self-models. At the same time, the representation has to be ex-
pressive enough to represent the complex relations between these pieces of information: spatial
and temporal relations, situations that change over time, the effects of actions, continuous and
discrete, probabilistic and deterministic information, etc.

Capturing all these aspects in a few aggregated numbers is hardly feasible. We therefore eval-
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uate the quality of the system by a combination of different methods: A quantitative evaluation
is performed for those aspects where this is possible, like the scalability of the system and its
response time. We then compare the developed system with other robot knowledge bases in the
literature with respect to the implemented features. Four complex usage scenarios are described
to show how the different components of our system contribute to solving complex realistic tasks.
In the end, we discuss how the release of the software and data sets as open source contributes to
ensuring their quality.

7.1 Scalability and responsiveness

To assess the system’s scalability we performed tests with the internal object representation. The
representation of objects is one of the more complex descriptions since it consists of the object
instance, the homography matrix and the perception instance for each detection of the object. At
the same time, it is one of the most important ones since novel detections of objects are the kind
of information that continuously comes in during operation of the robot. We thus created a test
program that creates a large number of object detections in a loop, corresponding to thousands
of virtual perceptions of this object:

n _ o b j s ( 0 ) .
n _ o b j s ( ?Num) : -

new_obj ( ?Num) ,
?Num1 i s ?Num - 1 ,
n _ o b j s ( ?Num1 ) .

new_obj ( ID ) : -
c r e a t e _ p e r c e p t i o n _ i n s t a n c e ( ? P e r c e p t i o n ) ,
s e t _ p e r c e p t i o n _ p o s e ( ? P e r c e p t i o n , [ ? ID , 1 , 2 , 3 , 0 , 1 , 2 , 3 , 0 , 1 , 2 , 3 , 0 , 1 , 2 , 3 ] ) ,
c r e a t e _ o b j e c t _ i n s t a n c e ( [ ’ bed ’ ] , ? ID , ? Obj ) ,
s e t _ o b j e c t _ p e r c e p t i o n ( ? Obj , ? P e r c e p t i o n ) .

The n_objs predicate just calls the new_obj predicate Num times, which then creates a dummy
detection of a bed at a dummy pose. We tested the performance with Prolog’s time() predicate
that lists the CPU time consumed by evaluating a predicate. We used this value to avoid problems
caused by other processes or multi-core processor effects.

? - t ime ( n _ o b j s ( 6 5 0 0 0 ) ) .
% 3 ,120 ,050 i n f e r e n c e s , 2 .880 CPU i n 3 .058 s e c o n d s (94% CPU, 1083351 Lips )

We tested the system with up to 65,000 perception instances which correspond to about 43 min-
utes during which the robot continuously detects the object with 25Hz and asserts every detection
to the knowledge base. A more realistic case is that the robot detects an object every 10 seconds,
for example with its tilting laser scanner, in which 65,000 detections correspond to 180 hours of
continuous operation – which is more than a full week. Figure 7.1 visualizes the time needed for
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this (blue square markers). The time for the creation of new instances scales linearly with their
number, and 65,000 object detections can be created in about 2.88 seconds. The maximum frame
rate for creating object instances is thus about 22,000 detections per second, corresponding to
170,000 triples per second. As a comparison, the ORO paper [Lemaignan et al., 2010] gives a
rate of 7,245 statements per second for creating triples.
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Figure 7.1 Both the creation of a large number of object perceptions (blue square markers) and
the query for the latest one (orange triangles) scale linearly with the number of objects and are
in the area of few seconds even for 65,000 observations.

As a query benchmark we chose the latest_detection_of_instance(’bed’, LatestDetection) predi-
cate that reads the latest perception of the respective object instance. At the moment, there is no
temporal indexing, so the predicate needs to read all perceptions of the object and sort them by
their time stamps. This is clearly a sub-optimal implementation, but as Figure 7.1 shows, is still
reasonably fast for still large numbers of perceptions, and also scales linearly with the number of
objects. Simple queries like asking if an object instance is of a certain type (which requires the
system to exploit several steps in the sub-class hierarchy) or querying for all 65,000 objects of a
kind are possible in much shorter time.

? - t ime ( o w l _ i n d i v i d u a l _ o f ( ’ Bed - P i e c e O f F u r n i t u r e 5 0 0 0 ’ , ’ HumanScaleObjec t ’ ) ) .
% 15 i n f e r e n c e s , 0 .000 CPU i n 0 .000 s e c o n d s (0% CPU, I n f i n i t e L ip s )
t rue .

? - t ime ( f i n d a l l ( ?A, o w l _ i n d i v i d u a l _ o f ( ?A, ’ V i s u a l P e r c e p t i o n ’ ) , ?As ) ) .
% 65 ,213 i n f e r e n c e s , 0 .060 CPU i n 0 .061 s e c o n d s (99% CPU, 1086883 Lips )
t rue .

The 65,000 object perceptions correspond to about 490,000 triples in the knowledge base. Up
to about 7 Million triples have been used on a common laptop computer (Intel Core 2 Duo
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P8700, 2.53GHz, 4GB PC3-8500 RAM, Ubuntu 10.10 32 bit) without noticeably slowing down
neither other programs nor the creation of new triples. The 490,000 triples increase the memory
consumption of the whole Prolog process from 16.5 to 47.8 MB.

In total, this shows that even large-scale applications like observing an object every ten seconds
over a whole week’s time can be handled with comparatively moderate memory and at reasonable
speed. Spatial and temporal indexing would help to speed up the computation of qualitative
relations and other queries that heavily use the object pose representation.

7.2 Comparison to related knowledge bases

In this section, we compare KNOWROB against three other state-of-the-art knowledge processing
system that have been developed for being used on robots. The comparison is based on the
referenced publications; there may be additional features that have been implemented in the
meantime.

ORO The focus of the ORO ontology [Lemaignan et al., 2010] is on human-robot interaction
and on resolving ambiguities in dialog situations. This capability was for example described
in [Ros et al., 2010], where the robot inferred based on its knowledge about the objects in the
environment and their properties which queries it should ask to disambiguate a command.

ORO uses OWL as representation format and a standard DL reasoner for inference. An under-
lying 3D geometrical environment representation serves for computing spatial information and
for updating the internal belief state about the positions of objects [Siméon et al., 2001]. When-
ever new knowledge is added to the system, the reasoner classifies the whole knowledge base.
This continuous classification of everything is useful to detect inconsistencies, at least those that
can be detected on the logical level. However, detecting inconsistencies without being able to
remove them is not very practical: Each incorrect sensor reading can lead to wrong beliefs about
the environment, and if the knowledge base just refuses any information that contradicts the
available knowledge, this wrong belief will never be changed. The continuous classification can
also cause scalability problems as all knowledge has to be re-classified whenever some part of it
changes, though many areas of knowledge may not be affected at all.

