
Technische Universität München

Lehrstuhl für Steuerungs- und Regelungstechnik

Action Selection in Cooperative Multi-Robot
Systems

Florian Rohrmüller

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Hans-Georg Herzog

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing./Univ. Tokio Martin Buss

2. Univ.-Prof. Michael Beetz, Ph.D.

Die Dissertation wurde am 09.06.2011 bei der Technischen Universität München einge-

reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 04.10.2011

angenommen.

Acknowledgments

Even though I am the single author of this thesis, a lot of people gave me assistance in

many respects. First, I want to thank my doctoral adviser Prof. Martin Buss, who gave

me the opportunity to undertake this work and the latitude to fully carry out my ideas,

still giving me guidance whenever I needed. Furthermore, I thank him for always providing

me with an excellent working environment, which in this form certainly cannot be taken

as granted. I thank also my co-advisor, Dr.-Ing. Dirk Wollherr, who always had an open

door for my problems and gave me encouragement, as well as, the confidence to take this

thesis to its conclusion. I further thank Prof. Michael Beetz for providing me support

whenever I have been asking for.

I also want to express my gratitude to all my friends and colleagues at our institute for

the great cooperativeness and the pleasant atmosphere. Special thanks go to Prof. Sandra

Hirche for her support and the in-depth discussions that broadened my mind and opened

new perspectives to me. I further want to thank the entire team of the ACE project (An-

drea Bauer, Kolja Kühnlenz, Klaas Klasing, Georgios Lidoris, Quirin Mühlbauer, Stefan

Sosnowski, Dirk Wollherr, Tingting Xu and Tianguang Zhang) for the great team spirit

throughout the entire project. Special thanks go to Georgios Lidoris for the great collab-

oration during the last years and the many scientific discussions that inspired my work

down to the present day.

My gratitude goes also to the entire MuRoLa team (Daniel Althoff, Dražen Brščić,

Johannes Bürger, Abhishek Dutta, Azwirman Gusrialdi, José Ramón Medina Hernández,

Vasiliki Koropouli, Omiros Kourakos, Martin Lawitzky, Nikos Mitsou, Alexander Mörtl,

Matthias Rambow, Xuelian Zang and Wei Wang) for the extraordinary enjoyable time.

Special thanks go to Omiros Kourakos for the great and close collaboration beginning from

the first day of the project. I also thank all external cooperators in MuJoA and CoTeSys

(they are too many to be explicitly mentioned here) for the great collaborations and the

pleasant teamwork, e.g. during many hours of demonstration preparations. Furthermore,

many thanks go to all my students for their valuable work and support that enabled me

to keep concentrated on my research. Many thanks also to Anil, Georg and Raphi for

the proofreading and all their valuable feedback, and especially to Tine for her permanent

support. Last but not least, many thanks to my family and all my friends who cared for

the essential amount of distraction that enabled me to regenerate and to draw enough

power for the completion of this dissertation.

Munich, 2011 Florian Rohrmüller

iii

To all my supporters.

Abstract

The ability to work in a team is an integral skill demanded nowadays of most employ-

ees. Teamwork enables the combination of complementary strengths and the distribution

of the workload, thereby increasing the productivity of the entire team. It is a coherent

consequence that this is also a desirable ability of multiple autonomous robots acting simul-

taneously in the same environment. Typical applications comprise for example search-and-

rescue robots, warehouse delivery robots, or aide robots in hospitals. By cooperation these

robots can coordinate their actions in order to increase the entire team performance. Such

an ability demands a robotic decision-making that yields a cooperative action selection

among a set of multiple robots. The hardest challenges in this respect arise mainly from

the existing information uncertainty and the rapidly growing problem complexity. Such

robotic systems are mostly called to carry out tasks in partially known or even unknown

environments where they are constantly faced with sensory noise resulting in uncertain

information. In multi-robot systems (MRS) this uncertainty is further intensified by the

fact, that the environment is not only modified by the action of a single robot but rather

by the simultaneous actions of all robots. This leads to the huge complexity that results

from the number of combinatorial possibilities to select these simultaneous actions, which

increases exponentially in the number of robots.

This thesis investigates the problem of a reliable and robust action selection in coopera-

tive multi-robot systems and presents novel methods to handle the mentioned challenges in

real-world systems. A framework for a multi-robot task allocation is introduced. By split-

ting the allocation procedure into two phases, a slower increase of the worst-case complex-

ity compared to state-of-the-art approaches is guaranteed. Furthermore, the complexity

arising on average is reduced, by taking system-specific characteristics into account. Such

characteristics are also used for failure handling to achieve a more robust system operation.

In order to cope with the given uncertainty, a new approach is described to understand the

influence of the environment on the robotic performance and thereby to achieve a more

reliable and situation-aware reward estimation. This method solves a fundamental but

often neglected problem in the action selection of real-world robots. All methods provide

generic contributions to the field that are excellently suited but not limited to complex

service robots. In this respect, this thesis enhances not only the existing theoretical knowl-

edge on robotic action selection, but additionally outlines the practical use of the presented

methods by the given experimental results, thereby providing valuable findings for future

research.

v

Zusammenfassung

Die Fähigkeit zur Teamarbeit ist eine wesentliche soziale Kompetenz, welche heutzutage

von den meisten Arbeitnehmern erwartet wird. Teamarbeit ermöglicht die Kombinati-

on von sich ergänzenden Stärken und die Verteilung der Arbeitslast, wodurch eine Leis-

tungssteigerung des gesamten Teams erreicht wird. Es ist eine schlüssige Folgerung, dass

dies auch eine wünschenswerte Fähigkeit von mehreren autonomen Robotern ist, welche

gleichzeitig in einer gemeinsamen Umgebung agieren. Typische Anwendungen umfassen

beispielsweise Such- und Rettungsroboter, Warenlieferungsroboter, oder Hilfsroboter in

Krankenhäusern. Mittels Kooperation können diese Roboter ihre Aktionen koordinieren

und dadurch die gesamte Teamleistung erhöhen. Eine derartige Befähigung erfordert ein

robotisches Entscheidungsvermögen welches eine kooperative Aktionswahl innerhalb ei-

ner Gruppe von mehreren Robotern ermöglicht. Die größten Herausforderungen in die-

sem Zusammenhang entstehen hauptsächlich durch die existierende Informationsunsicher-

heit sowie die schnell anwachsende Problemkomplexität. Derartige Robotiksysteme finden

meist in teilweise oder gar gänzlich unbekannten Umgebungen Anwendung, wo sie per-

manent mit Sensorrauschen konfrontiert sind, was wiederum zur Informationsunsicherheit

führt. In Multirobotersystemen (MRS) wird diese Unsicherheit weiterhin durch die Tatsa-

che verstärkt, dass die Umgebung nicht alleinig durch die Aktion eines einzelnen Roboters,

sondern vielmehr durch die gleichzeitigen Aktionen aller Roboter verändert wird. Dies führt

zu der immensen Komplexität, die aus der Anzahl an kombinatorischen Möglichkeiten, die-

se simultanen Aktionen auszuwählen, resultiert, und exponentiell mit der Zahl der Roboter

wächst.

Diese Dissertation untersucht das Problem einer zuverlässigen und robusten Aktions-

selektion in kooperativen Multirobotersystemen und beschreibt neue Methoden um die

genannten Herausforderungen in realen Systemen zu beherrschen. Ein Framework für eine

Multiroboteraufgabenverteilung wird vorgestellt. Indem der Verteilungsvorgang in zwei

Phasen unterteilt wird, kann eine langsameres Ansteigen der größtmöglichen Komple-

xität, im Vergleich zu den bisher bekannten Ansätzen, garantiert werden. Weiterhin wer-

den systemspezifische Eigenschaften in Betracht gezogen, um auch eine Verringerung der

durchschnittlichen Komplexität zu erzielen, sowie im Rahmen einer Fehlerbehandlung ein

höheres Maß an Zuverlässigkeit zu erreichen. Zur Berücksichtigung der gegebenen Unsi-

cherheit wird ein neuer Ansatz vorgestellt, mit welchem der Einfluss der Umgebung auf die

Leistungsfähigkeit des Roboters bestimmt werden kann. Dadurch wird eine zuverlässigere

und situationsbewusstere Kostenabschätzung ermöglicht. Diese Methode löst ein grundle-

gendes aber oft vernachlässigtes Problem bei der Aktionswahl von realen Robotern. Alle

Methoden liefern generische Beiträge zum Fachbereich, welche hervorragend aber nicht

ausschließlich auf komplexe Serviceroboter anwendbar sind. In dieser Hinsicht, erweitert

diese Dissertation nicht nur die bisherigen theoretischen Erkenntnisse im Bereich der ro-

botischen Aktionswahl, sondern weist zudem, angesichts der präsentierten experimentellen

Resultate, auch den praktischen Nutzen der vorgestellten Methoden auf, und liefert damit

wertvolle Erkenntnisse für zukünftige Forschungsarbeiten.

Contents

1. Introduction 1

1.1. Motivation . 1

1.2. Practical Applications and Demands . 3

1.3. Taxonomy of Multi-Robot Systems (MRSs) 6

1.3.1. Interfield Taxonomy and Terminology 6

1.3.2. Intrafield Taxonomy: Multi-Robot Systems at a Glance 8

1.4. Open Challenges in the Field . 13

1.5. Outline and Contributions . 14

2. Cooperative Action Selection 17

2.1. The Scope of Action Selection within a General System Architecture . . . 17

2.2. Problem Definition . 21

2.3. Taxonomy for Multi-Robot Task Planning Problems 24

2.4. Summary . 25

3. A Framework for Action Selection focusing on Task Allocation in MRSs 27

3.1. Introduction . 28

3.2. Related Work . 29

3.3. Problem Definition . 33

3.4. The MuRoCo Framework . 35

3.4.1. General Approach . 35

3.4.2. Considering Heterogeneity . 37

3.4.3. Single-Robot Tasks . 40

3.4.4. Multi-Robot Tasks . 42

3.4.5. Robustness and Failure Recovery 46

3.4.5.1. Selection of the Auctioneer Role 46

3.4.5.2. Failure-Aware Cost Computation 47

3.4.5.3. Error Recovery . 49

3.5. Analysis of the Approach . 50

3.5.1. Soundness and Completeness . 50

3.5.2. Scalability . 52

3.5.2.1. Computational Complexity 52

3.5.2.2. Communicational Complexity 54

3.5.2.3. Efficiency of Pruning Strategies 55

3.5.3. Optimality . 58

vii

Contents

3.6. Experimental Results . 59

3.6.1. Experimental Setup . 59

3.6.1.1. Description of the Robotic Hardware 59

3.6.1.2. The Service Scenario . 60

3.6.2. The Course of Action Selection during a Cooperative Service Task . 61

3.6.3. The Course of Action Selection under Uncertainty 63

3.6.4. Benchmark Evaluation . 64

3.7. Summary . 65

4. Uncertainty- and Situation-Aware Performance Estimation 67

4.1. Introduction . 67

4.2. Related Work . 70

4.3. Problem Definition . 73

4.4. Learning System Interdependence Models 75

4.4.1. System Interdependence Analysis 75

4.4.1.1. Algorithm Overview . 76

4.4.1.2. Component Performance Evaluation 77

4.4.1.3. Learning Bayesian Network Structures 78

4.4.1.4. Information-Theoretic Criteria 80

4.4.2. A Case Study on the ACE Robot 80

4.4.2.1. Indicators for Perception Performance 81

4.4.2.2. Indicators for Planning Performance 82

4.4.2.3. Indicators for Execution Performance 83

4.4.2.4. All Performance Indicators at a Glance 83

4.4.3. Experimental Results . 84

4.4.4. Discussion . 90

4.5. Uncertainty- and Risk-Aware Reward Estimation 91

4.5.1. Quantile-Based Reward Estimation 91

4.5.2. An Application Example . 96

4.5.3. Experimental Results . 101

4.5.3.1. Situation-Aware Action Selection 102

4.5.3.2. Reliable Reward Estimation 106

4.5.3.3. Forecasting of Poor Performance 109

4.5.4. Discussion . 110

4.6. Summary . 111

5. Conclusion and Outlook 113

5.1. Conclusion . 113

5.2. Outlook . 115

A. Distribution of the Coalition Responsibilities in MuRoCo 117

B. The ACE Project: Mobile Robot Navigation in Urban Environments 119

B.1. Motives for the Project . 119

B.2. System Description . 121

viii

Contents

B.3. Processing Layer . 121

B.3.1. Simultaneous Localization and Mapping 121

B.3.2. Grid Fusion . 123

B.3.3. Path Planning . 124

B.4. Control Layer . 125

B.4.1. Robot Behavior Description . 125

B.4.2. Behavior Selection . 126

B.4.3. Behavior Control . 127

B.5. Execution Layer . 129

B.6. Experimental Results . 130

B.7. Conclusion . 134

C. Map Overview 135

Bibliography 139

ix

List of Illustrations

List of Figures

1.1. Applications and situations where robots can benefit from cooperation . . 4

1.2. Embedding of MRSs into the fields of Distributed Computing and Artificial

Intelligence. 6

1.3. Categorization of robot interaction styles 10

2.1. General scheme of a multi-layered multi-robot system architecture 18

2.2. MRS as it is addressed by the different layers of the architecture in Fig. 2.1 19

2.3. The action selection problem in cooperative multi-robot systems 21

3.1. Illustration of the market-based task allocation 36

3.2. Exemplary capability constraint for the task τfetch 38

3.3. Illustration of the coalition formation . 44

3.4. Number of computational and communicational operations for a MR-task

assignment with respect to the number of robots 53

3.5. Relations of complexity for the MR-task assignment 54

3.6. Experimental results showing the cooperative serving by two robots 62

3.7. Sequence of trials showing the cooperative serving by two robots in the

incidence of external disturbances . 63

3.8. Experimental time required for a MR-task assignment 64

4.1. Exemplary scene with various sources of uncertainty 69

4.2. Scheme of the proposed system interdependence analysis. 76

4.3. Course of complexity for an exhaustive and for the K2 search 79

4.4. The relation between mutual information I(x, y) and joint entropy H(x, y). 81

4.5. Two representative situations chosen for the interdependence analysis . . . 85

4.6. Discretized indicator values extracted from experimental data for two dif-

ferent environments . 85

4.7. Acceptance ratio versus the number of MCMC steps 86

4.8. Directed Acyclic Graph learned with MCMC and K2 87

4.9. Learned dependency values η(xi, xj) for all used indicators 88

4.10. The marginal distributions of HP and Var(ϕr) for assigned values of Hm . 89

4.11. Exemplary quantile function QfG (right) for a Gaussian mixture pdf (left) . 92

4.12. Map 1 out of 20 maps used for the experiment 97

4.13. Bayesian graph structures: derived by expert knowledge and by learning. . 100

4.14. Number of errors in relation to the number of maps, shown for all ratios . 103

xi

List of Illustrations

4.15. Achieved performance shown for each ratio 104

4.16. Average performance of all policies . 106

4.17. Reward reliability achieved by the inference policies 107

4.18. The conditional distribution of the cost metric tr 108

4.19. Relative MSE of the reward estimation . 109

B.1. The ACE robot and its developer team . 120

B.2. The software architecture of the navigation subsystem of ACE 122

B.3. Path planning approach . 124

B.4. Finite State Machine of the Behavior Selection module 127

B.5. Flow chart of the checkConstraints()procedure 128

B.6. Flow chart of the checkConsistency()procedure 128

B.7. The route of the ACE robot through the downtown area of Munich 131

B.8. Three different scenes encountered during the experiment (left side) and the

corresponding outputs of the Control and Processing Layer (right side) . . 132

B.9. Two scenes from the field experiment in the Deutsches Museum. 133

List of Tables

1.1. Intrafield taxonomy: a collection of MRSs characteristics 11

3.1. Number of messages required during the phases of the allocation procedure 54

3.2. Comparison of the required number of operations and number of messages

for MuRoCo and related work . 55

3.3. Exemplary greedy assignment of a MR-task 58

3.4. Capabilities of the MuRoLa robots . 60

4.1. Overview of proposed performance indicators. 84

4.2. Parameters used for the experimental runs 102

A.1. List lZ of coalitions for a multi-robot system of four robots 117

A.2. Sets Zresp,r of coalition responsibilities for the robots {r1, r2, r3, r4} 117

C.1. Map parameters and respective ranges of values. 135

List of Algorithms

3.1. Update routine of the auctioneer of robot ra 42

3.2. Update routine of the broker of robot rb . 43

A.1. Distribution of the coalition responsibilities among the robots 118

B.1. The Behavior Control of the ACE robot . 129

xii

Notations

Abbreviations

ACE Autonomous City Explorer (robot)

ADL Action Description Language

AI Artificial Intelligence

BIC Bayesian Information Criterion

BN Bayesian Network

cdf Cumulative distribution function

CPT Conditional Probability Table

C-Space Configuration Space

DAG Directed Acyclic Graph

DAI Distributed Artificial Intelligence

DC Distributed Computing

MAS Multi-Agent System

MCMC Markov Chain Monte Carlo

MR Multi-Robot

MRS Multi-Robot System

MRTA Multi-Robot Task Allocation

MSE Mean square error

MT Multi-Task

PDDL Planning Domain Definition Language

pdf Probability distribution function

SAS Single-Agent System

SR Single-Robot

SRS Single-Robot System

SLAM Simultaneous Localization And Mapping

ST Single-Task

STRIPS Stanford Research Institute Problem Solver

W.l.o.g. Without loss of generality

xiii

Notations

Conventions

Scalars, Vectors, and Sets

x Scalar

|x| Absolute value of x

x̂ Estimated or predicted value of x

x∗ Optimal value of x

x Vector

|x| Dimension of the vector x

x
T Transpose of the vector x

X Matrix

X Set

|X | Cardinality of the set X

Number Sets

B Set of boolean values

N Set of natural numbers including zero

R Set of real-valued numbers

R+
0 Set of non-negative real-valued numbers

Operators

argmax(f(x)) Argument x for which f(x) is maximal

argmin(f(x)) Argument x for which f(x) is minimal

∠(x, y) Angle ∈ [0, 2π] between the vector (x, y)T and the x-axis

Cov(x, y) Covariance of x and y

X∆Y Symmetric difference of the sets X and Y
E [x] Expected value of x

∅ Empty set

f(·) Scalar function

max(f(·)) Maximal value of f(·)
min(f(·)) Minimal value of f(·)
P (x) Probability of a random variable x

Qx(ς) ς-Quantile of the random variable x

Kx ≺ χ(Ky) Set Kx satisfies the constraint χ(Ky) on the set Ky
Kx ⊀ χ(Ky) Set Kx does not satisfy the constraint χ(Ky) on the set Ky
Var(x) Variance of x

xiv

Notations

Symbols

General

β Normalization factor

F Cumulative distribution function (cdf)

δ(·) Dirac delta function

D(fx‖fy) Kullback-Leibler divergence between the probability distributions fx and fy
G(V, E) Graph with vertices V and edges E
E Set of edges in a graph

µ Mean

M Maximum weight matching

N (µ, σ) Normal distribution with mean µ and standard deviation σ

f Probability distribution function (pdf)

O(·) Big O-Notation, also known as Landau-Notation

σ Standard deviation

V Set of vertices in a graph

Multi-Robot System

a Action

A Set of actions

βu Overall obtainable utility

c Cost

h(ri, rj) Heterogeneity between robots ri and rj
κ Capability

K Set of capabilities

p(τ) Plan to solve task τ

pA(τ) Action plan, i.e. plan composed of actions to solve task τ

pT (τ) Task plan, i.e. plan composed of subtasks to solve task τ

P Set of plans

PA Set of action plans

PT Set of task plans

̟ Policy

Π Set of all policies

q Performance

r Robot

R Set of robots

̺ Reward

s Symbolic state

S Set of possible symbolic states

τ Task

T Set of tasks

u Utility

xv

Notations

ψ Assignment of robots to tasks

ψ−1 Inverse assignment of tasks to robots

χ∧ Conjunctive constraint

χ∨ Disjunctive constraint

z Coalition

Z Set of coalitions

Interdependence Model

∆c Cost deviation

∆̺ Reward deviation

H(x) Entropy of random variable x

H(x, y) Joint Entropy of random variables x and y

I(x, y) Mutual Information of random variables x and y

η(x, y) Ratio of mutual information I(x, y) and joint entropy H(x, y)

INFO(x‖y) Relative quantity of information between the probability distributions x and y

rel(x̂) Reliability of the estimation x̂ about the value of x

Navigation

b Robot behavior

c Submodule of a robotic system

g Cell of an occupancy grid

cad Cumulative sum of angular deviation

f Frontier between an unknown and known part of a map m

Hm Map uncertainty

HP Pose uncertainty

lp Path length

m Map, here commonly an occupancy grid

nw Number of waypoints

nv Number of Voronoi waypoints

o Observation

O Set of observations

ρ Map resolution

ϕ Orientation, yaw angle

t Time

u Odometry measurement

U Distribution of odometry measurements

v Velocity

x Pose in form of (x, y, ϕ)T

X Trajectory of poses

w Waypoint

wgp Goalpoint

xvi

1. Introduction

Along with the overall progress in robotics, scenarios where multiple robots act in parallel

gained in relevance. Such systems cannot only be improved by enhancing the skills of the

individual robots, but also by cooperation of all robots. This thesis focuses on robotic

decision making for action selection in cooperative multi-robot systems. The problem is

discussed for systems with different characteristics and from diverse perspectives. The sub-

sequent chapters address the substantial challenges of this problem and provide adequate

solutions that are not only theoretically grounded, but also are shown to be suitable to

solve the problem in practice. This introduction gives the motivation and the outline of

this work.

1.1. Motivation

The objective of artificial intelligence (AI) is to create intelligent machines that are able

to make smart decisions on their own. This form of intelligence is represented by agents,

which perceive their environment, reason about the subsequent actions, and thereupon

act respectively. Decision making is referred to as symbolic reasoning in the sense of

classical AI, i.e. deliberation based on a symbolic world representation [108]. In the case

of embodied agents, which carry out their actions in the physical world, one speaks of

robots. This distinctive characteristic makes robots suitable for daily helpers in the real

world. Their application areas comprise industrial settings, military fields, and service

scenarios.

In [47], the Roadmap for US Robotics is proposed, discussing the future trends and

opportunities of robotic markets and the resulting demands to robotic technologies. In

a similar study, by the European Robotics Technology Platform (EUROP), the Strate-

gic Research Agenda for robotics in Europe [72] was developed. The major markets of

robotics were identified in the areas of manufacturing, logistics, medical robots, health-

care, space, and service robots [47, 72]. Robots are expected to be used as robotic workers

and co-workers, for surveillance and intervention, for exploration and inspection, or for

edutainment. Service robotics focuses on assisting humans in their daily life and is ex-

pected to be an emerging market with high potential. Especially in aging societies, such as

in Europe, the US, or Japan, support for the care of elderly is strongly needed [72]. Also

the field of manufacturing robotics is seen as a revolutionizing key technology [47].

In larger settings, e.g. hospitals, warehouses, or industrial factories, the needs for assis-

tance rapidly exceed the capabilities of a single robot creating the demand for multiple,

simultaneously operating robots. Such a setup is referred to as multi-robot system (MRS).

Besides the obvious advantage of tasks being processed in parallel, the productivity of

MRSs is further improvable by an efficient cooperation of the robots with each other and

1

1. Introduction

their environment. While setups with competitive agents are in research likewise popu-

lar, the practical benefits of cooperative robots are expected to be considerably higher,

especially in service or industrial applications.

The authors of [47] expect that it will last until 2020 and beyond before products for

a broad range of applications will have established in the market. It is further expected,

that robots will get more frequently into physical contact with other robots and humans,

e.g. in form of cooperative tasks. This raises the requirements to safety, reliability, and

robustness. While today cooperating robots are mostly controlled in a centralized manner

and designed for robotic-specific tasks, e.g. the warehouse delivery described in [42], future

MRSs will use distributed control, inter-agent communication, and team-specific tasks [72].

On the long-term (beyond 2020) the authors of [72] see systems that are capable of a

learning-based automation and online planning in high-dimensional spaces. In order to

satisfy these demands from the MRSs perspective, sophisticated solutions for a cooperative

action selection in multi-robot systems are required.

From the scientific perspective the major difference of a cooperative MRS to a single-

robot system (SRS) arises from the interest to provide the robots with the mutual aware-

ness and the capability to incorporate this information into the robotic decision making.

In order to overcome the limits of single robots and exploit the benefits of MRSs, re-

cent research is interested in the cooperation of multiple robots to increase their joint

performance. Today, most available solutions are still limited to small scale and/or semi-

autonomous systems, provided with pre-scripted knowledge and plans. Instead, future

systems need to handle much more complex tasks, act fully autonomously and possibly

in highly dynamic environments [47, 72]. The related challenges arise mainly from the

uncertain information and the rapidly growing problem complexity. As a consequence,

finding the optimal solution, i.e. the one that yields the best team performance, is often

intractable for non-trivial problems and thus requires approximative approaches. Accord-

ingly, respective methods need to tradeoff between speed (approximation) and optimality

(generality). Generality also provides a greater flexibility to various application domains.

These issues are still insufficiently solved in literature, what raises the potential and

demand for future research in the field. One key aspect is the action selection of the

individual robots within a team. Therefore, this thesis provides an approach to this key

component by introducing a generic task allocation framework. In addition, a novel method

is presented to learn the environmental influence on the quality of the action execution

and to utilize this knowledge in order to improve the system performance. Moreover, this

dissertation will provide experimental work, which verifies these theoretical approaches

under realistic practical conditions.

In order to motivate the relevance of the research topic further, Section 1.2 gives a more

precise description of potential application domains. Afterwards Section 1.3 presents a

detailed taxonomy of the field followed by a discussion of its major challenges in Section 1.4.

Finally an outline of this thesis is given in Section 1.5.

2

1.2. Practical Applications and Demands

1.2. Practical Applications and Demands

The requirements and benefits resulting from a MRS are strongly dependent on its specific

application. [92] examines the demands and challenges of multi-agent systems (MASs)

in industrial settings. In [28] an overview of commonly used benchmark applications for

evaluating MRSs coordination methods is given. The motivation of this section is to

show some example application domains in order to illustrate the type of robotic setups

considered in this thesis and their respective practical implications.

A very popular benchmark domain is RoboCup Soccer, see Fig. 1.1(a), where different

robotic platforms compete in different leagues against each other. The robots within a

team need to find suitable cooperation strategies in order to outplay their opponents. In

order to ensure fair play, soccer robots are commonly homogeneous. This means they are

constructed equally, provided with the same sensors and actuators.

Another domain where robots benefit from cooperation are planetary exploration tasks.

In order to investigate unknown terrain, the robots also need to overcome larger obstacles,

such as shown in Fig. 1.1(b) where a mobile robot climbs a cliff with the help of two

anchor-bots at the top [52]. In this case the robots are heterogeneous, which means that

the robots are equipped with different sensors and/or actuators that provide them with

different capabilities. This is also very beneficial in the search and rescue domain, see e.g.

Fig. 1.1(c). Robots are supposed to eliminate possible sources of danger or find injured

persons in hazardous environments. In such situations, a heterogeneous robot team may

operate much faster if some robots are highly mobile and have a very accurate detection

system to quickly locate spots of interest, while less flexible but more powerful robots are

responsible to bring persons out of the hazardous zone.

Another application domain for MRSs are industrial settings, where the robots are

closely integrated into industrial processes. For example, autonomous fork lifters [34,

69] retrieve material from huge scaffolds or storage racks, and other robots may be pure

transport vehicles, see Fig. 1.1(e), which carry objects to a specified location. Within

these categories, the robots may be further distinguishable, for example with respect to

the height they can reach or the maximum payload they can carry. Similarly, the tools

and material to be fetched may differ in their attributes, such as size, weight, shape or

stiffness. Depending on the capabilities of the robots and the attributes of the objects, the

latter may be picked up or carried by a single robot or, in case of heavier and/or larger

objects, either by multiple robots, see Fig. 1.1(f), or by humans and robots in a tightly

coupled manner.

A further domain containing versatile robotic applications are hospitals. The robots

disperse medication and meals and/or make deliveries [27]. In [81], autonomous mobile

robots are used for the conveyance of blood samples, see Fig. 1.1(g). Robots also regularly

visit and assist patients [26, 88]. They provide an opportunity for doctors to remotely

inspect a patient or even to do tele-operated surgery [43]. Robots can move the beds

through corridors, carry patients [86, 87] and support the staff.

Even though these scenarios act in different environments they have several character-

istics in common. In general the performance of a company is measured by the progress

it makes within a certain time. Similarly the assistance by the robots to such a company,

3

1. Introduction

(a) RoboCup Soccer [109]. (b) Planetary exploration [52].

(c) Search and rescue [64]. (d) Warehouse with autonomous fork lifter [69].

(e) Warehouse delivery [42]. (f) Cooperative cleanup.

(g) Hospital aide and nursing [81]. (h) Household services.

Fig. 1.1.: Applications and situations where robots can benefit from cooperation.

4

1.2. Practical Applications and Demands

needs to be determined by the number of relieved tasks within this time. However, the con-

cern management is primarily not interested in the performance of each individual robot

– assuming these have overlapping task responsibilities – but rather in the performance of

the entire MRS. Accordingly in these cases a MRS is judged by the joint group or team

performance of all robots.

An additional characteristic of many applications is that the robots act in a human-

populated environment. In these situations, the robots need to adapt to the human work

flow, react to respective changes and sometimes even cooperate physically with humans.

Consequently they need to cope with the uncertainty given in the physical world and

provide a high level of robustness in order to ensure reliability to its operators.

In order to satisfy their operators expectations, the robots need to be reliable but they

also need some joint policy how to coordinate their actions with other robots and/or

humans in order to increase the joint performance. A simple strategy for the robots to

process the dedicated tasks is to randomly wander around and whenever a robot meets a

human who instructs it with a task, the robot tries its best to successfully complete the

task. This implies no exchange of information among the robots and no inference about

the mutual actions. Accordingly, a robot that is for example only able to identify and lift

objects, does not inform any other robot, which is only able to carry objects, about the

locations of the latter. As a consequence, a major problem of this strategy is that complex

tasks can only be accomplished by sophisticated robots. In the current example, the robot

needs to be able to detect, load and carry objects. Even in this case, this strategy is most

likely highly sub-optimal as the instructing human first needs to find a suitable robot.

It becomes even more problematic when objects need to be passed from one robot to

another, see Fig. 1.1(h), or require a synchronized handling by multiple robots. For example

a fork-lifter robot needs to load some construction material onto a transport robot or a

heavy object requires a joint carrying by multiple robots. Without an explicit policy such

a synchronization would occur only by chance.

As a consequence, a cooperation strategy or policy among the robots is required, to

improve the overall performance of the robots which enables them to exploit the benefits of

the specific MRS. For example in the warehouse system shown in Fig. 1.1(e), which has been

already successfully realized in practice [42], the policy is determined by a central control

unit that decides which robot should bring which article to which location. However, in

this case the robots are all identical, i.e. homogeneous, and are not required to cooperate in

a tightly coupled manner with their environment what simplifies the problem considerably.

For a MRS composed of heterogeneous robots that also are supposed to execute tasks in a

synchronized manner, the challenges with respect to scalability, complexity and robustness

are substantially harder and demand for new solutions. On the other hand, such systems

are beneficial as they allow for specialization. This results in a larger variety of performable

tasks while keeping redundant hardware components and thus also the related costs low.

For a more clear understanding of the different types of MRSs and those related benefits

and challenges an overview of the determining characteristics of MRSs is given next.

5

1. Introduction

Distributed
Computing

Artificial
Intelligence

DAI

Distributed Artificial
Intelligence (DAI):

Distributed
Problem
Solving

Multi-Agent
Systems

Multi-Robot
Systems

Fig. 1.2.: Embedding of MRSs into the fields of Distributed Computing and Artificial
Intelligence.

1.3. Taxonomy of Multi-Robot Systems (MRSs)

This section provides a general overview of multi-robot systems (MRSs) and shows how

this thesis is embedded into the related literature. Section 1.3.1 examines how research in

MRSs is connected with its most related fields followed by a clarification of the most im-

portant terminology. Thereafter, the characteristics of MRSs are described in an intrafield

taxonomy given in Section 1.3.2.

1.3.1. Interfield Taxonomy and Terminology

Research in MRSs is a comparably young domain. The first work dates back to the mid

1980s, but the field mainly gained in importance during the last decade. In order to

exemplify how research in MRSs is embedded within the domain of Artificial Intelligence

(AI), the taxonomy of research fields including Multi-Agent Systems (MASs) – introduced

by Stone and Veloso in [114] – is extended by MRSs as shown in Fig. 1.2.

Both fields – MASs and MRSs – are embedded into the domain of Distributed Artificial

Intelligence (DAI), which itself is the intersection of Distributed Computing (DC) and AI.

DC relates to the study of interconnected programs that share a common goal, but run

on separate computers. In this respect, DC became possible owing to the invention of

computer networks in the 1960s. AI is the development and study of intelligent machines

where the first recognized work was originated in 1943 according to [100].

The domain of DAI splits mainly into the overlapping fields of Distributed Problem Solv-

ing and MASs [114]. While Distributed Problem Solving is understood as the management

of distributed information, the domain of MASs relates rather to the management of dis-

tributed behavior. In this context, MRSs can be categorized as a subfield of the MASs

domain that may, but does not necessarily need to, overlap with Distributed Problem

Solving.

In order to make this more evident, a clarification of some terminology is required. First

of all, it is necessary to get an idea of what is meant by an agent within the AI community.

6

1.3. Taxonomy of Multi-Robot Systems (MRSs)

According to Russell and Norvig:

Definition 1.1 ”an agent is anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through actuators” [100, p. 34].

This statement needs to be understood in a very abstract sense, that is sensors and actua-

tors do not necessarily need to relate to physical objects. For example, a software agent –

also called ”softbot” – may receive its input as data packages or commands in form of byte

sequences and similarly send out its own commands or data. Nevertheless, independent of

its specific type, an agent is generally expected to act logically leading to the expression

of a rational agent.

Definition 1.2 ”For each possible percept sequence, a rational agent should select an ac-

tion that is expected to maximize its performance measure, given the evidence provided by

the percept sequence and whatever built-in knowledge the agent has” [100, p. 37].

Accordingly, this provides a clear idea about agents and rationality but it still leaves the

question about the difference between an agent and a robot.

Definition 1.3 ”Robots are physical agents that perform tasks by manipulating the phys-

ical world” [100, p. 971].

In contrast to a pure software agent a robot retrieves information from physical sensors

such as cameras or laser range finders and sends its commands to motors. However, this

does not preclude that a robot may comprise several agents. For example one agent may

be responsible for the planning of future actions while another agent handles the execution

of these planned actions. W.l.o.g. throughout this thesis the term robot always refers to

the rational agent that is responsible for the selection of actions.

In general a system that is constituted by a set of individual agents is referred to as

MAS. Accordingly, a MRS is a set of individual robots. With respect to Definition 1.3, this

implies that each robot is constituted by at least one robot-specific agent. For example, a

distributed set of several physically self-contained robotic hardware that is controlled in a

fully centralized manner by one single agent is strictly speaking not a MRS. In fact a MRS

differs mainly from a single-robot system by the environment being also influenced by the

actions of other robots.

Furthermore, in order to clarify the title of this work still the term of a cooperative

MRS needs to be determined. In this respect a definition according to [90] is used:

Definition 1.4 A cooperative MRS is a set of individual robots, which are aware of each

other, share common goals and mutually advance the goals of the others by their own

actions.

In other words, the robots are assumed to know about the existence of each other and

their performance is evaluated as a team. From the latter, it also follows that a robot

influences the performance of all other robots by its actions. In this respect, Parker sees

the objective of the field in the development of MRSs, in which the robots are working

together as efficiently as humans, where the actual challenge is to find the best design [90].

The characteristics of cooperative MRSs and existing alternative types are further discussed

in Section 1.3.2. The next section describes some exemplary applications which illustrate

the practical benefits provided by MRSs.

7

1. Introduction

1.3.2. Intrafield Taxonomy: Multi-Robot Systems at a Glance

During the last decade the domain of MRSs research attracted increasing interest that led

to a rising variety of subfields focusing on different aspects with varying assumptions and

constraints. This in turn gave reason for several work on the categorization and the survey

of the field. In the following the most important work in this respect is summarized and

an intrafield taxonomy of MRSs as well as an overview of the benefits and challenges in

the field is given.

A very common approach is to categorize the systems based on the type of environment,

the type of agents and/or those style of interactions, see e.g. [51, 100, 124]. Some of the

taxonomies found in literature go at great length and include for example even the used

integration infrastructure or the practice of development and service, e.g. [51]. While such

issues also relate to the means of how the specific problems are solved, the subsequent

intrafield taxonomy concentrates on the question of what needs to be solved. More specif-

ically, it is considered by which characteristics the MRSs differ physically from each other

and by which requirements with respect to their dedicated applications the systems are

distinguishable.

Physical Characteristics refer to the physical attributes of MRSs and can be split in

those related to the robotic hardware and those related to the system infrastructure [51,

92, 124]. A very essential attribute of the individual robots that strongly determines those

applicability is the mobility. While established industrial robots that are integrated within

production lines are mostly stationary the majority of the present research is engaged in

mobile robotics.

Another very powerful functionality in MRSs is the availability of communication be-

tween the robots, as it is a valuable feature for coordination, negotiation or simply in-

formation exchange. However, with communication also various problems arise, such as

time delay, data reliability or an increased system complexity due to the need for protocols

etc. This may lead to a merely limited accessibility of the communication system. In

this respect for example [39] defined a value of communication in order to achieve rational

communication. Such a value enables the explicit incorporation of the communication act

into the action planning and thus to only exchange information when really necessary.

A further mostly used characteristic, e.g. [51, 92, 114, 123], is the uniformity within the

system. Depending on the composition of robot types a distinction between homogeneous

systems - all robots are identical - and heterogeneous systems - consisting of different robots

- can be done. Even though this mostly relates to the robotic hardware in principle robots

also can differ solely with respect to their used program. For example for benchmarking

reasons a developer might provide some robots with a very limited and other robots with

a very sophisticated algorithm. As this provides the robots with a different capability level

such a system is of heterogeneous type as well.

Besides the robots also the attributes of the surrounding environment are determining

factors of a MRS [51, 123, 124]. Robots may have to act in a static or dynamic environment.

Actually an environment with multiple operating robots is already dynamic from a single

robot’s point of view. However, for locationally very spacious systems a static assumption

about the environment might be still acceptable.