ORO’s base ontology has been aligned to the KNOWROB ontology in Spring 2010 and though
it has since been extended in both projects it still remains very similar. ORO has several features
that are especially suited to a human interaction scenario, like the possibility to represent multiple
knowledge bases for different cognitive agents. Such separate knowledge bases are for instance
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required to describe the estimated human belief that may differ from the robot’s own view on
the world. In addition, there are methods that allow components to be notified once a logical
statement becomes true, as well as techniques for selecting which properties to use in order to
categorize a set of objects. Separate working and long-term memory components allow to store
knowledge with different life times.

Compared to KNOWROB, the representations of objects, spatial relations, actions and pro-
cesses are rather shallow, and there is no support for temporal or spatio-temporal reasoning.
Knowledge in ORO is encoded manually or by human dialog, no methods for large-scale knowl-
edge acquisition are presented. Object poses are only described using qualitative spatial rela-
tions that are asserted to the knowledge base, which has some disadvantages compared to the
on-demand computation in KNOWROB when it comes to updating knowledge.

PEIS The knowledge base presented in [Daoutis et al., 2009] is an important part of the PEIS
ecology project (Physically Embedded Intelligent Systems). PEIS investigates distributed intel-
ligent systems consisting of mobile robots, but also of sensors embedded into the environment
which are all integrated into a common framework. The PEIS knowledge base is realized as
an extension of the Cyc inference engine. On the one hand, this gives the system full access to
the large Cyc ontology, but it comes at the cost of slower inference, of irrelevant knowledge in
several branches of the ontology, and of a lack of knowledge in areas like robotics or mobile
manipulation.

The main focus of this work is the grounding of symbols in percepts, which is realized us-
ing a dedicated perceptual anchoring layer in between the perception system and the knowledge
base. This explicit grounding layer is more advanced than the solutions in KNOWROB itself, al-
though similar capabilities are developed in a research project [Blodow et al., 2010] in parallel to
KNOWROB. The result of the grounding procedure is asserted to the knowledge base including
pre-computed spatial relations. This approach, which was also chosen in ORO, requires a com-
ponent in addition to the knowledge base itself which tracks the state of the internal belief state
and asserts, updates and retracts knowledge whenever something has changed. Daoutis et al.
call this component “Knowledge Base Synchronizer”. To work properly, this component needs
a lot of knowledge about the implications of an observed change in order to correctly decide
which new knowledge can be derived from these observations and which parts of the knowledge
base have become outdated. Errors in this step can lead to outdated knowledge and therefore
to inconsistent beliefs. In KNOWROB, we avoid these problems and also the need for such a
synchronization component by using an on-demand computation scheme. Information is stored
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only once, and more abstract views on this information (e.g. spatial relations) are computed once
they are needed and do not have to be retracted afterwards.

The PEIS ontology distinguishes two kinds of memory: the working memory describes objects
that are currently in view, while the archive stores the poses of objects that have been detected
earlier and got out of view. This approach assumes that the robot continuously detects objects so
that the concept “in view” is well-defined. KNOWROB does not make this distinction since this
assumption cannot be made if the robot just occasionally searches for an object.

The system includes some simple integration of natural-language information based on the
natural-language processing capabilities in Cyc. This is on the one hand used to give explanations
to a user, and on the other hand to resolve ambiguities by asking a user. Such ambiguities about
the right concept to describe an observed object are avoided in KNOWROB by explicitly modeling
object recognition models and the object classes they provide models for.

In contrast to KNOWROB, PEIS does not include temporal and spatio-temporal information
and explicit models of change. Also the memory components only store the fact that something
has been observed, but not when and how. Therefore, the system can only model the current
belief state, and the archive memory just describes those objects of the current belief that are out
of view. Detailed descriptions of actions and processes are also missing as well as models to
compute their effects.

OUR-K The OUR-K system presented in [Lim et al., 2011] is the successor of the OMRKF
framework [Suh et al., 2007]. OUR-K is a very advanced and extensive system that describes a
variety of aspects centered around five main kinds of knowledge: contexts, objects, spaces, ac-
tions and features. Each of these kinds of knowledge is described at three levels: The context on
the level of situations, temporal and spatial context; spaces in terms of semantic, topological and
metric maps; actions as tasks, sub-tasks and primitive behaviors; objects as composed objects,
normal objects, and object parts; and features as perceptual concepts and perceptual features.
Regarding the range of information that can be described, OUR-K is close to the KNOWROB

ontology, though lacking the notion of processes, robot self-models, and having simpler action
descriptions. The actions the robot is to perform in the examples are mainly navigation based on
a semantic map and object recognition. They do not require the deep knowledge about actions
and objects that is needed for manipulation activities.

The representation format is based on DL for the concept hierarchies and Horn clauses for the
rules, which is also very similar to the approach in KNOWROB in which we use DL and Horn
clauses in Prolog for more advanced reasoning like computables or projection rules. OUR-K
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chose a somewhat special way of representing knowledge by reifying almost all relations: The
“before” relation, for example, is described as an instance of the class Before that is linked to
the two respective time intervals using the hasSubjective and hasObjective relations. While this
allows to qualify all knowledge with its spatial or temporal context, one loses the elegance of
describing properties of objects or actions using roles in DL.

7.3 Completing underspecified instructions

Over the course of the previous chapters, we considered the scenario of generating an effective
description for the task of making pancakes. While we referred to this example in the individual
sections, we will now briefly summarize which kinds of knowledge are integrated and where
the robot can obtain them from. Figure 7.2 visualizes the process of completing the incom-
plete instructions. The different colors correspond to the different kinds of information and the
mechanisms how they can be acquired and are explained in the legend in the upper right.

Figure 7.2 Visualization of the different kinds of knowledge used to complete the instructions
for making pancakes.

The initial processing step is to search for and download natural-language task instructions
from the Internet and to interpret them in order to derive a formal task specification. This con-
version process has been described in Section 4.1. It is integrated into the knowledge base using
computables for the forCommand relation that links a plan to a natural-language command (as
described in Section 2.6). The conversion process can therefore easily be called using the query
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below, which starts the download and conversion of the natural-language instructions and returns
the name of the class describing the plan (as in Section 3.3). As result of this procedure, the
robot has an approximate description of the actions and their ordering.

? - r d f _ t r i p l e ( forCommand , ?P , ’ make p a n c a k e s ’ ) .
P = ’ MakePancakes ’

Using the projection rules for actions and processes, it can then compute which objects are sup-
posed to appear and disappear at which step and how they are related to actions in terms of
inputs and outputs. The rules for projecting action effects have been described in Section 3.3.4.
In Figure 7.2, the predicted objects are drawn in between the actions. Using its knowledge about
its own capabilities (Section 3.5) and the knowledge about the models in the perception system
(Section 6.1, the robot can then check whether it has recognition models for all of these ob-
jects. If models are missing, they can for instance be downloaded from the RoboEarth database
(Section 6.3).

To ground the abstractly described objects in actual objects in the environment, the robot needs
to add actions to search for these objects and to retrieve them from their storage locations. This
combines knowledge from the environment model (Section 6.2) with knowledge about object
properties (Section 3.2.1, Section 4.2) These additional actions are shown in the left part of
Figure 7.2. If the objects are inferred to be inside a container, the system can use the articulation
model encoded in the semantic environment map (Section 6.2) in order to create actions to open
the container. The following query is an example how to obtain the opening trajectory of the
container that is inferred to be the most likely storage location for milk. It uses the methods
described in Section 6.2 to infer the right location and to read the opening trajectory from the
semantic environment model. Its result is show in Figure 7.3 (left).

? - s t o r a g e P l a c e F o r ( ? S t P l a c e , ’ CowsMilk - P r o d u c t ’ ) ,
r d f _ h a s ( ? S t P l a c e , o p e n i n g T r a j e c t o r y , ? T r a j ) ,
f i n d a l l ( ? P , ( r d f _ h a s ( ? Tra j , p o i n t O n T r a j e c t o r y , ?P ) ) , ? T r a j ) .

For other kinds of motions, which are not part of the environment model, the robot can query
for semantically similar movements it has observed from a human. An example query is given
below, which is for the motion of taking a dinner plate out of a cupboard (Figure 7.3 (right)). The
methods for the semantic analysis of human motions described in Section 5.6 enable the robot to
send such semantic queries to retrieve matching poses and trajectories from its observations.

? - r d f _ t r i p l e ( type , ?A, ’ Tak ingSometh ing ’ ) ,
r d f _ t r i p l e ( ob jec tAc tedOn , ?A, ? Obj ) ,
o w l _ i n d i v i d u a l _ o f ( ? Obj , ’ D i n n e r P l a t e ’ ) ,
r d f _ t r i p l e ( t r a j e c t o r y - Arm , ?A, ? Tr ) ,
r d f _ t r i p l e ( po in tOnArmTra j ec to ry , ? Tr , ?P )
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Figure 7.3 Left: Opening trajectory of the refrigerator as result of a query for how to open the
most likely storage place for milk. Right: Trajectory for taking a plate out of the cupboard
selected from observations of a human performing a table-setting task.

The robot has now grounded the object descriptions, created actions for fetching the objects from
their most likely storage locations, and retrieved examples how to perform the different motions
from human demonstrations. However, the action sequence is not complete yet: The original
instructions did not contain the command to switch on the pancake maker, so the dough does
not bake to a pancake. This plan flaw is detected by checking if the final result of the plan is
as expected and by verifying that all inputs of all actions are provided either by objects that can
be retrieved from the environment or by objects that are generated by previous actions. If this is
not the case, the declarative descriptions of the effects of actions and processes can be used for
planning in order to generate all required objects, either as direct effects of actions or indirectly
by adding actions that trigger processes which achieve the desired effects. This planning with
actions and processes was described in Section 3.4.5. The following query first reads all sub-
actions of the original action plan that was generated from the web instructions, and then calls the
integrate_additional_actions predicate which recursively adds actions to ensure that all inputs of
the actions in the original plan are available at the time they are executed. In this case, an action
of type TurningOnHeatingDevice is added to the sequence that triggers the process BakingFood.
At the moment, the system does not support reasoning over the temporal extent of actions and
processes, which would be necessary to turn on the pancake maker beforehand to give it some
time to heat up.

177



CHAPTER 7. EVALUATION AND EXPERIMENTS

? - p l a n _ s u b e v e n t s ( ’ MakingPancakes ’ , ? Or igAc t ionSeq ) ,
i n t e g r a t e _ a d d i t i o n a l _ a c t i o n s ( ? Or igAct ionSeq , ? DebuggedAct ionSeq ) .

egg1 -> EggShe l l1
egg1 -> EggYolk - Food2
mi lk1 added t o -> Dough4
f l o u r 1 added t o -> Dough4
Dough4 added t o -> Dough6
EggYolk - Food2 added t o -> Dough6
Dough4 on t o p o f pancakemaker1

Or igAc t ionSeq = [ ’ CrackingAnEgg ’ ,
’ MixFlourAndMilk ’ ,
’ MixEggAndDough ’ ,
’ PourDoughOntoPancakeMaker ’ ,
’ F l i p p i n g A P a n c a k e ’ ] ,

DebuggedAct ionSeq = [ ’ CrackingAnEgg ’ ,
’ MixFlourAndMilk ’ ,
’ MixEggAndDough ’ ,
’ PourDoughOntoPancakeMaker ’ ,
’ Turn ingOnHea t ingDev ice ’ ,
’ BakingFood ’ ,
’ F l i p p i n g A P a n c a k e ’ ] .

The result is an effective task specification that can be used for generating a robot plan, but also
for projection. The projection methods are realized as computables for the postActors relation,
which makes the projection procedure transparent to the user: The relations can be queried in
the same way independent if they have already been computed or are just generated during the
inference process. The object transformation graph in Figure 7.2 is thus effectively built up
during the inference. The following queries show how the projection can be performed; the
outputs are described in a more informal way for better readability:

? - r d f _ t r i p l e ( p o s t A c t o r s , c r a c k i n g 1 , ? P o s t ) .
egg1 -> EggShe l l0
egg1 -> EggYolk - Food1

? - r d f _ t r i p l e ( p o s t A c t o r s , mixing1 , ? P o s t ) .
EggYolk - Food1 added t o -> Dough2
mi lk1 added t o -> Dough2
pancakemix1 added t o -> Dough2

? - r d f _ t r i p l e ( p o s t A c t o r s , pour1 , ? P o s t ) .
Dough2 on t o p o f pancakemaker1

? - r d f _ t r i p l e ( p o s t A c t o r s , t u rnon1 , ? P o s t ) .
pancakemaker1 s w i t c h e d on
Dough2 -> Baked4

? - r d f _ t r i p l e ( p o s t A c t o r s , put1 , ? P o s t ) .
Baked4 on t o p of p l a t e 1

The first actions create, destroy and join objects to create the dough. Then the pancake maker
is switched on, changing its device state from off to on. The action projection predicate checks
whether any processes became active due to the results of the actions. In this case, a heating
process is being started, causing the temperature of the pancake maker to rise to its working
temperature since the pancake maker is a heating device with device state ’on’. As a result of
the heating process, the dough is in thermal contact with a heat source, which starts the baking
process which transforms the piece of pancake dough into a baked pancake.
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Once this object transformation graph has been built up, the robot can perform reasoning
about it. For example, it can use its new knowledge about when objects are created or destroyed
to perform situation-specific computation of spatial relations. In order to determine if a relation
holds at a specific point in time, either in the past or in the predicted future, the computation
needs to take the creation and destruction of objects into account. In the example, the egg is
initially assumed to be on the table, but gets destroyed over the course of the actions so it cannot
be assumed to be on the table afterwards.

# I n i t i a l l y , t h e egg i s computed t o be on t h e t a b l e
? - r d f _ t r i p l e ( ’ on - P h y s i c a l ’ , ?A, t a b l e 1 ) .
A = ’ egg1 ’ .

# Per fo rm p r o j e c t i o n as d e s c r i b e d above
? - [ . . . ]

# The egg g o t d e s t r o y e d and t h e r e f o r e not on t h e t a b l e any more
? - r d f _ t r i p l e ( ’ on - P h y s i c a l ’ , ?A, t a b l e 1 ) .
f a l s e .