8

1.3. Taxonomy of Multi-Robot Systems (MRSs)

Furthermore, a huge part of research focuses on the interpretation of noisy sensor data

and the combination of the individual perceptions of the robots. Depending on the current

states of the robots, their perceptions may differ temporally, spatially or even semantically,

resulting only in a partially observable world state. In this respect a robot without any sen-

sors or communication is not able to observe its environment at all while a fully observable

environment does practically not exist, at least for robotic agents. Closely related to the

observability is the predictability of the environment, which relates to whether the effects

of actions are exactly predictable (deterministic) or if they are subjected to some unknown

processes (stochastic). Note that the term stochastic, in contrast to non-deterministic,

implies some probabilistic model of the outcome uncertainty [100]. However, w.l.o.g. any

process outcome can be approximated by some probabilistic model, the challenge is rather

to find a suitable one.

Application Requirements arise from the dedicated application of a MRS and relate to

scenario-specific attributes and/or constraints that also allow for a classification of MRSs.

In [90] Parker takes a general perspective on applied MRSs and describes three paradigms

to cluster systems of distributed intelligence. The first are bio-inspired approaches, which

assume a large number of homogeneous robots, i.e. the robots are equally capable to per-

form the tasks. A huge part of this category is for example covered by swarm robotics.

These systems often make use of stigmergy, meaning that the robots sense on their own

when their help is needed. This yields a coordinated behavior while keeping communi-

cation and complexity low. Nevertheless, the applicability of these approaches is limited

to rather simple domains such as foraging or exploration tasks. The other two paradigms

described in [90] are the organizational approaches, such as role-based structures, and the

knowledge-based approaches, which make use of the mutual awareness of the others capa-

bilities. However, the transition between these two paradigms is anyway rather smooth.

All of the work presented in the following can be ascribed to at least one of these two

paradigms. While this presents rather a common ground there are several application-

specific characteristics that allow for a clear taxonomy of the various system types.

One issue related to the application is the level of cognition required in the system, see

e.g. [51, 90]. In some scenarios it is sufficient for the robots to act reactively depending on

their current percepts while in others they need to also deliberate about the future effects

of their actions. Which approach is appropriate or even mandatory is closely linked to

the causal relation of the tasks. In case this is only of episodic character, e.g. reiterative

pick-and-place tasks, some reactive behavior may be sufficient. Instead for picking objects

that lie upon each other some deliberation about the sequence in which the objects are

taken is probably beneficial.

Besides this causal relation tasks may also have an operational relation in the sense that

their execution requires some loosely or tightly coupled coordination [28]. For example

foraging or mapping are loosely coupled as they require no precise synchronization during

execution. In contrast box-pushing or soccer are examples for tightly coupled tasks.

A further application-determined aspect is the level of autonomy. In [51] five classes of

autonomy are distinguished. These include for example even the autonomy of the designer

in the sense of its independence with respect to interface or construction-related choices.

9

1. Introduction

Coordinative

Collaborative

Cooperative Collective

Individual

Shared

Types of Goals

Aware Not-Aware

Awareness of others

No

Ye
s

Ac
tio
ns
ad
va
nc
e

go
als

of
ot
he
rs?

Fig. 1.3.: Categorization of robot interaction styles according to [90].

However, as mentioned at the beginning of this section the taxonomy described here is

limited to hardware and application-related attributes. In this respect a distinction of

tele-operated systems, fully autonomous ones and mixtures of those is made. Nevertheless,

from the MRS perspective it needs to be considered that an increase of interaction with

other agents entails already a lower autonomy of the individual agents.

Additionally MRSs are distinguishable according to their type of robot-robot interac-

tion. Therefore commonly the subclasses collective, cooperative, collaborative and coor-

dinative are used, for which in [90] a categorization as shown in Fig. 1.3 is proposed. It

is based on the types of goals, which may be individual or shared, the awareness of each

other, and whether the own actions advance the goals of others.

Table 1.1 summarizes the list of described characteristics, where it is neither the objec-

tive nor the claim of the author that this list is complete. In fact MRSs could be further

classified with respect to the amount of knowledge provided by the designer, the capability

of short or even long-term learning or whether a centralized or decentralized architecture

is used. Nevertheless, as previously mentioned, the list in Table 1.1 has been kept small

on purpose as it shall rather provide a reduction to the most essential attributes of multi-

robot systems. For an extended overview the interested reader is referred to the above

cited literature.

The General Benefits and Challenges of MRSs are of interest in order to decide

why, where and how to apply MRSs. In this respect it seems manifest to determine their

advantages compared to single-agent systems (SASs) or single-robot systems (SRSs). The

primary answers given in the literature, see e.g. [25, 90, 114, 123], comprise:

• Computational and operational speedup due to the ability of a parallel and/or dis-

tributed employment.

• Robustness and fault tolerance due to redundancy and no single point of failure.

• Scalability as robots can be easily added or removed as needed.

10

1.3. Taxonomy of Multi-Robot Systems (MRSs)

Characteristic Subcategories

Robot:
Mobility stationary / mobile
Communication none / limited / unlimited
Uniformity homogeneous / heterogeneous

Environment:
Variability static / dynamic
Observability none / partial / full
Predictability deterministic / stochastic

Application:
Level of cognition reactive / deliberative
Causal task relation episodic / sequential
Operational task relation decoupled / loosely coupled / tightly coupled
Level of autonomy tele-operated / semi-autonomous / fully autonomous
Style of interaction collective / cooperative / collaborative / coordinative

Tab. 1.1.: Intrafield taxonomy: a collection of robot-, environment- and application-
specific characteristics of MRSs.

• Eased development due to higher modularity and code reusability compared to a

single complex system.

• Lower hardware costs as multiple specialized robots allow for more simplicity and

low cost units compared to a single complex robot.

• Feasibility of tasks whose requirements exceed the limitations of single robots, e.g.

distributed sensing.

However, closely connected to these benefits are also the respective challenges of MRSs.

In [92] the scalability, uncertainty, decidability and the sensitivity of the system are iden-

tified as the four major operational challenges for manufacturing applications. While en-

vironmental uncertainty and system sensitivity likewise apply to SRSs, the scalability and

decidability are considerably harder in MRSs. This results mainly from the distributed

existence of knowledge and the tremendous combinatorial increase of possible solutions.

In this respect Parunak sees the scalability as key factor, which to handle requires either

supercomputers or applications that allow for slow response times [92]. However, for a

MRS in general both is not given demanding for means to find acceptable solutions based

on the given computational resources and within an acceptable amount of time.

An advantage in homogeneous systems is that many solutions are redundant and thus

need to be evaluated only once. This reduces the computational effort during planning

and can be further beneficially used to achieve more robustness and fault tolerance as

malfunctioning robots are easily replaceable. In contrast, the increased functional vari-

ety in a heterogeneous system of specialized robots allows for a multifaceted applicability.

However, this enhanced variety involves mostly a dramatic increase of the number of alter-

native solutions and thus of the computational complexity. Furthermore it also demands

11

1. Introduction

a far more elaborate resource allocation and decision making as malfunctioning robots or

faulty system components are not that easily exchangeable as in systems with homogeneous

robots.

A straightforward approach to solve these problems may be to use proven methods from

the MAS domain. However, a direct transfer to MRSs is often not possible as pointed out

in [121]. MASs are commonly composed of software agents, underlying no locational or

hardware constraints. Consequently software agents can easily exchange or combine their

capabilities. Also the input information is mostly reliable and the effects of commands

are in general predictable. In contrast the sensor or actuator capabilities of a robot are

locationally fixed and the retrieved information or the resulting effects of actions are subject

to unknown disturbances. This leads to additional challenges robotic agents operating in

real-world settings are faced with. The resulting information unreliability leads to a partial

observability of the environment, which in general allows only for a stochastic predictability

of the latter. Also the restriction of resources and the exposure to hardware faults need

to be explicitly considered. Moreover, Dias mentions in [25] that also the type of tasks

in robotic systems may vary significantly to those in softbot systems. Robotic tasks may

be constrained by physical requirements what for example can lead to additional latencies

due to distant resources.

Accordingly all of these issues need to be taken into account in integrated robotic

systems. As the transfer of MASsapproaches to MRSs is often not applicable or only with

modifications a demand for research in MRSs is given. In this respect, in [2] seven research

areas in the domain of MRSs have been identified, which meanwhile can be extended by

multi-robot learning as eighth category:

• Biological inspirations;

• communication;

• architectures, task allocation, and control;

• localization, mapping, and exploration;

• object transport and manipulation;

• motion coordination;

• reconfigurable robots and

• multi-robot learning.

All of these still leave a lot of space for future investigation. The present work on coop-

erative action selection in MRSs is embedded into the area of task allocation and thus

belongs to the third category. The importance of this field is further grounded in [92],

where reliability, resource allocation and coordination are identified as major research is-

sues for real industrial applications. The explanation of what is actually understood as

cooperative action selection in MRSs is given next.

12

1.4. Open Challenges in the Field

1.4. Open Challenges in the Field

The major challenges of an efficient action selection in cooperative MRSs arise mainly

from the existing information uncertainty and the huge problem complexity, as for

example also identified in [47, 72].

The uncertainty originates mainly from the partial- or even non-observability of the

environment and of the states of the other robots. While single robots are similarly con-

fronted with environmental uncertainty the distributed existence of the information and

the resulting uncertainty about the other robots is specific for MRSs. This is even more

significant when robot-robot communication is not available as in this case the intentions

and states of the team members need to be fully estimated. Accordingly, a communica-

tion network is a highly valuable system resource in MRSs. Since nowadays, the usage of

such communication networks is neither technologically nor economically problematic but

instead strongly increases the versatility of a MRS, robot-robot communication should be

always integrated if possible what also is assumed in the following.

The problem complexity arises mainly from the combinatorially explosive number of

possible solutions. In this respect the controllable complexity directly determines the

feasible scalability of a system. It needs to be considered that in contrast to a SRS, in

a MRS the changes of the environment are not only influenced by a single robot but

rather by the combination of the actions of all robots. As a consequence the solution

space is significantly larger as all possible tuples of team actions and those commonly

non-deterministic effects need to be considered. This is even harder for heterogeneous

systems in which the robots are capable to perform differing actions. In these the fraction

of equivalent solutions is in general a lot lower compared to homogeneous systems where

all robots are capable of the same set of actions.

The above described complexity and uncertainty often lead to NP -hard problems for

which exhaustive search strategies are no longer feasible. This in turn demands for al-

ternative solutions, such as approximative approaches that focus the search on the most

promising regions of the solution space. Even though many existing approximative meth-

ods perform successfully in specific scenarios and applications they face already problems

in case of small changes in the environmental setup. For example the comparison of four

extreme task allocation strategies in [74] showed that no strategy performed best in all situ-

ations. Consequently, in order to provide a comprehensive applicability respective methods

need to be kept general while also providing an easy extendability. This is for example

achievable by providing a core solver with the essential functionalities and enabling the

incorporation of application-specific heuristics that account for characteristic aspects of

the problem in focus.

Besides appropriate means to cope with the vast amount of possible solutions it is of

further importance to keep the system complexity low enough to leave it also manageable

by humans, e.g. by ensuring a low communication overhead and a modularized architecture.

Furthermore the degree of heterogeneity in a MRS needs to be carefully considered during

system design. While a higher heterogeneity increases in general the functionality and

applicability of a MRS it also raises the challenges with respect to system robustness,

optimality and manageability. A robust operation in a dynamic environment for example

13

1. Introduction

requires fast situation-aware reactions and a forecasting as well as a handling of failures.

Such skills imply a decision policy that is capable to trade off between the best possible

performance and the imminent risk.

This leads to the next major problem namely to get an accurate estimate of the expected

performance as well as the respective risk. The performance is determined by the efficiency

of the execution, which in turn results from a functional relation of all performed actions

and the current environmental state. This functional relation is application- and MRS-

specific and commonly not given at all or only a rough approximation of it, at least for

non-trivial problems. In order to yield an acceptable degree of consistency between prior

planning and the posterior execution a respective accuracy of the underlying estimation

model is essential. So far this problem is often neglected in literature and there exists only

few work in this direction what demands for future investigation.

In summary, besides on the capability to handle the problem complexity and information

uncertainty, the system performance of future MRSs will also be strongly dependent on

the ability to dynamically adapt to environment changes. These demands lead to the

importance and potential of present and future research in the MRS domain in order

to combine the requirements of a dynamic system scalability, a situation-aware action

selection, and an efficient failure handling while still keeping a manageable complexity.

1.5. Outline and Contributions

The subsequent chapters focus on the challenges mentioned above and present methods to

cope with the complexity as well as the uncertainty in MRSs.

• In Chapter 2 the cooperative action selection problem is discussed. It is shown how

respective solutions can be integrated into an entire robotic architecture. Thereafter

a formulation of the action-selection problem is given followed by an illustration of

a well-known taxonomy on multi-robot task planning problems.

• In Chapter 3 the market-based MuRoCo (Multi-Robot Cooperation) framework

is presented, which handles the multi-robot task allocation problem in heteroge-

neous MRSs. In the course of a negotiation procedure tasks are allocated to the

robots, which then complete the tasks by selecting appropriate sequences of actions.

MuRoCo yields optimal solutions for the instantaneous assignment of tasks that

require a tight cooperation of multiple robots (ST-MR-IA), commonly known as

coalition formation. Major contributions of MuRoCo are a two-phase allocation pro-

cedure, which also optimizes the subtask assignment among the coalition members

and yields a slower increase of the worst-case complexity compared to state-of-the-art

approaches. Additionally, in order to also reduce the complexity arising on average,

several pruning strategies, which take system-specific characteristics into account, as

well as the distributed version MuRoCo-D, where the computational load is shared

among the robots, are proposed. In order to cope with the omnipresent uncertainty,

means for failure prevention, forecasting, handling and removal are integrated. Alto-

gether, MuRoCo presents an exhaustive framework that is based on a generic problem

formulation. This allows for a high versatility to diverse applications and domains.

14

1.5. Outline and Contributions

The suitability of the presented framework for the robust operation of a complex

MRS even under various sources of uncertainty, is verified in a service scenario with

a MRS composed of four heterogeneous robots.

• In Chapter 4 a novel approach is described to understand the influence of the envi-

ronment on the robotic performance and to utilize this knowledge to yield a risk- and

situation-aware reward and cost estimation. More specifically, a bipartite approach

is proposed to first identify the crucial factors that influence the cost metric most

and to learn how the latter is influenced, and second to use this knowledge for a

better decision making. This is of high importance as the quality of the cost estima-

tion strongly determines the validity of the planned solutions. In this respect, the

presented method solves a fundamental but in literature often neglected problem, in

regard to the action selection of real-world robots.

– More specifically, in the first part a method for a system interdependence

analysis is introduced. It aims at learning a Bayesian network that models the

interdependencies between selected performance indicators of different system

components of autonomous robots, as well as of the influence of environmental

parameters on the system. In a subsequent information-theoretic analysis the

strength of the coherence among the parameters is quantitatively identified. The

analysis enables to determine whether the current situation has an effect on the

robotic system, what also is shown by experimental results. The method pro-

vides an alternative in comparison of deriving the deterministic system model,

what may be quite hard for complex systems, or it also can be used to verify

the latter. The respectively gained knowledge may help the designer to guide

future research but also can be directly incorporated during system operation.

– This is considered in the second part of Chapter 4, where an approach is de-

scribed that makes use of this knowledge to yield a situation-aware and risk-

concerted reward estimation by usage of a quantile-based reward computation.

The quantile-based reward estimation enables the consideration of large vari-

ances and even of asymmetries in the respective indicator distributions. Benefits

of the presented method are that nonlinear effects of the environment on the

reward are taken into account. Furthermore, a single model of the environment

suffices to serve multiple types of inference requests. This keeps the demand for

training data comparably low. The approach is suitable to learn a model from

scratch but also allows the incorporation of full or only partial prior knowledge.

The experimental results show the applicability also for environments with large

uncertainty. In the end an outlook on how to avoid an upcoming performance

deterioration by an adequate failure-forecasting is given.

• In Chapter 5 the conclusion of this thesis is given, which discusses its major contri-

butions and presents an outlook on directions for future work. References containing

previously published parts of this thesis are listed at the end of the Bibliography.

15

2. Cooperative Action Selection

Along with the overall advancement in robotics, scenarios where multiple robots act si-

multaneously within the same environment become more important. In these scenarios,

the robots can increase their team performance by a coordinated selection of actions. In

this respect, the cooperative action selection problem refers to the joint decision making

about which action each individual robot should choose in order to maximize the common

performance of the entire group. Amongst the crucial questions is the choice of organiza-

tional structure. An overview of organizational paradigms for multi-robot systems is given

in [48].

One of the earliest approaches to achieve multi-robot coordination is the so-called ”emer-

gent coordination”. In such systems, robots coordinate their behavior based solely on their

perceptions and local interactions. Very little or no communication is used and no spe-

cific allocation of tasks occurs [37]. These systems benefit from easy scalability and high

parallelism, but the difficulty in emergent coordination is the hard predictability of the

resulting behavior. Therefore, in scenarios where humans want the robots to perform spe-

cific tasks [37], and in situations that require a more direct type of cooperation than in

swarm systems, the class of intentional coordination is far more appropriate.

The amount of related literature is huge and the most relevant one is discussed in

the respective parts of the subsequent chapters. This chapter illustrates how respective

solutions can be embedded into an overall robotic system architecture. This will help

to understand the operation of a MRS on the whole and will facilitate to embed, use,

and/or transfer the methods presented in the remainder of this thesis in/to other systems.

Furthermore, a formal definition of the action selection problem is given, which provides

the basis for the next chapters and also will enable future work in this field to relate to the

definitions presented here. Finally, a general and well-established taxonomy of problem

types is presented, which allows the categorization of this and related work.

2.1. The Scope of Action Selection within a General

Architecture for Complex MRSs

The present work considers the selection of actions in a set of cooperative robots. However,

in order to operate a MRS in domains such as those described in Section 1.2 further

components are required. An overall system structure that defines how these components

are interconnected is commonly referred to as architecture.

Various types of robotic architectures have been proposed in literature. However, here

it certainly makes no sense to start a discussion on robotic architectures as this topic could

easily fill an entire thesis on its own. The interested reader is referred to respective litera-

17

2. Cooperative Action Selection

Human

3T

Planning / Scheduling

Action Selection

Execution

World

F
ee
d
b
ac
k

T
as
ks
/A

ct
io
n
s

A
b
st
ra
ct
io
n

D
e
ce
n
tr
a
li
za

ti
o
n

Fig. 2.1.: General scheme of a multi-layered multi-robot system architecture.

ture, such as [66] where an exhaustive discussion about research on cognitive architectures

can be found.

Instead of a survey of architectures, in the following the structure of a 3T architecture is

used to exemplify how action selection components can be integrated into the entire oper-

ational system of a MRS. 3T architectures are composed of three interacting layers or tiers

and have been already investigated in the 80’s, see [35] for an overview. Meanwhile, many

applications and implementations of 3T-style architectures can be found in the literature,

see e.g. [8, 70], which can be seen as indicator of its generality and easy transferability.

This should not be understood as claim that a 3T architecture is the best or only possible

solution, but it is a very suitable one when considering complex heterogeneous MRSs as

will be shown in the following.

Figure 2.1 shows a general scheme of the 3T architecture for MRSs and its interrelation

with the human and the world. The human represents the layer above and the physical

world the layer below the MRS. The MRS architecture itself is similar as proposed in [9].

It is partitioned into a planning and scheduling layer, an action selection layer and an

execution layer. Task and action commands are passed from higher to lower levels while

the corresponding flow of feedback information runs reversely. Tasks can be seen as kind

of high-level goals that can be achieved by performing an appropriate sequence of actions.

A more precise definition follows in Section 2.2.

The human is the superordinate operator of the system who can issue tasks at any time

to any of the other layers including the physical world, i.e. the human can also actively

participate in the physical action. In this respect the human is assumed to instruct either

the overall system as an entity or a specific individual robot, as illustrated in 2.2, but it

does not attend to create detailed plans about when which robot should perform which

action. This is left to the MRS itself.

In this respect, the tasks issued by the human may be very abstract circumscriptions of

18

2.1. The Scope of Action Selection within a General System Architecture

Human
Planning /
Scheduling

Cooperative
Action Selection Execution

Fig. 2.2.: A MRS as it is addressed by the different layers of the architecture in Fig. 2.1.
The highlighted parts are in focus of the respective layer, where the circle rep-
resents the overall system as an entity.

complex processes or work flows, which are not directly executable by a single robot. Thus

it is the responsibility of the planning and scheduling layer to transfer and decompose

these instructions into deliberative plans composed of robot-executable task and action

commands. Appropriate methods can be found in the field of scheduling algorithms, see

e.g. [11] for an overview, or in the planning domain, e.g. [79]. It should be mentioned that

it is common practice in the planning domain to talk of goals instead of tasks, where a

goal refers to a desired goal state of the world. A generic formalism to represent the effects

of actions is for example ADL1 [93], which is an advancement of STRIPS2 [31]. ADL is

seen more appropriate for robotic problems compared to STRIPS. Amongst others due to

its modified world representation that allows for example to model also context-dependent

effects of actions in contrast to STRIPS. A further advancement and an attempt to find

a standard based on ADL and its competitors is the nowadays widely-used PDDL3 [38],

which is a kind of byproduct of the International Planning Competition4. The latter is

also a promising starting point to search for state-of-the-art planning algorithms. These

provide the means for the actual reasoning based on the formalisms and provide the tools to

generate task and action plans while considering timing constraints and respective causal

dependencies.

In principle, these planning formalisms could be used to describe the relevant part of

the world including the robots as well. So detailed action plans could be generated that

exactly specify which robot is supposed to perform which action at which time. How-

ever, depending on the complexity of the processes and work flows the respective planning

problems are often NP -hard and thus require already approximations to be solved at the

system level, i.e. by considering the group of robots only as a single system entity. Nev-

ertheless, even more problematic is the fact that robots act in a physical world where

they are prone to perceptual noise and uncertainty. As pointed out in Section 1.3.2, this

presents a major difference to multi-agent systems, where single agents may correspond to

pure software agents that may perform a deterministic sequence of computational opera-

1ADL: Action Description Language
2STRIPS: Stanford Research Institute Problem Solver
3PDDL: Planning Domain Definition Language
4http://ipc.icaps-conference.org/

19

2. Cooperative Action Selection

tions. The uncertainty in a robotic system leads permanently to deviations of the actual

outcome of executed actions and accordingly of the respective plan. Actions may even fail

or unforeseen events may occur. An accurate prediction of the future process becomes even

harder in case the human takes part in the physical action. Accordingly the original plans

would be permanently violated demanding for replanning in order to react to changes in

the dynamic environment.

As a consequence, it is beneficial to split the entire planning process into two layers

as proposed by the 3T architecture in Fig. 2.1. The planning and scheduling layer is

responsible to generate a system schedule in order to fulfill the human instructions on a

system level. Based on this schedule the currently pending tasks are issued to the action

selection layer, which is responsible to allocate the tasks among the robots and select the

appropriate actions with respect to the current situation. For this purpose the action

selection layer is also provided with task and action plans from the scheduler. These plans

present solutions how to decompose tasks into sequences of actions or subtasks. However,

these provide only general information of possibly alternative solutions how to perform

specific tasks but they are not taking the current environmental situation into account.

Situation-awareness is primarily the responsibility of the action selection layer. In single-

agent implementations of 3T architectures the middle layer is often referred to as sequenc-

ing layer [8, 70], which is supposed to activate actions dependent on the current situation

in order to react to dynamic changes in the world. Even though here the actual function

is similar, the term sequencing may be misleading since the main purpose of this layer in

MRSs is to exploit the ability of parallel execution. Accordingly it is referred to as action

selection layer throughout this work. Its responsibility is to allocate the tasks issued from

the higher layers to the individual robots and select the appropriate actions in order to op-

timize the performance of the entire system by explicitly considering the current situation

and the present uncertainty. Respective methods are discussed in the subsequent parts of

this work. One essential assumption related to this layer is that of task independence [37],

i.e. all tasks issued from higher layers can be performed independently without considering

causal relations etc. This independence is assumed to be assured by the planning layer,

which only issues tasks that are either independent or in case of dependent tasks combined

in a respective task plan as a kind of parent task.

The selected actions are finally forwarded to the execution layer where they are trans-

formed into hardware-specific motor commands. This transformation occurs often by re-

spective control methods, where in the control domain actions are commonly referred to

as symbolic skills. In this context each robot focuses on the optimal execution of its own

actions. Explicit cooperation occurs only in case of coupled tasks, i.e. tasks that require

a synchronized execution. The latter is for example achievable by trigger messages or the

usage of decentralized control methods such as in [76].

With the planning layer above and the execution layer below, the embedding of the

action selection into the system architecture is clarified, leaving the demand for an explicit

formulation of the problem itself.

20

2.2. Problem Definition

Open Tasks T UtilityUtility

r1
r2

ActionAction

CostCost

World

Fig. 2.3.: The action selection problem in cooperative multi-robot systems.

2.2. Problem Definition

The interrelations in a MRS that lead to the demand for cooperation among the robots

are illustrated in Fig. 2.3 exemplary for two robots. In general, a MRS is composed of a

set

R = {r1, r2, . . . , rn} (2.1)

of n robots r. Furthermore there is a set

T = {τ1, τ2, . . . , τm} (2.2)

of m unaccomplished tasks τ currently issued to the action selection layer of the MRS. For

cooperative MRSs holds, as previously shown in Fig. 1.3, that the robots share their goals.

In this respect, whenever a task τ is completed by the robots, the entire group of robots

obtains an utility u(τ) ∈ R+
0 that reflects the profit gained by the completed task. Every

robot ri is able to perform a set

Ai = {ai1, ai2, . . . , aik} (2.3)

of actions a. In order to complete a task τj and obtain the respective u(τj), the robots

need to execute the correct sequence of actions. Such a sequence is referred to as action

plan

pA(τj) := 〈aj1, aj2, . . . , ajl〉 , (2.4)

which defines a decomposition of a task τj into a tuple of actions. PA is the set of all

action plans, which is assumed to be retrieved from the planning layer. The plans present

generic instructions independent of the specific situation. Consequently it is reasonable to

once compute all feasible solutions and store these into a knowledge base. Considering for

example a warehouse scenario, a task might be to bring an article to the package station

and a possible action plan is to drive to the shelve the article lies in, grasp the article, drive

21

2. Cooperative Action Selection

to the package station, and release the article on the conveyor belt. Only after performing

all of these actions in the correct sequence the task is accomplished and the utility is

obtained. The utilities are e.g. specified by the application, predefined by the designer or

calculated by the planning layer and are assumed to be fixed for a specific action plan. In

other words, all executions of a plan pA(τ) will always generate the same u(pA(τ)).

However, each action a executed by the robots results in some cost c(a, s) ∈ R+
0 . This

cost is not only dependent on a but also on the current state of the world s ∈ S, where
S is the set of all possible states. A state s is a symbolic representation of the status of

all robots and the environment. It includes static knowledge, e.g. a map of a building, as

well as transient information, such as which robots are currently busy in performing tasks

and which are not. The generation of such a state representation is certainly a non-trivial

task and in full generality still considered as unsolved [108]. In practice, robots are only

provided with partial representations that describe at least the part of the environment

that is relevant for the completion of the dedicated tasks. Respective information is either

given by the designer, or gathered by the robot itself by using its perception and learning

capabilities. As this problem is not in focus of this thesis, in the following a respective

state representation is assumed to be given.

In order to reason about the current s and deliberatively decide which action to take

next, a robot also needs a model about the influence of the environmental state s on the

arising cost c(a, s). Similarly, this may be either provided by the designer and/or learned

by the robot itself, as discussed in Chapter 4. During the execution of an action plan

pA(τj), the action costs of all a ∈ pA(τj) contribute to the overall cost

c(pA(τj), sj) := f (c(aj1, sj1), . . . , c(ajl, sjl)) ∈ R+
0 , (2.5)

of the task τj , where f(·) is a MRS-specific function and sj = 〈sj1, . . . , sjl〉 is the tuple of

action-related world states. The net gain received for the completion of a task τj is given

by the reward

̺(pA(τj), sj) := u(pA(τj))− c(pA(τj), sj) ∈ R, (2.6)

which is the difference between the obtained utility and the overall cost of all actions

required to complete τj.

As discussed in the previous section the premise of task independence is assumed, i.e.

tasks can be performed independently without considering causal relations. Accordingly

follows that independence holds for the related rewards as well. In this respect, the reward

function is assumed to be an additive function, i.e.

̺((pA(τ1), s1) ∧ (pA(τ2), s2)) = ̺(pA(τ1), s1) + ̺(pA(τ2), s2).

Accordingly are potential interdependencies among the costs, occurring during the parallel

execution of tasks, assumed to be taken into account by the functional relation f(·) of the
action costs. Means to obtain f(·) for a specific MRS are discussed in Chapter 4.

The overall objective of a cooperative MRS is that the robots select future actions

such that the reward obtained during system operation is optimized. In this context the

22

2.2. Problem Definition

performance

q :=
1

βu

mc∑

j=1

(u(pA(τj))− c(pA(τj), sj)) =
1

βu

mc∑

j=1

̺(pA(τj), sj) ∈]−∞, 1] ,

where βu =

ma∑

k=1

u(τk),

(2.7)

is measured by the ratio of the obtained reward relative to the obtainable reward. mc is

the number of completed tasks and ma the number of all tasks issued to the system with

mc ≤ ma and
⋃
τj ⊆

⋃
τk. For an instantaneous action selection, i.e. without consideration

of the long-term performance, the normalization by the overall obtainable utility βu can

be neglected corresponding to a maximization of the overall obtained reward. However,

in order to enable a performance comparison between different MRSs or of a MRS within

different time periods or varying environmental conditions, a comparative value is needed.

Accordingly, with respect to the physical definition of power the achieved reward could be

set into relation to the operation time of the MRS. However, in this case the performance

would be strongly affected by the frequency and type of upcoming tasks. Therefore the

overall obtainable utility was chosen, which provides a measure independent of the number

and type of tasks.

Since the performance q ∈]−∞, 1] results from the actions of all robots, the optimization

of q requires a cooperative selection of actions by the robots. This is achievable by a

respective common policy ̟ that is followed by all robots. A policy ̟ is a mapping from

states to actions, ̟ : S → A, where Π is the set of all possible policies. So in case a robot

r knows the current state s, ̟(s, r) tells it which a to perform next. As this action a is

always part of some action plan pA(τ) for some task τ , a policy ̟ consequently always

also implies the prior selection or assignment of tasks.

The suitability of ̟ is dependent on the specific system setup and the respectively

arising challenges, and is evaluated by its corresponding performance q(̟). A policy ̟x

is superior to ̟y if ̟x results in a higher performance, i.e. q(̟x) > q(̟y). So the optimal

solution for the cooperative action selection problem in a MRS is that the robots follow

the optimal policy

̟∗ := argmax
̟∈Π

q(̟), (2.8)

which yields the best possible performance

q∗ := q(̟∗). (2.9)

In other words, solving (2.8) optimally requires to determine, among the set of all possible

action-state-robot triples, the subset of action-state-robot triples that yields the highest

performance. This presents a combinatorial optimization problem, which is often – due

to the vast amount of possible triples – NP -hard. In this respect, algorithms to solve this

problem try to efficiently reduce the space of possible solutions.

In case of a problem setup, where finding a solution to (2.8) is intractable, e.g. due to

23

2. Cooperative Action Selection

insufficient computational resources, the alleviated form

̟′ := argmin
̟∈Π′

(q∗ − q(̟)) (2.10)

is used, i.e. to find a sub-optimal policy ̟′ whose performance

q′ := q(̟′). (2.11)

is as close as possible to the optimal solution. Hereby Π′ ⊆ Π is the set of all known or eval-

uated policies. For practical problems finding a solution to (2.8) is indeed often intractable,

wherefore approximative methods are used to find best possible solutions to (2.10).

Before approaches to tackle (2.8) or (2.10) are discussed in subsequent chapters, the re-

mainder of this chapter gives a generic classification of problem types and an identification

of the most important challenges in the field.

2.3. Taxonomy for Multi-Robot Task Planning Problems

The vast amount of research in the field during the last decade resulted in a large variety

of MRS approaches for different kinds of problems. However, many of these approaches

focus on similar problems and often can be seen as instances of each other. In order to

be able to benchmark different approaches or to identify requirements to solve a specific

problem, a general classification of MRSs has been proposed in [37], which became widely

accepted in the literature. Originally the work in [37] was intended to classify instances

of the multi-robot task allocation (MRTA) problem. The MRTA problem assumes task

independence, i.e. that any task issued to the MRS can be executed independent of all other

issued tasks. Nevertheless, the taxonomy also allows for a more generic categorization of

MRS task planning problems regardless of task independence. The classification of [37] is

performed according to the following characteristics:

• Single-Task robots (ST) vs. Multi-Task robots (MT),

i.e. the capability of the robots to perform only one single task or multiple tasks at

the same time.

• Single-Robot tasks (SR) vs. Multi-Robot tasks (MR),

i.e. tasks that can be executed by a single robot on its own compared to multi-robot

tasks that require the cooperation of multiple robots.

• Instantaneous Assignment (IA) vs. Time-extended Assignment (TA),

where IA means the available information allows only to plan the assignment of

tasks which are executed immediately. In contrast, TA implies the availability of

knowledge about the task arrival process or the set of all future tasks and thus the

possibility to also consider future task assignments during the planning.

This taxonomy provides a general distinction of eight classes of MRS task planning prob-

lems and helps to identify the demands and challenges associated with a specific problem.

24

2.4. Summary

Actually actions are not explicitly considered by this taxonomy. However, the above char-

acteristics determine the set of feasible action plans and thus also the typical constraints

and challenges arising for the action selection.

With respect to the architecture in Section 2.1, it is assumed that the planning layer

takes care of the time-extended (TA) assignment problem. Respectively all tasks issued to

the action selection layer are supposed for instantaneous assignment (IA). Still the action

selection problem remains often very hard to solve due to the challenges arising in practical

applications.

2.4. Summary

In this chapter the problem of cooperative action selection, which refers to the joint decision

making about which action each individual robot should choose in order to maximize

the common performance of the entire group, has been introduced. It has been shown

how solvers for the action selection problem can be incorporated into an overall MRS

architecture. This helps to understand how solutions for the action selection need to

be connected with high level planning/scheduling components and low level execution

modules, and will facilitate transfer of the methods presented in the following chapters to

other systems. Furthermore, a clear formulation of the problem itself was given, which

also enables future work in this field to relate to the definitions given here. Finally, a

widely accepted taxonomy of task planning problems has been described, which enables the

classification of specific problem instances and facilitates the identification and embedding

of present and future research in the field.

Concerning this research, adequate solvers to the action selection problem need to cope

mainly with the related problem complexity and the high information uncertainty, as

already discussed in Section 1.4. Furthermore, they need to be capable of dynamically

adapting to environmental changes. In this respect, Chapter 3 presents a framework for

an efficient and robust action selection by focusing on multi-robot task allocation.

25

3. A Framework for Action Selection

focusing on Task Allocation in MRSs

This thesis focuses on scenarios where multiple robots, which act simultaneously in the

same environment, can benefit from cooperation. In the previous chapter, the problem

of cooperative action selection in multi-robot systems (MRSs) has been introduced. In

this respect, tasks are issued by humans to the MRS. The robots are provided with a

set of action plans, which determine alternative sequences of actions to be executed in

order to complete a specific task. Consequently, the action selection problem can be split

into two problems. The first of which is to select the best possible action plan for a

specific task, and while the other is to decide which robot should execute this specific

task. While the selection of the best possible action plan can be determined in linear

time, the more complex problem is to find a group agreement on the distribution of tasks

amongst the robots, commonly known as multi-robot task allocation (MRTA) problem.

Even under the availability of robot-robot communication, the MRTA problem may still

remain very hard to solve. In the literature, various approaches for different instances of the

MRTA problem can be found. However, so far the problem complexity is still insufficiently

handled. Furthermore, only few approaches integrate appropriate means to cope with the

environmental uncertainty, such as failure handling.

In this respect, in the following the MuRoCo (Multi-Robot Cooperation) framework is

introduced, which is an exhaustive framework to handle the MRTA problem for complex

MRS operating in dynamic environments. MuRoCo enables tight cooperation amongst

multiple heterogeneous robots by solving the MRTA problem for cooperative and commu-

nicative MRSs. This requires not only the assignment of tasks to single robots, but also

to teams of robots. In the literature, this assignment of multi-robot tasks is commonly

referred to as ”coalition formation” and known to be a NP -complete problem. The major

contribution of MuRoCo is a lower increase of the worst-case complexity compared to pre-

vious solutions, while guaranteeing optimality for sequential multi-robot task assignments.

Furthermore, in order to ensure a robust operation in dynamic environments, MuRoCo

takes potential disturbances and the environmental uncertainty explicitly into account by

providing capability- and situation-aware solutions for real world systems. The framework

is theoretically analyzed and is validated in a cooperative service scenario, showing its

suitability to complex applications, its robustness to environmental changes and its ability

to recover from failures.

27

3. A Framework for Action Selection focusing on Task Allocation in MRSs

3.1. Introduction

The availability of a communication network provides a huge advantage with respect to

a cooperative action selection in MRSs, as it enables the robots to mutually exchange

information in order to reach a consensus. Nowadays, communication networks are easy

to install and maintain for comparably low costs. Modern wireless technologies allow for

seamless data exchange at high bandwidth among many participants while covering huge

areas. Consequently, it is strongly beneficial to make use of robot-robot communication if

possible, what commonly applies for complex modern MRSs.

With respect to the architecture described in Section 2.1 (p. 17), the action plans, which

are the sequence of actions required to solve a task, are assumed to be provided by the

planning layer. So when a task is assigned to a robot, it simply needs to select the next

action according to the given plan, thereby making the actual selection of actions in such

a setting more straightforward. However, in order to decide which action plan to follow,

first a group agreement on which robot should perform a specific task is required.

This autonomous distribution of tasks among the robots is known as the MRTA problem.

In contrast to the posterior action selection, yet with the availability of a communication

network it may remain very hard or even impossible to find an optimal solution to the

MRTA problem, at least within a reasonable amount of time. This is primarily due to the

resulting combinatorial complexity and the given environmental uncertainty. This requires

approximative solutions and situation-aware decisions in order to achieve an efficient, but

also robust system operation in real-world settings. The arising complexity depends on

the requirements to solve the tasks and the respective capabilities of the robots. In [37],

the classification of MRTA problems, already described in Section 2.3 (p. 24), is proposed

based on the characteristics of robots and tasks and whether the available information

allows foresighted planning. For example, tasks may require a tight cooperation to be

feasible, such as carrying a table together. In another example it needs to be taken into

account that some robots might be better qualified for certain tasks than others.

In this chapter, problems of the ST-MR-IA class are considered, i.e. the instantaneous

assignment (IA) of tasks that possibly require a tight cooperation amongst multiple robots

(MR) to a set of robots, where each robot is only capable of performing a single task (ST)

at the same time. In the literature, the assignment of MR-tasks is also known as coalition

formation. Although numerous approaches are able to form coalitions (teams) of robots,

e.g. [14, 36, 54, 56, 91, 103, 122], so far only few [91, 122] describe procedures that are able

to find the best solution among a set of alternatives.