Using the transitive property transformedInto that is computed based on the object transformation
graph, one can perform reasoning about which objects are transformed into which other ones and
determine for example where the ingredients of a product have been taken from.

# What has been t r a n s f o r m e d i n t o Baked4 ?
? - r d f _ t r i p l e ( t r a n s f o r m e d I n t o , ?A, ’ Baked4 ’ ) .
A = ’ Dough2 ’ ;
A = ’ EggYolk - Food1 ’ ;
A = ’ egg1 ’ ;
A = ’ mi lk1 ’ ;
A = ’ pancakemix1 ’ ;
f a l s e .

# What d i d t h e egg g e t t r a n s f o r m e d i n t o ?
? - r d f _ t r i p l e ( t r a n s f o r m e d I n t o , egg1 , ? Res ) .
Res = ’ Baked4 ’ ;
Res = ’ Dough2 ’ ;
Res = ’ EggShe l l0 ’ ;
Res = ’ EggYolk - Food1 ’ ;
f a l s e .

The effective task specification is as complete as possible given the robot’s knowledge. However,
some decisions are intentionally postponed to execution time, for example where to stand while
performing an action or where exactly to put down an object. These action parameters strongly
depend on the situation at hand, for example the configuration of obstacles around the object
of interest and therefore cannot be determined a priori. A parallel research project investigates
how these kinds of decisions can be taken using physical reasoning [Lorenz Mösenlechner and
Michael Beetz, 2011].
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7.4 Exchanging information between robots

In this section we report on an experiment that was implemented and successfully demonstrated
to the public during the RoboEarth workshop in Eindhoven in January 2011. It was the first
demonstration of the complete RoboEarth system that is being developed as a web-based knowl-
edge base through which robots can exchange information about actions, object models and
environment maps. An important aspect of this project is the language to describe the exchanged
information. It needs to be expressive enough to encode the information to be transferred, but
also needs to provide constructs for storing meta-data that describe the pieces of information and
which can be used for selecting those that fit the robot’s capabilities.

The task the robot was to perform in this experiment was to serve a drink to a patient in bed
in a hospital room, i.e. to first find a bottle in the environment, to pick it up, to move to the
patient and to hand over the bottle. The information to be used was to be downloaded from
the RoboEarth knowledge base and needed to be grounded in the robot’s perception and action
system. Figure 7.4 shows the course of actions performed during the demonstration. A video of
the experiment can be found at http://www.youtube.com/watch?v=RUJrZJyqftU. KNOWROB,
including the extensions developed as part of this thesis, contributed to the demonstration in the
following ways:

• Formal representation of the action recipe, the environment model, and the object models

• Download of the recipe and the other pieces of information from the central RoboEarth
knowledge base

Figure 7.4 Pictures taken during the “serve a drink” experiment, a task that was performed based
on information downloaded from the RoboEarth Internet database.
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• Matching of the requirements of the “serve a drink” recipe to the capabilities of the Amigo
robot

• Run-time knowledge base interfacing the executive to the vision and world modeling com-
ponents, providing the executive with information about the actions to perform and their
parameters, the locations of objects

The language and the accompanying reasoning methods have successfully been used to ex-
change tasks, object, and environment information on a physical mobile manipulation robot and
execute the abstractly described task. This experiment showed that the presented methods enable
a robot to download the information needed to perform a mobile manipulation task, including
descriptions of the actions to perform, models of the objects to manipulate, and a description of
the environment, from the RoboEarth database on the Internet.

7.5 Matching observations against task specifications

This experiment investigates how abstract task descriptions can be compared with observations of
human manipulation actions, which can be useful to check if a task has been performed correctly
and to determine where the observations match the specification and where they differ from each
other. The comparison is non-trivial, there is a large gap to bridge between the two kinds of
action descriptions. On the one hand, there are very abstract task-level descriptions like “put the
place mat in front of the chair”, on the other hand, there are the unstructured continuous motions
that have been observed from the human subject. To compare these very different descriptions,
the system needs to create a structured representation of the observed motions and abstract them
from the level of continuous motions up to the task level at which action properties like the
fromLocation and toLocation can sensibly be described.

To this end, we combine the generation of hierarchical action models described in Section 5.6
with the import of natural-language task instructions using the methods described in Chapter 4.
The hierarchical action models describe observed actions as a hierarchical structure of action
instances which are linked to the objects and locations that are set as action parameters. These
structures are to be matched against a formal task specification to determine missing actions, a
wrong order of actions, or wrong tools that have been used for the right action. An example
is illustrated in Figure 7.5: The lower part with the blue background is the hierarchical action
model generated from observations of humans, the upper part is a description of the same task
that has been imported from the WWW.
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Figure 7.5 Matching abstracted observations of human activities against formal task specifica-
tions imported from the Internet.

The following query exemplarily reads all information the system has about two PuttingSome-

thingSomewhere actions which has been created automatically from the observed data. The
objectActedOn was determined based on the RFID tags attached to the objects, the startTime and
endTime from the first and the last frame in the segment. The original data in the TUM Kitchen
Data Set does not contain the exact object positions, because the objects have been detected us-
ing RFID tag readers which only provide information about the presence of an object inside the
rather large detection range. To demonstrate the ability of the system to perform reasoning about
object poses, we adapted the object locations in the database manually for this experiment to
reflect the spatial setup in a more detailed fashion.

? - owl_has ( ’ Pu t t ingSometh ingSomewhere191 ’ , ?P , ?O ) .

P = ’ doneBy ’ , O = f l o r i a n ;
P = ’ ob j ec tAc t edOn ’ , O = ’ p l a t e -1 ’ ;
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P = ’ s t a r t T i m e ’ , O = ’ t i m e p o i n t _ 1 3 .5289101601 ’ ;
P = ’ endTime ’ , O = ’ t i m e p o i n t _ 1 9 .9923501015 ’ ;

P = ’ f r o m L o c a t i o n ’ , O = ’ l o c _ 0 . 3 2 _2 . 2 _1 . 7 1 ’ ;
P = ’ t o L o c a t i o n ’ , O = ’ l o c _ 3 . 2 _2_0 . 7 4 ’ ;

P = ’ s u b E v e n t s ’ , O = ’ Pick ingUpAnObjec t153 ’ ;
P = ’ s u b E v e n t s ’ , O = ’ Car ry ingWhi leLocomot ing62 ’ ;
P = ’ s u b E v e n t s ’ , O = ’ Put t ingDownAnObject154 ’ ;

? - owl_has ( ’ Pu t t ingSometh ingSomewhere192 ’ , ?P , ?O ) .
P = ’ ob j ec tAc t edOn ’ , O = ’ cup -1 ’ ;
P = ’ f r o m L o c a t i o n ’ , O = ’ l o c _ 0 . 3 2 _2 . 2 _1 . 7 1 ’ ;
P = ’ t o L o c a t i o n ’ , O = ’ l o c _ 3 . 2 _2_0 . 7 4 ’ ;
[ . . . ]