In line with the latter, the MuRoCo framework is presented, which adopts a market-

based approach to determine the optimal coalition for the tight cooperation amongst mul-

tiple heterogeneous robots. Thereby, MuRoCo provides an optimal subtask assignment

which is so far only considered in [91]. The main contribution is a two-step optimiza-

tion, which leads to a reduced time complexity from previously O(|R|!) [91] to O(2|R|) for

the MR-task assignment, where |R| is the number of robots. MuRoCo further integrates

pruning strategies that aim at the elimination of infeasible solutions in order to reduce

the space of possible solutions and thus to lower the time complexity. Also of importance

are the integrated means for detection, prevention and handling of failures, which take

28

3.2. Related Work

disturbances and the perception uncertainty into account to ensure a robust operation

in dynamic environments. The framework is validated in a cooperative service scenario,

showing its suitability to complex applications, its robustness to environmental changes

and its ability to recover from failures.

The remainder of the chapter starts with an overview of the related literature in the

field of MRTA. In Section 3.3, a formulation of the problem in focus is given. Section 3.4

presents the MuRoCo framework, followed by its theoretical analysis in Section 3.5 and

experimental results from its practical application to a heterogeneous MRS in Section 3.6.

3.2. Related Work

Originating from the multi-agent domain, the multi-robot task allocation has been ex-

tensively studied during the last decade making it an inherent part of robotics. In [37],

an overview of the types of MRTA problems and its related complexity classes is given.

The simplest type (ST-SR-IA) is an instance of the optimal assignment problem (OAP)

and solvable in polynomial time. In more complex settings, the task allocation problem is

known to be NP -hard [37], that is, it scales badly in terms of finding optimal solutions for

larger problems. Therefore, approximate solutions are required to solve these problems in

practical applications what led to a vast amount of respective MRTA approaches.

General Overview on Methods for Cooperative MRSs: A comparably large field re-

lates to behavior-based approaches, where robots switch among a finite set of behaviors

depending on the environmental condition. One representative is ALLIANCE [89], which

aims at increasing fault-tolerance in multi-robot systems through mutual observation and

respective behavior activation by the robots. A major advantage of ALLIANCE is its

independence of communication, making it applicable for fully distributed systems and

thus very robust. Another behavior-based system is presented in [30], where the focus

is primarily on the behavior design in order to achieve a coordinated motion of a group

of robots. Nevertheless, behavior-based approaches are closely linked to the bio-inspired

ones, at least with respect to their suitability for more complex systems. Behavior-based

systems mostly use a distributed decision making, providing the benefit that communica-

tion and/or the system complexity can be kept low. Therefore behavior-based systems are

used in swarm robotics, for exploration, or simple clean-up scenarios. However, for more

complex tasks that possibly require a tight coordination between multiple heterogeneous

robots, they are usually less suited as the distributed decision making often yields highly

suboptimal solutions.

Up to now, in most cases where MRTA approaches are applied to real robots, the robotic

capabilities are rather limited. First approaches mainly focus on single-task robots and

single-robot tasks (ST-SR-IA). One example is the broadcast of local eligibility (BLE) [125]

approach, where the robot with the highest utility blocks the other robots from executing

the respective task. However, the constant progress in robotics leads to robots with in-

creased capabilities. Modern robots, for example [4, 57, 126], are equipped with multiple

sensors exploiting different modalities, such as cameras, lasers, and/or ultrasonic sensors,

and possess various capabilities, such as people tracking, object recognition, manipulation

29

3. A Framework for Action Selection focusing on Task Allocation in MRSs

with multiple degrees of freedom and/or varying end-effectors. These enable such robots to

perform increasingly sophisticated tasks and thus allow for more complex MRS scenarios.

A recent example is cooperative table cleaning of three humanoid robots shown in [73].

One consequence of this increasing variety of performable tasks and robotic capabilities is

that the respective task assignment becomes less trivial.

In [29], the problem is addressed by using tokens to assign tasks to the robots. Each

task is represented by a token and only the robot having that token can execute the corre-

sponding task. However, tasks are allocated asynchronously and in a distributed manner,

thus that optimality cannot be guaranteed even for simpler problems. Another possibility

is to model task selection as a game [10, 84]. Refer to [107] for an elaborate introduc-

tion into cooperative and non-cooperative games for multi-agent systems. Although game

theoretical approaches seem promising, they assume the robots to be self-interested. This

contravenes with the type of MRS considered here, which aim to maximize the joint group

performance according to (2.7).

A further class of methods models the team decision problem as a multi-agent partially

observable Markov decision process (MA-POMDPs), e.g. [95, 105]. The primary focus is

to incorporate a model of the environmental uncertainty into the decision process, in order

to infer about the current environmental state and the probable consequences of future

team actions. MA-POMDPs provide a powerful tool to take the given uncertainty into

account, but the downside is the related time complexity. Time grows exponentially with

respect to the number of robots, as well as, the dimensions of the environment model. In

other words, it may already be hard to solve even for a system of only two robots. In

theory, given free communication and full observability which are assumed in the current

chapter, the complexity is reduced to polynomial time [105]. But under these assumptions

the actual strengths of MA-POMDPs, that is the modeling of the unobservable part of the

environment, become mostly needless.

Market-Based Approaches: The most important class of methods which solve the

MRTA problem in MRSs with communication, at least when considering the amount of

respective literature, are market-based approaches. These follow the concept of economical

markets: A set of robots bids for the assignment of tasks, which are then assigned through

an auction such that a common group objective is optimized. An exhaustive survey is

given in [55], where various auction types are described followed by a comparison of their

respective time and communication complexities. Literature searches indicate that market-

based approaches currently dominate the field. In [48], they are identified as belonging to

the most popular organization structures in the related literature, which is an indicator

for their suitability in many practical applications. Their success is primarily attributed

to the good tradeoff between a fully decentralized system design, which guarantees only

suboptimal solutions, and a fully centralized design, which suffers complexity problems

and a single point of failure.

In [25], a free market architecture is introduced for the distributed control of a MRS.

The concept is to define revenues and costs for performing specific tasks. The idea is

that robots can profit from exchanging goods or services. By using a self-interested robot

model, robots negotiate to minimize their costs and maximize their profits. Thus these

30

3.2. Related Work

systems do not correspond to the type of cooperative MRS considered here. In [25], a

robot has an incentive to bid when it leads to more profit. Another characteristic of the

free market approach is the assumption that the overall system costs and revenues result

from the sum of the costs and profits of the single robots. Accordingly, self-serving robots

do not only maximize their own profit but also increase the overall profit. Although it

cannot be guaranteed that the optimal team solution is reached since the robots do not

act cooperatively in a systematic manner.

In [36], the market-based system MURDOCH is presented, where tasks are allocated to

the most profitable robot in a greedy fashion. To keep the system simple and simultane-

ously capable of handling a huge diversity of tasks, MURDOCH is based on a hierarchical

task structure. A task tree is proposed, where each node is a task which in turn can ob-

tain other subtasks. A parent task is responsible for the allocation of resources required

by its child tasks. Using a broadcast-based publish/subscribe communication enables the

management of negotiations in systems with multiple participants and dynamic robot com-

positions. By addressing tasks to specific resources, only robots capable of these resources

will subscribe to and receive their respective tasks.

Coalition Formation: While these approaches focus on ST-SR-IA problems, the MRTA

problem becomes more challenging when tasks require joint execution of multiple robots.

This may occur either loosely coupled, for example a fork lifter that loads material on the

cargo area of a transport robot, or tightly coupled, such as two robots jointly carrying

an object. Such multi-robot (MR) tasks, and accordingly instances of the ST-MR-IA

problem, are especially in MRS that are composed of robots with increased complexity

and functionality of practical relevance.

Among the first ST-MR-IA approaches is Hoplites [56], where self-interested robots are

provided with an active and a passive coordination strategy. These enable the robots to

initiate coalition requests in cases where certain levels of profitability may be achieved.

This yields an emergent coalition formation, but does not integrate an explicit search for

the global optimal solution.

In [121], the framework RACHNA for multi robot coalition formation is described,

where a specific service agent exists for each kind of service a robot can provide. This

service agent is responsible for communication with all robots that are able to provide the

respective service. In RACHNA, the usual bidding process is reversed, in that a task is

bidding for the assignment of robots. This occurs through negotiation of a task agent with

the responsible service agents. In [121] also the task switching of the robots is considered.

When a robot receives a better offer for another task, it requests a new offer from the

service agents and thereupon decides for the task with highest utility. In order to avoid an

unreliable overall system because of frequent task switching, a heuristic penalty is charged

for revoking an uncompleted task. Fault detection is not explicitly considered, however in

case of a sensor failure for example, the respective robot is simply deleted from the list of

the corresponding service agents.

A modified version of Shehory and Kraus’ algorithm [106], which provides the trans-

fer from the multi-agent to the multi-robot domain, is presented in [122]. Each robot

is described by a capability vector. In the original version, the capabilities are treated

31

3. A Framework for Action Selection focusing on Task Allocation in MRSs

interchangeably within coalitions, that is the coalition capabilities are the sum of the

single robots’ capabilities. However, due to locational capability constraints, sensors or

actuators cannot be easily exchanged between the robots, this is not possible in MRSs.

Therefore, [122] uses a constraint graph to verify that potential coalitions meet all ca-

pability constraints. Some additional constraints are used, such as the restriction of the

maximum coalition size and the demand for disjoint coalitions. This means robots are not

allowed to be in multiple coalitions as they are assumed to be only capable to perform

one task at the same time (ST). The complexity to choose the largest valued coalition and

assign the task is the same as for the multi-agent approach [106], and is given with O(|R|k)
for the distributed computation and with O(|R|k+1) for the centralized case, where k is

the maximal coalition size [122].

An approach combining the market concept with a multi-robot planning framework is

ASyMTRe [91] and its distributed version ASyMTRe-D. Complex task plans are gener-

ated by adequately interconnecting low-level actions. The execution responsibilities of the

corresponding actions are assigned to the robots based on their capabilities. ASyMTRe

is capable of allocating tasks that require the tight coordination of a robot team, that is

coalition formation. However, [91] focuses on the reasoning capabilities of ASyMTRe to

autonomously configure the interconnections of low-level modules – so-called schemas – to

generate coalescent task solutions. Although the complexity is reduced by removing all

duplicate solutions from the original configuration space and allowing only certain schema

transitions, the time complexity of ASyMTRe is still O(|R|!) resulting from an exhaustive

search. ASyMTRe provides anytime characteristics by sequentially trying different robot

orderings, through finding a first suboptimal solution in quadratic time which is then

continuously improved, as long as time allows. ASyMTRe so far also has been the only

approach that explicitly handles the subtask assignments among the coalition members.

Furthermore heuristics are used to reduce the size of the solution space, such as timeouts,

an upper bound of the coalition size or orderings of the robots by increasing capabilities

or the number of potential coalition partners.

In [14], a modeling of robotic resources and a leader-follower coalition formation is

proposed. Instead of searching for the global optimum, the approach aims at a fast de-

termination of a feasible, but most probably suboptimal, solution in a greedy depth-first

manner. To focus the search, various heuristics are proposed, such as assigning the most

capable robots as leaders that are responsible to form the coalitions, or to include only

robots within a specified vicinity into the coalitions.

This overview shows that various approaches to the MRTA and also to the coalition

formation problem can be found in literature, but only few approaches aim at finding the

optimal solution for the ST-MR-IA problem and for those the respective complexity is

still huge. Note that ”optimal” in this context relates to the assignment of a single MR-

task. For the optimal simultaneous assignment of multiple MR-tasks, so far no efficient

solution is known. Moreover, although means for fault tolerance and failure detection

are incorporated in several approaches, for example [25, 36, 59, 122], the consideration

of environmental uncertainty during decision making is still insufficient. MuRoCo yield

at combining both aspects into a highly integrated framework for complex heterogeneous

robots, in order to robustly handle instances of the ST-MR-IA problem.

32

3.3. Problem Definition

3.3. Problem Definition

Before a formal definition of the MRTA problem is given, the underlying assumptions are

summarized:

(i) Robot-robot communication:

A core assumption of market-based approaches is that all robots are able to com-

municate with all other robots at anytime. So systems are considered in which

communication is cheap, reliable and always available.

(ii) Task independence:

An essential assumption of most MRTA approaches is that of task independence [37],

that is all tasks issued from higher layers can be performed independently without

considering causal relations.

(iii) Instantaneous assignment:

As mentioned in Section 2.1 (p. 17), it is assumed that the planning layer is taking

care of any timing constraints so that only tasks that need to be instantaneously

assigned (IA) are issued to the action selection layer.

(iv) Time delay generates cost:

A further assumption is that time delay generates cost, that is a delayed completion

of a task has to lead to higher cost. If this was not the case, the best solution

for a task assignment would simply be that each task is executed by the robot or

coalition with the lowest cost. In an extreme case, all tasks might be sequentially

performed by the same robot. In other words, a reasonable MRTA needs to benefit

from parallelization.

For these types of MRSs, a formulation of the MRTA problem is given as follows. According

to Section 2.2 (p. 21) a MRS is composed of a set R = {r1, r2, . . . , rn} of n robots r.

Furthermore there is a set T = {τ1, τ2, . . . , τm} of m unaccomplished tasks τ , which need

to be assigned to the robots.

Definition 3.1 Let an assignment ψ : R → T be a mapping of robots to tasks, i.e.

τr = ψ(r) is the task τr ∈ T assigned to robot r ∈ R. Let further be |R| = |T |, then

ψ−1 : T → R is the inverse mapping, where r = ψ−1(τr).

The constraint |R| = |T | can be w.l.o.g satisfied by extending the smaller set with place-

holders ι. Any mapping ι = ψ(r) or ι = ψ−1(τ) corresponds to an unassigned robot or

task respectively.

Definition 3.2 An assignment ψ, for which holds ψ(r) 6= ι, ∀r ∈ R, and further

ψ−1(τ) 6= ι, ∀τ ∈ T , i.e. no task and no robot remains unassigned, is said to be a perfect

assignment.

A valid policy ̟ returns the respective action ar = ̟(r, s, ψ,PA) to be executed by r,

according to the current state s ∈ S, the mapping ψ and an action plan pA(τr) ∈ PA

for τr, where ar ∈ pA(τr). S is the set of all possible states s, which provide a symbolic

33

3. A Framework for Action Selection focusing on Task Allocation in MRSs

representation of the status of all robots and the environment. Recalling (2.4) (p. 21), an

action plan

pA(τj) = 〈aj1, aj2, . . . , ajl〉
refers to a specific sequence of actions to be executed in order to complete a task τj . PA

is the set of all known action plans. In case of the latter, the reward

̺(pA(τj), sj) = u(pA(τj))− c(pA(τj), sj) ∈ R

is received, which is, according to (2.6) (p. 22), given by the difference between the pre-

determined utility u(pA(τj)) ∈ R+
0 and the cost c(pA(τj), sj) ∈ R+

0 arising during the

execution of pA(τj). In this respect, the performance of a MRS is according to (2.7) (p. 23)

measured by the ratio of the obtained reward relative to the obtainable reward:

q =
1

βu

mc∑

j=1

̺(pA(τj), sj) ≤ 1, where βu =

ma∑

k=1

u(τk).

mc is the number of completed tasks and ma the number of all tasks issued to the system

with mc ≤ ma and
⋃
τj ⊆

⋃
τk. Assuming that the reward ̺(pA(τr)) obtained for the

completion of pA(τr) is independent of any other simultaneously executed task, then the

determination of a solution that satisfies (2.8) can be split into two steps:

(i) For each r ∈ R and each τ ∈ T find the optimal plan p∗A,r(τ) and add it to the set

P∗
A

∪← p∗A,r(τ) = argmax
pA(τ)∈PA

̺(r, pA(τ)), ∀r ∈ R, ∀τ ∈ T . (3.1)

(ii) Find the optimal assignment

ψ∗ = argmax
ψ

q(ψ,P∗
A) = argmax

ψ

(
1

βu

∑

τ∈T

̺(r, p∗A,r(τ))

)
, (3.2)

where r = ψ−1(τ). The time complexity to solve (3.1) in a centralized manner is

O(|R||PA(T)|), where PA(T) is the set of all plans for all τ ∈ T . Note that an ac-

tion or task plan specifies only one possible way to execute a task meaning that there may

be multiple alternative actions and/or task plans for the same task. Under the assumption

that PA(T) is given P∗
A is determinable in linear time.

Thus, the actual challenge is to find the optimal assignment ψ∗ within a reasonable

amount of time. This becomes even harder when a task τj is, additionally or alternatively

to action plans, see (2.4), also decomposable into task plans.

Definition 3.3 A task plan

pT (τj) := 〈τj1, τj2, . . . , τjk〉 ,

defines a decomposition of τj into a tuple of other tasks, where the τjl, 1 ≤ l ≤ k, are referred

to as subtasks of τj. PT is the set of all task plans. Any task τ for that ∃ pT (τ) ∈ PT , s.t.

34

3.4. The MuRoCo Framework

|pT (τ)| ≥ 2 is referred to as MR-task, since its subtasks are executable by different robots.

All other tasks are referred to as SR-tasks.

Since in the case of the action plans, the task plans are assumed to be pre-computed by the

planning layer and derivable from a common knowledge base. Note that an action or task

plan specifies only one possible way to execute a task meaning that there may be multiple

alternative action plans and/or task plans for the same task. In case a plan relates to a

MR-task, a coalition of robots is required.

Definition 3.4 Given a set of robots R, then any subset z ⊆ R that forms a team in

order to jointly execute a MR-task is referred to as coalition. Z is the set of all possible

coalitions within a set of robots R.

Thus, MR-tasks complicate the search for the optimal assignment since additionally all

possible coalitions need to be examined to find the optimal coalition.

3.4. The MuRoCo Framework

As stated in Section 3.1, handling the multi-robot task allocation (MRTA) problem can

essentially improve the cooperation efficiency in a MRS, but respective solutions are often

not trivial. MuRoCo is a framework for handling the MRTA problem for cooperative MRSs,

which are composed of heterogeneous robots that are capable of full communication. In

other words, the robots have a common group objective, possess different capabilities, and

every robot is able to communicate with any other robot within the system.

As already explained in Section 2.1 (p. 17), here only the instantaneous assignment (IA)

of tasks is considered since the planning for future allocations is assumed to be handled by

the higher level planning. As the planning layer may provide multiple alternative plans for

the execution of a specific task, the MRTA is also responsible to select the most suitable

plan according to the current situation. The tasks to be assigned may require either a

single robot (SR) or a tight cooperation of multiple robots (MR) to be completed.

The general objective of a MRTA framework is to exploit the advantages of MRSs men-

tioned in Section 1.3.2 (p. 8), for example to achieve a performance improvement through

parallelization or by increasing robustness. In order to meet these demands, MuRoCo

implements a market-based approach for which an overview is given in Section 3.4.1. Sec-

tion 3.4.2 describes how the heterogeneity of the system is taken into account, followed by

the explanation of the SR-task assignment procedure in Section 3.4.3. Section 3.4.4 de-

scribes the assignment of MR-tasks to coalitions. In order to increase the robustness and

performance of the system, means for the prevention, detection and handling of failures

are presented in Section 3.4.5

3.4.1. General Approach

Market-based approaches provide a weakly centralized compromise by distributing the

computational workload to keep the complexity scalable, and by making use of the system

redundancy to increase fault tolerance since the system may still be able to operate in case

35

3. A Framework for Action Selection focusing on Task Allocation in MRSs

..

Market

Auctioneer

Human/Planning

Bids

Bids

Bids

Bids

Bids

Bids

Bids Coalition

Tasks

Tasks

Tasks

Subtasks

Subtasks

Subtasks

Subtasks

New
Tasks

Task Execution

Robot 1

Robot 2

Robot n

Broker 1

Broker 2

Broker n

Bidder 1

Bidder 2

Bidder n

...
...

Assigned
Tasks

Fig. 3.1.: Illustration of the market-based task allocation: The auctioneer forwards per-
ceived tasks to the brokers, which request respective bids from their bidders.
Then these bids are returned to the auctioneer, which assigns the task to the
most efficient broker or coalition (team). In the example case here, Robots 1
and 2 form a coalition for one task while Robot n executes a further task alone.

a single component breaks down. During operation, an auctioneer retrieves the new tasks

from its commanding modules, for example from its human-machine interfaces or higher

level planning modules. However, the auctioneer that retrieved the task does not neces-

sarily need to be the one auctioning the task. In the following a single active auctioneer

is assumed, i.e. all other auctioneers forward their tasks to the active one. Alternative

strategies are discussed in Section 3.4.5.

In MuRoCo, each robot is capable to take over the auctioneer role while simultaneously

operating as broker and bidder. The bidder of robot r provides the bid for a task τ in form

of the reward estimate

ˆ̺(r, τ) = max
pA(τ)∈PA

ˆ̺(r, pA(τ)), (3.3)

where ˆ̺(r, pA(τ)) is the estimated reward that robot r expects to receive after successful

completion of pA(τ). Accordingly, (3.1) is solved in a distributed manner by the bidders of

all r ∈ R and thus its time complexity reduces to O(|PA(T)|). The bids are forwarded to

the brokers that negotiate with the auctioneer as shown in Fig. 3.1. Thereby a broker acts

as an intermediary that bids for a single robot and/or a specific set of coalitions of robots.

For each new task, there is exactly one auctioneer that is responsible for the assignment

and also for the subsequent surveillance of the task. This means it also has to take care

that the task is successfully executed or reallocated in case of a failure. The allocation is

optimized by the active auctioneer according to (3.2), that is by maximizing the relative

obtainable reward. This corresponds to the MiniAve group objective described in [117],

where the formulation is given for the minimization of costs.

The number |R| of robots within R does not necessarily remain constant during system

36

3.4. The MuRoCo Framework

operation. Some robots may be unavailable due to recharging, malfunctioning or because

of shut-off by the human operator. In order to know when to start the search for the

assignment, the auctioneer needs to be aware of how many bids are expected. In other

words how many robots, i.e. brokers, are currently available. This knowledge is retrieved

from alive messages that all robots broadcast periodically. In addition, the alive messages

contain information about the capabilities of each robot, which define whether a robot is

capable of performing a specific task or not as described in the next section.

3.4.2. Considering Heterogeneity

The assumption that the robots in a MRS may be heterogeneous needs to be explicitly

taken into account within a task allocation procedure, since the robots may not be equally

capable of performing the different tasks. In general, these capabilities may be time-varying

as hardware components may fail or robots may improve their skills during the course

of learning processes. However, while the task costs may rapidly change in a dynamic

environment, the capabilities of the robots are commonly subject to a far slower variation.

This condition can be effectively used in the early phase of a task allocation procedure, to

prune infeasible constellations from the solution space as described below. This reduces

the complexity of the problem to solve, as the pruned constellations are simply neglected

during the subsequent assignment procedures.

In this respect, to formulate the functionality of the robots, those capabilities are defined

as follows:

Definition 3.5 Let κ ∈ [0, 1] be a capability and K the set of all capabilities known to the

system. Then holds

κ :=
nc(κ)

nc(κ) + nf (κ)
∈ [0, 1] ,

where nc(κ) ∈ N is the number of successfully completed actions for which κ was used and

nf (κ) ∈ N is the number of actions, which failed due to a malfunction of κ.

Note that actions which failed due to a fault of another capability κ′ 6= κ are excluded as

they allow no clear conclusion on the reliability of κ. In principle, a capability may relate

likewise to a hardware resource and/or to a software component, even though mostly the

hardware resources are the major limiting factor in the practical application. To determine

the functionality of a robot, let each robot r ∈ R be equipped with a set

Kr = {κr1, κr2, . . . , κrl} ⊆ K. (3.4)

The actual value of κ is a measure of its reliability, that is the probability that no failure will

occur during its use, which is applied later in Section 3.4.5. For the following considerations,

a binary interpretation, in the sense of existence or non-existence, is sufficient.

Definition 3.6 For a capability κ ∈ [0, 1] and a robot r with capability set Kr holds:

κ ∈ Kr :=
{
true, if κ(r) > 0

false, else.

37

3. A Framework for Action Selection focusing on Task Allocation in MRSs

χ∧
τfetch

χ∧
move χ∨

detect χ∨
grasp

κ : locomotion camera laser
simple
gripper

dexterous
gripper

Fig. 3.2.: Exemplary capability constraint for the task τfetch to fetch a cup of coffee from
a table.

In other words, any non-zero value of κ(r) is interpreted as r being equipped with κ(r).

In this respect, given the sets of capabilities for two robots, their mutual heterogeneity

is defined by the ratio of redundant capabilities.

Definition 3.7 The heterogeneity of two robots ri and rj with capability sets Kri and Krj
is given by

h(ri, rj) :=
|Kri∆Krj |
|Kri|+ |Krj |

∈ [0, 1] ,

where

Kri∆Krj = (Kri ∪ Krj) \ (Kri ∩ Krj)
is the symmetric difference of Kri and Krj which is defined as the union of both sets

excluding their intersection.

Consequently, for a set of robots R the heterogeneity is determined by

h(R) = 2

|R|(|R| − 1)

|R|−1∑

i=1

|R|∑

j=i+1

|Kri∆Krj |
|Kri|+ |Krj |

∈ [0, 1] . (3.5)

For a homogeneous MRS holds h = 0 and for a MRS without any redundant capability

h = 1. The heterogeneity provides a mean to measure the degree of functional variety

within the system, where the capabilities express the available functionalities of the robots.

Instead, when considering functionalities with respect to actions or tasks, these rather

present constraints that have to be satisfied in order to perform the respective action or

task. Consider for example a task τfetch, that is to fetch a cup of coffee from a table.

In order to execute τfetch a robot needs to possess various capabilities as illustrated in

Fig. 3.2. First of all it needs to be capable of locomotion in order to drive to the table and

return to its original location. Additionally, it requires some capability, such as a laser- or

camera-based detection, to locate the exact position of the cup, and of course some further

capability to grasp the cup. As the cup is assumed to be easy to grasp, a simple gripper

is sufficient. However, a dexterous one would work as well.

Apparently, some of these capabilities are alternatives in the sense that they provide

a redundant functionality for this specific task. So in the example of τfetch it is sufficient

if a robot is equipped with either a laser-based or a camera-based detection. Similarly it

only needs either a simple or a dexterous gripper. Nevertheless, a certain combination of

38

3.4. The MuRoCo Framework

capabilities is mandatory. Thus τfetch requires at least one locomotion, detection and grasp

capability. In order to enable a fast check on whether a robot is capable of performing a

task, a formalism of constraints is defined that allows a hierarchical and nested description

of mandatory and alternative capability constraints.

Definition 3.8 Let χ(Ky) be a constraint on the capability set Ky, where χ ∈ B is a

boolean variable with B = {true, false}. Then Kx ≺ χ(Ky) is defined as set Kx satisfying

the constraint χ(Ky) on set Ky. Respectively, Kx ⊀ χ(Ky) is defined as set Kx not satisfying
χ(Ky) on set Ky.

Definition 3.9 Let χ∧(Ky) be a conjunctive constraint on the capability set Ky. Then, a

set Kx is defined to satisfy χ∧(Ky) as follows:

Kx ≺ χ∧(Ky) :=
{
true, if Ky ⊆ Kx
false, else.

Definition 3.10 Let further be χ∨(Ky) a disjunctive constraint on the capability set Ky.
Then a set Kx is defined to satisfy χ∨(Ky) as follows:

Kx ≺ χ∨(Ky) :=
{
true, if Ky ∩ Kx 6= ∅
false, else.

A conjunctive constraint χ∧(Km) demands the availability of all κ ∈ Km, whereKm presents

a set of mandatory capabilities. Instead, a disjunctive constraint χ∨(Ka) demands at least

one κ ∈ Ka. Accordingly, Ka presents a set of alternative capabilities.

This enables the determination of whether a robot is capable of performing an action.

Definition 3.11 Let any action a ∈ A be bound to a constraint χa. Then r is said to be

capable of performing a if

Kr ≺ χa.

Thereby, χa may be either a conjunctive, disjunctive or any functional combination of

those. For the constraints χ apply the operations and laws of Boolean algebra. Thus,

any valid boolean function f : Bn → B of constraints, where n ∈ N is the number of

arguments of f , is itself a valid constraint. Accordingly, given the constraints χa for any

a, the constraint χpA(τ) on a task τ to be executed according to an action plan pA(τ) is

derivable. Since a robot needs to be capable to execute all a ∈ pA(τ) in order to complete

τ , χpA(τ) is determined by the conjunction of constraints χa of all a ∈ pA(τ). Consequently,
a robot r is capable of performing pA(τ) if

Kr ≺ χpA(τ) =
∧

∀a∈pA(τ)

χa. (3.6)

Generally r is said to be capable to perform τ if ∃pA(τ) ∈ PT for which Kr ≺ χpA(τ).

This description enables the logical combination of various constraints to more complex

constraints. For example, the constraint χ∧(τfetch) for τfetch is w.r.t. Fig. 3.2 given by

χ∧(τfetch) = f(χ∧
move, χ

∨
detect, χ

∨
grasp) = χ∧

move ∧ χ∨
detect ∧ χ∨

grasp

39

3. A Framework for Action Selection focusing on Task Allocation in MRSs

and is satisfied by r according to

Kr ≺ χ∧(τfetch) =

{
true, if (Kr ≺ χ∧

move) ∧ (Kr ≺ χ∨
detect) ∧ (Kr ≺ χ∨

grasp)

false, else.

With (3.6), the capability check required for SR-tasks is given. However, for MR-tasks,

not only the capabilities of individual robots, but the combined capabilities of coalitions

have to be considered.

Definition 3.12 The approximated set of capable coalitions

Zcap(pT (τ)) :=

z ∈ Z

∣∣∣∣∣∣
|z| = |pT (τ)| ∧

⋃

∀r∈z

Kr ≺ χpT (τ) =
∧

∀τj∈pT (τ)

χτj

is the subset of all coalitions z ∈ Z, for which the union of capabilities satisfies the con-

straint on the task plan pT (τ).

The examination of the robotic capabilities by (3.6) and Definition 3.12 facilitates an early

determination of infeasible solutions and thereby enables the reduction of the computa-

tional complexity during the assignment procedure.

3.4.3. Assignment of Single-Robot Tasks

As a consequence of Definition 3.3, tasks are distinguishable into SR-tasks and MR-tasks.

Since SR-tasks are executable by a single robot and MR-tasks by a coalition of robots task-

specific assignment procedures are required. This section describes the optimal assignment

of SR-tasks to ST-robots and thus solves according to Section 2.3 (p. 24) the ST-SR-IA

assignment problem. This problem is already well-studied in literature and shown to be

solvable in polynomial time. In principle, there is no need to go further into detail here,

but as it is also part of the subsequently explained MR-task assignment, it is described for

the reader who is not familiar with market-based approaches.

The ST-SR-IA assignment problem corresponds to a classical problem in combinato-

rial optimization that is commonly known as the Maximum Weight Matching Problem in

Bipartite Graphs1, see e.g. [62].

Definition 3.13 Let G(V, E) be a bipartite graph with bipartition V(G) = R∪T and edge

rewards ˆ̺ : E(G)→ R, where V is the set of vertices and E(G) the set of edges of G. Each

edge erτ ∈ E is a weighted link between r ∈ R and τ ∈ T with weight ˆ̺(r, τ). Let |R| = |T |,
then a maximum weight matching is a subset of edgesM⊆ E that satisfies

max

{
1

βu

∑

e∈M

ˆ̺(e)

∣∣∣∣∣ |M(v)| = 1, ∀v ∈ V(G)
}
,

1Note that this is equivalent to the Minimum Weight Perfect Matching Problem in Bipartite Graphs used
for the minimization of costs, as positive weights can be simply transformed into negative weights by
negation.

40

3.4. The MuRoCo Framework

whereM(v) ⊆M is the subset of edges that are incident on vertex v.

The constraint on the right ensures that for each robot r ∈ R there is exactly one assign-

ment to a task τ ∈ T . The assumption |R| = |T | can be satisfied w.l.o.g. because the

asymmetric assignment problem, i.e. |R| 6= |T |, is reducible to the symmetric one [7] by

equally shifting all edge rewards to R+ and extending the smaller set with placeholders

for which all respective edge rewards are set to ˆ̺e = 0. The optimal matching of the

asymmetric problem is then derived by discarding all edges in the symmetric solution that

are incident on a placeholder. Since a solution to Definition 3.13 also satisfies (3.2), a

maximum weight matching provides an optimal assignment ψ∗ : R → T .
The assignment procedure is derivable from Alg. 3.1 and 3.2, showing the update routine

of the auctioneer and the broker respectively. In order to find a solution to the SR-task

assignment problem in a MRS setup, firstly all bids ˆ̺(r, τ), ∀r ∈ R ∧ ∀τ ∈ T , have to be

collected by the auctioneer. For this, the auctioneer retrieves all of its open tasks To, which
includes all previously failed or unassigned tasks in addition to new tasks. In case the set

To contains no MR-task, it is announced to the broker modules (Alg. 3.1, l. 5). The latter

request a bid from their corresponding bidder for each SR-task τSR ∈ TSR ⊆ To, where TSR
is the subset of SR-tasks. The handling of MR-tasks is described in Section 3.4.4. The

bidder computes the bid according to (3.3), by first applying the capability check (3.6).

In case Kr ⊀ χpA(τ) follows ˆ̺(r, τ) = −∞, else a reward estimate ˆ̺(r, τ) based on the

current state, i.e. the reward robot r would currently achieve when it would perform τ , is

retrieved. A possibility of how this estimation may occur is presented in Chapter 4 (p. 67).

Each broker collects all bids for all announced τSR ∈ TSR and then returns these to the

auctioneer.

After receiving all bids from all brokers, the auctioneer calculates the optimal assign-

ment ψ∗ w.r.t. (3.2) by deriving a solution to the Maximum Weight Matching Problem in

Bipartite Graphs according to Definition 3.13. Therefore, various algorithms can be found

in literature, such as the Hungarian method [63] for which implementations are available

that find a solution in O(n3) time, where n = max(|R|, |T |) is the number of vertices.

An alternative approach is presented in [32], where a combination of Fibonacci heaps and

the Dijkstra algorithm is used, yielding O(n (m+ n log(n))) where m is the number of

edges. Note that in the most complex case, when every robot is suited for every task,

holds m = n2. A further alternative using a scaling of the cost values is proposed in [33].

However, the solutions are only approximate optimal and furthermore, the reward values

need to be small integers. The time complexity is O(
√
nm log(n̺max)), where ̺max is the

largest possible reward value. A good overview of alternative algorithms and respective

worst-case complexity bounds is given in [19]. In MuRoCo, an implementation based on

the Hungarian method with O(n3), is used to find the optimal assignment of SR-tasks

ψ∗
SR. It is capable of handling asymmetric assignments and bids of ˆ̺ = −∞. The latter

can be similarly handled by setting these to zero and equally shifting all other bids, that

is ˆ̺ 6= −∞, to R+. Any invalid assignments are then discarded to yield the final solution

ψ∗
SR, which is then broadcasted to all brokers.

On the broker side, a resource re-check is performed for all assignments which are

received by the robot. This is supposed to ensure that the availability of the required re-

sources is still guaranteed. The result of the resource re-check is sent back to the respective

41

3. A Framework for Action Selection focusing on Task Allocation in MRSs

Algorithm 3.1: Update routine of the auctioneer of robot ra.
Input: new tasks Tn = TSR ∪ TMR, operating robots R, status messages

/* Announce tasks */

open tasks To = To ∪ Tn;1

if ∃τMR ∈ To then2

select τj ∈ TMR according to (3.7);3

end4

announce Ta according to (3.8);5

/* Assign tasks */

retrieve bids(T) from all r ∈ R (Alg. 3.2, l. 15);6

compute the optimal assignment ψ∗(R,To) according to (3.2);7

send ψ∗ to the brokers of R;8

retrieve confirmations (Alg. 3.2, l. 25);9

forall τ ∈ T do10

if confirmation(r) is positive, ∀r ∈ z = ψ−1(τ) then11

remove τ from To;12

move τ from To to the set of executed tasks Te;13

end14

end15

/* Handle executed tasks */

forall received status messages do16

if ∃status(r, τ) = failed then17

move τ from Te to To;18

else if status(r, τ) = completed,∀r ∈ z = ψ−1(τ) then19

remove τ from Ta;20

end21

end22

auctioneer in order to confirm or reject the task assignment. In case of acceptance, the

task is forwarded to the task execution components. From then on, the robot is bound

to the task until it is either completed or a failure occurs. That the latter does not hap-

pen is the responsibility of the task execution components. These also provide respective

feedback information, such as failure or completion, to the broker which forwards it to the

responsible auctioneer. The feedback contains the necessary status information required

for failure recovery as explained in Section 3.4.5.

3.4.4. Assignment of Multi-Robot Tasks

In the previous section, the assignment of SR-tasks is described. In the case of a MR-task

that is issued to the system, an extended assignment procedure is required to solve the

ST-MR-IA problem. This includes a solution to the coalition-formation problem, which

has been shown in [37] to be an instance of the Set Partitioning Problem.

Definition 3.14 Given a set of robots R, a set Z of all possible coalitions of R, a set

TMR of MR-tasks, and a reward function ˆ̺ : Z × TMR → R. Then a maximum-reward

42

3.4. The MuRoCo Framework

Algorithm 3.2: Update routine of the broker of robot rb.
Input: new task announcements T , operating robots R and those capability sets

Kr,∀r ∈ R, new assignments ψ, status messages

/* Handle announcements */

forall τj ∈ T do1

if ∃pT (τj) ∈ PT (τj) s.t. |pT (τj)| ≥ 2 then // MR-tasks2

forall pT (τj) ∈ PT (τj) do3

derive Zrb,cap(pT (τj));4

forall z ∈ Zrb,cap(pT (τj)) do5

ˆ̺(z, pT (τj)) = deriveReward(z, pT (τj));6

end7

end8

z′ = argmax
z∈Zrb

(
max

pT (τj)∈PT (τj)
(ˆ̺(z, pT (τj)))

)
;

9

bids(T) ∪← ˆ̺(z′, τj) = max
pT (τj)∈PT (τj)

(ˆ̺(z′, pT (τj)));
10

else // SR-tasks11

bids(T) ∪← ˆ̺(rb, τj) = max
pA(τj)∈PA,τj

ˆ̺(rb, pA(τj))← from bidder of rb;
12

end13

end14

forward bids(T) to auctioneer of T ;15

/* Handle assignments */

wait for assignment ψ∗ (Alg. 3.1, l. 8);16

if ∃τj = ψ∗(zb) s.t. rb ∈ zb then // MR-tasks17

retrieve subtask assignment τjl = ψ∗(rb, τj);18

request confirmation for τjl from bidder;19

forward confirmation to all r ∈ zb \ {rb};20

wait for confirmations of all r ∈ zb \ {rb};21

else if ∃τj = ψ∗(rb) then // SR-tasks22

request confirmation for τj from bidder;23

end24

forward confirmation to auctioneer;25

if all confirmations are positive then26

start execution;27

end28

/* Handle feedback */

forall received status messages do29

forward status(rb, τj) to auctioneer of τj ;30

if |z| > 1 where z = ψ∗,−1(τj) then // MR-tasks31

forward status(rb, τj) to all r ∈ z;32

end33

if status(r, τj) = failed for r 6= rb then34

stop execution of τjl = ψ∗(rb, τj);35

end36

end37

43

3. A Framework for Action Selection focusing on Task Allocation in MRSs

ra

rara

r1r1r1r1
r1

r1

r2r2r2r2

r2

r2

rnrnrn

Announce Subtask
auction

Coalition
assignment

Acceptance
notification Execution

τj τjl ˆ̺(r, τjl)

· · ·

· · ·

ˆ̺(z, τj) ψ∗
τj ack

Fig. 3.3.: Illustration of the coalition formation: τj ∈ TMR is the MR-task to be assigned,
ra is the auctioning robot, τjl is a SR-subtask of τj .

partition of R is a subset of coalitions Z∗ ⊂ Z that satisfies

max

{∑

z∈Z∗

ˆ̺(z, τz)

∣∣∣∣∣
⋂

z∈Z∗

= ∅ ∧
⋃

z∈Z∗

= R ∧
⋂

z∈Z∗

{τz} = ∅
}
.