Matching these observations against the abstract task descriptions goes much beyond just com-
paring the action sequences: Both the action descriptions and their parameters can be quite
complex, hierarchical structures. Locations, for example, are often described as a sequence of
qualitative spatial relations like “to the left of the center of the plate” or “to the top right cor-
ner of the place mat”. During the conversion procedure, these natural-language descriptions are
translated into nested class restrictions in OWL. The tasks themselves are also represented in
terms of action classes, as described in Section 3.3, while the observations of the human subject
are described as instances. The matching problem can therefore be regarded as a classification
problem, namely to check whether the observed instances can be assigned to the classes in the
task specifications. The matching_actions predicate checks for each sub-action of the current
plan if there is corresponding action instance that fits the specification:

m a t c h i n g _ a c t i o n s ( ? Plan , ? Act ) : -
p l a n _ s u b e v e n t s ( ? Plan , ? SubEvents ) ,
member ( ? ActCl , ? SubEvents ) ,
o w l _ i n d i v i d u a l _ o f ( ? Act , ? ActCl ) .

In the following, we will consider a plan for setting a table as example. The hierarchical action
model generated from observation is shown in Figure 5.13 (top), the natural-language sentences
describing this tasks are as follows:

1. Place the place mat in front of the chair.

2. Place the napkin just to the left of the center of the place mat.

3. Place the plate (ceramic, paper or plastic, ceramic preferred) in the center so that it just
covers the right side of the napkin.

4. Place the fork on the side of the napkin.

5. Place the knife to the right so that the blade faces the plate.

6. Place the spoon right next to the knife.

7. Place the cup to the top right corner of the place mat.
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These natural-language instructions can be converted into a class-level action description in
OWL as explained in Section 3.3.1 by calling the import procedure using the computable defined
for the forCommand property.

? - r d f _ t r i p l e ( knowrob : forCommand , ?P , ’ s e t a t a b l e ’ ) .
P = ’ Se tATable ’

Once the formal task representation has been generated it can be inspected, for example using
the plan_subevents predicate that allows to read all sub-actions of the plan. The instructions for
the table-setting plan have been translated into seven transport actions for bringing the different
objects to the right positions on the table, described as sub-classes of the PuttingSomething-

Somewhere class. When calling the matching_actions predicate, two of the specifications can
successfully be matched against the observations, namely those transporting the dinner plate and
the cup. The other objects were either not visible to the system (since there were no RFID tags
attached to them) or the reference object could not be found (the chair is not part of the semantic
map, so the ’in front of’ relation could not be evaluated).

? - r d f _ t r i p l e ( forCommand , ?P , ’ s e t a t a b l e ’ ) .
P = ’ Se tATable ’

? - p l a n _ s u b e v e n t s ( ’ Se tATable ’ , ? SubEvents ) .
SubEvents = [ ’ Pu t t ingSometh ingSomewhere1 ’ ,

’ Pu t t ingSometh ingSomewhere2 ’ ,
’ Pu t t ingSometh ingSomewhere3 ’ ,
’ Pu t t ingSometh ingSomewhere4 ’ ,
’ Pu t t ingSometh ingSomewhere5 ’ ,
’ Pu t t ingSometh ingSomewhere6 ’ ,
’ Pu t t ingSometh ingSomewhere7 ’ ]

? - m a t c h i n g _ a c t i o n s ( ’ Se tATable ’ , ? Ma tch ingAc t ion ) .
Ma tch ingAc t ion = ’ Pu t t ingSometh ingSomewhere191 ’ ;
Ma tch ingAc t ion = ’ Pu t t ingSometh ingSomewhere192 ’ ;

To establish these matches, the system had to ground the abstract descriptions of spatial con-
figurations like “the top right corner of the place mat” in the observed data. The positions of
objects are usually observed as points in space which need to be translated into qualitative de-
scriptions to check whether they comply with the abstract specifications. We use the computables
described in Section 3.2.5 for this task which allow to calculate, based on the objects’ positions
and dimensions, if a spatial relation like “in center of” or “right of” holds.
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7.6 Inferring missing objects

Another integrated experiment showing how the robot can use its knowledge to accomplish com-
plex tasks is the inference which objects are missing in an incomplete table setup. To complete
it, the robot must first find out which meal will take place and which objects are required for
it. Therefore, it needs detailed knowledge about the types of food and utensils used in different
meals and the preferences of the participating persons. This scenario therefore is also a demon-
stration how the different components in KNOWROB can jointly be used to solve a complex task.
The system is described in more detail in [Pangercic et al., 2010] and was realized in joint work
with Dejan Pangercic, who realized the perception components, and Dominik Jain, who con-
tributed the statistical relational models of meal preparation that perform the actual inference.

KNOWROB serves as the integration platform for perceptual information about the objects that
can currently be seen on the table and the learned statistical relational models about which objects
are commonly used by different people in different meals. The objects detected by the vision
system are published on a topic and added to the knowledge base using the techniques described
in Section 6.1. By combining the detected object poses with the environment information, the
system can compute which objects are on a given table based on the spatio-temporal computables
for calculating qualitative spatial relations which have been described in Section 3.2.5.

Figure 7.6 Bayesian logic network for the meal preparation context, describing the relations be-
tween people participating in a meal and the foodstuff and utensils they use (courtesy of Dominik
Jain).

This set of objects serves as evidence for the statistical relational inference methods that are
integrated as described in Section 2.5. The inference is performed based on models that have been
learned on (simulated) observations of human meals and that describe the type of the meal, who
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took part, who consumed which goods using which utensils. Figure 7.6 shows the dependency
structure of the BLN that, after having been trained on this data, effectively represents a joint
probability distribution over all the different aspects of human meals.

During the execution, the robot control program sends a query to KNOWROB asking for the
set of missing objects, KNOWROB forwards this query to the ProbCog inference engine, which
then loads the respective model, reads evidence from KNOWROB (the set of objects that have
been perceived on the table) and performs the inference. An example query with its result can
look like follows:

P(usesAnyIn(P, ?u, M), consumesAnyIn(P, ?f, M) | mealT(M) = Lunch ∧
usesAnyIn(P, Plate, M) ∧ usesAnyIn(P, Knife, M) ∧
usesAnyIn(P, Fork, M) ∧ usesAnyIn(P, Spoon, M) ∧
usesAnyIn(P, Napkin, M) ∧ consumesAnyIn(P, Salad, M) ∧
consumesAnyIn(P, Pizza, M) ∧ consumesAnyIn(P, Juice, M) ∧
consumesAnyIn(P, Water, M) ∧ takesPartIn(P, M))

≈ 〈〈 Glass: 1.00, Bowl: 0.85, Cup: 0.51, . . . 〉,
〈 Soup: 0.82, Coffee: 0.41, Tea: 0.14, . . . 〉〉

The result of the inference process is a set of object types with assigned probabilities that
denote which objects are supposed to be on the table. After subtracting those objects that are al-
ready there, KNOWROB determines which ones still need to be transported there and determines
based on its perceptual memory (Section 3.2.3) and its knowledge about storage locations in the
environment (Section 6.2) where to search for them.

Figure 7.7 visualizes the results of some exemplary queries. The upper row shows the input
images in which the different objects have been recognized. These objects are shown in the lower
images in red on top of the table. The results of the inference process, indicating which objects
are concluded to be missing, are visualized behind the table, with the hue value corresponding to
the probability from low (blue) to high (red). In the left image, the system inferred a knife and
a glass to be certainly missing – which makes sense, given that there is juice, but no drinking
vessel, and no knife for cutting the cake and the sausage. The center image shows a setup where
silverware is already placed on the table, but a cup and a plate are obviously missing. In the right
pictures, it is again the glass that is needed to drink the water and juice that has been detected on
the table.
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Figure 7.7 Results of queries for missing objects. Upper row: Input camera images (courtesy
of Dejan Pangercic). Lower row: Visualized inference results in which the hue indicates the
probability with which the object is inferred to be missing (blue: low, red: high)

7.7 Open source software contributions

All the software that has been developed as part of the presented knowledge processing system,
the ontologies and models that have been created as well as the data set of human motion tracking
data which was used to evaluate the action interpretation techniques have been released to the
public as open-source software. By releasing the code and data to the public, we enable others
to replicate the experiments made and to profit from the experiences and implementations in the
system.

The KNOWROB system has become the main knowledge base in the ROS environment, is
part of the standard ROS package distribution, and is used by several other research institutions
(e.g. ETH Zurich, University of Stuttgart, Technical University Eindhoven, University of Pisa,
University of Graz).

The TUM Kitchen Data Set has generated more than 460 GB of downloads and attracts around
300 visitors a month. The data seems to be actively used; users have even contributed tools they
developed and additional annotations they made. The data has been used for the evaluation
of several external publications at ECCV [Gall et al., 2010], at ICPR [Krausz and Bauckhage,
2010], and in the PAMI journal [Gall et al., 2011]).
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Chapter 8

Conclusions

In this thesis, we reported on our work on knowledge representation and reasoning methods that
help autonomous robots improve their problem-solving skills. The KNOWROB knowledge base
developed as part of this thesis is a fast and scalable knowledge processing system specialized for
being used on and by autonomous robots. It is based on well-established standards like the Web
Ontology Language (OWL) and uses Prolog as underlying inference mechanism. KNOWROB is
integrated into the robot’s control system and grounded in the robot’s internal data structures and
the perception system.

We introduce the concept of on-demand computation of semantic information based on data
structures in the robot control program and perception modules. Procedural descriptions, called
“computables“, can be attached to the classes and properties in the knowledge base to describe
how these classes and properties can be computed, either based on information that already exists
inside the knowledge base, thereby generating different abstract views on the same original data,
or by loading data from external sources, for instance object detections from the vision system.

The KNOWROB ontology is one of the largest ontologies of the robotics and household do-
main that has been developed so far, containing hundreds of classes that describe objects, actions
and events. These classes, together with a number of relations between them, form the basic
language elements which the robot can use to describe its actions and observations. Such a com-
mon semantic language is extremely important to integrate information from different sources.
To combine these pieces of information without asking for human assistance, a robot needs inte-
grated representations that represent the different kinds of knowledge and the relations between
them in a common formal language.

We have developed novel representations and reasoning schemes for several kinds of informa-
tion: Descriptions of events and temporal information are required to account for the dynamic
nature of the environments. The techniques in KNOWROB allow to describe and reason about
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the start and end time of events, their duration, time points and time spans. One of the most
important kinds of information for robots are descriptions of objects and the environment. The
KNOWROB ontology provides a large taxonomy of object types, methods for describing the
poses and dimensions of objects.

To reason about changing object configurations, we developed novel spatio-temporal repre-
sentations that describe not only the poses of objects, but also the times at which the object has
been detected and the methods that have been used. Based on these spatio-temporal representa-
tions and the computables mentioned earlier, the robot can compute qualitative spatial relations
like ’in’, ’on’, or ’next to’ for different points in time based on the object poses stored as met-
ric positions. These techniques have been used to describe semantic environment maps in the
knowledge base in terms of object instances. Such environment models are for example very
useful for finding objects in the environment.

We further equipped the robot with tools to decide if it can recognize an object, namely with
descriptions of the object recognition models it has and the kinds of objects they allow to rec-
ognize. Such descriptions can for instance be used to make sure that all objects which appear in
a task description can be recognized, and to trigger methods for obtaining the required models
otherwise.

Besides objects, another very important kind of information a robot has to reason about are
actions. KNOWROB contains a detailed action ontology that describes many different kinds of
actions the robot can perform. The ontology covers most actions needed for mobile manipulation
and simple meal preparation tasks like transporting objects, mixing and pouring, and opening
and closing different kinds of containers. These single actions can be hierarchically composed to
complex tasks, and ordering constraints can be specified among them, forming expressive task
specifications. The required inputs and the effects of actions are described in a way that both
projection and planning are supported. They consist of two parts: A declarative description of
the preconditions and effects can be used to search for suitable actions in a planning context,
whereas procedural projection rules allow to qualitatively predict the effects of these actions.
The projection rules describe the effects that actions have on objects using a number of very
detailed relations that specify for instance if an input object is being destroyed over the course of
an action.

Robots that are to plan their actions, to learn from past experiences, and to diagnose errors
in task executions need expressive and detailed representations of changing world states and the
causes of these changes. Object poses that are changed by transportation actions are rather simple
to describe, while much more substantial changes like the destruction, creation or transformation
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of objects can be caused for instance by cooking actions. Our representations can describe how
actions move, split, destroy, create, join, switch on, open and close objects based and are the
basis for a detailed representation of change.

To account for changes that are not directly caused by actions, we introduce the notion of
processes that are often triggered as side-effects of actions. For example, when switching on a
heating device, the direct effect is that the device state changes from off to on, but in addition,
a heating process is started that causes the device to heat up to its working temperature. The
representation of processes is similar to the action representation and also supports projection as
well as planning. Planning with processes thereby means to add actions that trigger the processes
that achieve the desired effects.

The last major class of information in KNOWROB are models of the robot itself. They com-
bine a description of its kinematics with semantic models of the robot’s components which attach
meaning to sub-components, like a hand or an arm, and further add descriptions of software com-
ponents like environment maps or object models. On top of the component-level descriptions,
one can define capabilities, and the system can automatically infer which of these capabilities
are available on a given robot platform by checking which dependencies are met. By matching
the capabilities and components against formally described action requirements, the robot can
decide whether or not it can perform a task and react accordingly. If software components are
missing, they can potentially be downloaded; if capabilities are missing, the robot may start a
program that provides them.

All of these pieces of knowledge can also be exchanged between robots, and using some
meta-information and the matching between required and available capabilities, the robot can
determine autonomously if some information can be useful and if all requirements are fulfilled.
KNOWROB is interfaced with the web-based RoboEarth knowledge base that provides task de-
scriptions, object models and environment maps described in the same format that is also used
inside of KNOWROB.