However, the assignment of MR-tasks requires not only the formation of the robot groups

but also the assignment of the subtask responsibilities within the groups. Finding an

optimal solution to this problem has been shown to be NP -complete [102], i.e. it is amongst

the hardest problems in NP. In the literature, the subtask optimization is often neglected.

Either the subtasks are assumed to be identical and/or the coalition rewards are assumed

to be independent of the specific subtask assignment. As already mentioned in Section 3.2,

until this point only [91] takes the subtask assignment explicitly into account, but due to

an exhaustive search, the respective time complexity is in O(|R|!).
In this respect, the proposed approach illustrated in Fig. 3.3 finds a solution to this

problem in less time, while still guaranteeing the same optimality. Thereby, all τj ∈ TMR

are assigned in successive rounds, where the assignment of each round for itself is shown

to be optimal. The optimization to assign a MR-task τj is split into two steps:

(i) For each z ∈ Zcap and for each pT (τj) ∈ PT (τj) find an optimal subtask assignment

ψ∗
z,pT (τj)

: Rz → Tj, where Rz =
⋃
r∈z

r is the set of all robots in z and Tj =
⋃

τjl∈pT (τj)

τjl

is the set of all subtasks in the task plan pT (τj) for τj.

(ii) Find the coalition assignment ψ∗
τj

: Z → τj with highest coalition reward among all

subtask assignments ψ∗
z,pT (τj)

.

In principle, (i) could be solved locally at the auctioning robot ra, but it is beneficial to

distribute the responsibilities for the subtask assignments amongst the robots as it reduces

the time complexity in average by 1
|R|

. In this respect, coalition responsibilities Zrb ⊆ Z, i.e.
the set of coalitions for whose subtask assignments broker rb is responsible for, are equally

distributed among the brokers. The respective algorithm is described in Appendix A. The

assignment based on this distributed optimization is referred to as MuRoCo-D.

44

3.4. The MuRoCo Framework

The auctioneer retrieves the set, TMR, of new MR-tasks similar to the set, TSR, of SR-
tasks along with the set of new tasks, Tn. As the assignment of the MR-tasks occurs

successively, a greedy prioritisation according to the following heuristic is used:

τj = argmax
∀τ∈TMR

u(τ)

|z(τ)|
= argmax

∀τ∈TMR

u(τ)|PT (τ)|∑
pT (τ)∈PT (τ)

|pT (τ)|
, (3.7)

where |z(τ)| =
∑

pT (τ)∈PT (τ) |pT (τ)|

|PT (τ)|
is the average expected coalition size with respect to the

set PT (τ) of available task plans for τ . In other words, the task τj , for which the ratio

between retrieved utility and average expected coalition size is largest, is chosen.

Similarly, the decision of the auctioneer on whether to announce τj or the entire set

TSR, is based on

Ta =

{τj} if

u(τj)

|z(τj)|
>

∑

τSR∈TSR

u(τSR)

|TSR|

TSR else,
(3.8)

i.e. the set with a higher relative reward expectation is selected and announced to all

brokers in the system.

When receiving a MR-task τj , a broker rb has to derive a bid ˆ̺(z, τj) for each coalition

z ∈ Zrb it is responsible for (Alg. 3.2, ll. 1 - 15). First the subset of capable coalitions

Zrb,cap =
⋃

∀pT (τj)∈PT (τ)

Zrb,cap(pT (τj)) ⊆ Zrb

is derived with respect to Definition 3.12. The required knowledge of the capability sets Kr,
∀r ∈ z, is retrieved through the alive messages as previously described in Section 3.4.1. At

this step, the capability check yields its substantial computational savings as the estimated

reward is simply set to ˆ̺(z, τj) = −∞ for all z ∈ Zrb \ Zrb,cap. Instead, for all z ∈ Zrb,cap a
subtask auction is initiated by the broker in order to derive the coalition reward ˆ̺(z, τj).

The subtask auctions occur similar to the procedure described in Section 3.4.3, but now

the initiating broker acts in parallel as auctioneer and the subtasks τjl ∈ pT (τj) are only

announced to the brokers of all r ∈ R for which ∃z ∈ Zrb,cap(pT (τj)) such that r ∈ z. These
request bids ˆ̺(r, τjl), ∀τjl ∈ pT (τj), from their corresponding bidders and reply these to

the broker rb.

After receiving all subtask bids, the broker rb derives the optimal subtask assignment

ψ∗
z,pT (τj)

for z and pT (τj). Based on ψ∗
z,pT (τj)

it then calculates the reward

ˆ̺(z, pT (τj)) = f

 ⋃

τjl∈pT (τj)

ˆ̺(ψ∗−1

z,pT (τj)
(τjl), τjl)

for each z ∈ Zrb and for each pT (τj) ∈ PT (τj) by a functional relation f (·) of the respective
subtask bids. An approach to derive f (·) is discussed in more detail in Chapter 4 (p. 67).

Furthermore,

ˆ̺(z, pT (τj)) = −∞ (3.9)

45

3. A Framework for Action Selection focusing on Task Allocation in MRSs

holds in case any subtask τjl ∈ pT (τj) could not be assigned, i.e. in case the assignment is

not perfect. The actual coalition bids are derived by

ˆ̺(z′, τj) = max
pT (τj)∈PT (τj)

ˆ̺(z′, pT (τj)),

where

z′ = argmax
z∈Zrb

(
max

pT (τj)∈PT (τj)
ˆ̺(z, pT (τj))

)

is the potential coalition candidate for τj , and sent back to the auctioneer ra. The latter

finally searches a solution to step (ii) by computing the optimal coalition

z∗(τj) = ψ∗−1

τj
= argmax

z∈Z
ˆ̺(z, τj) (3.10)

for task τj . Thereafter, the coalition assignment ψ∗
τj

is send to all brokers, where

ˆ̺(z∗(τj), τj) = −∞ means that no capable coalition is found.

In order to confirm that all resources and capabilities are still available, a resource re-

check is performed. Therefore all r ∈ z∗(τj) confirm the acceptance of τj by sending an

acknowledgment mutually to each other and also to the auctioneer. In case of a successful

re-check, the respective subtasks are issued to the execution components, otherwise the

auctioneer initiates a reallocation of τj . The robots are bound to their tasks until these

are either completed or the latter becomes infeasible due to a failure.

This approach for coalition formation extends the SR-task assignment of Section 3.4.3

and enables MuRoCo to also assign MR-tasks. In order to complete the tasks in principle

the task execution components of the robots only have to execute the appropriate actions

according to the respective action plans. Nevertheless, robots acting in the real world are

always prone to uncertainty and failure. Furthermore, situations where no solution is found

need to be handled. All this demands for means that enable a robust system operation.

3.4.5. Robustness and Failure Recovery

Robotic systems are faced with noisy sensor data leading to uncertainty in the build world

model, which again may lead to failed actions. Besides this permanent disturbance, robots

are further confronted with the occasional occurrence of hardware or software failures. Even

though the primary objective in a robotic system is to anticipate and avoid such incidences,

this cannot be always guaranteed and consequently, this means that the detection and

recovery of system faults are required in order to yield a robust system operation.

In this context, four main issues which yield a dependable computing system are iden-

tified in [5]. These are the prevention, the tolerant handling, the removal and the forecast-

ing of faults. In the following, various means are proposed to address these issues within

MuRoCo.

3.4.5.1. Selection of the Auctioneer Role

A single auctioneer in the entire system is in general problematic as it presents a single point

of failure. Using instead multiple distributed auctioneers that decide purely on their local

46

3.4. The MuRoCo Framework

information leads to suboptimal solutions and thus demands for a mutual synchronization

as for example in [128]. In this respect, three strategies for the selection of the auctioneer

role are determined:

(i) A single permanent auctioneer :

A specific robot or an external device acts as unique auctioneer in the system. The

advantage is that optimal solutions are possible due to a centralized optimization but

the uniqueness of the auctioneer represents a single point of failure.

(ii) The receiving auctioneer is always the auctioning one:

Thereby, robustness is increased as, in case an auctioneer fails, only the tasks the auc-

tioneer was responsible for are affected. However, due to the distributed optimization,

the assignment of an auctioneer is only guaranteed to be locally optimal.

(iii) A priority queue of auctioneers :

With this strategy, the auctioneers assign priorities amongst each other, e.g. during

an initial auction or according to their temporal activation. The auctioneer with

highest priority acts as active auctioneer, while all other auctioneers stay inactive

and forward their tasks to the active one. Each inactive auctioneer observes its

directly higher-ranked counterpart. In case the latter fails, the inactive auctioneer

takes over those role. This strategy allows for optimal solutions while avoiding a

single point of failure. The disadvantages are increased communicational load and a

more complex negotiation procedure.

So in general, strategy (iii) is the preferable one as it improves the prevention of failures

while still allowing for optimal solutions. From the practical point of view, in a MRS with

a limited operating area, a reliable network and approved software components strategy (i)

may be sufficient for many applications as well.

3.4.5.2. Failure-Aware Cost Computation

A further aspect to yield a dependable computing system is the forecasting of failures [5].

Accordingly, even though robotic systems will remain always prone to errors, those effects

on the system performance are reducible by taking the respective risk of failure already

during the action selection into account.

When an action fails, the consequence is a deviation from the intended plan which often

results in an increase of the costs. A simple approach to handle such an error is to repeat

the respective action. However, depending on the task this may not be always possible.

Certain action plans may require the complete repetition of the entire plan in case a single

action fails, even if it is the last action in the plan. Considering the exemplary task τfetch
introduced in Section 3.4.2, where a robot is supposed to fetch a cup of coffee from a table.

In case the robot spills the coffee while handing it over to the person, it would have to

repeat at least the entire plan pA(τfetch), if not announce the demand for new cleaning

tasks. A way to take this risk already during the assignment phase into account is by

incorporating it into the cost estimation.

47

3. A Framework for Action Selection focusing on Task Allocation in MRSs

In the following, an approach is described that provides this estimation under the as-

sumption of cost additivity, i.e. with respect to (2.5) that c(pA(τj)) is assumed to result

from the sum of all related action costs. In case the n-th sequential action of pA(τ) fails

under such a condition, the respective additional cost can be approximated by the average

number of prior actions that have to be repeated:

cfail(an) =
1

n
(c(a1) + c(a2) + . . .+ c(an)) + . . .+

1

n
(c(an−1) + c(an)) +

1

n
c(an)

=
1

n
(c(a1) + 2c(a2) + . . .+ nc(an))

=
n∑

i=1

i

n
c(ai).

Since cfail(an) occurs only in case an fails, it needs to be weighted with the probability

that an will fail that is derivable as follows.

According to Definition 3.5, a capability κ is defined as the ratio of its successful em-

ployments compared to the number of total employments, corresponding to the probability

that κ will not fail during its usage. As a result, the probability that an error of κ will

occur is 1− κ.

Nevertheless, to estimate the failure risk of an action, not only single but in fact all

capabilities required in the course of its execution need to be considered. Let P (χa) be the

probability that all capabilities used for the execution of a will not fail. P (χa) is derivable

from the logical function fχa
. For a conjunctive constraint of two capabilities κx and κy

holds

P (χ∧({κx, κy})) = κxκy (3.11)

as both are in use and the action fails as soon as one of them fails. It appears to be not

that simple for a disjunctive constraint, since in this case, only one of the capabilities is

in use and thus it depends upon which one the robot chooses for the execution of a. In

this respect the following approximation is proposed to select a κ ∈ Kx for a disjunctive

constraint χ∨(Kx):

κχ∨(Kx) = argmin
∀κ∈Kx

(c(a, κ) + (1− κ)cfail(a))

where c(a, κ) is the cost for performing a with κ. In other words the capability is chosen

for which the failure-aware cost estimate is lowest. Accordingly follows for the success

probability of a disjunctive constraint χ∨(Kx)

P (χ∨({κx, κy})) = κχ∨(Kx) (3.12)

With (3.11) and (3.12), the basis is provided to derive the success probability P (r, χa) of

a executed by robot r based on the constraint χa.

As a consequence, the cost estimation for the n-th action an can be extended by taking

48

3.4. The MuRoCo Framework

the potential failure cost into account:

ĉ(r, an) = P (r, χan)c(an) + (1− P (r, χan))(c(an) + cfail(an))

= c(an) + (1− P (r, χan))
n∑

l=1

l

n
c(al)

So by considering (2.6) and (3.3) follows, under the assumption of cost-additivity, for the

failure-aware bid calculation for task τ by the bidder of r:

ˆ̺(r, pA(τ)) = u(τ)−
∑

an∈pA(τ)

ĉg(r, an)

= u(τ)−
∑

an∈pA(τ)

(
c(an) + (1− P (r, χan))

n∑

l=1

l

n
c(al)

) (3.13)

A task assignment based on this failure-aware cost estimation takes the unreliability of

fault-prone robots into account and thereby improves the forecasting of failures in favoring

those robots that provide a safe and reliable operation. The drawback of (3.13) is that it

is only applicable in cost-additive setups.

3.4.5.3. Error Recovery

While the means described above focus on the prevention and forecasting of failures, a

robotic system also needs to cope with situations where a failure did already occur. In [5],

a set of elementary fault classes for computing systems is defined, such as internal vs.

external or hardware vs. software faults. These are further clustered into the three ma-

jor classes of design, physical and interaction faults. Similar to this concept MuRoCo

implements three general categories into which an error is classified as follows:

error =

recoverable, if ˆ̺′(r, τ) > ̺min(τ)

semi-recoverable, if error 6= recoverable ∧ ∃z ∈ Z : Kz ≺ χτ

non-recoverable, else.

(3.14)

Note that the second constraint for semi-recoverable errors also implies single robots since

{r} ∈ Z, ∀r ∈ R.
Recoverable errors are those that can be ascribed to uncertainty problems, e.g. due to

temporary bad sensor data, an unexpected change of the world state or interaction faults.

Whenever an action terminated unsuccessfully the bidder calculates an updated reward

ˆ̺′(r, τ) based on the current state and verifies that this is still larger than a minimum

bound ̺min(τ). The bound ̺min(τ) is set by the auctioneer along with the task assignment

according to

̺min(τ) = max (α ˆ̺∗(τ), ˆ̺′(τ)) , (3.15)

where ˆ̺∗(τ) is the best bid for τ , ˆ̺′(τ) is the second best bid and α > 1 is some weighting

factor. With (3.15), any robot that accepts a task assignment takes the pledge to achieve

at least ̺min(τ). This is utilized in a twofold manner. First, when some failure occurs

49

3. A Framework for Action Selection focusing on Task Allocation in MRSs

but ˆ̺′(r, τ) > ̺min(τ) is still satisfied, the error is classified as recoverable and solved by

repeating the respective action or returning to a prior action in the currently executed

action plan pA(τ).

Secondly, ̺(τ) is permanently re-estimated during system operation. As soon as the

robot observes that it will no longer exceed ̺min(τ), e.g. due to some dynamic change in

the environment, it stops the execution of τ and reports a failure to the auctioneer. This

enables to successfully detect and resolve deadlocks and to deal with miscalculated bids.

Such failures, which are not solvable by a pure retry, are classified as semi-recoverable. A

further example is a broken hardware module that partially or even completely affects the

serviceability of the robot, so that it is no longer able to complete its dedicated tasks. In

such a case, the updated reward results in ˆ̺′(r, τ) = −∞ since Kr ⊀ χτ . Consequently,

the failure type is sent to the auctioneer responsible for the allocation handling of the

corresponding task. Additionally, all coalition partners are informed about the fault and

released from depending tasks. Thereafter, the auctioneer evaluates the failure cause and

decides whether a re-announcement of the task is possible or not. For example, in case

one robot has a hardware problem, there is still the chance that another robot or coalition

is capable to take over the task.

Situations where the auctioneer is not able to find a new valid assignment for the task

or where the same error has occurred already too often in prior trials, are classified as

instances of the third category of non-recoverable failures. Likewise, design faults belong

to this category as well. Respective tasks have no or only a very unlikely chance of success

in a further attempt. This may occur, for example, when a robot failed to manipulate

an object because the latter could not be found in several previous trials or there remain

simply not enough robots to form a capable coalition. In such a situation, the auctioneer

module desists from a re-allocation and instead reports the failure cause to the higher level

planning components or to a human operator.

To summarize, with the proposed auctioneer strategies, the failure-aware bid compu-

tation and the error classification, means are proposed to cover the prevention, the fore-

casting, as well as the handling and removal from potential failures. In this respect, the

assignment of SR and MR-tasks of MuRoCo, as well as, its means to cope with the envi-

ronmental uncertainty have been described throughout this section. The remainder of this

chapter gives a theoretical and experimental evaluation of the framework.

3.5. Analysis of the Approach

Throughout this section is examined how well MuRoCo copes with the type of problems

in focus. For these hold the underlying core assumptions as stated in Section 3.3. In the

following parts, the soundness, completeness, scalability and optimality of MuRoCo are

analyzed.

3.5.1. Soundness and Completeness

Soundness is the proof that the generated solutions are correct with respect to the en-

vironmental setting. Completeness is the guarantee that if a solution exists, it will be

50

3.5. Analysis of the Approach

found.

Proposition 3.15 The task allocation of MuRoCo is sound.

Proof: Assume the opposite would be the case, i.e. the solution is not correct. This may

only happen in case

(i) a task is assigned to a robot which is not capable of performing it.

This is precluded by the capability check w.r.t. (3.6), since if this fails the robot is

excluded from the assignment. The capability check follows the rules of Boolean al-

gebra and thus is correct assuming that the task constraints χτ are correctly provided

by the planning layer and/or designer.

(ii) the SR-assignment is not correct,

i.e. multiple tasks are assigned to the same robot or one SR-task is assigned to

multiple robots. This may only occur in case the Hungarian method [63] is incorrect,

which has been shown to be not the case.

(iii) the subtask-assignment of the coalition formation is not correct.

This is performed similar to the SR-assignment with the additional constraint that

it needs to be a perfect assignment, i.e. neither a subtask nor a robot are allowed to

be unassigned. The correctness of the assignment is given by (ii) and its perfectness

is explicitly verified by (3.9).

(iv) a robot is part of multiple coalitions.

This is also not possible due to the greedy MR-assignment. As robots which have

already an assignment reply a reward of −∞ in the next round, all coalitions that

contain these robots are classified as non-capable.

Consequently the presented task allocation algorithm is correct. �

Proposition 3.16 The task allocation of MuRoCo is complete with respect to the assign-

ment of single MR-tasks or multiple SR-tasks given enough time.

Proof: Assume again the opposite would be the case, i.e. a solution exists but it is not

found. This may only happen in case

(i) the SR-assignment method is not complete, which is known to be not the case for

the Hungarian method.

(ii) no Coalition is found for a MR-task even though one exists. Since during a MR-

task assignment, given enough time, all possible coalitions and for these all possible

subtask assignments are examined, any existing solution will be tested and the one

with highest reward will be chosen.

Accordingly the presented task allocation algorithm is also complete with respect to the

assignment of single MR-tasks or multiple SR-tasks. �

51

3. A Framework for Action Selection focusing on Task Allocation in MRSs

However, with respect to the assignment of multiple MR-tasks or of one MR-task and mul-

tiple SR-tasks, completeness can not be guaranteed due to the sequential MR-assignment.

For example a robot, which is indispensable for a second task, may be part of a previously

formed coalition, even though there would have been alternatives for the first assignment.

Adequate approaches to also tackle this very hard problem remain part of future research.

The completeness of MuRoCo has been shown under the assumption that enough time

is provided to the algorithm. How this time scales with the number of robots and tasks is

analyzed next.

3.5.2. Scalability

Analyzing the asymptotic complexity reveals how well a method scales with the problem

size. For MRSs, this is primarily of interest with respect to the number of robots |R|
and the number of tasks |T |. In the following, the computational and communicational

complexity of MuRoCo are analyzed, as well as the respective influence of the capability

check on these.

As described in Section 3.4.4 the computational load for the coalition formation may be

distributed among the robots, which is referred to as MuRoCo-D. In order to analyze the

respective benefits, it is compared to the centralized version MuRoCo where all coalitions

are evaluated locally by one single robot.

3.5.2.1. Computational Complexity

The computational complexity is here understood as time complexity, i.e. it refers to the

number of computational operations required to solve instances of a problem depending

on the problem size.

The assignment of SR-tasks based on the Hungarian method [63] has been shown to

be solvable in O(n3) time, where n = max(|R|, |T |). An overview of alternatives to the

Hungarian algorithm and respective worst-case bounds is given in [19]. All are solvable in

loglinear or polynomial time.

So while SR-assignments are easily solvable for large instances, the actual challenge

is opposed by MR-task assignments. The size of the set Z of all possible coalitions is

given by |Z| = ∑|R|
k=0

(
|R|
k

)
= 2|R|. Taking also all possible subtask constellations into

account, the number of possible robot orderings results in
∑|R|

k=0

(
|R|
k

)
k! = |R|!∑|R|

k=0
1
k!
.

Since 1 ≤ ∑|R|
k=0

1
k!
≤ e, where e is Euler’s constant, an exhaustive search through all

orderings lies in O(|R|!).
In order to specify the time complexity of the MR-assignment described in Section 3.4.4

the complexity of the subtask assignment and of the coalition formation need to be deter-

mined. The time complexity of the subtask assignment is similarly to the SR-assignment in

O(|R|3). Accordingly, assuming there exist exactlym task plans for every possible coalition

size, then the computational complexity of the centralized MR-task assignment, MuRoCo,

is given by O(2|R||R|3m). In the distributed version of the algorithm, MuRoCo-D, the

evaluation of the coalitions is shared among all robots. Assuming an equal balancing of

the computational load among the robots as e.g. provided by Algorithm A.1, the effec-

tive number of coalitions is reduced to 2|R|/|R| leading to O(2|R||R|2m). Considering that

52

3.5. Analysis of the Approach

|R|

O(·)

MuRoCo-D

MuRoCo
ASyMTRe
Vig & Adams

0 5 10 15 20
100

1010

1020

1030

(a) Computational Operations

|R|

O(·)

MuRoCo-D

MuRoCo

0 5 10 15 20
100

101

102

103

104

(b) Communicational Operations

Fig. 3.4.: Number of computational and communicational operations for a MR-task as-
signment with respect to the number of robots. The number of subtasks is set
to the average coalition size |R|/2.

there is still the exponential growth by |R| this improvement is admittedly rather marginal.

Nevertheless it yields a lower complexity what gave reason to mention it here.

Fig. 3.4(a) shows the course of the computational complexity with the number of robots

|R| for the centralized and the distributed version. The number of subtasks is set to |R|/2
what corresponds to the average number of robots per coalition. It further shows the

respective curves for the two known approaches that are likewise capable to find the op-

timal MR-assignment among a set of alternative solutions. These are ASyMTRe [91] and

the approach by Vig and Adams [122]. The focus of ASyMTRe is actually on the plan

generation, i.e. the automatic decomposition of the MR-tasks into feasible subtasks, while

for the actual optimization they integrate an exhaustive search in an anytime manner.

Consequently ASyMTRe scales with O(|R|!). Admittedly ASyMTRe aims to solve a dif-

ferent problem but as it is to our knowledge the so far most efficient approach in literature,

which likewise takes the subtask assignment into account, it is used as benchmark here. In

Fig. 3.4(a) is observable that the factorial growth is in the beginning actually lower than

the exponential ones. Accordingly, only for MRSs with more than ten robots (MuRoCo)

or more than eight robots (MuRoCo-D), a reduced worst-case complexity is achieved.

Vig and Adams [122] modified the Multi-Agent algorithm of Shehory and Kraus [106]

to be applicable also for MRSs. Nevertheless, they maintained the complexity of O(|R|k),
where k is a constraint on the maximal coalition size. In this respect, for a fixed k their

approach yields solutions in polynomial time but for the sacrifice of suboptimality. In

order to ensure optimality, k needs to be set equal to |R|, for what [122] would scale

theoretically even worse than the exhaustive search. Fig. 3.5(a) shows the minimal ratio of

k/|R| for which O(2|R||R|3) ≤ O(|R|k). The curve shows that [122] is beneficial as long as

k is kept low compared to |R|, but the discrepancy is growing with an increase of |R|. In
other words, given the same number of computational operations, the fraction of orderings

evaluated by [122] is decreasing with increasing |R|. Accordingly the solution when using

a constraint k with MuRoCo is likely to be closer to the optimal one as with [122].

53

3. A Framework for Action Selection focusing on Task Allocation in MRSs

|R|

k
|R|

MuRoCo

Vig & Adams

0 5 10 15 20
0.2

0.4

0.6

0.8

1.0

(a)

|R|

MuRoCo-D

MuRoCo
Ocomm(1)
Ocomp(1)

0 5 10 15 20
100

102

104

106

(b) Communicational vs. computational cost

Fig. 3.5.: Relations of complexity: (a) minimal ratio of k/|R| for which
O(2|R||R|3) ≤ O(|R|k); (b) ratio Ocomm(1)/Ocomp(1) of the costs occur-
ring for one communicational operation compared to one computational
operation. For ratios above the curve the centralized optimization performs
better, for ratios below the curve the distributed optimization performs better.

SR-Task MR-Task

MuRoCo MuRoCo-D

Announce: |R| |R| |R|
Request: - - |R|2
Reply: - - |R|2
Bid: |R| |R| |R|
Assign: |R| |R| |R|
Ack: |R| |R|2 |R|2

Total: 4|R| |R|2 + 3|R| 3|R|2 + 3|R|

Tab. 3.1.: Number of messages required during the phases of the allocation procedure.

3.5.2.2. Communicational Complexity

In distributed applications, besides the computational complexity also the communica-

tional complexity is of interest as it quantifies the amount of communicational events

required. The communicational complexity is in the following expressed by the number of

messages that need to be exchanged during the allocation procedure.

Thereby it is assumed that all communication events occur over a perfect network

channel, i.e. without any package loss or time delay. Moreover, any communication among

processes on the same computer, e.g. among auctioneer and broker of the same robot, are

treated similarly to the communication among different computers. Further are mutual

waiting times neglected, so it is assumed that all distributed computation occurs simulta-

neously. Table 3.1 shows the respective quantities of messages for the various allocation

phases. The SR-assignment is split into the four phases of task announcement, bidding,

54

3.5. Analysis of the Approach

Computation Communication

SR-tasks O(|R||T |2) O(4|R|)
MuRoCo O(2|R||R|3m) O(3|R|+ |R|2)
MuRoCo-D O(2|R||R|2m) O(3|R|2 + 3|R|)
ASyMTRe [91] O(|R|!) ?
V&A [122] / S&K [106] O(|R|k) ?

Tab. 3.2.: Number of operations and number of messages required, where k is the maximal
coalition size and m is the number of taskplans pT available for each coalition
size.

task assignment and the final acceptance notification. In the worst case, i.e. in case of a

perfect assignment where all robots receive a task, each phase requires |R| messages as the

auctioneer needs to communicate with all brokers and vice versa. Accordingly the total

number of messages results in 4|R|.
From the communicational point of view, the centralized version of MuRoCo is similar

to the SR-task assignment, except for the acceptance notification. During the coalition

formation not only the auctioneer but also all coalition partners need to be notified. In

the worst case a coalition of all robots r ∈ R is formed requiring |R|2 acknowledgment

messages.

The required communication of the distributed version MuRoCo-D is again similar

to the centralized one, but due to the distributed computation of the coalition bids an

additional effort to obtain the subtask bids is necessary. Accordingly two further phases

are required to request and reply the subtask bids from all potential coalition members.

In the worst case all brokers require subtask bids from all bidders resulting in |R|2 for

the request and once more for the reply. Note that it is assumed that the bids for all

subtasks are bundled in a single message. The course of the communicational complexity

of MuRoCo and MuRoCo-D is shown in Fig. 3.4(b).

The overall numbers of required communicational and computational operations are

summarized in Table 3.2. It is observable that MuRoCo-D requires less computational

operations but therefore more communicational ones. Fig. 3.5(b) shows for which ratios

Ocomm(1)/Ocomp(1) of the cost Ocomm(1) for one communicational operation compared to

the cost Ocomp(1) for one computational operation the distributed version is more beneficial

and vice versa.

3.5.2.3. Efficiency of Pruning Strategies

In Section 3.4.2 the capability check was introduced to prune incapable coalitions in order

to reduce the solution space and thus the complexity in an early stage of the allocation.

Therefore the set of capable coalitions is approximated according to Definition 3.12 as the

subset of all coalitions z ∈ Z, for which the union of capabilities satisfies the constraint on

55

3. A Framework for Action Selection focusing on Task Allocation in MRSs

the task plan pT (τ). This is in the following referred to as

Zcap1(pT (τ)) = Zcap(pT (τ)) =

z ∈ Z

∣∣∣∣∣∣
|z| = |pT (τ)| ∧

⋃

∀r∈z

Kr ≺ χpT (τ) =
∧

∀τj∈pT (τ)

χτj

 .

The time complexity to check one z ∈ Z according to this Definition is O(2|z|), where
|z| = |pT (τ)|, so Zcap1(pT (τ)) is derivable in linear time. However, it provides only a

rough approximation instead of the true set of capable coalitions, i.e. depending on the

task constraints and the robot capabilities also non-capable coalitions may be part of

Zcap1(pT (τ)). In this respect an alternative more precise definition may be used.

Definition 3.17 The approximated set of capable coalitions

Zcap2(pT (τ)) :=
{
z ∈ Z

∣∣|z| = |pT (τ)| ∧ ∃r ∈ z : Kr ≺ χτj , ∀τj ∈ pT (τ)
}

is the subset of all coalitions z ∈ Z, in which for each task in the task plan pT (τ) there is

at least one robot that is capable to execute the task.

Definition 3.17 considers not only the union of all capabilities, but verifies that these

are also physically linked to the robots in a suitable manner. The time complexity of

Definition 3.17 is O(|z|2), thus it provides a more accurate approximation of the set of

capable coalitions but it scales quadratic with |z|. A further alternative with O(|z|3) is

given by the exhaustive capability check.

Definition 3.18 Let ψK : z → ⋃
∀τj∈pT (τ)

τj be a capability-based assignment in the sense

that for the bids holds:

ˆ̺(r, τj) =

{
1 if Kr ≺ χτj

0 else
∀r ∈ z, ∀τj ∈ pT (τ).

Then the set of capable coalitions

Zcap3(pT (τ)) := {z ∈ Z |∃ψK(z, pT (τ)), s.t. ψK is perfect}

is the subset of all coalitions z ∈ Z, for which a perfect capability-based assignment ψK

exists.

Definition 3.18 finds the true set of capable coalitions, but results in a larger time complex-

ity of the capability check. Since the capability check is supposed to reduce the complexity

of the subsequent allocation, it is of interest how this additional effort compares to the

subsequent savings. In the following the alternative Definitions 3.12, 3.17 and 3.18 are

compared with each other for the centralized MuRoCo. Let nCC be the average number

of operations required for the capability check of the z ∈ Z and nSA the average number

of operations for a subtask assignment within the z ∈ Zcapx. Then the overall number of

computational operations required for the coalition formation is approximated by

nCF = |Z|nCC + |Zcapx|nSA (3.16)

56

3.5. Analysis of the Approach

In order to benefit from the capability check, nCF needs to be smaller than |Z|nSA corre-

sponding to a coalition formation without any prior pruning. This leads to

P (z ∈ Zcapx) =
|Zcapx|
|Z|

!

≤ 1− nCC
nSA

, (3.17)

i.e. the upper bound of the probability that any z ∈ Z is in Zcapx needs to be less than

1− nCC

nSA
in order to yield a computational benefit by the pruning. As nCC and nSA depend

both on the actual coalition sizes of the specific z contained in the sets, only a rough

approximation of the bounds is possible. Assuming |z| is the average coalition size which

is the same for Z and all Zcapx, x ∈ {1, 2, 3}, then holds

P (z ∈ Zcap1) ≈ 1− 1

|z|2

P (z ∈ Zcap2) ≈ 1− 1

|z|
P (z ∈ Zcap3) ≈ 0.

The latter is intuitive, as from the computational perspective a pruning with respect to

Definition 3.18 is similar to a full coalition formation without pruning. Accordingly this

is only beneficial in case none of the coalitions is capable to perform the task. As already

mentioned, these bounds present rather a rough estimation and are primarily supposed as

practical guideline which pruning strategy to choose for a specific MRS.

Further possibilities to reduce the complexity are to limit the search based on heuristics,

which for example exploit the physical constraints of the MRS. Thereby not the entire

solution space is examined but the search is rather focused on the most likely candidates,

but for the sacrifice of suboptimality. In [14] for example, only coalitions are evaluated

whose members are located within a specified mutual operating distance, or [122] set a hard

constraint on the maximum coalition size. Especially for tightly coupled tasks the number

of potentially cooperating robots is often physically constrained making the evaluation of

huge coalitions in these situations obsolete. Nevertheless, even though respective heuristics

may be beneficial in many practical situations, their actual effectiveness is determined by

the specific application. In case all robots are anyway located within a limited area, there

is not much to gain by constraining the operating distance. Likewise, if there are tasks that

are substantially better performed by larger coalitions, e.g. the surveillance of huge areas,

a constraint on the maximum team size may rather negatively affect the performance.

In this respect, MuRoCo aims at providing a general framework that is independent of

specific applications. Nevertheless the incorporation of heuristics may be favorable in the

practical case, but besides those influence on the complexity also the respective effects on

the solution quality have to be considered.

57

3. A Framework for Action Selection focusing on Task Allocation in MRSs

τ1 τ2 τ3

ˆ̺z1 10 10 10

ˆ̺z2 10 1 10

ˆ̺z3 10 1 1

Tab. 3.3.: Exemplary greedy assignment of a MR-task for ̺max/̺min = 10 and nMR = 3.
Instead of 30 the greedy cost is 12. The circles indicate the best possible
assignment. The striked out numbers indicate the a priori cost, i.e. without
prior assignment.

3.5.3. Optimality

The optimality analysis examines how close a found solution is to the optimal one. In this

respect let

̺max = max
z∈Z,τ∈T

(̺(z, τ)) (3.18)

be the largest and

̺min = min
z∈Z,τ∈T

(̺(z, τ)) (3.19)

the lowest possible reward for any task τ ∈ T executed by any coalition z ∈ Z. Let further
be

̺max
̺min

∈ [1,∞[(3.20)

the respective ratio.

As described in Section 3.4.4, MR-tasks are assigned successively. The assignment

of a single MR-task is thereby optimal, as the algorithm examines all feasible solutions

given enough time. In case multiple MR-tasks are issued to the system, this may lead to

suboptimal solutions as coalitions that might be more suitable for a later task may have

been already assigned in a previous round.

A worst-case situation is exemplary illustrated in Table 3.3 where three tasks are issued

to a MRS with three exemplary coalitions. The task τ1 is assigned first. As all bids for τ1
are equal it is assigned to z1, e.g. by random choice. In the second round τ2 is assigned for

which z1 would achieve the best reward ˆ̺(z1, τ1) = ̺max = 10. However, as z1 is already

bound to τ1 it is excluded from the assignment. As a consequence z2 receives τ2 even

though its reward ˆ̺(z2, τ2) = ̺min = 1 is a lot lower as the one z1 could have achieved. A

similar situation is given in the third round where the only free coalition z3 is the one with

the poorest reward.

In this respect, assume nMR is the number of simultaneously arriving MR-tasks and

further that |Zcap| ≥ nMR, i.e. there are always enough capable coalitions. Further assume

that there is at least one coalition with ˆ̺(z, τ) = ̺max and at least one with ˆ̺(z, τ) = ̺min
for each τ . In the first round, the coalition z with highest ˆ̺(z, τ1) is chosen, as all coalitions

are still free. For the (nMR − 1) subsequent rounds the respectively best coalition might

be already dedicated to a task. Thus the performance after nMR rounds is given according

58

3.6. Experimental Results

to (2.7) by

q′(nMR) =
1

βu
(̺max + (nMR − 1)̺min)

in the worst-case and by

q∗(nMR) =
1

βu
(nMR ̺max)

in the optimal one. From this follows

ǫMR = lim
nMR→∞

q′(nMR)

q∗(nMR)
= lim

nMR→∞

̺max + (nMR − 1)̺min
nMR ̺max

=
̺min
̺max

,

i.e. the iterative assignment of MR-tasks is guaranteed to be at least ǫMR−optimal.

3.6. Experimental Results

This section shows experimental results for the presented cooperation framework, where

the distributed version MuRoCo-D has been applied to four heterogeneous robots in a

service scenario. First a description of the multi-robot system and the service scenario

is given. Thereafter, the operational sequence of MuRoCo-D is described, where first a

faultless run is presented and then a run during which various external disturbances have

been forced to the system. Finally a benchmark evaluation is given that shows the practical

limitations of MuRoCo with respect to realizable problem sizes.

3.6.1. Experimental Setup

In the following the used robotic hardware is described from which the capability sets of

the robots are deduced. Thereafter the service scenario is presented and respective task

plans and constraints are formulated.

3.6.1.1. Description of the Robotic Hardware

The used multi-robot system is composed of the four heterogeneous MuRoLa2 robots. The

basis of each robot is a four-wheeled omnidirectional mobile platform [45]. For safe navi-

gation each robot has two Sick LMS300 laser range finders which allow a circumferential

obstacle detection in the scanning plane. The platform and the lasers provide the robots

with the κmove capability.