In addition to the representational methods, we also developed several ways to automate and
scale up the knowledge acquisition process. One source of information that we regarded is the
Internet, more specifically web sites which contain thousands of step-by-step instructions that
describe in detail how to perform everyday tasks. In this work, we presented a novel system
for translating these instructions, written in natural language, into a formal representation that
can be used in conjunction with the rest of the knowledge base to reason about the task and
to generate an executable robot plan. Translating the instructions involves semantic parsing to
determine the structure of the instructions, the interpretation of the natural-language descriptions
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in order to resolve ambiguities, and the conversion into a logical representation. In addition
to task instructions, we also made use of information about products and their properties that
can be obtained from online shopping websites. The product descriptions have been used to
automatically generate an ontology of that arranges about 7,000 classes of household products in
a taxonomy and annotates each of them with information found in the product description, like its
weight, price, or perishability status. These methods help to automate the knowledge acquisition
process, and though some manual adjustments are often helpful to improve the quality of the
automatically imported data, the system allows to scale the knowledge base to a much larger
number of classes with minimal effort.

We further described the acquisition of knowledge-based models of human everyday activities
as a another important source of information. By representing observed activities in the same
language that is also used to describe the robot’s actions and the objects in the environment,
the robot can directly derive useful information from the observations. The presented models
are a unique combination of formal logic-based action descriptions and stochastic action recog-
nition methods. They integrate several state-of-the-art methods for interpreting human actions
at different granularities in a formal, coherent framework. The interpretation starts with a seg-
mentation of the continuous motions and a classification of the segments that relates them to the
action classes in the ontology. In this context, we exploit a novel combination of pose-related
and environment-related features to reliably perform the segmentation of the highly challeng-
ing input data and evaluated several classification methods. The initial segmentation is used as
starting point to further explore different ways how an action can be performed – for example
different kinds of reaching motions. For this purpose, we presented clustering methods that can
distinguish different shapes of the trajectories inside one semantic class of motions, and com-
bined the clustering methods with techniques to automatically learn the context in which these
motions shall be used based on abstract definitions of the learning problem. While the initial
segmentation is rather fine-grained, describing single motions like reaching towards an object
or opening a cupboard door, the system should also understand higher-level descriptions of the
same actions, e.g. on the level of bringing a cup from the cupboard to the table. Such descrip-
tions can be generated automatically using the methods presented in this work by abstracting
action sequences from the level of continuous motions up to the task level. These hierarchical
models are constructed by exploiting information about sub-actions that more complex actions
are composed of that is already available in the robot’s action ontology and otherwise often used
for planning robot actions. If there are several examples that show how a task can be performed,
the robot can combine them and learn the partial ordering of actions inside this task. Our novel
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approach is based on statistical relational learning and extracts not only information about the
ordering, but also information about objects and other action parameters from the observations
of human activities.

While we evaluated the different components independently in the respective chapters, we
also presented several integrated scenarios that combine multiple modules and representations
to accomplish a complex reasoning task. The overall quality of a robot knowledge processing
system depends on a variety of factors and can hardly be described by a few numbers, but the
range of tasks it can be used for can serve as a measure for how effective and useful it is. We
considered four usage scenarios: Completing action sequences that lack important information,
exchanging knowledge between robots, comparing observations of human actions with formal
task specifications generated from descriptions on the Internet, and inferring which objects are
missing in an incomplete table setup.

In the first scenario, the robot received the command to perform a task and needed to generate
an effective action specification that contains all required information. After having downloaded
a step-by-step description of the task and having translated it into a formal representation, the
robot had to determine which pieces of information were missing and where it could obtain
them from. In a first step, it applied its knowledge about the involved actions, predicted their
effects and thereby completed the set of objects in the task. It then made sure that all of them
could be recognized and downloaded missing object models otherwise. To ground the abstract
object specifications, the robot inferred where to search for these kinds of objects based on its
knowledge about their properties and the environment, and added actions to retrieve them from
their storage locations. By checking if the predicted and desired results match, the robot could
also verify whether the task achieved the desired effects and otherwise add additional actions to
the task. Action parameters like the trajectories to be used could be generated from the abstracted
and formally described observations of humans.

The second integrated scenario investigated how knowledge about actions, objects and the en-
vironment can be exchanged between robots. In the experiment, a hierarchical task description
of a mobile manipulation task was encoded using the representations developed in this thesis and
downloaded by a robot that then determined which further information it needed to perform this
task. Using the model of itself and its capabilities in conjunction with the descriptions of action
requirements, the robot autonomously inferred that it was lacking an environment map and some
object models. After having downloaded them from RoboEarth, a web-based knowledge repos-
itory for robots, it was able to recognize the required objects, to infer their locations based on
the environment map, and to ground the abstract action descriptions by parametrizing executable
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action primitives.

Our third scenario combined the analysis of human activities with formal task instructions
imported from the Internet. This combination allows to verify if a task has been performed
correctly, to check whether mistakes were made or to find alternative ways of performing an
action. To enable the robot to do these analyses, it needs to translate instructions from natural
language into a logical format, segment the observed human motions and represent them in the
knowledge base, abstract them up to the level at which the task instructions are described, and
compare the observations with the task descriptions by classifying them into the classes defined
in the task description.

The last scenario dealt with inferring which objects were missing in a tabletop setup and
mainly required the integration of the probabilistic inference and the perception methods with
the knowledge base. The system combined learned models of the foodstuff and utensils used in
different meals with objects that had already been perceived on the table to jointly infer which
kind of meal was to be prepared and which items were missing. While the objects on the table
served as evidence for the probabilistic inference procedure, its environment model helped the
robot to locate the missing items.

These usage scenarios show that the developed knowledge processing system can be used to
solve complex reasoning tasks in realistic scenarios which integrate several kinds of knowledge
from very different sources. In order to further scale the system towards novel applications, it
can be extended in different ways:

Memory management: Although KNOWROB scales well up to large amounts of knowledge,
a more active memory management could further improve its performance. The temporally
and spatially very detailed observations of objects, for example, can be compressed by pruning
subsequent detections of an object at the same place. In general, computing expectations and
storing only surprising data is an effective way of reducing the amount of data that needs to be
stored. Older pieces of information could then be swapped into an external long-term memory
and only be retrieved if the robot needs to reason about this range in time. This raises the
problems how to decide which data is to be swapped out, how it is processed, when it is to be
loaded again, and how this memory structure can be made as transparent as possible to the rest
of the system.

Spatial knowledge: A more thorough representation of spatial information, including explicit
and semantic representations of units of measure, coordinate frames and transformations between
them would make the system more suitable for distributed real-world applications in which these
aspects cannot be assumed to be standardized any more. Especially when integrating information
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from multiple sources, as required to exchange information over the Internet, a robot needs a
deeper understanding of these spatial concepts. When representing relative poses, the robot must
know their dependencies to decide whether they remain valid once the robot has moved. An
object pose that is stored relative to the robot’s base, for example, becomes invalid if the robot
moves and would have to be updated.

Symbol anchoring: While object instances in KNOWROB are grounded in the robot’s percep-
tion by the computables that generate them from the object recognition results, there is currently
no explicit anchoring procedure that ensures that an object instance remains bound to the same
physical object over several perceptions. This issue is investigated in a parallel research project
[Blodow et al., 2010] whose solutions should be integrated into the KNOWROB architecture.

On-line activity monitoring: Recent developments in real-time human motion tracking in
range sensor data [Shotton et al., 2011] suggest to apply the methods presented in this work
to on-line activity recognition and interpretation. While all our computations are much faster
than real time, they are currently realized in a batch processing mode since the original tracking
system could only be applied off-line. Applying them to on-line tracking opens up several new
application domains: A cognitive reminding system could estimate what the human subject is
currently doing, compare this to a description of what should be done, and suggest how to im-
prove. Another option would be to let the robot help the human in a way that best fits the task
context and the action the human is currently performing.
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8.1 Publications

The work presented in this thesis has led to several publications in international journals and
conferences. When the work described in a chapter had previously been published, we referred
to the respective publication; below is a list of all prior publications for completeness:

Journal publications

Moritz Tenorth, Ulrich Klank, Dejan Pangercic, and Michael Beetz. Web-enabled Robots –
Robots that use the Web as an Information Resource. Robotics & Automation Magazine, 18(2),
2011.

Moritz Tenorth, Dominik Jain, and Michael Beetz. Knowledge Representation for Cognitive
Robots. Künstliche Intelligenz, 24(3):233–240, 2010.

Michael Beetz, Moritz Tenorth, Dominik Jain, and Jan Bandouch. Towards Automated Models
of Activities of Daily Life. Technology and Disability, 22(2):27-40, 2010.

Michael Beetz, Dominik Jain, Lorenz Mösenlechner, and Moritz Tenorth. Towards Performing
Everyday Manipulation Activities. Robotics and Autonomous Systems, 58(9):1085-1095, 2010.

Markus Waibel, Michael Beetz, Raffaello D’Andrea, Rob Janssen, Moritz Tenorth, Javier Civera,
Jos Elfring, Dorian Gálvez-López, Kai Häussermann, J.M.M. Montiel, Alexander Perzylo, Björn
Schießle, Oliver Zweigle, and René van de Molengraft. RoboEarth - A World Wide Web for
Robots. Robotics & Automation Magazine, 18(2), 2011.

Conference papers

Daniel Nyga, Moritz Tenorth, and Michael Beetz. How-models of human reaching movements
in the context of everyday manipulation activities. In IEEE International Conference on Robotics

and Automation (ICRA), Shanghai, China, May 9–13 2011.

Moritz Tenorth, Lars Kunze, Dominik Jain, and Michael Beetz. Knowrob-map – knowledge-
linked semantic object maps. In Proceedings of 2010 IEEE-RAS International Conference on

Humanoid Robots, Nashville, TN, USA, December 6-8 2010.
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Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth. CRAM – A Cognitive Robot Ab-
stract Machine for Everyday Manipulation in Human Environments. In IEEE/RSJ International

Conference on Intelligent RObots and Systems, Taipei, Taiwan, October 18-22 2010.

Dejan Pangercic, Moritz Tenorth, Dominik Jain, and Michael Beetz. Combining perception and
knowledge processing for everyday manipulation. In IEEE/RSJ International Conference on

Intelligent RObots and Systems, Taipei, Taiwan, October 18-22 2010.

Moritz Tenorth and Michael Beetz. Priming Transformational Planning with Observations of
Human Activities. In IEEE International Conference on Robotics and Automation (ICRA), An-
chorage, Alaska, May 3-8 2010.

Moritz Tenorth, Daniel Nyga, and Michael Beetz. Understanding and Executing Instructions for
Everyday Manipulation Tasks from the World Wide Web. In IEEE International Conference on

Robotics and Automation (ICRA), Anchorage, Alaska, May 3-8 2010.

Lars Kunze, Moritz Tenorth, and Michael Beetz. Putting People’s Common Sense into Knowl-
edge Bases of Household Robots. In 33rd Annual German Conference on Artificial Intelligence

(KI 2010), Karlsruhe, Germany, September 21-24 2010.

Moritz Tenorth and Michael Beetz. KnowRob — Knowledge Processing for Autonomous Per-
sonal Robots. In IEEE/RSJ International Conference on Intelligent RObots and Systems, 2009.

Freek Stulp, Andreas Fedrizzi, Franziska Zacharias, Moritz Tenorth, Jan Bandouch, and Michael
Beetz. Combining analysis, imitation, and experience-based learning to acquire a concept of
reachability. In 9th IEEE-RAS International Conference on Humanoid Robots, 2009.

Dejan Pangercic, Rok Tavcar, Moritz Tenorth, and Michael Beetz. Visual scene detection and
interpretation using encyclopedic knowledge and formal description logic. In Proceedings of the

International Conference on Advanced Robotics (ICAR), Munich, Germany, June 22 - 26 2009.

Michael Beetz, Jan Bandouch, Dominik Jain, and Moritz Tenorth. Towards Automated Models
of Activities of Daily Life. In First International Symposium on Quality of Life Technology -
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Intelligent Systems for Better Living, Pittsburgh, Pennsylvania USA, 2009.

Michael Beetz, Freek Stulp, Bernd Radig, Jan Bandouch, Nico Blodow, Mihai Dolha, Andreas
Fedrizzi, Dominik Jain, Uli Klank, Ingo Kresse, Alexis Maldonado, Zoltan Marton, Lorenz
Mösenlechner, Federico Ruiz, Radu Bogdan Rusu, and Moritz Tenorth. The assistive kitchen
— a demonstration scenario for cognitive technical systems. In IEEE 17th International Sympo-

sium on Robot and Human Interactive Communication (RO-MAN), Muenchen, Germany, 2008.
Invited paper.

Workshop papers

Nico Blodow, Zoltan Csaba Marton, Dejan Pangercic, Thomas Rühr, Moritz Tenorth and Michael
Beetz. Inferring generalized pick-and-place tasks from pointing gestures. In IEEE International

Conference on Robotics and Automation (ICRA), Workshop on Semantic Perception, Mapping

and Exploration, 2011.

Moritz Tenorth, Jan Bandouch, and Michael Beetz. The TUM Kitchen Data Set of Everyday
Manipulation Activities for Motion Tracking and Action Recognition. In IEEE Int. Workshop

on Tracking Humans for the Evaluation of their Motion in Image Sequences (THEMIS). In con-

junction with ICCV 2009, 2009.

Moritz Tenorth and Michael Beetz. Towards practical and grounded knowledge representation
systems for autonomous household robots. In Proceedings of the 1st International Workshop on

Cognition for Technical Systems, 2008.

Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, Moritz Tenorth, Radu Bogdan Rusu, and
Michael Beetz. Autonomous Mapping of Kitchen Environments and Applications. In Proceed-

ings of the 1st International Workshop on Cognition for Technical Systems, 2008.
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