Two identical anthropomorphic 7-degrees-of-freedom (DoF) arms in a mirrored config-

uration are front-mounted on the top to provide a human-like working space [113]. The

arms are able to carry up to 7 kg of static load each and are equipped with JR3 6-DoF

force-torque sensors positioned before the end-effectors.

While all four robots have the same platform and arms, they are provided with different

end-effectors and heads. Two robots (Eddie and Jimmy) have a Schunk PG70 two-finger

gripper on each arm providing them with the κ2f−grasp capability. One robot (Poppy) is

equipped with a three-fingered BarrettHandTM (κ3f−grasp), while the fourth robot (Tommy)

2The Multi-Robot Lab (www.murola.de)

59

3. A Framework for Action Selection focusing on Task Allocation in MRSs

Robot Capabilities

κmove κdetect κ2f−grasp κ3f−grasp κcue−hold κdialog

Eddie X X X X

Jimmy X X X

Poppy X X X

Tommy X X X

Tab. 3.4.: Capabilities of the MuRoLa robots.

has custom-made end-effectors to hold a billiard cue (κcue−grasp) but these are not suitable

to grasp any other object.

Furthermore the emotion display head EDDIE [110] is mounted on top of the body of

Eddie, while the other robots are equipped with a pan-tilt stereo camera head instead.

Eddie also possesses a dialog module which is capable of speech recognition and synthesis

(κdialog).

For robot-robot communication Wireless-LAN is used. To enable the precise tracking

of objects, robots and humans, the area is covered by a VisualeyezTM VZ4000 motion

measurement and tracking system from PhoeniX Technologies Inc.3 that is based on active

infrared markers. The tracking data is accessible by all robots (κdetect). The capabilities

of the robots are summarized in Table 3.4.

3.6.1.2. The Service Scenario

The robots are deployed in a service scenario, where they are supposed to take orders from

the present persons and serve cups with the favored drinks to them. The persons as well

as the cups are tagged with tracker markers based on which their position and orientation

is perceived by the robots.

First the task τorder is needed to retrieve orders from a person p. For τorder no task plans

are available, i.e. PT (τorder) = ∅, but the action-plan set

PA(τorder(p)) = {〈amove(p), adialog(p)〉}

is known.

For the serve task τserve a set of three task plans to bring an object o to a recipient p is

known:

PT (τserve(o, p)) = {〈τfetch(o, p)〉 , 〈τbring(o, p)〉 , 〈τfetch(o, p(τbring)), τbring(o(τfetch), p)〉} .

For τfetch the set of action plans

PA(τfetch(o, p)) = {〈amove(o), agrasp(o), amove(p), ahandover(o, p)〉}

3www.ptiphoenix.com

60

3.6. Experimental Results

and for τbring the set

PA(τbring(o, p)) = {〈amove(o), agrasp(o), amove(p), ahandover(o, p), adialog(p)〉}

is known. So for both tasks only one action plan pA is known and the only difference

between pA(τfetch) and pA(τbring) is that the latter has an additional dialog action in

the end. The availability of the dialog is also the motivation for the cooperative plan

〈τfetch(o, p(τbring)), τbring(o, p)〉 as will be shown in Section 3.6.2.

The respective constraints for each task follow from the sets of action plans:

χ(τorder) = χmove ∧ χdetect ∧ χdialog
χ(τfetch) = χmove ∧ χdetect ∧ χgrasp
χ(τbring) = χmove ∧ χdetect ∧ χgrasp ∧ χdialog
χgrasp = χ2f−grasp ∨ χ3f−grasp

It is assumed that the task plans and the respective constraints are known to all robots.

With respect to the reward calculations, the utilities are in general set equal for all

tasks. However, as the application presents a service scenario, a high value is set on

service quality. In this respect, for any task or action plan that involves a dialog action

the utility is set twice as high, i.e. u(τorder) = u(τbring) = 2u(τfetch). The action costs are

derived by estimating the respective execution times. These estimations are derived by

distance-based calculations or experimentally. Furthermore, the functional relation

ˆ̺(z, pT (τj)) = f

 ⋃

τjl∈pT (τj)

ˆ̺(ψ∗−1

z,τj
(τjl), τjl)

 =

1

|z|
∑

τjl∈pT (τj)

ˆ̺(ψ∗−1

z,τj
(τjl), τjl) (3.21)

is used to derive the coalition bids w.r.t. (3.4.4). That means the individual robot costs

are averaged, which in turn means the used resources are disregarded in favor of a faster

execution time. This may be in general not the most economical solution but it is conform

with the service-oriented policy.

Due to the slow task arrival in the present application the auctioneer policy is less

relevant. The strategy that the receiving auctioneer is always the auctioning one has been

chosen due to its higher robustness. Even though theoretically this policy guarantees only

locally optimal solutions these are commonly globally optimal in the current setup due to

the comparably rare task arrival.

So along with the robot capabilities, the task formulations and the reward computations,

all essential specifications for the MRS are determined in order to enable a successful

operation.

3.6.2. The Course of Action Selection during a Cooperative Service

Task

In this part the cooperative serving of a drink by two robots is described. The course of

action is shown in Fig. 3.6. At the beginning all robots are idle. An observation module

61

3. A Framework for Action Selection focusing on Task Allocation in MRSs

(a) Eddie takes an order
from the person.

(b) A coalition of Eddie and
Poppy has been formed.

(c) Poppy uses a three-finger
grasp.

(d) Poppy is done with
grasping and the handover
to Eddie starts.

(e) the robot-robot han-
dover takes place.

(f) Eddie hands the drink
with a kind comment to the
person.

Fig. 3.6.: Scenes showing the execution of the plan pT (τserve) = 〈τfetch, τbring〉 where two
robots serve a drink in a cooperative manner.

(κdetect) running on each robot notifies the local auctioneer whenever a new person enters

the area. In case it has not been already done by any other robot, the auctioneer announces

the task τorder. As no task plan for τorder is available, i.e. ∄pT (τorder) s.t. |pT (τorder)| ≥ 2,

a SR-auction is initiated.

The brokers of all robots compute their rewards ˆ̺(r, τorder). Since Eddie is the only

robot which possesses the κdialog capability, its performance estimate is the only finite one

and it is assigned the task. So Eddie starts the execution of τorder and takes the order as

shown in Fig. 3.6(a).

The order of the person results in a new task τserve which is passed on to the auctioneer

of Eddie. As for τserve there is a pT (τserve) s.t. |pT (τserve)| ≥ 2, a MR-auction is initiated.

As the distributed version MuRoCo-D is used, τserve is announced to all brokers that start

to derive the coalition bids for the coalitions they are responsible for. See Table A.2 for an

exemplary responsibility distribution. In the current example, all robots except Tommy

are capable to perform τfetch but only Eddie is able to perform τbring due to κdialog ∈ KEddie.
Accordingly all coalitions except {Tommy} pass the capability check. So the brokers

announce the respective subtask auctions to all z ∈ Zcap. In the exemplary run shown in

Fig. 3.6 the handle of the cup is not reachable, which is why the cup can only be grasped

with the BarrettHand (κ3f−grasp). Consequently the only coalitions with a finite cost are

{Poppy} and {Eddie, Poppy}, where Poppy calculates a finite cost for τfetch and Eddie a

62

3.6. Experimental Results

Eddie

Poppy

pT (τserve)

τbring(drink, person) τbring(drink, person)

τfetch(drink, Eddie) τfetch(drink, person)

TATATA

Operational
Time

〈τbring〉 〈τfetch, τbring〉 〈τfetch〉

Cup is
shifted

Cup is
turned

Hardware
Error

New Order
τserve(drink, person)

Completion of
τserve

Fig. 3.7.: Sequence of trials to complete the task τserve in the incidence of external distur-
bances. The illustration is not true to scale w.r.t. to the operational time, as
the task (re-)allocation phases (TA) are substantially shorter than the execution
times.

finite cost for τbring.

The auctioneer receives the coalition bids from the brokers. As in the current example

according to (3.21) the coalition rewards are divided by the coalition size, the two coali-

tions with a ˆ̺(z, τserve) 6= −∞ do not vary a lot with respect to their costs. However, as

{Eddie, Poppy} yield the double utility due to the dialog action they estimate the highest

ˆ̺(z, τserve) and thus obtain the task assignment 〈τfetch, τbring〉 → 〈Poppy, Eddie〉. There-

after the cooperative execution starts, Fig. 3.6(b). Poppy grasps the cup, Fig. 3.6(c), and

then turns towards Eddie while at the same time notifying that it is done with grasp-

ing, Fig. 3.6(d). Once the robots face each other the handover of the cup takes place,

Fig. 3.6(e). Subsequently, Eddie approaches the person a second time and delivers the

order as seen in Fig. 3.6(f).

3.6.3. The Course of Action Selection under Uncertainty

In the following, the course of actions is described, when unanticipated situations occur

or external disturbances are induced to the MRS. All the disturbances have been forced

to the system and occur after τorder is completed. So it is assumed that the auctioneer of

Eddie has already received τserve from a person. The course of tasks is shown in Fig. 3.7.

In this exemplary run, at the beginning the cup is in a position where the handle is

reachable. In contrast to the previous case it is now also graspable with the Schunk PG70

two-finger gripper (κ2f−grasp) such that z = {Eddie} yields a finite cost. In the current

case ˆ̺({Eddie} , τserve) > ˆ̺({Poppy, Eddie} , τserve) so Eddie wins the auction and starts

the execution of τbring(drink, person).

In order to induce a recoverable error, the cup is shifted sideways while Eddie is already

in the final grasp phase. Eddie observes the displacement and recalculates ˆ̺(Eddie, τbring)

which is lower than the initial estimate due to the increased execution time. Nevertheless,

as the cup was only shifted locally at the table ˆ̺(Eddie, τbring) > ̺min is still satisfied,

classifying this error according to (3.14) as recoverable. This might probably not be the

case when the cup is for example moved to another room.

So while Eddie pursues the execution of τbring and starts a second time to grasp the

cup, the latter is turned around such that the handle is no longer reachable. This leads

to a situation that is similar to the one previously described in Section 3.6.2. So in

63

3. A Framework for Action Selection focusing on Task Allocation in MRSs

|Rcap|

t[s]

0

5

10

15

20

2 3 4 5

|R| = 8
|R| = 7
|R| = 6
|R| = 5
|R| = 4

Fig. 3.8.: Experimental time t in seconds required for a MR-task assignment: |R| is
the number of robots in the MRS and |Rcap| is the number of robots capable
to perform a subtask. In this benchmark setup, all subtasks had identical
capability constraints.

principle KEddie ≺ χτbring
is satisfied but ˆ̺(Eddie, τbring) = −∞ ≯ ̺min. Accordingly

Eddie stops τbring and reports a failure to the responsible auctioneer. The auctioneer

re-evaluates Zcap(τserve) and since |Zcap(τserve)| 6= 0, i.e. there are still capable coali-

tions available, it classifies the failure as semi-recoverable and re-announces τserve. Sim-

ilarly to the run described in Section 3.6.2 this auction results in the task assignment

〈τfetch, τbring〉 → 〈Poppy, Eddie〉.
While Poppy and Eddie perform the cooperative task plan, a complete hardware fail-

ure of Eddie is forced by pushing its emergency stop button just before the handover

occurs. Eddie observes the malfunction of its hardware and updates its capability set to

KEddie = {κdetect}. Since KEddie ⊀ χτbring
Eddie reports a failure to the auctioneer.

The auctioneer re-announces the task a third time as Poppy and Jimmy are still capable

to perform τfetch, i.e. still |Zcap(τserve)| 6= 0. Since Poppy already holds the cup its reward

is highest and it is assigned 〈τfetch〉 → 〈Poppy〉. So Poppy performs τfetch and finally

successfully completes the serve task.

3.6.4. Benchmark Evaluation

In order to illustrate the applicability of MuRoCo-D in practice, a benchmark evaluation,

of the time required to determine a MR-assignment, is given. During the evaluation for

each robot a separate computer4 was used. All computers were connected via LAN. The

implementation is in C++, but it needs to be noted that the code was not carefully

optimized with respect to its computational efficiency.

Fig. 3.8 shows the time required for a MR-task assignment. Each curve corresponds

to a MRS composed of a specific number of robots |R|. The horizontal axis gives the

number |Rcap| of robots capable to perform a subtask of the MR-task, where Rcap ⊆ R.
4AMD Phenom II X4 945, 3GHz, 4GB RAM.

64

3.7. Summary

Furthermore, for each possible coalition size a respective task plan was available.

Such a setup could for example correspond to a cooperative object carrying task, where

each subtask corresponds to picking the object and then moving it jointly to its designated

location. Accordingly only those robots are part of Rcap, that are able to move as well

as to pick the object. Respective task plans indicate for example how the robots should

arrange in order to carry the object with two, three, four or more robots in a joint manner.

The curves show that the computational effort can be considerably reduced by hetero-

geneous and specialized robots. For homogeneous systems, where at least one robot is

capable to perform a subtask, holds |Rcap| = |R|. In the current evaluation such a homo-

geneous system of |R| = 6 needed already around 80 seconds what in most cases is too

much for real applications. In these rather maximal respond times below ten seconds are

desired.

In this regard, Fig. 3.8 clearly shows that the computational times were considerably

lower the less capable robots were available. This results from the early pruning of infeasible

candidates. In MRSs with higher heterogeneity commonly the ratio of capable robots is

lower. Fig. 3.8 shows further that for a MRS of eight robots, a solution was found within

ten seconds when only half of the robots was able to perform a subtask. In case all eight

robots were capable the computations took several minutes.

In general, the curves show the practical limitations arising on customary hardware as

it is used in present systems. Of course, the actual computational times are reducible by

optimizing the code and/or more powerful hardware. Actually this is also to be expected

to happen in the future. Moreover, in practical applications the number of task plans are

usually limited. Consequently is it rather unusual that feasible solutions exist for all sizes

of coalitions. In this respect, this evaluation is primarily supposed to be understood qual-

itatively in order to get a practical estimation of the limitations with respect to realizable

problem sizes.

3.7. Summary

In order to solve the action selection problem, a robot needs to decide which sequence

of actions to choose in order to complete a specific task. In order to yield a cooperative

decision making in a multi-robot system (MRS), this implies a prior group agreement on

which robot should execute this specific task. This is known as multi-robot task allocation

problem (MRTA).

In this chapter the market-based MuRoCo framework has been introduced, which han-

dles the MRTA problem in heterogeneous MRSs that are capable of full communication.

MuRoCo yields optimal solutions for the instantaneous assignment of tasks that require

a single robot to be completed (ST-SR-IA) and also for the sequential assignment of

tasks that require a tight cooperation of multiple robots (ST-MR-IA), commonly known

as ”coalition formation”. Thereby MuRoCo is, to the author’s best knowledge, so far

the second approach which explicitly optimizes also the subtask assignment among the

coalition members. Major contributions of MuRoCo are the computational complexity of

O(2|R||R|3) for optimal multi-robot task assignments. Moreover, the distributed version,

MuRoCo-D, where the computational load is shared among the robots yielding O(2|R||R|2),

65

3. A Framework for Action Selection focusing on Task Allocation in MRSs

has been proposed. At this point in time, both versions guarantee the lowest increase of the

worst-case complexity compared to previously existing work. Additionally, in order to also

reduce the complexity arising on average, several pruning strategies that take the system-

specific characteristics into account have been presented. Altogether MuRoCo presents an

exhaustive framework that provides a generic problem formulation. This allows for a high

versatility to new applications and domains. In order to cope with the omnipresent uncer-

tainty, means for failure prevention, forecasting, handling and removal are incorporated.

The suitability of the presented framework for the robust operation of a complex MRS,

even under various sources of uncertainty, has been verified in a service scenario with a

MRS of four heterogeneous robots. Finally, a benchmark evaluation has been given, which

shows the practical limitations of MuRoCo with respect to realizable problem sizes. This

is, again to the author’s best knowledge, the first quantitative practical examination of

such a framework.

Despite the promising advancements presented here, further improvement may be possi-

ble, by not re-calculating everything from scratch in case of a failure, but instead, re-using

the result of the prior optimization. For example, in [75], a dynamic version of the Hungar-

ian method is proposed in this respect. Also very common is to specify heuristics based on

which a greedy selection is performed to find an approximative solution. In this respect,

learning methods could be used to learn suitable heuristics for the specific system setup

as proposed in [12]. Still part of future research remain adequate approaches to tackle the

very hard problem of simultaneous assignments of multiple multi-robot tasks. Similarly,

so far no approach to efficiently handle the assignment to multi-task robots (MT-MR-IA)

is known. However, the relevance of multi-tasking in real applications may be limited and

thus should be explicitly considered in advance. Moreover, in the MRTA literature, the

cost functions are commonly assumed to be given, which in general does not hold for real

world applications. An additional complicating factor, especially in MRSs, is that due to

physically constrained resources, the execution of one task or action may affect the perfor-

mance of a parallel-running action. This interdependence may affect the accuracy of the

cost estimation, especially during tightly cooperative actions and for multi-task robots. As

the validity of the solutions generated by frameworks such as MuRoCo is only given in the

case of accurate cost estimates, these interdependencies need to be explicitly taken into

account. This demands for further investigation of these interdependencies, which is given

in the following chapter.

66

4. Improved Action Selection by an

Uncertainty- and Situation-Aware

Performance Estimation

In the preceding chapter, the MuRoCo framework has been described, which solves the

action selection problem in cooperative MRSs. MuRoCo assigns tasks to the robots, which

then execute actions according to specified plans. In this respect, MuRoCo determines

the task assignment and selects the action plans, for which it expects the best possible

performance of the MRS. However, whether this estimated performance is actually achieved

during the subsequent action execution, relies on the validity of the reward estimates and

thus also of the respectively estimated task and action costs. In other words, if the actual

cost that arises during the action execution differs from its previously estimated value, the

calculated performance of the planned solution can no longer be guaranteed. Admittedly,

it is the fate, but also the challenge of robotics, that this is almost always the case. Real

world systems are faced with environmental uncertainty leading to a more or less strong

deviation between the outcome of planning and execution. Even though this is a quite

fundamental problem of robotics, it is still often neglected in the literature. Accordingly,

methods are needed that lessen the impact of this deviation on the system performance,

by explicitly taking the system sensitivity on the environmental uncertainty into account.

This chapter contributes in this respect by introducing a novel bipartite approach that

provides the generic means to learn the discrepancy of planning and execution for a robotic

system, and thereafter, improve the action selection by usage of the gained knowledge.

More specifically, a system interdependence model is learned from experimental data, which

enables the qualitative, as well as, quantitative inference of the influence that environmental

factors have on the system behavior. This knowledge is then used during the system

operation for a situation- and uncertainty-aware cost estimation which takes potential risks

already during the planning phase into account. Initial estimates are further improved by

information gathered during the execution. This allows for possible counteractions in order

to achieve a better consistency of planning and execution, and thus an overall improvement

of the system reliability. This is also verified by experimental evaluations of the proposed

approach.

4.1. Introduction

Autonomous robotic systems typically act in partially known or unknown environments

where they are constantly faced with situations that require decision making capabilities

under perceptual uncertainty. This uncertainty can lead to undesired system behavior.

67

4. Uncertainty- and Situation-Aware Performance Estimation

However, the respective consequential series of internal reactions that cause the observed

behavior is often unclear, since it results from the interaction of various system compo-

nents. As a consequence, in order to ensure robustness and reliability of such autonomous

robots, it is of high interest to identify the crucial environmental and system component

indicators that reflect the overall system behavior. The identification of their mutual in-

terdependencies allows to draw conclusions about the influence of these indicators on the

system behavior. Such knowledge is for example valuable for design choices, since the

factors that contribute most to the variability of the system behavior can be identified and

it can be determined if these require additional research to strengthen system robustness.

Additionally, this information can be used to enable autonomous systems to avoid failures

by predicting the effects of actions and to correctly adjust their behavior.

With respect to action selection, the effects caused by the existing uncertainty are

observable in the difference between the estimated and the arising action cost. In case

of failure they are additionally identifiable in the non-obtainment of the expected utility.

The causes of these effects are ascribable to various influencing factors, which can be

classified according to their extrinsic or intrinsic cause. Extrinsic factors are related to the

surrounding environment and are not directly controllable by the robot itself. Intrinsic

factors instead are primarily induced by the internal robotic system or the effects of its

own actions.

A major result of the extrinsic factors, occurring in most robotic systems, is perceptual

noise. Possible causes of environmental uncertainty are manifold and comprise perceptual

noise, unexpected changes by actions of other robots or humans, and lack of knowledge for

example. The respective intensity is determined by the specific environmental conditions.

For example the scenario shown in Fig. 4.1 implicates various sources of perceptual uncer-

tainty. The robot in the lower left corner aims to estimate its cost in order to fetch the

toy helicopter from the living room on the right side. Assume the robot retrieves its cur-

rent position estimate from a localization module that fuses odometry data with landmark

positions retrieved from a vision-based detection such as in [15]. In a well-lit corridor the

localization module is able to precisely detect the landmarks in the environment and to

generate accurate position estimates. In a dimly lit corridor instead, the localization mod-

ule often erroneously detects landmarks or even finds no landmark at all. Additionally, in

a corridor with rough concrete floor the odometry data is less accurate than in a corridor

covered with smooth laminate. This results in erratic position estimates which may lead

to the robot loosing its way and thus to higher cost.

Another type of extrinsic factors results from partial knowledge about the environment.

In principle, partial knowledge may be also classified as intrinsic type since the robot can

increase or even obtain full knowledge by exploration of the environment. However, this

holds only for static environments. In a dynamic environment the permanent changes

force the robot to always question whether its knowledge is still up-to-date. Other robots

or humans may have locked a door, switched the light, moved furniture or are currently

blocking a corridor. All these factors may influence the cost of a specific task. For example,

in case the robot has incomplete knowledge about the map of the environment, as indicated

in the bottom right corner of Fig. 4.1, it may discover a more efficient path while its

navigating along the initial one. Similarly, it might discover that someone locked a door and

68

4.1. Introduction

?

?

?

?

c()

Fig. 4.1.: Exemplary scene with various sources of uncertainty.

the planned path is blocked. These cases would lead to a lower or higher cost respectively,

both resulting in a deviation from the prior estimate.

Besides such extrinsic factors there are further causes of uncertainty that can be ascribed

to the robotic system itself. A major aspect of robots acting in the physical world is the

achieved level of robustness. Even though, the primary causes of errors are usually of

extrinsic type, such as perceptual noise, a robotic system can be characterized by its ability

to cope with these extrinsic factors, i.e. its proneness to failures. Consider for example

the previously mentioned implicit dependency of an efficient goal-oriented navigation on

the given illumination and floor covering. A robot that has an internal representation

of this interrelation and furthermore has some information about the current lighting

conditions and/or floor covering, can incorporate this knowledge already during planning

to yield a more accurate cost estimate and thus a better decision. Another practical

example are failure-prone actions that are likely to require multiple trials, such as dexterous

manipulation tasks. In case the robot knows that grasping the fragile helicopter will take

most likely several attempts, it can already incorporate this into the prior cost estimation,

e.g. in form of an expected success rate.

Especially in the case of a cooperative multi-robot system (MRS), where the robots aim

to find a jointly optimal action policy, cost discrepancies may affect the action choices of

all robots and thus lead to sub-optimal decisions. For example assuming that fetching the

helicopter requires a joint manipulation by two robots and one of these robots needs to

69

4. Uncertainty- and Situation-Aware Performance Estimation

move a far longer distance as the other one. In this case the latter may decide whether

to wait or whether to execute another task in between. However, both decisions bare the

risk of being sub-optimal in case the first robot is significantly slower or faster as expected

respectively.

As a consequence, in order to take these instances into account and to obtain a reliable

and robust action selection, respective means for a more accurate cost estimation and a

situation-aware failure forecasting are required. These means need to first identify the rel-

evant influencing factors, second also determine the respective strength of those influence,

and thereafter incorporate such knowledge into the robotic decision making.

The remainder of this chapter presents solutions to these problems. First an overview

of related work is given in Section 4.2, followed by the problem formulation in Section 4.3.

Thereafter Section 4.4 describes an approach to identify the interdependency among a

set of selected factors and in Section 4.5 this knowledge is used for a more reliable and

risk-aware cost estimation. Finally the chapter is summarized in Section 4.6.

4.2. Related Work

A finding of [36] is the cost or utility metric to be one of the crucial parameters in an efficient

multi-robot task allocation. Actually this can be generalized to any type of robotic decision

making, as the metric specifies whether a solution is better as some alternative or not and

in this respect strongly determines the resulting behavior of the system.

The existence of literature focusing on the performance evaluation of autonomous mobile

robots indicates the importance of the topic. Benchmark scenarios, such as the DARPA

Grand Challenge [24], RoboCupSoccer [109] or RoboCup@Home [97], are a way of di-

rectly and objectively comparing the performance of robotic systems. A similar approach

which additionally gives reproducible performance results is using standardized testbeds

in both simulation and reality [53]. A drawback of benchmark scenarios is the scenario-

dependence, which does not allow to compare robotic systems applied in different scenarios.

For example, it is not possible to compare a robot which was built to operate in a home

environment [111] with autonomous vehicles, which are supposed to navigate through an

urban environment [119]. Actually, the scenario-dependence is so strong, that the winning

vehicle of the first DARPA Grand Challenge [116] would not be able to take part in the

second challenge, since the scenario changed from the desert to an urban environment.

Standardized benchmark scenarios also bear the risk of developing robotic systems and

algorithms specialized towards these scenarios at the cost of generality.

Scenario-independent criteria for the qualitative evaluation of robotic systems have been

proposed in [22]. These approaches focus on task objective and social measures to identify

both, the efficiency of robot and human. So performance may be also determined by

a functional mixture of multiple metrics. For example in [50] an evaluation framework

for characterizing the autonomy of unmanned vehicles by considering mission complexity,

environmental difficulty and HRI is presented.

Nevertheless, it is not only crucial which specific metric is used but also how accurate it

can be determined. Its value needs to be calculated based on the current state which in turn

is estimated from the robot’s uncertain sensor data. Consequently this sensor uncertainty

70

4.2. Related Work

directly influences the accuracy of the computed cost and thus the quality of the made

decisions. In [67] the authors even argue that robot performance is not measurable in terms

of optimality due to the environmental uncertainty that allows no testing under identical

circumstances. Indeed, in current robotics research this cost variability is an often neglected

problem. Most of the work either assumes some cost function to be given or handles those

variability by frequent replanning. However, for more complex real world applications a

cost function that also takes the current environmental situation into account is in general

not given and frequent replanning is only possible in a limited scope.

In this respect, other approaches introduce quantitative metrics that also reflect the

influence of the environment on the robot performance. For example in [80] several metrics

are proposed to characterize the path quality during navigation missions. The entropy

and the compressibility of the environmental information are used in [1] to estimate the

complexity of an environment. The latter is in [65] combined with task performance in

order to evaluate the degree of autonomy of a robot. In [71] the emergent behavior of a

homogeneous MRS is modeled with a probability distribution function (pdf) over all states

of the entire MRS including the task states. The motivation is to derive a probabilistic

model that describes how the behavior of a robot changes over time. The authors of [71]

state that from such a pdf the average behavior as well as its variation can be derived.

Knowledge about this variation enables to assess the probabilistic influence of the robot’s

observations and actions on the global performance of the system.

In this context, the authors of [16] identified the importance of self-diagnostics in algo-

rithms, which enables the consuming algorithm within a cognitive system to reason about

the quality of the retrieved information. This raises the general question in which way

the variation in the model input influences the variation in the model output. Exactly

this question is addressed by sensitivity analysis, which aims not to identify the cause for

the current output but rather what leads to its variation. A good introduction into the

field, which can be classified into local and global analysis, is given in [101]. While the

local analysis evaluates the output variation resulting from the small change of a specific

input variable, the global analysis examines the output variation when all input factors are

changed simultaneously. In this respect the global analysis enables also to identify which

input elements are the most influential in inducing the uncertainty in the output [85].

In consideration of robotic systems, the global analysis is of major importance as in

real world settings it is in general impossible to keep all parameters identical expect a

single factor of interest. Also, partial studies of various sets of factors are not applicable,

since e.g. a system may be insensitive to each specific set on its own but sensitive to the

simultaneous changes of all.

In some simple cases, the global system sensitivity can be solved analytically. For ex-

ample differential analysis can give useful results at least as long as the variations are

small. However, stochastic models are usually too complex for an exact analytic treat-

ment [71, 85, 101]. In these cases, probabilistic methods provide powerful alternatives

such as the multivariate analysis of variance (MANOVA) or least-square estimators such

as regression models. However, the MANOVA is often not applicable as it assumes normal

distributions and homoscedasticity, i.e. a homogeneous variance in the input variables.

Regression methods assume a linear contribution of independent input variables to the

71

4. Uncertainty- and Situation-Aware Performance Estimation

output. In principle there are also means to handle non-linear dependencies, but this re-

quires a prior model identification of all main effects and interactions, which is commonly

not straightforward and thus impractical for complex problems.

In [85] a Bayesian approach for probabilistic sensitivity analysis is proposed. Its major

advantages are that it is computationally highly efficient as it requires only a small number

of runs and further that all measures of interest are derivable from a single set of runs.

Bayesian methods are also applied in [46], where the relation between the environment

and the performance of a robotic system is learned by using a Dynamic Bayesian Network.

This way the coherence among the metrics and also the environment is identified.

Such models allow for a situation-aware estimation of the metric of interest. However,

as mentioned in the beginning of this section, besides the actual value of an estimate also

its related accuracy is of huge importance, as it determines the risk of a large deviation

that may lead to highly sub-optimal decisions. In [13] sensitivity analysis is applied to

probabilistic belief systems. It is analyzed how local changes in the parameters of a belief

model influence the global belief. This can be for example used to identify the sensitivity of

decisions with respect to specific model parameters or to determine how input parameters

need to be changed in order to ensure a desired outcome. Here instead, the global belief

change in general needs to be investigated, as in robotic setups all parameters may be

subject to simultaneous variations. Moreover, the (sensor) input is commonly not directly

controllable. In this respect, most of the previously described methods use the expected

value for the cost estimation as it provides the best prediction in terms of minimizing

the squared error. However, this may be problematic in case of asymmetric or very flat

distributions as it provides only a very approximative representation of a pdf.

An alternative to the expected value that also takes these criteria into account is the

quantile function. In [60] quantile regression functions are described, which are an esti-

mation of conditional quantile functions that are expressed as an additive mixture of the

observed covariates. Similar to the quantiles providing a better representation of a pdf

compared to its expected value, the quantile regression provides a better representation as

its mean-based version. In [58] an approach is presented to estimate a quantile mixture

based on L-moments, which are – in analogy to the moments of a pdf – representations

of the model parameters. The major advantage of a quantile-based cost estimation, in

comparison to a mean-based one, is that it also takes one-sided deviations into account. In

some situations a cost underestimation may have a much stronger impact on the system

performance as an overestimation. In these cases quantiles enable to derive a metric esti-

mation that explicitly considers such a system-specific risk. This leads to the concept of

risk aversion, i.e. the attitude to prefer a more reliable option even though it is expected

to be worse than a risky alternative [3]. This may seem illogical in the first place. For

example an expected-value optimizer will act risk neutral. However, in economics it has

been shown that humans often act in a risk averse way, meaning they choose the more

reliable option. Consequently, as robots are supposed to be helpers and assistants for hu-

mans, risk aversion may also be a desirable behavior for robots. The tradeoff between risk

and reward is also an important topic in the financial optimization of asset portfolios, see

e.g. [61]. However, the methods for portfolio optimization are not directly transferable as

their core problem is to optimize the composition of the individual assets contained in the

72

4.3. Problem Definition

portfolio. In robotic action selection instead, the composition is already predetermined

in form of the dedicated tasks and the respective action plans. Instead in robotics the

problem is to find reliable risk and reward estimates and an efficient tradeoff among these

two.

An additional robotic-specific challenge is the relatively huge input uncertainty. This

necessitates tools that offer the possibility to make use of as much prior knowledge as

possible, while also remaining computationally tractable in case no information is given at

all. Furthermore, they need to get along with few data, as this is often hard to gather in

robotic systems, while still taking possible non-linearities into account. In the following

a probabilistic approach is presented that unifies all these demands and provides a mean

for a situation and risk-aware cost estimation. Before a formulation of the actual problem

in focus is given. An additional robotic-specific challenge is the comparably huge input

uncertainty. This demands for tools that offer the possibility to make use of as much

of prior knowledge as possible, while also remaining computationally tractable in case

no information is given at all. Furthermore they need to get along with few data, as

this is often hard to gather in robotic systems, while still taking possible non-linearities

into account. In the following a probabilistic approach is presented that unifies all these

demands and provides a mean for a situation and risk-aware cost estimation. Next a

formulation of the actual problem in focus is given.

4.3. Problem Definition

In the preceding chapter procedures are described, which aim to find the action policy, in

form of a task assignment, that yields the best possible performance. According to (2.7)

(p. 23) the performance q of a cooperative MRS is determined by

q =
1

βu

mc∑

j=1

(u(pA(τj))− c(pA(τj), sj)) =
1

βu

mc∑

j=1

̺(pA(τj), sj) ≤ 1, (4.1)

i.e. the ratio of the rewards ̺(pA(τj), sj) ∈ R obtained for the completed tasks τj ,

j = {1, . . . , mc}, relative to the sum of all obtainable utilities βu. The reward for exe-

cuting a task τ by following an action plan pA(τ), see (2.4) (p. 21), results w.r.t. (2.6) from

the difference between obtained utility u(pA(τ)) ∈ R+
0 and arising cost c(pA(τ), s) ∈ R+

0 .

As stated in Section 2.2 (p. 21), the utility u(pA(τ)) is assumed to be determined by the

application, the designer or the planning layer and is obtained for the completion of the

task τ according to the specific plan pA(τ), i.e. independent of the actual execution of task

τ . In contrast, the related cost is also dependent on the environment state s ∈ S and thus

is influenced by various situation-dependent factors. In this respect c(pA(τ), s) reflects the

quality of the specific execution of the plan pA(τ). The environment state s is a symbolic

representation of the world status and S is the set of all known states.

As in general the process of action selection takes place prior to the action execution, the

actual occurring cost c(pA(τ), s) is at the moment of planning still unknown and therefore

needs to be estimated. From (4.1) follows that the accuracy of a cost estimate ĉ(pA(τ), s)

73

4. Uncertainty- and Situation-Aware Performance Estimation

directly determines the accuracy of the respective reward estimate

ˆ̺(pA(τj), sj) = u(pA(τj))− ĉ(pA(τj), sj) (4.2)

and performance estimate q̂ and thus also determines the validity of an action policy ̟,

which corresponds to a mapping from states to actions, ̟ : S → A, where Π is the set

of all possible policies. A is the set of all actions a. As a consequence of (4.2) can the

optimal policy, according to (2.8) (p. 23), only be estimated:

ˆ̟ ∗ := argmax
̟∈Π

q̂(̟). (4.3)

This corresponds to a solution of the alleviated form given in (2.10) (p. 24). Accordingly, in

order to get as close as possible to the optimal solution, an accurate model of the underlying

cost function, which takes the influencing situation-dependent factors into account, may

be as important for an efficient cooperation as the planning framework described in the

previous chapter.

In other words, a functional relationship ĉ(pA(τ) | s) is needed, which enables to infer

a cost estimate for an action plan pA(τ) based on the current environment state s. In

case a deterministic model is available, ĉ(pA(τ) | s) can be derived analytically. However,

especially in robotics the given uncertainty is usually the result of a complex interplay

of various, often unknown, causes and thus commonly hard to predict analytically. An

alternative is to model the relationships probabilistically. More specifically, if the condi-

tional pdf fc(c(a) | s) about the action costs c(a) is known, it provides a basis to obtain a

probabilistic estimate ĉ(a | s) of the cost c(a | s) for action a given s. However, in general

the knowledge about the pdf is not given a priori and even in case it is available, it needs

to be taken into account that respectively derived estimates are subject to a stochastic

process and thus may deviate to a greater or lesser extent from the actual outcome. This

difference is defined as cost deviation

∆c(a | s) := ĉ(a | s)− c(a | s). (4.4)

and

∆̺(pA(τ), s) := ˆ̺(pA(τ), s)− ̺(pA(τ), s) (4.5)

is the reward deviation respectively. In order to find a persistent solution to (4.3), i.e. a

solution that has a high chance to keep its validity throughout and even after its execution,

the following aspects need to be adequately considered for an efficient action selection:

(i) Determination of the factors that constitute s.

(ii) Derivation of the cost pdf fc(c(a) | s).

(iii) A risk-aware estimation of ĉ(a | s′) that takes the characteristics of fc(c | s′) into

account, where s
′ is the known and/or observable part of s.

(iv) A failure-forecasting by observation of the cost deviation ∆c(a | s) and the ability of

adequate counteractions.

74

4.4. Learning System Interdependence Models

A bipartite approach that handles these aspects for a robotic system is presented in the

subsequent parts of this chapter. Section 4.4 describes a method that solves (i) and (ii) by

learning a functional relationship of the costs and the environment based on the past expe-

rience. This learned model knowledge is then used in Section 4.5 to derive an uncertainty-

and risk-aware cost estimation (iii) and obtain its subsequent reevaluation (iv), in order

to achieve an increase in performance and reliability.

4.4. Learning System Interdependence Models

When predicting the performance of systems that are prone to environmental uncertainty,

the latter needs to be explicitly taken into account in order to obtain a reliable estimate. In

this respect it is first essential to identify the situation-dependent factors that are crucial

for the performance of a given task. Second, since the latter is determined by the interplay

of all these factors and the system components it is of further interest to what extent they

are affected by each other. Such knowledge is not only valuable for developers in order to

improve their systems, but can also be directly utilized by the systems themselves, e.g. to

detect failures and thereby correctly adjusting the system behavior.

In the following a method for a system interdependence analysis is presented. The basic

idea is to learn and quantitatively evaluate the coherence between performance indicators

of different system components, as well as the influence of environmental parameters on

the system. The presented analysis is exemplified by the application of the presented

method on the navigation system of the Autonomous City Explorer (ACE) robot. In

Section 4.4.2 its navigational methods are presented and suitable indicators are derived.

Results of the method, which is performed based on experimental data from an extended

field experiment, are given in Section 4.4.3.

4.4.1. System Interdependence Analysis

Most of the current autonomous robots are complex systems designed for specific appli-

cations. They usually consist of various components, which commonly can be separated

into three categories according to their purpose. Perceptual components are responsible

for building an environment representation, e.g. in form of a map, and also for localiz-

ing the robot. This representation is consequently used by planning and action selection

components to calculate a plan of actions such as the trajectory of the robot. In the fol-

lowing planning is used as collective term for the scheduling and action selection layer of

the architecture in Fig. 2.1 (p. 18). Finally, the chosen plan is executed and the progress

is monitored by task execution components. It is obvious that sensing, planning and

execution are interconnected. Although performance indicators have been proposed for

each of these domains, it is still hard to assess the effect that environmental parameters,

or variations of the performance of specific system components, have on the rest of the

system.

The system interdependence analysis described next provides a generic method to tackle

this problem. A probabilistic model of the interdependencies between system components,

such as perception, planning and execution, is learned, which provides a mathematical

75

4. Uncertainty- and Situation-Aware Performance Estimation

Online System Operation Offline System Interdependence Analysis

Actions

World
Model

Perception

Planning &
Action

Selection

Task
Execution System

Outputs

Component
Performance
Evaluation

Bayesian
Network
Learning

Information
Theoretic
Analysis

Bayesian
Network

Performance
Indicators

System
Redesign

Bayesian
Network

Fig. 4.2.: Scheme of the proposed system interdependence analysis.

system model that enables to determine the crucial components with respect to robustness

within a system. In principle such a model can be also derived by examining the deter-

ministic interdependencies within a system. However, with increasing system complexity,

i.e. more components and higher interconnectivity among those, the derivation of a re-

spective deterministic model becomes harder. In this regard, a learned model facilitates

design choices without the need of fully examining the deterministic interrelations in the

system. It also provides a mean to verify existing deterministic system models and to

identify relations which have not been modeled. Furthermore the gained knowledge can be

integrated into the online reasoning process of the system itself to enhance its autonomy.

The presented analysis is applicable to any robotic system for which the components of

interest are observable. For these it identifies the interdependence model that explains the

data, retrieved from the system, best.

4.4.1.1. Algorithm Overview

The proposed approach is illustrated in Fig. 4.2. As the robot operates, system outputs

are monitored and performance indicators for the system components are calculated. The

indicator values are used offline to learn the structure of a Bayesian Network (BN), which

reflects the gathered system data best, and train its parameters. Bayesian Networks are

a network-based framework for representing and analyzing models involving uncertainty.

They find application in several fields ranging from intelligent decision support aids, to

data fusion, 3D feature recognition, intelligent diagnostic aids, automated free text under-

standing and data mining.

The learned BN structure identifies the coherence between the performance indicators

76

4.4. Learning System Interdependence Models

computed from the system output, i.e. to which extent the indicators are associated with

each other. In order to quantitatively evaluate this coherence between indicators from

different system parts, information-theoretic analysis is performed on the parameters of

the learned BN. The acquired quantitative relation supports the developer to focus further

redesign efforts and the learned model can be used to adjust the online functionality

of the robot to the current situation, as discussed in Section 4.5. In the following the

determination of indicators, the acquisition of respective data, the structure learning and

the information-theoretic analysis are described.

4.4.1.2. Component Performance Evaluation in Autonomous Robotic Systems

Before a respective model can be learned a set of component indicators needs to be spec-

ified, which reflect the state of the components of the autonomous robot as well as its

environment. Therefore, for each component of interest at least one representative indi-

cator needs to be chosen. In principle, these indicators can be arbitrarily chosen by the

system designer, for example based on design knowledge or experience, thus there is no

fixed set of universal indicators. The choice should be rather based on the properties of

the system in question. In general, a good starting point is to select indicators that reflect

the performance of the components.

In literature, suitable performance measures have been established for various methods

and problems. For example, planning algorithms are commonly measured with respect to

solution quality or required time, such as [68, 98, 120]. For perception algorithms instead

typically statistical criteria are used, e.g. [16, 99].

Nevertheless, the indicator selection is not crucial for the performance of the analysis,

since inappropriate indicators are identified as they have no or only weak interdependencies

to the other indicators. This means that these indicators provide no information about

the part of the system represented by the other indicators, but of course they might be

still relevant for the analysis of the respective component itself.

When the set of indicators is defined, the respective system output data, which is

required to compute the indicator values, needs to be gathered. This is simply done

through various experimental runs under respective environmental conditions. During

these runs, all system data of interest is recorded by sampling with a fixed rate. The latter

is assumed to be the same for all data of interest and should be chosen with respect to the

dynamics of the system and the environment. Thereafter the gathered data is processed

offline and the indicator values, which provide the basis for the model learning, are derived.

Before the model can be learned, the indicator data needs to be discretized. The number

and size of the intervals used for the discretization of the indicator values should not be

too small, in order to maintain the contained information. However, in case they are

set too large, the respective probability distributions become too flat what makes the

determination of mutual interdependencies hard as well. This similarly applies to the

rate of the sampling as it also presents a discretization, just in the temporal domain. A

possible solution to select the intervals is for example to use an entropy-based approach,

such as [17].

77

4. Uncertainty- and Situation-Aware Performance Estimation

4.4.1.3. Learning Bayesian Network Structures

As discussed previously, in order to find out whether and to what extent performance

indicators of system components interact with each other, a Bayesian Network (BN) is

learned from system outputs and respective performance indicator values. In general the

topology of the network is unknown beforehand, but it is assumed that the system is fully

observable by the data. In order to find the network structure that models the data best,

a search through the space of possible structures is performed using a likelihood heuristic.

BNs are well-established tools for representing uncertain relations between several ran-

dom variables [100]. They demonstrate several advantages over other knowledge represen-

tation and probabilistic analysis tools by providing a simple way to visualize the structure

of a probabilistic model. This structure can be used to design and motivate new mod-

els. Also insights into the properties of the model, including conditional independence

properties, can be obtained by inspection of the graph. Uncertainty is handled in a math-

ematically rigorous yet efficient and simple way, by using Bayesian statistics. Complex

computations, required to perform inference and learning in sophisticated models, can be

expressed in terms of graphical manipulations, in which underlying mathematical expres-

sions are carried along implicitly.

A BN is an annotated directed acyclic graph, that encodes a joint probability distribu-

tion over the set X = {x1, . . . , xn} of random variables. Formally it is a tuple 〈G,E〉, where
G is a Directed Acyclic Graph (DAG) whose vertices correspond to the random variables.

A DAG implies conditional independence of each variable xi and its non-descendants, given

its set of parents XPa(xi). E represents the set of parameters that define the transition be-

tween nodes. It contains a value ei,j,k = P (xi = ki|XPa(xi) = ji) for each possible value ki
of xi and each possible set of values ji of XPa(xi). The conditional probability distribution

of each node is represented in a Conditional Probability Table (CPT).

In case there is no a priori transition information available, the space of possible DAGs

is super-exponential in n, the number of variables described, and is given according to [96]

by

|G(n)| =
n∑

k=1

(−1)k+1

(
n

k

)
2k(n−k)|G(n− k)|. (4.6)

Fig. 4.3 shows the rapid growth of |G(n)| with increasing n, what illustrates that an

exhaustive search gets already problematic for less than ten indicators. Therefore tools are

required to reduce the amount of examined graph structures to a tractable number while

still allowing for good solutions. A widely used possibility are sampling-based methods,

such as the Markov Chain Monte Carlo (MCMC) [82] search. MCMC takes randomly

sample structures from the space of possible DAGs and evaluates them. The number of

samples is chosen large enough for the search to converge. As convergence indicator for

the search the acceptance ratio is used. This is the fraction of proposed samples with

likelihood, which is accepted by the approximation algorithm, divided by the samples that

are rejected. Even though there is no guarantee that MCMC will find the optimal solution,

its major benefits are the controllable complexity and that it does not get stuck in local

optima.

As scoring function, to evaluate the structures, the Bayesian Information Criterion

78

4.4. Learning System Interdependence Models

Number of indicators n

N
u
m
b
er

of
D
A
G
s

|G(n)| ∝ O(exhaustive search)

n4 ∝ O(K2)

100

1010

1020

1030

1040

1050

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 4.3.: Course of complexity with an increasing number n of indicators: for an exhaus-
tive and for the K2 search.

(BIC) [104] is used, which is a function of the log likelihood of the structure according to

the training data penalized by the complexity of the structure.

In case a sequential prioritisation of the indicators is available, an alternative search

algorithm is applicable: the well-established local greedy search algorithm K2 [20]. The

prioritisation implies available information that subsequent nodes are supposed to be de-

pendent on its preceding nodes and is used to initialize the K2 search. The search starts

from an empty set of nodes. Parents are added incrementally – according to the priori-

tisation – and the one whose addition increases the score of the resulting structure most,

is kept. The maximum number of parents can be constrained by an upperbound. The

algorithm stops adding parents to the node, when it is no longer possible to increase the

BIC score of the structure. In the worst case, i.e. without upperbound, the complexity of

K2 is O(n4). K2 is beneficial in the sense of its comparably low complexity, as shown in

Fig. 4.3. The major drawback is the requirement of an initial node prioritisation, which is

not available in general and also biases the solution. For a robotic system, the prioritisation

could be retrieved from information about the sequential structure or causal relation of

the indicators, e.g. deduced from the system design. Alternatively the node prioritisation

can be also acquired from the solution of the MCMC search – by placing parents first and

children subsequently – to further improve the result of the latter.

The presented search algorithms have been chosen due to their good tradeoff between

complexity and solution quality. Furthermore, in combination they require no initial in-

formation. Of course, a very large amount of search methods that might be applicable

is available in the literature. The possible benefits of using other methods remain to be

investigated.

Resulting from the search, the structure with highest BIC score is used for further anal-

ysis. It provides a first qualitative view on the mutual interactions among the indicators.

79

4. Uncertainty- and Situation-Aware Performance Estimation

In the following, information-theoretic criteria are used to evaluate the coherence between

the indicators within the learned network.

4.4.1.4. Information-Theoretic Criteria

The BN structure itself does not provide a quantitative measure of the indicator interde-

pendence. In order to derive the latter information-theoretic criteria [21] are applied. Once

the structure of the net is learned, the CPTs can be computed by using the experimental

data. For each pair of indicators xi, xj , the mutual information

I(xi, xj) =
∑

j

P (j)
∑

ki

P (ki|j)log
P (ki|j)
P (ki)

(4.7)

is derived. Intuitively, mutual information measures the information that xi and xj share,

i.e. to what extent knowledge about the one of these variables reduces the uncertainty

about the other. For instance, if two variables are independent then knowledge about

one of them does not give any information about the other. Consequently their mutual

information is zero.

In order to make comparisons between different pairs of variables a distance metric is

required. In this respect the joint entropy

H(xi, xj) = H(xi|xj) +H(xj) (4.8)

is additionally calculated, where H(x) = −∑k∈x P (x)logP (x) is the entropy of the random

variable x. The joint entropy measures the overall uncertainty about the two variables.

The final distance metric is then derived by

0 ≤ η(xi, xj) =
I(xi, xj)

H(xi, xj)
≤ 1, (4.9)

which corresponds to the ratio of mutual information and joint entropy. The relation of

I(x, y) and H(x, y) is illustrated in Fig. 4.4. It can be proven [21] that η satisfies all

properties of a metric such as the triangle inequality, non-negativity and symmetry. If

two variables are independent then η(xi, xj) = 0, whereas when the variables are fully

dependent and knowledge about the one completely reduces the uncertainty about the

other η(xi, xj) = 1.

By computation of η the interdependence between any pair within a set of indicators is

determinable, no matter whether there exists a direct connection in the BN or not.

The usage of the method is demonstrated by its exemplary application to the ACE

robot, for which a performance indicator set is determined in the next section.

4.4.2. A Case Study on the ACE Robot

We highlight the performance of the system interdependence analysis by its exemplary

application to the navigation system of the ACE mobile robot, which is described in

detail in Appendix B (p. 119). During the field experiments the robot was faced with

80

4.4. Learning System Interdependence Models

H(x) H(y)

I(x, y)

H(x, y)

H(x | y) H(y | x)

Fig. 4.4.: The relation between mutual information I(x, y) and joint entropy H(x, y).

various difficult situations, where it had to navigate through crowded and narrow places.

These environmental conditions had an observable influence on the robotic motion, such

as more frequent turns or stops for example. By applying the method of Section 4.4.1 the

influence on the navigation system of the robot can be identified. In the following adequate

indicators for its navigation system are determined. Thereby a system structure typical

for most autonomous robots is used. System components are separated in perception,

planning and execution components.

4.4.2.1. Indicators for Perception Performance

In order to navigate safely to a certain goal, the ACE robot must be capable of localizing

itself, generating a representation of the environment and finding a drivable path through

it. This section describes the approaches used for Simultaneous Localization and Mapping

(SLAM).

Within the ACE project a grid-based approach that makes use of particle filters has been

chosen, in order to approach the SLAM problem. Particle filters allow the approximation

of arbitrary probability distributions, making them more robust to unpredicted events such

as small collisions, which often occur especially in outdoor environments and cannot be

modeled. Furthermore, grid-based SLAM does not rely on predefined feature extractors,

which are dependent on the assumption that the environment exhibits a known structure.

Therefore, in cluttered outdoor environments the grid-based approach provides a more

robust and accurate mapping. More details on the SLAM implementation, which was

deployed on the robot, can be found in Appendix B (p. 119).

The most likely occupancy grid map mb of the environment is acquired by the SLAM

module. In order to integrate traversability information, such as detected curbs, the grid

mb is fused with the grid mn retrieved from the traversability assessment [130], to obtain

the combined 2.5D grid mc. The resulting 2.5D grid mc is sent to the path planning module,

which this way considers the obstacles from the SLAM module and non-traversable regions

detected by the inclined laser range finder for path planning.

Perceptual indicators describe the uncertainty of the robot about its position and its

environment model. In case of a mobile robot such a model is commonly represented by

a map. Map uncertainty can be measured by the entropy Hm of the map. For the case of

81

4. Uncertainty- and Situation-Aware Performance Estimation

an occupancy grid m this is given as in [112] by

Hm = −ρ2
∑

g∈m

−P (g)logP (g) + (1− P (g))logP (1− P (g)), (4.10)

where g is a cell, P (g) the occupancy probability of g and ρ the resolution of m .

Pose uncertainty

HP = H(P (Xt|Ot,Ut)) ≈
1

t

t∑

j=1

H(P (Xt|Ot,Ut)), (4.11)

is given as an average over the uncertainty of the different poses along the path as proposed

in [99].

Finally, map information INFO(mt−1‖mt) has been proposed in [46] as a measure of the

local complexity of a map. It is defined as the relative entropy of mt−1 with respect to mt,

where mt is the local map at time t. The local map mt is extracted from the occupancy

grid m , by taking an area 10m×10m around the robot. mt−1 is the spatially corresponding

part of the respective map at the previous time step. The relative entropy

Dg(Pt−1(g)‖Pt(g)) = Pt−1(g)× log
Pt−1(g)

Pt(g)
, (4.12)

for cell g is also known as Kullback-Leibler divergence. By taking the sum of the symmetric

form

infog(mt−1‖mt) =
Dg(Pt−1(g)‖Pt(g)) +Dg(Pt(g)‖Pt−1(g))

2
, (4.13)

the relative quantity of information around the robot

INFO(mt−1‖mt) =
1

β

∑

g∈mt

infog(mt−1‖mt) (4.14)

is derived similar to [46], where β is a normalization factor.

With (4.10), (4.11) and (4.14) three indicators for the perception modules of ACE are

determined. The next part describes the method and respective indicators for the planning

module.

4.4.2.2. Indicators for Planning Performance

The planning and action selection components of a robotic system are responsible for

reasoning about the appropriate actions to be taken next. In case of a mobile robot, a

path planning module is needed, which generates safe paths to a specified goal location.

The path planner of the ACE robot is described in Appendix B.3.3.

In order to assess the quality of a path planning module, its generated paths are exam-

ined with regard to several quantitative indicators. Below a set of indicators is proposed,

which are applicable to most path planning approaches.

The probably most intuitive indicator is the path length lp, since it is usually supposed

to be minimized. Indicators that characterize the complexity of the planned path are the

82

4.4. Learning System Interdependence Models

number nw of waypoints w in the path relative to the Euclidean distance to the goal, the

variance Var(∠(w1, ϕr)) of the angular deviation

∠(w1, ϕr) =
∣∣arctan(w1

y ,w
1
x)− ϕr

∣∣ ∈ [0, π] (4.15)

between next waypoint w1 and robot orientation ϕr, and the cumulative sum of the angular

deviation

cad =
nw∑

i=1

∠(w i,w i−1) (4.16)

between consecutive w in the path, where arctan(w0) = ϕr. Finally, the number of way-

points nv which satisfy a maximum clearance constraint is considered. This can be acquired

by using for example distance transformation algorithms [23].

These metrics can be applied to any global planner which generates paths consisting of

a sequence of waypoints. The planning approach used by ACE performs an A* search on

a hybrid graph composed of nodes extracted from a bounding box structure and a Voronoi

graph. Since Voronoi graphs belong to the family of distance transformation algorithms,

the corresponding waypoints satisfy the maximum clearance constraint. Next the execution

module is considered, which is responsible for a safe drive along the computed path.

4.4.2.3. Indicators for Execution Performance

Once the next action of the robot has been chosen it needs to be transformed to motion

commands which must be carried out by the robot actuators in a coordinated manner.

The responsible components present the task execution. For example the planner of a

mobile robot chooses an intermediate target in the form of a waypoint. The execution

components of the robot are responsible for generating controls for the wheel motors such

that the target is safely reached.

The execution components of the ACE robot obtain global waypoints from the path

planning module which has been described in the previous section. These are given as

input to the obstacle avoidance module, which generates motor commands for the mobile

platform. This module takes into account dynamic obstacles in the vicinity of the robot

and ensures safe local navigation. A method similar to [94] is used to generate smooth and

safe robot trajectories.

The execution efficiency of a performed navigation task can be evaluated by observing

the execution time and the smoothness of the path. More specifically, the robot speed vr
and the variance of the robot orientation Var(ϕr).

4.4.2.4. All Performance Indicators at a Glance

All aforementioned indicators are summarized in Table 4.4.2.4. The indicators are grouped

into the three categories according to the system part they characterize. Even though the

indicators have been chosen to represent the internal system state of the navigational

components of the ACE robot, part of them is retrieved from literature and they all are

directly applicable to any mobile robot, which performs SLAM and plans a path that it

finally drives along.

83

4. Uncertainty- and Situation-Aware Performance Estimation

Category Indicators

Perception

Hm = map uncertainty (4.10)

HP = pose uncertainty (4.11)

INFO(mt−1‖mt) = relative quantity of information (4.14)

Planning

lp = path length

nw = number of waypoints

Var(∠(w1, ϕr)) = variance of angular deviation

cad = cumulative sum of angular deviation (4.16)

nv = number of maximum clearence waypoints

Execution
vr = robot speed

Var(ϕr) = variance of robot orientation

Tab. 4.1.: Overview of proposed performance indicators.

The performance indicators discussed in this section are now evaluated on experimental

data gathered by the ACE robot.

4.4.3. Experimental Results

In order to validate the proposed method, the system interdependence analysis has been

performed on the ACE robot, based on data gathered during the outdoor experiment

described in Appendix B.6 (p. 130). Data chunks from two representative situations were

used for the system interdependence analysis. Fig. 4.5 shows two typical scenes encountered

during the situations. The first situation, which is referred to as Sidewalk, demonstrates

navigation on a sidewalk in a less populated area. The corresponding occupancy grid map

acquired by the robot is illustrated in Fig. B.7(a) (p. 131). The second situation, referred to

as Pedestrian zone, is a typical example of navigation in a densely populated pedestrian

zone. The respective acquired occupancy grid map is illustrated in Fig. B.7(b).

Several considerable differences exist between these two settings. In the Sidewalk the

moving ability of the robot is constrained by the narrow sidewalk but the dynamic charac-

teristics of the environment are low. In the Pedestrian zone the environment is extensive

but primarily characterized from high dynamics and local complexity. This is already ob-

served from the indicator values, introduced in Section 4.4.2, which have been sampled in

both scenes at 2Hz. Part of them is shown in Fig. 4.6. For example in the Pedestrian

zone the map uncertainty Hm and robot orientation variance Var(ϕr) have mean values

that are 43% and 45% higher, respectively. The same applies to their variance which is

6.3 and 6.5 times higher in the Pedestrian zone. Intuitively this can be explained by the

lower dynamics in the Sidewalk. In contrast, the speed of the robot vr is on average the

same. This is due to the fact that the robot speed was limited by design for safety reasons.

Before the structure of the BN is learned, the data must be discretized and transformed

into a predefined number of states. For the following results a discretization of three steps

was used for all indicators.

84

4.4. Learning System Interdependence Models

(a) (b)

Fig. 4.5.: Two representative situations which were chosen for the interdependence anal-
ysis. (a) Navigation on a sidewalk in a less populated district shown in
Fig. B.7(a). (b) Navigation in a densely populated pedestrian zone illustrated
in Fig. B.7(b)

Hm

HP

nw

Var(∠(w1, ϕr))

vr

Var(ϕr)

Sidewalk Pedestrian zone
Samples

D
is
cr
et
iz
ed

st
at
e

0

0

0

0

0

01

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

20

20

20

20

20

20

40

40

40

40

40

40

60

60

60

60

60

60

80

80

80

80

80

80

100

100

100

100

100

100

120

120

120

120

120

120

140

140

140

140

140

140

160

160

160

160

160

160

180

180

180

180

180

180

Fig. 4.6.: Discretized indicator (vertical axis) values extracted from experimental data,
for two different environments. The dashed line indicates the transition between
the environments. The horizontal axis shows the consecutive sample number.

85

4. Uncertainty- and Situation-Aware Performance Estimation

MCMC samples

A
cc
ep
ta
n
ce

R
at
io

0 500 1000 1500 2000
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Fig. 4.7.: Acceptance ratio versus the number of MCMC steps. The MCMC search con-
verges since the acceptance ratio does not change after 2000 steps.

As described in Section 4.4.1.3 in order to learn the structure of the BN, which describes

the interaction between indicators, the space of possible DAGs needs to be searched and

by choosing a scoring function the most likely structure needs to be identified. However

the space of possible DAGs is super-exponential with the number of variables described.

In the presented case study ten indicators have been identified, leading to a search space

with 4.2× 1018 graphs, which cannot be searched exhaustively.

Therefore a MCMC search was performed on the preprocessed data to acquire the node

order for the BN. In Fig. 4.7 the acceptance ratio versus the number of MCMC steps is

illustrated. In order to converge to the most likely graph 2000 steps are needed. The

resulting prioritisation is
〈
HP , nw , H

m , lp,Var(ϕr), nv, cad,Var(∠(w
1, ϕr)), INFO, vr

〉
.

Using this prioritisation, the K2 algorithm generated the final BN, which has an im-

proved BIC score of about approximately 6% and is shown in Fig. 4.8. The resulting BN

indicates a lot of interdependencies between the indicators but cannot express the intensity

of these relations. For that reason information-theoretic criteria are applied, as described

in Section 4.4.1.4.

The learned structure was utilized to train a BN with all the data. Sequential Bayesian

parameter updating was performed and the respective CPTs were acquired for the network.

As prior a Bayesian Dirichlet distribution with a sample size of one was chosen. An

implementation based on the Bayes Net Toolbox for Matlab [83] was used. The distance

metric given by (4.9) is calculated for each possible pair of indicators. The results are

illustrated in Fig. 4.9 by the solid line.

A strong interdependence of Hm on HP , cad, Var(∠(w1, ϕr)) and Var(ϕr) is observed.

The relation between Hm andHP is expected, since without map knowledge it is impossible

for the robot to localize itself. Also the influence of Hm on the planning indicators is

intuitive, since the path quality is directly dependent on the used map. Map knowledge

influences the planned path and therefore the motion of the robot, as reflected by the

86

4.4. Learning System Interdependence Models

Hm

HP INFOnw

nvlp cad Var(∠(w1, ϕr))

vr

Var(ϕr)

Fig. 4.8.: Directed Acyclic Graph (DAG) learned with MCMC and K2, showing the re-
lations between the perceptual (rectangles), planning (ellipses) and execution
(hexagons) indicators.

dependency between Hm and Var(ϕr). Furthermore nw is strongly interconnected to nv
and lp, what is ascribable to the fact that all of them are indicators for the complexity of

the calculated path.

The indicators INFO and vr show no influence from and to other indicators. Accord-

ingly these indicators cannot give any information about the internal system state or the

influence of the environment on the system. The complexity of the system and the appli-

cation domain cannot be captured by simple and purely local indicators. More specifically

the speed of the robot has been limited by design for security reasons in most situations.

It would be dangerous to allow sudden accelerations or fast speeds for the robot, in the

proximity of people. Therefore it is logically consistent that the influence from other indi-

cators is found to be insignificant. The proposed analysis identifies in this case, a design

choice of the system.

In order to assess the environmental influence on the indicators, two additional BNs

are trained using the data from the Sidewalk and the Pedestrian Zone respectively. A

comparison of η, which is also shown in Fig. 4.9, reveals the differences for the two scenes.

A stronger influence of Hm on Var(∠(w1, ϕr)) and Var(ϕr) in the Pedestrian zone is

identified. The presence of moving people results in higher map uncertainty, less directed,

i.e. more variable planned path and consequently more complex robot motion. On the

other hand, nv is stronger related to nw in the Sidewalk scene. In this specific situation

the robot has to navigate through narrow passages, where a maximum clearance path is

desired. Consequently, the nodes of the Voronoi graph are more frequently used.

More detailed information about the influence of specific indicators can be extracted

by the learned BNs by examining the marginal distributions of the indicators of interest

while setting other indicators to specific values. This way the behavior of specific system

components can be predicted for various environments and the robustness of the system

can be evaluated.

This is shown for the influence of Hm on HP and Var(ϕr). Fig. 4.10 illustrates the

marginal distributions which are calculated from the learned BN for all assigned values of

Hm by applying Bayesian inference. It can be observed, when map uncertainty increases,

87

4. Uncertainty- and Situation-Aware Performance Estimation

a b c d e f g hm n a b c d e f g hm n a b c d e f g hm n

a b c d e f g hm n a b c d e f g hm n

a b c d e f g hm n a b c d e f g hm n a b c d e f g hm n

a b c d e f g hm n a b c d e f g hm n

η

η

η

η

Hm HP INFO

nw nv

lp cad Var(∠(w1, ϕr))

vr Var(ϕr)

Sidewalk

Pedestrian zone
All data

a → Hm

b → HP

c → INFO
d → nw
e → nv
f → lp
g → cad
h → Var(∠(w1, ϕr))
m → vr
n → Var(ϕr)

0

0

0

0

0

0

0

0

0

0

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

Fig. 4.9.: Learned dependency values η(xi, xj) (vertical axis) for all indicators, where the
i’th graph shows the dependencies of indicator i to all indicators j (horizontal
axis). Since η(xi, xi) = 1, these values were skipped for illustrative purposes.

88

4.4. Learning System Interdependence Models

Hm

Hm

Hm

HP

HP

HP

Var(ϕr)

Var(ϕr)

Var(ϕr)

Discretized state

M
ar
gi
n
al

pr
ob

ab
ili
ty

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

0

0

0

0

0

0

0

0

0

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Fig. 4.10.: The marginal distributions of the dependent indicators HP and Var(ϕr) as
calculated from the learned BN, for assigned values of Hm .

HP increases as well. The learned BN captures the interconnection between localiza-

tion and mapping which constitutes the SLAM problem. When perceptual uncertainty

increases, the motion of the robot becomes more variable as indicated by the uniformly

distributed predicted states of Var(ϕr). However it can be seen that even with high uncer-

tainty it is predicted that the variance of the robot motion will not be unacceptably high

for most of the situations. Therefore the utilized planning algorithms can be expected to

be robust even with uncertain environment models. Such information is very useful for

making design choices. For example if it was predicted by the learned BN that even with

low perceptual uncertainty the generated path of the robot will be very variable, then the

system designer would have to reconsider the planning algorithms used. In the case of

ACE it has been determined that the performance of all system components is sufficient

in both environments.

In summary, the interdependence analysis of system state indicators and the environ-

ment, identified map uncertainty Hm as an indicator with very strong influence on the

system. Consequently, the intuitive assumption is verified that knowledge of the environ-

ment – in this case map knowledge – is a crucial factor for the robustness of an autonomous

robotic system. Further is shown that simpler and local complexity indicators such as vr
and INFO cannot characterize the behavior of the ACE robot. In general, by using the

proposed method for system analysis, several indicators can be tested in respect to their

representation ability. By using the learned BN and inference techniques, predictions can

be made about the behavior of performance indicators given the values of others as evi-

dence. However, the results of the analysis reflect only the system interdependencies in

the examined environments and for the executed tasks. Even though these may provide an

indication of the system behavior in different environments or for different tasks, a direct

transfer is not coherent in general. Instead, new system data needs to be gathered followed

89

4. Uncertainty- and Situation-Aware Performance Estimation

by a reapplication of the analysis.

4.4.4. Discussion

A method for a system interdependence analysis has been introduced. It aims at learning

and quantitatively evaluating the coherence between performance indicators of different

system components of autonomous robots, as well as of the influence of environmental

parameters on the system. The presented method allows the identification of the limita-

tions of an autonomous robotic system. The complexity of the environment determines the

requirements to the robotic hardware and algorithms in order to perform a given task. Con-

versely, the capabilities of a robotic system define the environments where it can operate

and the tasks it can handle. The proposed analysis provides an alternative in comparison

of deriving the deterministic system model, what may be quite hard for complex systems,

or it can be also used to verify the latter.

To validate the proposed method, component performance indicators for the navigation

system of the autonomous mobile robot ACE were derived and the system interdependence

analysis was performed based on experimental data from an extended field experiment.

For this specific system, it has been shown that some of the proposed indicators have very

strong representational capabilities, e.g. the map uncertainty. At the same time indicators

have been proved to be unsuitable for the mutual performance evaluation of the system

components, e.g. the robot speed. Furthermore, the influence of the environment on the

performance indicators has been identified. Such gained knowledge is primarily useful

for the improvement of the examined system itself but it is also transferable to similar

systems, at least qualitatively. A quantitative transfer would be only valid under identical

circumstances what is hard to guarantee for different practical systems.

Further steps should concentrate on the generality of indicators, in the sense if some

of them are suitable for representing the performance of different purpose systems. This

would allow to specify application-independent benchmark tests with respect to system

robustness, in order to facilitate system comparability. Concerning the method itself,

different algorithms for the BN structure search may be evaluated, e.g. whether they

provide a better tradeoff between complexity and solution quality. This would improve

the scalability of the method. Additionally, instead of a static network also dynamic

Bayesian networks may be learned, which allow to examine also temporal interdependencies

of dynamic systems. The discretization leaves also space for future research. For example

methods to determine an optimal discretization but also networks with continuous nodes

may be considered.

Nevertheless, the knowledge gained by the presented method is useful for system re-

design, but also during system operation. It can be used to make predictions and esti-

mations about the current environmental situation based on the observations the robot

makes about the internal or external state. This way the robot can improve its decision

making by anticipating the influence of the current environmental situation on its actions

as described next. Means are presented to yield a situation- and risk-aware cost estimation

and furthermore a better forecasting of failures enabling respective reactions.

90

4.5. Uncertainty- and Risk-Aware Reward Estimation

4.5. Uncertainty- and Risk-Aware Reward Estimation

Recalling Section 4.3, four aspects were identified that are essential for a persistent action

selection. The approach presented in the preceding section determines the relevant factors

s and provides the respective pdf fc(c | s) in form of a learned Bayesian Network. This

leaves the demand for a risk-aware estimation of ĉ(a | s) and a failure-forecasting by

observation of the cost deviation ∆c(a | s), which is presented next.

4.5.1. Quantile-Based Reward Estimation

The conditional pdf fc(c(a) | s) provides the basis to obtain a probabilistic estimate ĉ(a | s)
of the cost c(a) for action a given s. A frequently used approach is to set

ĉ(a | s) = E [c(a) | s] ,

where E [c(a) | s] is the first moment of fc(c(a) | s), also referred to as expected value or

mean. Since the expected value is linear, i.e. additivity and homogeneity of degree one

apply even for statistically dependent variables, the respective estimates for reward and

performance are given by

ˆ̺(pA(τ) | s) = E [̺(pA(τ)) | s] = u(pA(τ))−
∑

al∈pA(τ)

E [c(al) | s] (4.17)

and

q̂(s) = E [q | s] = 1

βu

mc∑

j=1

u(pA(τj))−

∑

ajl∈pA(τj)

E [c(ajl) | s]

. (4.18)

The expected value provides the best prediction in terms of minimizing the squared er-

ror. However, it gives only a very limited representation of a pdf which is for example

problematic in case of asymmetric or very flat distributions. The shape of a pdf is further

characterized by its higher order moments such as variance, skewness and kurtosis. In

order to also take these criteria into account, the quantile function provides, in contrast to

the expected value, a more comprehensive representation of a distribution. For example,

the quantile function enables to also take potential asymmetries of a pdf into account.

The quantile function Q is the inverse F−1 of the cumulative distribution function (cdf)

F . The cdf

Fc(x) := P (c ≤ x) = ς (4.19)

of c gives the probability ς ∈ [0, 1] that c will be at most x. The quantile

Qc(ς) := F−1
c (ς) := inf {x ∈ R : ς ≤ Fc(x)} (4.20)

is accordingly the smallest value x, for which the probability that c is not greater than x

is at least ς. Note that in some literature the alternative definition

Q′
c(ς) = inf {x ∈ R : ς < Fc(x)} = sup {x ∈ R : ς ≥ Fc(x)} (4.21)

91

4. Uncertainty- and Situation-Aware Performance Estimation

x

fG(x)

fG(x)

µ(fG(x))

0.1-quantiles

ς

QfG

0
0

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.2 0.4 0.6 0.8 1.0

(a) (b)

Fig. 4.11.: The quantile function QfG (right) for the pdf
fG(x) = 0.6 N (2.5, 0.5) + 0.4 N (7, 0.7) (left), where N (µ, σ) is a nor-
mal distribution with mean µ and standard deviation σ. The left side shows
further the mean µ = E [x] and the 0.1-quantiles (deciles) of fG(x).

is used, which may return a different result than (4.20), e.g. in case the cdf has disconti-

nuities. However, in [49] – where the relation of both definitions is exhaustively examined

– is shown that

Qc(ς) ≤ Q′
c(ς) ≤ Qc(ς + ǫ), ǫ ∈ R+

0 , (4.22)

where in most cases holds ǫ → 0. The quantiles for a specific ς are also referred to as

ς-quantiles. For example the 0.25-quantile (quartile) of a pdf is the value, for which the

probability is 0.25 that a random variable of this pdf will be equal or smaller.

Fig. 4.11(a) shows the 0.1-quantiles, also referred to as deciles, for a Gaussian mixture

pdf fG. Its quantile function QfG is shown in Fig. 4.11(b). Thereby the k-th 0.1-quantile

equals the k/10-quantile. Fig. 4.11(a) further shows the mean for the pdf. This example

illustrates how poorly the mean may approximate a pdf. While the mean in this example

is 4.3, the median, i.e. the 0.5-quantile, is 2.98. In other words, 50% of the values are

expected to be at least 30% lower than the mean. A similar calculation can be made for

larger values. As the 0.7-quantile is given with 6.52, more than 30% of the values are

expected to be more than 51% larger than the mean. Thus, in this example a mean-based

cost estimate entails a high risk to be far off the real value.

By enabling the consideration of a large variance and even of asymmetries in the pdf,

the quantile function allows for risk averse policies, i.e. reducing the risk that the estimated

rewards are not reached. How this may be beneficially used in a cooperative action selection

is illustrated by the following example.

92

4.5. Uncertainty- and Risk-Aware Reward Estimation

Assuming a task τ , which demands the cooperative execution of the actions a1 and a2
by two robots, has the cost function

c(τ) = f(c(a1), c(a2)) = max(c(a1), c(a2)). (4.23)

This function may for example correspond to the overall time required to complete the

task. Assuming further there are three cost estimates ĉr1(a1), ĉr2(a2), and ĉr3(a2) from

robots ri, i ∈ {1, 2, 3}, where ĉr1(a1) > ĉr2(a2) and ĉr1(a1) > ĉr3(a2). Accordingly fol-

lows ĉ(τ) = ĉr1(a1) w.r.t. (4.23). However, this leaves the question which of the possible

coalitions z1 = 〈r1, r2〉 and z2 = 〈r1, r3〉 should execute τ , resulting in a multi-objective

optimization problem. In this regard one needs to bear in mind that ĉ(τ) = ĉr1(a1) is only

true as long as the inequality constraints ĉr1(a1) > ĉr2(a2) and ĉr1(a1) > ĉr3(a2) are valid.

Even though this can not be guaranteed at least the risk of violation may be reduced. A

feasible solution to the multi-objective optimization is to choose the coalition that implies

a lower risk that the respective constraint is violated. This gives reason for the following

definitions.

Definition 4.1 The reliability

rel(ĉ) :=

∣∣∣∣∣
⋃

∆c≥0

ĉ

∣∣∣∣∣
∣∣∣∣
⋃
∆c

ĉ

∣∣∣∣

of a cost estimation ĉ is defined as the ratio of the number of overestimations, i.e. estimates

ĉ for which the respective cost deviation ∆c = ĉ − c according to (4.4) is non-negative,

compared to the number of total estimations.

Definition 4.2 Similarly the reliability

rel(ˆ̺) :=

∣∣∣∣∣
⋃

∆̺≤0

ˆ̺

∣∣∣∣∣
∣∣∣∣∣
⋃
∆̺

ˆ̺

∣∣∣∣∣

of a reward estimation ˆ̺ is defined as the ratio of the number of underestimations, i.e.

estimates ˆ̺ for which the respective reward deviation ∆̺ = ˆ̺−̺ is non-positive, compared

to the number of total estimations.

Following from its definition in 4.20, the probability that Qc(ς) turns out to be an overes-

timation is exactly ς. However, the quantile function is in general not linear and thus the

quantile for the outcome of an additive mixture of quantiles is not derivable without know-

ing the pdf of the outcome variable. This can be exemplified by considering the second

moment, the variance, of a mixture of pdfs. The variance of the outcome depends not only

on the individual variances of the input variables but also on the respective covariances

Cov(·, ·), which reflect the interrelation among the input variables. A reliable identification

93

4. Uncertainty- and Situation-Aware Performance Estimation

of the Cov(·, ·) without the knowledge of a functional relationship is only possible by ob-

servation of the outcome. This similarly applies to the derivation of higher order moments.

These also have to be considered for a reliable Q-estimation as the interrelation among the

input variables may not only affect the mean or the variance of the output pdf, but also

lead to asymmetric distortions of the distribution.

As a consequence, in the following the non-general but essential assumption is made,

that the output is observable and thus can be incorporated in the learning process de-

scribed in Section 4.4. Even though this presents a strong assumption only non-observable

environments are excluded by it. In partially or even fully observable environments, which

actually comprise the vast majority of robotic applications, a robot is able to perceive

some effect of its actions in the environment. Still, these observations may be noisy and/or

incomplete but they provide the basis for a robot to learn from its experience. In this

respect, the quantile of the outcome distribution is directly derived from the observations.

As a consequence, the quantile Qc(pA(τ)) of the cost of the action plan pA(τ) not directly

derivable from the quantile Qc(a) of the cost for action a. Similarly is the quantile Qq of the

performance q is not directly derivable from the quantile Q̺ of the reward ̺. Nevertheless,

a derivation of Q̺ based on Qc(pA(τ)) is feasible:

Proposition 4.3 Assume that cmin(pA(τ) | s) is the lowest possible and cmax(pA(τ) | s)
the largest possible cost for executing pA(τ) given s. If the pdf fc(c(pA(τ)) | s) of the action

plan costs is continuous in [cmin(pA(τ) | s), cmax(pA(τ) | s)] and further

fc(c(pA(τ)) | s) 6= 0, ∀c(pA(τ) | s) ∈ [cmin(pA(τ) | s), cmax(pA(τ) | s)] ,

then the following statement holds:

A cost estimation based on the ς-quantile, i.e. ĉς(pA(τ) | s) = Qc(pA(τ)|s)(ς), yields an

expected reward reliability of

r̂el (ˆ̺ς(pA(τ) | s)) = ς.

Proof: In order to prove this proposition, the following properties of the quantile function

are used:

(i) Qx(ς) = −Q′
−x(1− ς).

(ii) Qf(x)(ς) = f(Qx(ς)), iff f : R→ R is continuous and non-decreasing.

(iii) Qx(ς) = Q′
x(ς), iff F(x) is strictly increasing.

A verification of these properties is given in [49]. From (i) follows

Q′
−c(pA(τ)|s))(1− ς) = −Qc(pA(τ)|s))(ς)

and since u(pA(τ)) is constant and thus f(x) = x + u(pA(τ)) is continuous and non-

decreasing, follows for the quantile of the reward according to its definition (2.6) (p. 22)

and property (ii):

Q′
̺(pA(τ)|s))(1− ς) = u(pA(τ)) +Q′

−c(pA(τ)|s))(1− ς)
= u(pA(τ))−Qc(pA(τ)|s))(ς).

(4.24)

94

4.5. Uncertainty- and Risk-Aware Reward Estimation

From the assumption that fc(c(pA(τ)) | s) is continuous and fc(c(pA(τ)) | s) 6= 0 for all

possible values of c(pA(τ) | s) follows that the same properties also apply to f̺(̺(pA(τ)) | s)
as it results – similar to its quantile function – from the linear transformation

f̺(̺(pA(τ)) | s) = fu(u(pA(τ)))− fc(c(pA(τ)) | s),

where fu(u(pA(τ))) = δ(x − u(pA(τ))) and δ(·) is the Dirac delta function. Consequently

follows that F̺(pA(τ)|s) is strictly increasing since for ̺2 > ̺1 holds

F̺(̺2(pA(τ)) | s)− F̺(̺1(pA(τ)) | s) =
∫ ̺2

̺1

f̺(̺(pA(τ)) | s)d̺ > 0.

Thus follows according to (iii) that

Q̺(pA(τ)|s))(1− ς) = Q′
̺(pA(τ)|s))(1− ς).

This in turn allows for the following ς-quantile-based reward estimation:

ˆ̺ς(pA(τ) | s) = Q̺(pA(τ)|s)(1− ς) = u(pA(τ))−Qc(pA(τ)|s)(ς) (4.25)

With respect to (4.19) and (4.21) follows that a reward underestimation, i.e.

ˆ̺ς(pA(τ) | s) < ̺ς(pA(τ) | s),

will occur in case of a cost overestimation and thus follows:

r̂el (ˆ̺ς(pA(τ) | s)) = r̂el (ĉς(pA(τ) | s)) = ς.

�

The probability 1− ς is referred to as confidence interval. The value of ς may be chosen

by the designer and can be used to set the risk aversion of the MRS. The lower ς is chosen

the more likely it is that the estimated ˆ̺ς(pA(τ) | s) will be reached. However, as s

may change over time the validity of the prior reward estimation needs to be permanently

verified during the posterior execution.

During the latter s may change or new knowledge about it may be obtained. Given a

respective new state s
′ an updated reward estimate ˆ̺′ς(pA(τ) | s′) is retrieved. In case the

constraint

∆̺(pA(τ)) = ˆ̺ς(pA(τ) | s)− ˆ̺′ς(pA(τ) | s′)
!
≤ 0.

is violated, replanning may be considered based on the extent of ∆̺(pA(τ)).

Accordingly, a reward estimation ˆ̺ς(pA(τ) | s) has been presented that takes the envi-

ronmental situation in form of the predicted state s into account. Moreover, the parameter

ς enables to specify the risk of a reward underestimation. The usage of the approach in

practice is demonstrated next.

95

4. Uncertainty- and Situation-Aware Performance Estimation

4.5.2. An Application Example

The presented performance estimation is exemplified in a navigation scenario in which the

robot is faced with a dynamic environment that is subject to large uncertainty. A respective

scene is shown in Fig. 4.12. The task τgoto(wgp) assigned to the robot is to navigate from its

start position to the goalpoint wgp. Only in case the robot reaches wgp a respective utility

u(τgoto(wgp)) is obtained. The cost arising during the execution of τgoto(wgp) is the time tr
needed to reach wgp. While the robot should try to get as fast as possible to the goalpoint

it also has to ensure that it is getting there safely. In case the robot collides with any part

of the environment the execution is considered as failed and the robot does not obtain any

utility. Thus, in such a case the reward purely results from the incurred costs. A collision

may either occur with the static part of the environment or with dynamic objects. The

latter may be for example other robots or humans, and are here modeled by circles with a

radius of 0.3m. The robot has a size of 0.4m× 0.3m.

Experimental setup: In order to yield a large environmental uncertainty the robot is

faced with 20 different maps. While the general scenario remains always the same the

maps differ with respect to various environment parameters. The first map is shown in

Fig. 4.12 and has a size of 10.88m× 6.8m. The other maps are mirrored and/or rotated

versions of map 1 whose start and goal position may be additionally shifted clockwise

around the obstacle in the middle. Still the relative distance between start and goal is

kept unchanged such that the robot has always the option between a short and a long

way as shown in Fig. 4.12. However, a complicating factor on the way are dynamic objects

that move back and forth on a path orthogonal to the moving direction of the robot as

shown in Fig. 4.12. Even though the objects move with constant speed they present a large

collision risk for the robot. Highly relevant for the performance of the robot is the number

of dynamic objects in the map. In this respect the parameter ratio = x/y specifies that x

dynamic objects are located on the short and y dynamic objects on the long way. In each

map a

ratio ∈ {1/1, 1/3, 3/1, 1/5, 5/1}
is used such that each constellation occurs exactly in four maps. A detailed description of

all maps is given in Appendix C.

Moreover, while the robot is always provided with full knowledge about the static part

of the map, two different conditions with respect to the dynamic part are used. In the

first, in the following referred to as limited condition, the robot has no prior knowledge

about the spreading of objects. In the second, referred to as overview condition, the robot

is given the information about the current ratio of objects.

Throughout one entire run the robot is faced with all maps in both conditions resulting

in 40 maps in total. In case of successful completion the next map is selected while in case

of a collision the robot needs to repeat the current one. However, the maximum number of

trials for each map is limited by an upper bound α. If this is reached the robot proceeds

to the next map even in case of failure.

For the actual execution of τgoto(wgp) an implementation making use of the Player/Stage

framework [18] is used. In order to keep the influence of other system components on the

96

4.5. Uncertainty- and Risk-Aware Reward Estimation

dynamic object

robot

object path

laser
view

short
way

long
way

goalpoint wgp

Map 1

Fig. 4.12.: Map 1 out of 20 maps used for the experiment. The map shows an object ratio
of 5/1, is not swapped, not rotated and start (current location of robot) and
goal positions are not shifted. An overview of all maps is given in Appendix C
(p. 135).

robot performance low a global localization, i.e. ground truth, was used. Furthermore,

instead of using a path planner the robot moved along paths of fixed waypoints. For the

obstacle avoidance the vfh driver of Player is used, which implements the Vector Field

Histogram Plus method introduced in [118]. As sensor for vfh, the robot was equipped

with a laser range finder. However, the latter had a very limited view of 1.7m that allowed

a detection of obstacles only in the close front area as indicated in Fig. 4.12. Thus the

navigation of the robot is reactive and without taking the object velocity into account.

Nevertheless, it yields a comparably uniform moving behavior throughout the various

maps and conditions. This allows for a more clear examination of the actual influence that

the action selection has on the overall performance.

In order to maximize the latter the robot needs to decide upon taking the short or long

way based on the given information. Consequently it decides for the way where it expects

a higher reward which is estimated as follows.

Reward estimation: For the current experiment the sole task is τgoto(wgp). The corre-

sponding action-plan set

PA(τgoto(wgp)) = {〈ashort(wgp)〉 , 〈along(wgp)〉}

contains two action plans. Action ashort(wgp) corresponds to taking the short way to reach

wgp and along(wgp) to take the long one respectively. In order to decide which one of the

two options to choose a reward estimate for both needs to be retrieved.

97

4. Uncertainty- and Situation-Aware Performance Estimation

According to (4.2) the reward results from

ˆ̺(pA(τgoto), s) = u(pA(τgoto))− ĉ(pA(τgoto), s).

For the utility a value of u(pA(τgoto)) = 100 was chosen by the designer. In general, a

higher utility also creates a higher interest to complete a task. In contrast, a lower utility

leads to more frequent rejections or stops of tasks in case the robot is provided with the

respective choice. The latter is discussed below in Section 4.5.3.3. The cost estimate is

derived by

ĉ(pA(τgoto), s) = P 1
s ĉ

1
s + (1− P 1

s)ĉ
1
f (4.26)

where

P i
s =

∑

∀ratio

P
(
statusi = success | ratio, wayi

)
P (ratio) (4.27)

is the probability of pA(τgoto) being successfully completed in trial i.

ĉis =
∑

∀ratio

ĉ
(
t̂ir | statusi = success, ratio, wayi

)
P (ratio) (4.28)

is the expected cost, i.e. the value of the expected run time t̂r, arising in case of success

and

ĉif = P i+1
s ĉi+1

s + (1− P i+1
s)ĉi+1

f +
∑

∀ratio

ĉ(t̂ir | statusi = failed, ratio, wayi)P (ratio) (4.29)

the cost in case of failure respectively. ĉ(t̂r) returns the dimensionless quantity

of t̂r. The maximum number of trials is limited by α, i.e. i ∈ {1, . . . , α} and

ĉα+1
s = ĉα+1

f = u(pA(τgoto)) to account for the non-obtaining of the utility in case τgoto
is not accomplished at all.

The results of (4.27), (4.28) and (4.29) depend all on the wayi selected in the respective

trial i and further on the given ratio. As previously explained the ratio may be known or

not. While in the overview condition the state of ratio is simply set to the given value in

the limited condition no prior knowledge is given to the robot. However, the probability

of the specific ratio is inferable by the experience gathered through the preceding i − 1

failed trials, assuming i > 1:

P (ratio) =
1

β

i−1∑

j=1

P
(
ratio | statusj = failed, wayj, ljp

)
(4.30)

β is a normalization factor and lp the length of the traveled path, i.e. until completion or

failure. As the start conditions for each trial of a map are always the same, the values of

the indicators tjr, status
j and ljp are only dependent on the choice of wayj. Accordingly,

tjr, status
j and ljp are stochastically independent between consecutive trials once the robot

decides on a specific choice of wayj. The current choice on wayi in turn depends on the

knowledge about P (ratio) which is with respect to (4.30) clearly dependent on the prior

trials. In order to retrieve the actual estimate of the time t̂ir for trial i, two cost functions

98

4.5. Uncertainty- and Risk-Aware Reward Estimation

are used. In the first case the expected value

ĉµ(t
i
r) =

t̂ir
s
=

1

s
E[tir]

and in the second the ς-quantile

ĉς(t
i
r) =

t̂ir
s
=

1

s
Qtir

(ς)

is calculated. In both cases the values are divided by seconds s to obtain a dimensionless

scalar quantity. The expected value is in the continuous case derived by

Ec[tr] =

∫ ∞

0

t ftr(t) dt

and for a discrete variable by

Ed[tr] =

kmax∑

k=1

tr,kP (tr,k), (4.31)

where kmax is the number of discretization intervals and tr,k is the mean of the k-th interval.

Accordingly the ς-quantile is in the continuous case derived by

Qtr ,c(ς) = argmin
tr,max

∫ tr,max

0

t ftr(t) dt,

s.t.

∫ tr,max

0

ftr(t) dt
!

≥ ς

and for a discrete variable holds

Qtr ,d(ς) = min
kmax

kmax∑

k

tr,kP (tr,k),

s.t.

kmax∑

k=1

P (tr,k)
!

≥ ς.

(4.32)

Hereby needs to be noted that Proposition 4.3 is only valid for continuous pdfs. How-

ever, even though the current implementation learns a discrete pdf for tr this represents a

quantized version of the continuous ftr . From this follows for the discrete quantile function

Qtr ,d(ς) that it is a sampled version of its continuous counterpart Qtr ,c(ς), where holds

Qtr ,d(ς) ≥ Qtr ,c(ς)

with equality at the bounds of the discretization intervals. Accordingly the discrete pdf

yields an even more conservative estimation that satisfies

r̂eld ≥ r̂elc, (4.33)

99

4. Uncertainty- and Situation-Aware Performance Estimation

way

ratio

lp

status

tr

Fig. 4.13.: Bayesian graph structure used for the inference policies. The structure was
manually suited to the inference requests. Following Fig. 4.8 the indicators
are grouped into perceptual (rectangles), planning (ellipses) and execution
(hexagons) indicators.

where r̂eld and r̂elc are the reliabilities of estimations based on the discrete and the contin-

uous pdf respectively. As in the following only discrete distributions are considered (4.31)

and (4.32) provide the essential cost functions for the reward estimation. Which of these

two alternatives is chosen depends on the used policy.

Selection policies: For the selection of the way the following policies were used:

• short policy ̟short: the robot takes always the shorter path. This policy was only

used for training.

• long policy ̟long: the robot takes always the longer path. This policy was only used

for training as well.

• random policy ̟rand: the path was randomly selected with equal probabilities of

both choices.

• defensive policy ̟def : the robot takes always the path with less dynamic objects

in case these are known. If ratio = 1/1 the shorter path is used. In the limited

condition ̟rand is used.

• inference policy ̟inf : the robot decides based on an environment model and its

current knowledge which way to choose. For this policy both described cost models

were used, where ̟inf,µ relates to a mean-based estimation according to (4.31) and

̟inf,ς to a quantile-based estimation according to (4.32).

Learning the environment model: For the inference policy ̟inf the method described

in Section 4.4 is used to learn a model of the environment. However, in Section 4.4

the model structure as well as the parameters are learned from scratch, wherefore the

Bayesian Information Criterion (BIC) is used to score candidate structures. BIC gives

those structures a higher score that are less complex and better explain the indicator

interdependencies.

100

4.5. Uncertainty- and Risk-Aware Reward Estimation

However, for a model to be suitable for the online application further aspects are of

importance that are not taken into account by the BIC measure. In this respect the

structure needs to ensure conditional dependence among the variables where needed. For

example in case two variables A and B are only connected with each other over a third

variable C, where A is the parent and B the child of C, A and B are conditionally

independent in case C is given.

So, in order to ensure that all inference requests are satisfied, it is beneficial to determine

the graph structure with respect to the reward estimation. In consideration of (4.27) -

(4.30) three types of inference requests – (4.28) and (4.29) are of same type – are needed

in order to retrieve an estimation of ˆ̺(pA(τgoto), s). In this respect the graph shown in

Fig. 4.13 has been manually derived, which satisfies direct conditional dependence among

all variables as needed by (4.27) - (4.30).

In analogy to the graph shown in Fig. 4.8 the indicator variables also are grouped into

the categories perception, planning and execution. However, in contrast to Section 4.4.3

this graph is not the one that explains the data best but the one that fits to the inference

requests most. In this respect any unnecessary interdependencies have been neglected such

as an intuitive dependence between way and lp for example. Moreover, the path length lp
is now classified as execution indicator, since for the current setup no explicit path planner

was used.

For the parameter learning, the structure was trained with data gathered by two com-

plete runs with ̟short and two with ̟long respectively. Thus data for all potential con-

stellations of way and the environment parameters is obtained. While ratio, status and

way are already of discrete type, lp and tr had to be discretized. Therefore, for lp three

uniform intervals and for tr four uniform intervals were chosen after manual observation of

the data. For the parameter training the Bayes Net Toolbox for Matlab [83] was used and

as prior a Bayesian Dirichlet distribution with a sample size of one. The resulting model

provides the basis for a situation-aware action selection for which results are given next.

4.5.3. Experimental Results

For the evaluation of the described approach three types of the inference policy were

applied. Besides the mean-based version ̟inf,µ two quantile-based versions ̟inf,ς with

ς ∈ {0.5, 0.75} were used. For comparison, additional results with the random policy

̟rand and the defensive policy ̟def were retrieved. In order to test the approach also

under different levels of environment dynamic three different object speeds

〈
vo, 1

4
, vo, 1

2
, vo,1

〉
=
〈
0.15

m

s
, 0.3

m

s
, 0.6

m

s

〉

were used. The robot speed was controlled by the vfh algorithm but has been limited to

vr ∈
[
0m
s
, 1m

s

]
. For each vo a separate environment model was learned as described above.

Thereafter a set of 15 runs was conducted for each combination of the five policies with the

object speeds. As mentioned before, throughout one entire run the robot is faced with all

maps in the limited condition and thereafter by all maps in the overview condition. The

maximum number of trials per map was set to α = 3. The parameters of the experimental

runs are also summarized in Table 4.2.

101

4. Uncertainty- and Situation-Aware Performance Estimation

Policies: {̟rand, ̟def , ̟inf,µ, ̟inf,0.5, ̟inf,0.75}
Robot speed: vr ∈

[
0m
s
, 1m

s

]

Object speeds:
〈
vo, 1

4
, vo, 1

2
, vo,1

〉
=
〈
0.15m

s
, 0.3m

s
, 0.6m

s

〉

Runs conducted for each vo,∗: 15

Trials per map: α = 3

Used object ratios: ratio ∈ {1/1, 1/3, 3/1, 1/5, 5/1}
Occurences of ratio per condition: nmaps(ratio, condition) = 60

Tab. 4.2.: Parameters used for the experimental runs.

In the following, results conducted with the different policies are presented. In Sec-

tion 4.5.3.1 the performances achieved by the policies are compared. Section 4.5.3.2 dis-

cusses the reliabilities achieved by the inference-based policies and Section 4.5.3.3 shows

briefly how the performance could be further increased by failure forecasting.

4.5.3.1. Situation-Aware Action Selection

In the following is shown how the situation-awareness of the inference-based policies yields

a performance improvement. First the error rates of the policies are discussed followed by

an examination of those performances.

The relative error rate nerr/nmaps ∈ [0, α] is given by the number of errors, i.e. collisions,

nerr in relation to the number of maps nmaps. It is shown in Fig. 4.14 where it is partitioned

according to condition and ratio. As each ratio appears exactly four times per condition,

nmaps(ratio, condition) = 60 in each set of 15 runs.

The blind policy refers to the choice the robot makes in case no knowledge about the

objects is available at all. In the limited condition (Fig. 4.14(left)) the learned blind

policy of all ̟inf is for all cases of vo to take the short way. As a result the three

̟inf yield especially for a ratio of 1/3 and 1/5 a lower error rate compared to ̟rand and

̟def , which both choose randomly in this situation. For a ratio of 3/1 and 5/1 the ̟inf

outperform ̟rand and ̟def only for vo,1 (Fig. 4.14(a)). In the less dynamic environments

all policies yield quite similar error rates given these two ratios. The reason is that for

vo,1 the collision risk is much higher such that the robot has only a very small chance

to successfully complete the way with three or more objects. This leads to a stronger

importance of the actual way choice on the performance in this setup. Even though the

initial choice of the ̟inf in the limited condition and for ratio ∈ {3/1, 5/1} is the more

crowded way, in most situations the robot switched its decision in a second trial. More

specifically, it switched in 59% for vo, 1
4
, in 88% for vo, 1

2
, and in 95% for vo,1. So obviously

higher dynamic in the environment lead to faster decision changes. In general, in around

70% of the decision changes the robot with an ̟inf took the way with less objects and

in average 80% of the switches in the limited condition occurred in maps with a ratio of

3/1 or 5/1.

In the environments with slower objects the robot has even on a more crowded way

102

4.5. Uncertainty- and Risk-Aware Reward Estimation

limited overview

ratioratio

ratioratio

ratioratio

nerr

nmaps

nerr

nmaps

nerr

nmaps

nerr

nmaps

nerr

nmaps

nerr

nmaps

vo,1

vo, 1
2

vo, 1
4

̟rand

̟def

̟inf,µ

̟inf,0.5

̟inf,0.75

1/11/1

1/11/1

1/11/1

1/31/3

1/31/3

1/31/3

3/13/1

3/13/1

3/13/1

1/51/5

1/51/5

1/51/5

5/15/1

5/15/1

5/15/1

00

00

00

0.50.5

0.50.5

0.50.5

11

11

11

1.51.5

1.51.5

1.51.5

22

22

22

2.52.5

2.52.5

2.52.5

(a) (b)

(c) (d)

(e) (f)

Fig. 4.14.: Number of errors nerr in relation to the number of maps nmaps for all ratios:
shown for the limited (left) and overview condition (right) and all object
speeds vo (top to bottom).

103

4. Uncertainty- and Situation-Aware Performance Estimation

limited overview

ratioratio

ratioratio

ratioratio

q

q

q

q

q

q

vo,1

vo, 1
2

vo, 1
4

̟rand

̟def

̟inf,µ

̟inf,0.5

̟inf,0.75

1/11/1

1/11/1

1/11/1

1/31/3

1/31/3

1/31/3

3/13/1

3/13/1

3/13/1

1/51/5

1/51/5

1/51/5

5/15/1

5/15/1

5/15/1

−0.25−0.25

−0.25−0.25

−0.25−0.25

00

00

00

0.250.25

0.250.25

0.250.25

0.50.5

0.50.5

0.50.5

0.750.75

0.750.75

0.750.75

11

11

11

(a) (b)

(c) (d)

(e) (f)

Fig. 4.15.: Performance q ∈]−∞, 1] achieved per ratio: shown for the limited (left) and
overview condition (right) and all object speeds vo (top to bottom).

104

4.5. Uncertainty- and Risk-Aware Reward Estimation

a realistic chance for a successful run, which is observable in the on average lower error

rates (Fig. 4.14(c) and (e)) compared to the vo,1 situation (Fig. 4.14(a)). Nevertheless, the

success chances on the way with only one object are still higher and since all ̟inf take

for ratio ∈ {3/1, 5/1} initially the more crowded choice they are not able to surpass the

random selection strategy in these situations.

For the overview condition, the learned initial policy is mostly similar to the defensive

policy. Only ̟inf,0.5 deviates in the vo, 1
4
and ̟inf,0.75 in the vo, 1

2
situation by initially

selecting the short way in a ratio of 3/1. The choice of ̟inf,0.75 is also observable by the

comparably large error rate in Fig. 4.14(d). This will be further discussed later on. Except

for this outlier, for the overview condition the error rates of the three ̟inf and ̟def are

quite similar what is also intuitive as their choice in the first trial is mostly the same. Only

̟rand has more failed trials as it is the only policy that does not take the given information

into account at all.

However, in the current application the robot is not supposed to primarily minimize

the error rate but rather to maximize the performance q given by the average achieved

reward shown in Fig. 4.15. It is observable that the q-curves strongly reflect the course

of the respective error rates, which indicates the large influence of the error rate on the

resulting performance in this specific application. This leads to the conclusion that in

the current scenario the heuristically chosen defensive policy ̟def is already a quite good

choice. This is also identified by the proposed approach as for all ̟inf , except for the

two cases mentioned above, for the overview condition exactly ̟def was learned as initial

choice. However, the error rate is not of primary interest.

The performance is the measure to be optimized. Even though the error rate has a

strong influence, it does not fully determine the performance as for example observable

in the limited condition for ratio = 5/1. While the respective nerr/nmaps of the vo, 1
4

compared to the vo, 1
2
situation are fairly similar (Fig. 4.14(c) and (e)) the respective per-

formances (Fig. 4.15(c) and (e)) differ quite a lot. So while all policies yield a q ≈ 25 in

case of vo, 1
2
(Fig. 4.15(c)), the performance gets even negative in the less dynamic case

(Fig. 4.15(e)). This is ascribable to the circumstance that the robot failed frequently for

ratio = 5/1, even in the environment with vo, 1
4
. However, in the latter it collided more

often later, e.g. with the fourth or fifth object, in contrast to the environments with faster

objects where it mostly collided already with the first or second one. As a consequence,

the failure costs cf(tr) are higher in the less dynamic case due to more lost time. This in

turn results in a lower performance even though the error rates are similar to the ones of

the vo, 1
2
environment.

Considering the average performance shown in Fig. 4.16 it is observable that the

inference-based policies yield in average a better performance q than ̟def . This results

mainly from the fact that, according to (4.30), both ̟inf also make use of the experience

from prior failed trials. Especially in the limited condition this yields a significantly

better q compared to the random choices.

In summary, it is shown that the inference-based policies were able to outperform the

heuristic ones, even though in the current case ̟def was already a very good heuristic

choice. This verifies the strong benefit of a situation-aware action selection that takes

105

4. Uncertainty- and Situation-Aware Performance Estimation

qqq

vo,1 vo, 1
2

vo, 1
4

limited

overview

all

̟ ra
nd

̟ ra
nd

̟ ra
nd

̟de
f

̟de
f

̟de
f

̟ in
f,
µ

̟ in
f,
µ

̟ in
f,
µ

̟ in
f,
0.
5

̟ in
f,
0.
5

̟ in
f,
0.
5

̟ in
f,
0.
75

̟ in
f,
0.
75

̟ in
f,
0.
75

000

0.20.20.2

0.40.40.4

0.60.60.6

0.80.80.8

(a) (b) (c)

Fig. 4.16.: Performance q ∈]−∞, 1] achieved in average by the used policies after 15
runs, shown for each condition separately as well as the combination of both.

the available knowledge about environmental factors and those mutual interdependencies

already during the cost and reward estimation into account. However, as discussed in

Section 4.5.1 besides the actual reward maximization also the related reliability of its

estimation is of importance for an efficient cooperative action selection.

4.5.3.2. Reliable Reward Estimation

The motivation to use a quantile-based estimation originated from the demand for a reliable

and risk-aware estimation, which is according to Definition 4.2 determined by the ratio of

reward underestimations. The achieved reliabilities of the three inference policies are shown

in Fig. 4.17 for all used vo.

The quantile-based policies ̟inf,0.5 and ̟inf,0.75 reach their target reliability of 0.5

and 0.75, except for rel(̟inf,0.75) = 0.73 in the vo, 1
4
environment, which is slightly below

(Fig. 4.17(c)). While such small deviations are a result of the underlying stochasticity, the

larger overstepping in some cases is ascribable to the discretization of tr and lp. However,

the discretization may only lead to a more risk-averse behavior as shown by (4.33).

From Fig. 4.17 is further observable that also for ̟inf,µ all values are larger than 0.5,

even though ̟inf,µ does not take its rel(̟inf,µ) into account at all. This indicates that the

outcome distribution of ftr is asymmetric as for a symmetric distribution a rel(̟inf,µ) = 0.5

is to be expected. While in the current case the asymmetry leads also for ̟inf,µ to a risk-

averse estimation, in other setups exactly the opposite might be the case such that rel

gets very small. That the quantile-based policies ̟inf,ς yield also in such situations their

dedicated target reliability is for example observable in Fig. 4.17(c) for the overview

condition, where rel(̟inf,0.75) > 0.75 while rel(̟inf,µ) is around 0.5.

While these results verify that the quantile-based policies are able to yield the desired

risk-averse reward estimation, the ̟inf,ς also bare the risk of being less optimal than

106

4.5. Uncertainty- and Risk-Aware Reward Estimation

rel relrel

vo,1 vo, 1
2

vo, 1
4

limited

overview

all

̟inf,µ ̟inf,µ̟inf,µ̟inf,0.5 ̟inf,0.5̟inf,0.5̟inf,0.75 ̟inf,0.75̟inf,0.75

0.5 0.50.5

0.6 0.60.6

0.7 0.70.7

0.8 0.80.8

0.9 0.90.9

1.0 1.01.0

(a) (b) (c)

Fig. 4.17.: Reward reliability achieved by the inference policies: shown in the limited,
the overview and both conditions for each object speed vo (left to right).

̟inf,µ, since in contrast to the latter ̟inf,ς performs a multi-objective optimization where

the reward receives only second priority. Considering Fig. 4.16, in all environments the

overall performance of the ̟inf,ς is indeed below ̟inf,µ, where the maximum deviation is

8%, 5%, and 4% for vo,1, vo, 1
2
, and vo, 1

4
respectively. This indicates the tendency that higher

dynamic also leads to a larger deviation from the best achievable performance q(̟inf,µ).

To further clarify the cause of such deviations it is in the following illustrated by an

exemplary case. As previously mentioned, in two specific situations the inference-based

policies deviate from the mean-based one as they initially select the short way in a ratio

of 3/1. The case striking out most is the one with ̟inf,0.75 in the vo, 1
2
situation as it

led to a three times higher error rate (Fig. 4.14(d)) and a performance drop of more

than 50% compared to ̟inf,µ (Fig. 4.15(d)) for this specific situation. The reason why

the robot chose the apparently worse way gets clear by considering the conditional dis-

tribution ftr(tr | status, 3/1, way), which is required in (4.29) and (4.28) – to compute

ĉ
(
t̂r | status, ratio, way

)
– and shown in Fig. 4.18. For the case of failure on the short

way (Fig. 4.18(c)) is observable that already for the first interval ∆tr,1 = [0s, 10s] holds

P (tr ∈ ∆tr,1) > ς = 0.75. So in the cases where the robot failed, the collision occurred

mostly in the beginning. Accordingly is the constraint of (4.32) already satisfied by ∆tr,1
such that Qtr ,d,short(0.75) = 10s is set to the larger bound of the interval. Instead, for the

long way (Fig. 4.18(d)) holds P (tr ∈ ∆tr,4) > (1 − 0.75) for the interval tr,4 =]30s,∞s[,
from that follows that Qtr ,d,long(0.75) lies within the fourth interval. In this case a maximal

upper bound of 40s has been selected in the course of the prior discretization.

Even though the probability of failure P (failed | 3/1, short) = 0.73 is higher for the

short than for the long way – P (failed | 3/1, long) = 0.53 – the large difference in the

failure cost dominates the reward estimation in this case what led the robot choose the

short path. In order to handle such occasions a larger number of discretization intervals

and/or more training data may be used. However, it needs to be considered that more

intervals lead to a higher model complexity and moreover also imply the second, more

107

4. Uncertainty- and Situation-Aware Performance Estimation

short long

su
cc
es
s

f
a
il
ed

P (∆tr)P (∆tr)

P (∆tr)P (∆tr)

t r
∈ [
0s
, 1
0s
]

t r
∈ [
0s
, 1
0s
]

t r
∈ [
0s
, 1
0s
]

t r
∈ [
0s
, 1
0s
]

t r
∈]
10
s,
20
s]

t r
∈]
10
s,
20
s]

t r
∈]
10
s,
20
s]

t r
∈]
10
s,
20
s]

t r
∈]
20
s,
30
s]

t r
∈]
20
s,
30
s]

t r
∈]
20
s,
30
s]

t r
∈]
20
s,
30
s]

t r
∈]
30
s,
∞s

[

t r
∈]
30
s,
∞s

[

t r
∈]
30
s,
∞s

[

t r
∈]
30
s,
∞s

[

00

00

0.20.2

0.20.2

0.40.4

0.40.4

0.60.6

0.60.6

0.80.8

0.80.8

1.01.0

1.01.0

(a) (b)

(c) (d)

Fig. 4.18.: The conditional distribution ftr(tr | status, ratio = 3/1, way) of the cost metric
tr in the vo = 0.3m

s
environment: partitioned into status ∈ {success, failed}

(top to bottom) and way ∈ {short, long} (left to right).

training data, which is especially for real-world systems often not easily retrievable. In

this respect, even though in the current example more training data and a smoother

discretization could have been easily used, this was refrained on purpose in order to verify

the suitability of the described approach also for systems where only little data is available.

This specific example exemplified the action selection and the related reward estimation

on a single case.

Next the performance on a whole is examined in relation to the uncertainty of the

environment. In order to obtain a general measure of the estimation quality relative to

the given uncertainty the ratio of the mean square error MSE(ˆ̺) of the expected reward

compared to the variance Var(̺) of the achieved reward may be used. It is shown in

Fig. 4.19 for both conditions. While the ratios for ̟inf,µ and ̟inf,0.5 are quite similar

̟inf,0.75 results in a larger relative MSE. This is explainable as follows. In contrast to

̟inf,µ aims the quantile-based estimation not at minimizing the MSE, such that a higher

ratio is to be expected with larger ς. Even though the variance in the estimation was except

for one case still lower than the variance in the actual outcome. Furthermore, the above

discussed trend that the approach yields better results with lower environment dynamic is

also observable in Fig. 4.19.

In summary the quantile-based policies yielded the desired risk-averse estimation for

the sacrifice of a minor local performance decrease. However, this related only to the

108

4.5. Uncertainty- and Risk-Aware Reward Estimation

MSE(ˆ̺)
Var(̺)

MSE(ˆ̺)
Var(̺)

vo,1

vo, 1
2

vo, 1
4

limited overview

̟inf,µ̟inf,µ ̟inf,0.5̟inf,0.5 ̟inf,0.75̟inf,0.75

0.00.0

0.250.25

0.50.5

0.750.75

1.01.0

1.251.25

(a) (b)

Fig. 4.19.: Mean squared error (MSE) of the reward estimation ˆ̺ in relation to the vari-
ance of the achieved reward ̺.

performance of a single robot. As shown by the exemplary cost function in (4.23) this

may still lead to a better global performance of the entire MRS. A further improvement is

achievable by an early enough forecasting of an upcoming performance deterioration.

4.5.3.3. Forecasting of Poor Performance

In Section 4.3, four aspects were formulated that are essential for a persistent action

selection. Three of these aspects have been discussed so far. The fourth relates to a failure-

forecasting during the execution by observation of the current cost deviation ∆c(a | s) and
the ability of adequate counteractions. Even though the actual execution of actions is not

in focus of this work a brief example is given how this may be achieved.

In general, the robot aims to maximize the reward achieved per map, which results

according to (2.6) (p. 22) from the difference between obtained utility and arising costs.

Assuming the robot has now as additional action the option to decide before every new

trial, whether it wants to continue with the current map or to proceed with the next one.

In case it decides to stop with the current map it will neither receive the utility nor cause

any further costs resulting in ̺ = 0 for the next trial. So in case the robot expects for the

latter a ˆ̺< 0 stopping is most probably the better choice.

This scenario was examined by respectively post-evaluating the results from the previous

part. However, in the current application such an additional action had almost no impact

since ˆ̺ was in most cases positive. Only in the environment with high dynamic (vo,1)

the robot with q̟inf,0.75
would have achieved a performance gain of 16.5%. Nevertheless,

in general is to expect that in environments with even higher dynamic or by selecting a

lower utility value the potential gain and thus the importance of such a strategy become

considerably higher.

109

4. Uncertainty- and Situation-Aware Performance Estimation

4.5.4. Discussion

A situation-aware and risk-concerted reward estimation by usage of a quantile-based cost

computation has been described. Benefits of the presented method are that nonlinear

effects of the environment on the cost metric are taken into account. Furthermore, a single

model of the environment suffices to serve multiple types of inference requests, keeping the

demand for training data comparably low.

The experimental results showed that the proposed inference-based policies were able to

outperform the heuristic alternatives, even though a very good heuristic choice was already

made. The quantile-based policies reached the desired risk-aversion levels for the sacrifice

of some local performance decrease. Finally an outlook on how to avoid an upcoming

performance deterioration by an adequate failure-forecasting was given.

In summary the strong benefit of a situation-aware action selection that takes the avail-

able knowledge about environmental factors and those mutual interdependencies already

during the cost and reward estimation into account has been verified. Furthermore has

been shown that the risk of not reaching the estimated rewards is reducible to a pre-desired

level.

The possibilities to incorporate Proposition 4.3 into a multi-robot optimization are

expected to be manifold and also depend on the specific application and the respective

cost function. A strong benefit is for example expectable in scenarios in which frequently

multiple global optima w.r.t. the criteria of first priority are found, or in applications that

are faced with the tradeoff between efficiency and risk. Such typical cost functions may be

similar to (4.23) and relate for example to scenarios where the robots are supposed to act

time-optimal. In these cases MRSs are often faced with situations where the robots have

to wait for each other such as in cooperative surveillance or joint manipulation tasks for

example.

Consequential next steps in this respect would be to combine the proposed cost estima-

tion with the cooperative planning frameworks by focusing on a suitable adaptation of the

risk-aversion level in order to optimize the overall MRS performance. In order to give an

exemplary outlook how a usage of Proposition 4.3 in a MRS may look like, one potential

incorporation into the framework MuRoCo – described in Chapter 3 – is demonstrated. It

is based on the previous exemplary cost function (4.23) that is formulated more generally

by the cost

cm(pT (τ)) = max
∀τj∈pT (τ)

c(τj)

for action plan pT (τ). In other words cm(pT (τ)) is given by the largest cost of its subtasks

τj . Accordingly follows for the set Zp of pareto-optimal coalitions

Zp =
{
z ∈ Zcap

∣∣∣∣cm(z, pT (τ)) = min
z∈Zcap

(
max
ri∈z

c(ri, τj)

)}
,

where Zcap is the set of all capable coalitions according to Definition 3.12 (p. 40).

τj = ψz,pT (τ)(ri) is the subtask τj ∈ pT (τ) assigned to ri according to the subtask as-

signment ψz,pT (τ) of coalition z, as described in Section 3.4.4 (p. 42). A specific coalition

110

4.6. Summary

among the pareto-optimal solutions Zp may be then derived by

z∗ = argmax
z∈Zp

(
min
ri∈z

rel (c(ri, tj))

)
,

i.e. the coalition with the least low reliability. In this respect the coalition is chosen that

mostly guarantees to achieve its promised reward. Note that in case the robot with least low

reliability is member of multiple coalitions this returns a pareto-optimal set as well. These

cases may be handled by also optimizing w.r.t. the robot with second lowest reliability and

so on. This example demonstrates the benefit derivable from the proposed approach. A

further investigation of respective opportunities goes beyond the scope of this thesis but

presents promising perspectives for future research.

4.6. Summary

A group of robots can improve their joint performance by a cooperative selection of ac-

tions. This demands a joint planning in order to find a consensus on the actions to be

executed by each single robot. In this respect, a major problem of robotics is, that the

performance estimation during the planning phase commonly deviates from the actual

performance, which is achieved during the subsequent execution. This chapter focused on

this, often disregarded, yet fundamental problem and presents a novel bipartite approach

for a situation- and uncertainty-aware performance estimation. The questions in focus

are to identify the crucial factors that influence the performance most, to learn how the

performance is influenced and finally to use this learned information for a better decision

making in order to improve the system performance. The entire approach was validated

in extensive experiments.

More specifically, the first major contribution is a method for a system interdepen-

dence analysis, which quantitatively evaluates the interdependencies among indicators of

the internal robotic system, as well as, the environment. The analysis enables not only

the determination of the limitations of an autonomous robotic system, but also insight on

what influences its performance most. It further examines whether the current situation

has an effect on the accuracy of the cost estimation and if this effect can be taken into

account beforehand. The system interdependence analysis was exemplary applied to the

autonomous mobile robot ACE, based on experimental data from an extended field ex-

periment that is described in Appendix B. For the ACE robot was shown, which of the

proposed indicators were suitable to represent the system performance and which were not.

Furthermore, the influence of the environment on these suitable performance indicators,

for example the map uncertainty, could be identified.

Such acquired knowledge enables the consideration of the influences occurring from

the environment and also from the tasks executed by other robots in parallel. This may

help the designer to guide future research and/or, as shown in the second part of this

chapter, can be utilized by the system itself for an improved cost estimation. In this

context, the second major contribution is a quantile-based cost estimation, which enables

the consideration of large variances and even of asymmetries in the respective indicator

111

4. Uncertainty- and Situation-Aware Performance Estimation

distributions. Accordingly, the quantile-based policies take the characteristics of the cost

deviations into account and thereby yield a more reliable action selection, where reliability

is defined as the probability of reaching the estimated rewards. The method was tested in

a highly dynamic environment. The experimental results showed that the method is able

to outperform the heuristic alternatives, even though here a very good heuristic choice was

already made. Also, the desired risk-aversion levels were reached, for the expected sacrifice

of a minor local performance decrease.

The benefits of the proposed approach are that it requires only few training data and

allows for a rather coarse parameter discretization, which keeps the model complexity low.

Moreover, the approach allows for the inclusion of any given prior knowledge about the

robot or the environment. Such information can be incorporated within the indicator pri-

oritisation, for the model structure and/or the parameters, or during the online operation

through indicator evidence. Nevertheless, the methods are still applicable to learn models

also from scratch, i.e. without any prior knowledge. A further advantage, compared to re-

gression models, for example, is that only a single model needs to be learned to serve various

types of inference requests. A limitation of the approach is the environment-dependence of

the models that always demands an on-site model learning in order to take location-specific

factors into account. This makes it not suitable for most exploration scenarios for exam-

ple. Further is assumed that input and output are observable. Additionally, the presented

methods are not capable to handle situations where the output responds erratically to the

input.

Future work may concentrate on extending the model parameters for continuous distri-

butions. This would remedy quantization errors but probably demand a greater amount

of training data. A further beneficial extension is an online model update. This would

extend the applicability to unexplored environments or areas that are subject to long-term

changes. Respective literature may be found in the field of incremental learning. A large

potential is to be expected by an integration of the quantile-based estimation into pro-

cedures for multi-robot decision making, such as the task allocation framework presented

in the preceding chapter. Particularly in cooperative MRSs where robot-robot interaction

takes place, the performance, as well as the success probability, of a single robot is in-

fluenced by the respective measures of the other robots. In this respect for example, an

adequate consideration of the cost reliabilities may be used to determine better coalition

matches, as discussed in the previous section. Generally, the presented approach is suit-

able for many robotic systems that are faced with the discrepancy between performance

maximization and risk minimization. In case the functional relationship between perfor-

mance and risk is not known, which is to be expected for many real-world systems, the

introduced approach enables the approximation of this relationship and utilization of this

knowledge for a risk-aware decision making. In this respect, an adaptive selection of the

desired reliability level may be investigated, in order to achieve a desired tradeoff between

risk and efficiency.

112

5. Conclusion and Outlook

This thesis investigated the problem of a cooperative action selection in multi-robot systems

(MRSs). This problem arises in scenarios where multiple robots, which act simultaneously

in the same environment, can benefit from cooperation. As discussed in Chapter 1, along

with the progress in robotics, such scenarios gain more and more in importance, especially

in the area of service robotics. In order to bring such robotic systems from laboratory

settings closer to their intended operational areas, this thesis introduced solutions to over-

come the challenges of an efficient and robust action selection in cooperative real-world

MRSs. In this respect, the presented solutions contribute primarily to a more efficient and

reliable handling of these challenges, namely the rapidly growing problem complexity and

the existing information uncertainty.

More specifically, the MuRoCo framework for a multi-robot task allocation was intro-

duced, which yields a robust action selection and a better scaling of the problem complexity.

To take the information uncertainty into account, a bipartite approach was proposed, which

first learns a probabilistic cost model that is then used during system operation by a more

reliable and situation-aware performance estimation. In the following, these contributions

are discussed in more detail and an outlook on promising directions for future research is

given.

5.1. Conclusion

In Chapter 2, this thesis provided a generic formulation of the action-selection problem

and gave a structured illustration of how respective solvers can be integrated within an

overall operating system for MRSs. In this respect, cooperative action selection refers to

the choice of actions by multiple robots in order to maximize the joint performance of the

group. By selecting appropriate sequences of actions, the robots complete dedicated tasks

and obtain respective rewards. In general, the feasible sequences of actions that lead to

the completion of specific tasks can be described in plans. While the plans themselves

are assumed to be situation-independent, the quality of those execution is not. As a

consequence, all possible plans can be pre-computed offline and stored in the knowledge

base of the robots. Accordingly, the actual problem during the robotic operation – and

thus the one under focus in this thesis – is to choose the plan which is best in a specific

situation. Concerning this problem, the major challenges arise from the related complexity

and the given information uncertainty.

The arising complexity relates mainly to the multi-robot task allocation. In the field of

multi-robot task allocation the primary challenge is not to determine approaches that are

able to solve the problem, but approaches that scale well with the number of robots and

tasks. The market-based task allocation framework MuRoCo, introduced in Chapter 3,

113

5. Conclusion and Outlook

contributes in this respect, by yielding a lower bound of the worst-case complexity for

the formation of robot teams, so-called ”coalitions”. By splitting the subtask and the

task assignment, the required computational effort is reduced while still guaranteeing the

solution quality of an exhaustive search. In other words, MuRoCo yields optimal solutions

for the sequential assignment of tasks that require a tight cooperation of multiple robots

(ST-MR-IA), commonly known as ”coalition formation”. However, employed MRSs are

usually seldom confronted with worst-case situations. Instead, they are more frequently

faced with situations where part of all possible constellations is not only suboptimal, but

even unfeasible. This is exploited in MuRoCo by several pruning strategies, which identify

infeasible candidates in an early phase and thereby reduce the number of potential solutions

to be evaluated. The resulting computational savings have been examined in a benchmark

evaluation, which is – to the author’s best knowledge – the first quantitative evaluation

of such a framework. Moreover, of further importance for an efficient operation of MRSs

in practice, are adequate means to handle the environmental uncertainty and execution

failures. Depending on the dynamic characteristic of the environment, such means may

turn out to be most crucial with respect to the system performance. MuRoCo incorporates

respective means for failure forecasting and handling, which aim to prevent errors and, in

case of occurrence, allow for a fast replanning. This enables a robust operation of complex

multi-robot systems, which also has been verified in a service scenario with a MRS of

four heterogeneous robots. Overall, MuRoCo presents an exhaustive framework that is

based on a generic problem formulation and has been developed for the employment in

real-world systems. This makes it suitable to a broad range of applications and domains.

The given results have shown, that the benefits of MuRoCo are, especially in systems with

high heterogeneity and/or ones operating in highly dynamic environments, of importance.

Even though, industrial or military applications provide these characteristics to a greater

or lesser extent as well, the primary scope of MuRoCo is to be expected in the field of

service robotics. In these settings, the processes are commonly less predefined but rather

determined by the current needs of humans. This matches the strengths of MuRoCo,

namely a situation-aware, efficient, and robust, action selection in real-world settings.

As previously mentioned, MuRoCo incorporates means to avoid and to handle failures.

Of significant importance is the ability to handle such hard errors but also of soft devia-

tions, between the expected and the achieved performance. Even though this problem is of

high importance for an efficient action selection, as the accuracy of the cost/reward estima-

tion strongly determines the validity of the planned solutions, it has been often neglected

in literature so far. This thesis highlighted the importance of this problem, provided a

structured problem statement, and introduced a novel approach to handle the problem in

highly dynamic environments. In this respect, the risk- and situation-aware performance

estimation, described in Chapter 4, provides a generic solution to learn the environmental

influence on the robotic system and utilize the gained knowledge for an improved action

selection. An approach is introduced, to determine the influence of environmental factors

on the system performance and thereafter utilize this knowledge to yield a more accurate

cost and reward estimation. The influence is modeled in form of a Bayesian network,

which is learned offline based on previously gathered data. One major advantage is that

nonlinear effects of the environment on the cost metric are taken into account.

114

5.2. Outlook

The gained knowledge is then used during online system operation to yield a situation-

aware and risk-concerted estimation of the future performance. Besides a mean-based

estimation, a quantile-based cost and reward estimation is proposed that enables the con-

sideration of large variances and even of asymmetries in the respective indicator distribu-

tions. This allows for a risk-adjusted decision making, which means a regulation of the

probability to over- or underestimate the achieved costs. In the experimental evaluation,

the proposed inference-based policies achieved better results than the heuristic alterna-

tives, even though the latter performed quite well. The quantile-based policies reached the

desired risk-aversion levels for the expected sacrifice of some local performance decrease.

A further major benefit of the approach is that a single model of the environment suffices

to serve multiple types of inference requests, thus keeping the demand for training data

comparably low. The approach is highly generic as it enables the incorporation of any

prior knowledge that is given about the robot or the environment. Respective information

can be included in the form of the indicator prioritisation, the model structure and/or the

parameters, or during the online operation in form of indicator evidence. Still, in case

no knowledge is given, the methods are perfectly applicable to learn models from scratch.

Furthermore, a single model is sufficient to serve various types of inference requests. This

presents an essential advantage compared to regression models, for example. A restriction

of the approach is that the models are only valid in the respective environment. Accord-

ingly, in order to take location-specific factors into account, an on-site model learning is

required, which makes the approach not suitable to exploration scenarios, for example.

Further assumptions are that input and output are observable and that the output does

not respond erratically to the input. The method provides an alternative in comparison

of deriving the deterministic system model, what may be quite hard for complex systems,

or it also can be used to verify the latter. Besides the direct incorporation of the gained

knowledge during system operation, it also may help the designer to guide future research.

In this respect, the method is also generic enough, to be applied to many robotic systems

that are faced with the discrepancy between performance maximization and risk mini-

mization. In case the functional relationship between performance and risk is not known,

which is to be expected for many real-world systems, the introduced approach enables the

approximation of this relationship and the utilization of this knowledge for a risk-aware

decision making.

5.2. Outlook

Finally, possible directions of future work are proposed, to point out opportunities on how

to act on the presented approaches in order to extend these by new functionalities or apply

them to new fields of application. In the domain of multi-robot task allocation, still part of

future research remain adequate approaches to tackle the very hard problem of the simul-

taneous assignment of a set of multi-robot tasks. Similarly, so far no approach to efficiently

handle the assignment to multi-task robots (MT-MR-IA) is known. However, the relevance

of multi-tasking in real applications may be limited due to physical constraints and thus

should be explicitly considered in advance. Even though the worst-case complexity for the

coalition formation could be lowered by MuRoCo, and feasible system sizes will increase

115

5. Conclusion and Outlook

with the rising power of computers, it is still insufficient for large-scale systems. As dis-

cussed in Chapter 3, in such settings, heuristics are required to focus the search on the

most relevant candidates. The usage of robot clusters is promising for practical systems,

as for example the negotiation limited amongst robots in the vicinity. Another idea is to

prioritize past solutions as they might be good candidates for future assignments as well.

However, one needs to bear in mind that such heuristics always entail the sacrifice of op-

timality. How close the found solutions are to the optimum is strongly determined by the

characteristics of the specific practical setting. As a consequence, a scenario-independent

valuation of the suitability of specific heuristics can not be given.

Concerning the system interdependence analysis, during its evaluation the performance

indicators had to be chosen application-dependent in order to demonstrate the proposed

approach. In this respect, further steps should concentrate on the generality of indicators,

in the sense of their suitability for representing the performance of different purpose sys-

tems. This would allow the specification of application-independent benchmark tests with

respect to system robustness, in order to facilitate system comparability. Concerning the

method itself, different algorithms for the BN structure search may be evaluated, for exam-

ple whether they provide a better tradeoff between complexity and solution quality. This

would improve the scalability of the approach. Additionally, instead of a static network,

dynamic Bayesian networks may be learned, which allow the examination of temporal in-

terdependencies of dynamic systems. Also, extending the model parameters for continuous

distributions, as well as an autonomous determination of the discretization levels, and an

online model update, would provide further flexibility to the approach.

The introduced risk-aware cost estimation creates manifold opportunities for future re-

search. It provides a very generic approach that is not limited to multi-robot applications

but applicable to single-robot scenarios, which are likewise faced with the tradeoff between

efficiency and risk. A promising direction for future research is a tighter interconnection of

the presented inference-based cost estimation with action selection and/or planning meth-

ods. In MRSs, large potential is to be expected by an integration of the quantile-based

estimation into the presented action planning frameworks. Taking the cost reliabilities dur-

ing the action selection into account, for example by adaptively setting the reliability level,

may help to determine better coalition matches as discussed in the previous chapter. For

robotic systems in general, a better understanding of the current environmental situation

allows for a more focused search in the space of possible solutions and an increased validity

of the estimated quality. In this respect, the proposed approach enables opportunities to

combine a better understanding of the situation with the robotic reasoning capabilities in

order to achieve a more cognitive system behavior.

116

A. Distribution of the Coalition

Responsibilities in MuRoCo

In Section 3.4.4 a method for the assignment of multi-robot tasks is described. During

its initialization phase Algorithm A.1 is used to distribute the coalition responsibilities

equally among the robots. As each robot r ∈ R is part of 2R−1 coalitions the total number

of coalition members, i.e. the sum of all coalition sizes |z|, results in |R|2R−1. Distributing

this again equally among the robots leads to 2R−1. Since Algorithm A.1 ensures that each

robot obtains exactly those 2R−1 coalition members to evaluate, the computational effort

is theoretically the same for all robots assuming that all coalitions need to be evaluated.

The time complexity of Algorithm A.1 scales exponentially with the number of robots |R|,
but it is only required at the system start or when R changes.

Table A.1 shows all possible coalitions for an exemplary multi-robot system composed

of four robots. Table A.2 shows the respective sets of coalition responsibilities, which are

obtained with Algorithm A.1 after four iterations.

Robots Coalitions

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15

r1 X X X X X X X X

r2 X X X X X X X X

r3 X X X X X X X X

r4 X X X X X X X X

|z| 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1

Tab. A.1.: List lZ of coalitions for a multi-robot system of four robots.

Iteration Coalition Responsibilities

Zresp,r1 Zresp,r2 Zresp,r3 Zresp,r4

1 {z1} {z2} {z3} {z4}
2 {z1, z5} {z2, z6} {z3, z7} {z4, z8}
3 {z1, z5} {z2, z6, z9} {z3, z7, z10} {z4, z8, z11}
4 {z1, z5, z12} {z2, z6, z9, z13} {z3, z7, z10, z14} {z4, z8, z11, z15}

∑
z∈Zresp,r

|z| 8 8 8 8

Tab. A.2.: Sets Zresp,r of coalition responsibilities for the robots {r1, r2, r3, r4}.

117

A. Distribution of the Coalition Responsibilities in MuRoCo

Algorithm A.1: Distributes the coalition responsibilities among the robots such
that each robot is responsible for 2R−1 coalition members.

distributeCoalitionResponsibilities(R):
generate list lZ of all z ∈ Z sorted by descending size |z|;1

generate list lR of all r ∈ R;2

set maxcount = 2R−1;3

set count(r) = 0 for all r ∈ R;4

set Zresp,r = ∅ for all r ∈ R;5

set i = 1;6

while lZ 6= empty do7

take first z from lZ ;8

while z unassigned do9

set ri to i-th r from lR;10

if (count(ri) + |z|) ≤ maxcount then11

Zresp,r
∪← z; // assign z to ri12

count(ri) = count(ri) + |z|;13

end14

if i < R then15

i = i+ 1;16

else17

i = 1; // next iteration18

end19

end20

end21

118

B. The Autonomous City Explorer

(ACE) Project: Mobile Robot

Navigation in Highly Populated

Urban Environments

One of the greatest challenges nowadays in robotics is the advancement of robots from

industrial tools to companions and helpers of humans, operating in natural, populated

environments. In this respect, the Autonomous City Explorer (ACE) project aims to

combine the research fields of autonomous mobile robot navigation and human robot in-

teraction. A robot has been created that is capable of navigating in an unknown, highly

populated, urban environment, based only on information extracted through interaction

with passers-by and its local perception capabilities.

This chapter describes the algorithms and architecture that make up the navigation

subsystem of ACE. Besides the algorithms used for Simultaneous Localization and Mapping

(SLAM) and path planning in uneven dynamic environments, the navigation behaviors of

the robot are described. More specifically, the selection and control of these behaviors, as

well as the system architecture that integrates all modules into a complete working system

are presented. Results from an extended field experiment, where the robot navigated

autonomously through the downtown city area of Munich, are analyzed and show that the

robot is capable of long-term, safe navigation in real-world settings.

B.1. Motives for the Project

Robots are generally understood as tools, performing well-defined tasks in structured in-

dustrial or laboratory settings. One of the biggest challenges of robotics is to evolve them

to companions and helpers capable of operating efficiently and safely in natural, populated

environments. However, such systems require complex cognitive capabilities in order to

achieve higher levels of cooperation and interaction with humans and cope with rapidly

changing objectives.

Several systems have been developed in this direction that are capable of autonomously

navigating in unstructured terrains, e.g. [116], and more recently in urban environments,

e.g. [119]. In all of these approaches, global waypoints, in the form of GPS coordinates,

topological information about the route as well as specific mission information are provided

in advance. Therefore the robots are not required to interact or cooperate with humans to

reach their goals. Human robot interaction on the other side has been mainly investigated

in structured indoor environments, leading to the creation of guide or mall robots [41,

119

B. The ACE Project: Mobile Robot Navigation in Urban Environments

1
2

3

5

4

Fig. B.1.: The ACE robot and its developer team. Components of the robot: (1) Differ-
ential drive mobile platform, (2) LMS200 laser range finder, (3) LMS400 laser
range finder, (4) Touch screen, (5) Robotic head with five cameras.

115], which can autonomously interact with people and provide them with information.

Complete environment knowledge is again required, simplifying navigation.

The Autonomous City Explorer (ACE) project [130] aims to combine these two lines

of research. A robot has been created that is capable of navigating in an unknown urban

environment, based only on information extracted through interaction with passers-by and

its local perception capabilities. More specifically, the project objective was to develop a

robot that manages to find its way from the Technical University of Munich to the central

square of Munich, without any prior map knowledge or GPS information. Directions

are solely obtained by asking pedestrians for the way. The objective was successfully

accomplished on 31 August 2008.

In the following the algorithms and subsystems used by ACE for reliable navigation and

behavior selection, as well as results from the conducted field experiments are presented.

Sec. B.2 briefly reviews the hardware and software components of the system. Sec. B.3

highlights how the system can model its environment based on noisy sensor data and use

this self-acquired model to navigate safely. Sec. B.4 describes the behaviors that make up

the system and how they are selected, coordinated and translated to navigation commands.

The latter are executed as described in Sec. B.5. Finally, experimental results are presented

in Sec. B.6.

120

B.2. System Description

B.2. System Description

The ACE robot is based on a differential drive platform capable of carrying a payload of

150kg. Fig. B.1 shows the robot and its components. A SICK LMS200 laser range finder

is used for navigation and is mounted with a horizontal scan plane. A SICK LMS400

laser range finder is mounted at a 45◦ angle from the plane. This is deployed for terrain

traversability assessment and curb detection. For interaction with humans a touchscreen

and speakers are used. A robotic head which comprises of five cameras and an animated

mouth is mounted on the robot, for gesture recognition and people tracking [78]. More

details on the hardware components can be found in [130].

The software architecture of the navigation and behavior selection subsystem of the

ACE robot, is illustrated in Fig. B.2. It is divided into three layers: (i) Processing Layer,

(ii) Control Layer and (iii) Execution Layer.

Raw sensor data are given as input to the Processing Layer of the architecture, which

is described in Sec. B.3. The SLAM module processes the data in order to create a

representation of the environment. This representation is fused with a grid containing

terrain traversability information, produced by the Traversability Assessment subsystem,

to obtain a 2.5D map used for planning the path of the robot to a goal point. The latter

is selected by the Control Layer.

Commands, processed sensor data, and trigger signals requesting behavior switches, are

retrieved from the rest of the ACE subsystems, such as the Vision, the Human-Robot

Interaction (HRI) or the Traversability Assessment subsystem. The Control Layer is

responsible for selecting, controlling and monitoring the current navigation behavior ac-

cording to these inputs and the perceived world state. This way, a global path is generated

which is send to the Execution Layer. There the global waypoints are transformed to

appropriate motor commands. An obstacle avoidance module and the platform control

ensure the safe motion of the robot.

B.3. Processing Layer

In order to navigate safely to a certain goal, the ACE robot must be capable to localize

itself, generate a representation of the environment and to find a drivable path through

it. This section describes the approaches used for Simultaneous Localization and Mapping

(SLAM), grid fusion to obtain a 2.5D map and path planning.

B.3.1. Simultaneous Localization and Mapping

The problem of SLAM has been studied extensively over the last years. Within the ACE

project a grid-based approach has been chosen that makes use of particle filters. Particle

filters allow the approximation of arbitrary probability distributions, making them more

robust to unpredicted events such as small collisions which often occur in challenging

environments and cannot be modeled. Furthermore, grid-based SLAM does not rely on

predefined feature extractors, which are dependent on the assumption that the environment

121

B. The ACE Project: Mobile Robot Navigation in Urban Environments

ENVIRONMENT

Sensors
LMS200 laser,

odometry

Mobile Platform

Behavior

Selection

Behavior

Control

SensorData

GoalPoint

Motor Command

Triggers

Status
Behavior

Perceptual

Data

ACE NAVIGATION

SUBSYSTEM

E
X

E
C

U
T

IO
N

C
O

N
T

R
O

L

Path

Waypoint

ACE SUBSYSTEMS

HRIVision
Traversability

Assessment

2D Map

P
R

O
C

E
S

S
IN

G

SLAM

Path

Planning

Grid

Fusion

2.5D Map

Traversability

Grid

Obstacle Avoidance

Fig. B.2.: The software architecture of the navigation subsystem of ACE.

exhibits a known structure. In cluttered outdoor environments the grid-based approach

provides a more robust and accurate mapping.

The idea of Rao-Blackwellization is to evaluate some of the filtering equations an-

alytically and some others by Monte Carlo sampling. This leads to estimators with

smaller variance than those obtained by pure Monte Carlo sampling. In the context of

SLAM the posterior distribution P (Xt,m
b|Ot,Ut) needs to be estimated. Specifically, the

map mb and the trajectory Xt of the robot need to be calculated based on the obser-

vations Ot and the odometry measurements Ut, which are obtained by the robot and

its sensors. The Rao-Blackwellization technique allows the factorization of the posterior

P (Xt,m
b|Ot,Ut) = P (Xt|Ot,Ut)P (m

b|Xt,Ot).
The posterior distribution P (Xt|Ot,Ut) can be estimated by sampling, where each sam-

pled particle represents a potential trajectory. This is the localization step. Next, the

posterior P (mb|Xt,Ot) over the map can be computed analytically, as described in [77],

since the history of poses Xt is known.

An algorithm similar to [40] is used to estimate the SLAM posterior. Due to space

limitations only the main differences are highlighted. Each particle i is weighted according

to the recursive formula

wit =
P (ot|m it−1, x

i
t)P (x

i
t |x it−1, ut−1)

P0(X it |X it−1,Ot,Ut−1)
wit−1. (B.1)

122

B.3. Processing Layer

The term P (x it |x it−1, ut−1) is an odometry-based motion model. The motion of the robot

in the interval (t − 1, t] is approximated by a rotation ∆rot1, a translation ∆trans and a

second rotation ∆rot2. All turns and translations are corrupted by noise. In the specific

implementation presented here, noise is assumed zero mean normally distributed.

The likelihood of an observation given a map and a position estimate is denoted as

P (ot|m it−1, x
i
t). It can be evaluated for each particle by using the particle map constructed

so far as well as the map correlation. More specifically, a local map m ilocal(x
i
t , ot) is created

for each particle i and its correlation with the most recent particle map m it−1,

corr =

∑
x,y(m

i
x,y − m̄ i) · (m ix,y,local − m̄ i)

√∑
x,y(m

i
x,y − m̄ i)2

∑
x,y(m

i
x,y,local − m̄ i)2

(B.2)

is evaluated. The term m̄ i symbolizes the average map value in the overlap between the

two maps. Finally, the observation likelihood is considered proportional to the correlation

value P (ot|m it−1, x
i
t) ∝ corr.

An important issue for the performance and the effectiveness of the algorithm is the

choice of the proposal distribution P0(X
i
t |X it−1,Ot,Ut−1), from which particles are drawn

from. In order to acquire it, new odometry measurements are corrected based on the cur-

rent laser data and the map of the particle with the highest likelihood. A scan matching

technique, similar to the one described in [44], is used. The corrected odometry measure-

ments are applied to the motion model.

B.3.2. Grid Fusion

In order to integrate traversability information, such as detected curbs, the grid mb from

the SLAM module is fused with the grid mn retrieved from the Traversability Assessment

subsystem, to obtain the combined 2.5D grid mf .

The fused grid mf is initialized with the parameters of mb such as width, height or

resolution. The probabilities are set to

P f(x, y) =

{
P n
max(x, y) if P n(x, y) ≥ max(Pocc, P

b(x, y)),

P b(x, y) otherwise,
(B.3)

where P (x, y) is the occupancy probability of the cell containing the global point (x, y).

For path planning this grid is thresholded by the value Pocc, i.e. all P (x, y) ≥ Pocc are

interpreted as occupied. To consider the case when the resolution of the traversability

information is finer than the resolution of the occupancy gridmb, the probability P
n
max(x, y)

is the highest occupancy estimate from all cells in mn which overlap with the respective

cell in mb. Equation (B.3) ensures that the traversability information is only fused, if it

indicates that the respective cell is classified as occupied and the respective probability

is higher than the estimate of the SLAM module. The resulting 2.5D grid mf is send to

the Path Planning module. This way the non-traversable regions not detected from the

horizontally mounted laser range finder are also taken into account during path planning.

123

B. The ACE Project: Mobile Robot Navigation in Urban Environments

+

Schematic illustration Path planned by the ACE robot

Fig. B.3.: The path planning approach: Shown are obstacles (black), which are blown
up to C-Space (blue), the respective bounding boxes (blue rectangles) and the
Voronoi graph (green) with corresponding nodes (dots), the visibility graph
(solid cyan lines) and the resulting A* path (dashed line) from the robot (tri-
angle) to the goal point (cross).

B.3.3. Path Planning

The Path Planning module generates safe paths to a goal point chosen by the Behavior

Control module. To reach the next goal point, the robot has to navigate outdoors in

unknown, dynamic, and unstructured environment. Therefore a hybrid visibility graph is

generated on which A*-search is performed.

First, all frontiers and obstacles within the occupancy grid are determined. Frontiers

are defined as connected unexplored cells having each at least one free neighboring cell,

while obstacles are defined as connected occupied cells. For the creation of the visibility

graph a dual approach is used, which is illustrated in Fig. B.3. A C-Space transformation

is performed on the global map which is created incrementally by the SLAM module. The

C-Space (configuration space) is commonly used for motion planning and refers to the set

of possible positions the robot can reach. Bounding boxes are derived which enclose each

obstacle in the map with a certain offset, shown as blue rectangles in Fig. B.3. All of the

box vertices that lie in free space are inserted as nodes into the visibility graph. The robot

position and the goal point are also inserted in the graph. If only these nodes were used

to compute a path, this would bypass the obstacles as close as possible. Such a path is

advantageous in open places, where enough space is available and the most efficient path

is desired. However, in situations where the robot has to go along a narrow sidewalk for

example, a maximum clearance path is preferable. Therefore the above is combined with

an extension of the Voronoi method.

Voronoi graphs belong to the class of distance transformation algorithms and have been

used in the planning literature for defining collision free paths in bounded environments,

such as corridors or streets. They have also been used in order to discretize the continuous

environment into a finite set of places for topological map-building. Recently, an extension

has been proposed [6], which effectively computes a connected graph in incrementally

updated occupancy grids. This method yields paths aligned with obstacles in the known

124

B.4. Control Layer

space and ending at the frontiers of unknown space. The set of points of a Generalized

Voronoi Graph is extended by the points that are closer than a distance threshold from

any obstacle. The resulting graph which is shown in Fig. B.3 with green, is then pruned

in order to eliminate spurious junctions and branches.

The presented path planning approach makes use of the alignment attribute of the

resulting Voronoi graph as follows. Junctions, red dot in the middle of Fig. B.3, of the

generated Voronoi graph are detected and inserted into the visibility graph. Nodes between

junctions are then sampled on the Voronoi graph according to a predefined distance and

also added to the visibility graph.

Finally, edges are inserted between all nodes of the visibility graph that have direct

visibility and are assigned edge costs proportional to their Euclidean distances. By applying

A*, a heuristic based best-first search is performed on the extended visibility graph, which

results in a fast determination of the shortest distance paths.

The presented Processing Layer creates a representation of the environment and searches

for a drivable path in it. The required control input is coming from the Control Layer which

is described in the next section.

B.4. Control Layer

When navigating through urban environments, a robot is faced with different kinds of

situations that require different kinds of navigation behaviors. It must be able to explore

the environment, follow a sidewalk, safely cross a street, approach a person or follow

a certain direction. As can be seen in Fig. B.2 the Control is split into the Behavior

Selection and the Behavior Control modules, which are described later in this section.

Next the behaviors of the ACE robot are introduced.

B.4.1. Robot Behavior Description

The behaviors available to the robot are (1) Explore, (2) FollowPerson, (3) GoInDirection,

(4) ReachGoal and (5) Idle. In the rest of this section each of them is going to be presented.

Explore: The ability to explore its environment in order to find people to interact with

and increase its map knowledge, is fundamental for the robot. Optimization is performed to

choose its next goal, in order to achieve a tradeoff between maximizing its information gain

and minimizing traveling costs. Given an occupancy grid map, frontier regions between

known and unknown areas are identified, as described in [127]. The cells of the grid m that

belong to a frontier region f, are denoted by mf. The expected information gain I(mf, xt)

acquired by reaching a frontier region from the current robot position xt, is calculated

as in [112]. The traveling costs associated with reaching a frontier region, c(mf, xt), are

proportional to the path length to it. In order to achieve the aforementioned tradeoff,

the autonomous explorer chooses its next goal, on the frontier region that maximizes the

following objective function

m∗
f = argmax

mf

{I(mf, xt)− γf c(mf, xt)}. (B.4)

125

B. The ACE Project: Mobile Robot Navigation in Urban Environments

The parameter γf is used to define how much the path cost should influence the exploration

process.

FollowPerson: The robot must be able to follow a person in order to cross a street safely,

or in case a human wants to lead the robot to an interesting location. The vision system

of the robot is used to track the person [78]. The tracker runs at 10Hz and its outputs

are send to the Behavior Control. There they are filtered in order to get rid of ambiguous

measurements and a goal wgp for the robot to reach is generated at 1Hz.

GoInDirection: If the robot needs information, it stops and looks for passers-by with its

active camera head. On detection, a human is asked to touch the screen and point in the

direction of its designated goal location [78]. The coherence of the information received

during the interactions is checked within the HRI subsystem of the ACE robot [130]. The

Behavior Control module receives the verified direction and sets the necessary constraints

to the Path Planning module, so that the robot travels on the sidewalk toward the specified

direction until a crossroad is detected by the vision system. Safe navigation on the sidewalk

is achieved by incorporating the curbs into the map as described in Sec. B.3.2. Whenever

a crossroad is detected the robot stops and asks for help [130].

ReachGoal: In this behavior the robot tries to reach a given goal position wgp. A min-

imum distance path is searched. If no direct path to wgp can be found, a goal-directed

exploration takes place, by choosing the frontier closest to wgp:

m∗
f = argmin

mf

{c(mf,wgp)}. (B.5)

To avoid fluctuation of the robot motion, the Behavior Control module constrains the

variance of the path as described in the next section.

Idle: In this behavior the robot stops immediately and no motion commands are send to

the Mobile Platform. It is chosen either in emergency situations or when interaction with

humans is taking place. It is also the default behavior in case the previous behavior has

been terminated and no new trigger requests are available.

The correct selection and control of these behaviors is conducted by the homonymous

modules which are presented in the rest of this section. By coordinating the described

behaviors appropriately, they enable the robot to fulfill its overall objective even in un-

structured environments.

B.4.2. Behavior Selection

The Behavior Selection module is responsible for choosing the appropriate navigation be-

havior depending on the current situation. Several ACE subsystems c, such as the Human-

Robot-Interaction (HRI), the vision system or the internal navigation system modules,

react on environmental events and emit trigger signals trigger(c, b) to request a desired

126

B.4. Control Layer

Inactive

ca = NONE

pa = 0
ba = IDLE

Active

pa = P (ca)
ba = b(ca)

Priority

Check

start received

trigger(c∗, b∗)

received

trigger(c∗, b∗)

IF p(c∗) ≥ p(ca)
ca = c∗

s(ba) == completed,

s(ba) == failed

Fig. B.4.: Finite State Machine of the Behavior Selection module.

navigation behavior b. Such events are e.g. information input from humans, the detection

of an intersection or the completion of the previous behavior.

These requests are handled by the Behavior Selection through the Finite State Machine

(FSM) illustrated in Fig. B.4. The FSM is composed of three control states Inactive,

Active and PriorityCheck. A priority p(c) is assigned to each subsystem c, which can

emit command signals, according to its relevance for safety and goal completion. In the

presented implementation the priorities were assigned empirically. At the beginning, the

state of the Control Layer is set to Inactive and the active behavior ba = Idle. Whenever

a new trigger(c∗, b∗) is received, the state switches to PriorityCheck, which is performed

between c∗ and the active command module ca. If p(c∗) ≥ p(ca), c
∗ becomes ca and the

new behavior ba = b∗ is forwarded to the Behavior Control where it is executed. The

Behavior Selection remains in Active state until either a new trigger signal is received, or

the Behavior Control reports a change of the behavior state s(ba) to completed or failed.

B.4.3. Behavior Control

The Behavior Control module is responsible for the proper execution, monitoring and fail-

ure handling of the active behavior ba. The pseudo-code shown in Algorithm B.1 highlights

the control procedure. As long as the state of the Control Layer does not become Inac-

tive, the Behavior Control remains in an endless loop (ll.1-7). During each cycle it first

requests ba from the Behavior Selection and any additionally required data directly from

external modules. Depending on ba, this can be the robot pose xt, a goal direction ϕgp or

a specific goal point wgp.

In the next step, the behavior state s(ba) and any constraints need to be updated as

shown in Fig. B.5. In case the failedtrials (i.e. the number of consecutive prior runs where

ba has not been successfully executed) exceeds the upper bound MAXTRIALS, the claimed

goalaccuracy is decreased. This enables the ACE robot to react in situations where a goal

127

B. The ACE Project: Mobile Robot Navigation in Urban Environments

Start

xt = wgp s(ba) = completed

failedtrials >

MAXTRIALS
goalaccuracy− = decr

goalaccuracy <

MINACC
s(ba) = failed

ba == GoInDirection wcp = (cos(ϕgp) ∗ d+ xr, sin(ϕgp) ∗ d+ yr)T

ba == Explore wcp = minxf∈mf

∥

∥xt, xf
∥

∥

wcp = wgp

Return

Yes

No

Yes

No

Yes

No
Yes

No
Yes

No

Fig. B.5.: Flow chart of the checkConstraints() procedure.

Start

valid path

wn = next waypoint from path

ba == GoInDirection |ϕwn − µwn | < αgaσwn

|ϕwn − ϕgp| < ∆ϕ

goalaccuracy =MAXACC
failedtrials = 0

send(wn)

Return failedtrials ++

No

Yes

Yes

No No

Yes

Yes

No

Fig. B.6.: Flow chart of the checkConsistency() procedure.

128

B.5. Execution Layer

Algorithm B.1: The Behavior Control of the ACE robot.

BehaviorControl():

while state 6= INACTIVE do1

behavior ba = requestBehavior();2

〈robot pose xt, goal direction ϕgp, goal point wgp〉 = updateInfo();3

wcp = checkConstraints(ba, xt, ϕgp,wgp); // see4

Fig. refalg:endconstraints

wn =computePath(wcp) ; // Path Planning module5

checkConsistency(ba,wn, ϕgp); // see Fig. refalg:endconsis6

end7

point lies within non-traversable space, e.g. stairs, or the goaldirection is blocked, e.g. by a

car. Decreasing the goalaccuracy leads to a less strict consistency check (described below)

and allows short-term deviations from the goal. In situations where ACE encounters larger

barriers, e.g. when the received wgp lies within a building or ϕgp points into a wall, the

goalaccuracy would permanently drop leading to a growing deviation from the actual goal.

Therefore, whenever the goalaccuracy drops below a threshold MINACC, the Behavior

Control will report s(ba) = failed, enabling the Behavior Selection to stop the current

behavior and the HRI module e.g. to ask for new directions.

In case the checkConstraints() is passed, the next checkpoint wcp for the planning

module has to be derived. In the GoInDirection behavior, wcp is set into the direction ϕgp
at a distance d from the robot. In the Explore behavior, wcp is set to the closest point

from the frontier f derived by (B.4). For the remaining behaviors wcp is set to wgp. Then

wcp is send to the path planning module described in Sec. B.3.3, which returns a path in

form of a list of waypoints. An exception is made in the Follow behavior, where a direct

line of sight to wcp is assumed, since it corresponds to the position of the person tracked

by the vision system. In that case the planning module is set inactive and the waypoint

wn is directly set to wcp.

To verify that the found path satisfies the demanded goalaccuracy, the next waypoint wn
is applied to the checkConsistency() shown in Fig. B.6. In the GoInDirection behavior,

i.e. that the deviation of the direction of the waypoint ϕwn
from ϕgp must be within a

bound ∆ϕ. For the other behaviors the deviation of ϕwn
from the mean µwn

of the n

prior wn must be smaller than the corresponding standard deviation σwn
weighted with

αga. The parameters n, αga and ∆ϕ are set with respect to the current goalaccuracy. The

parameters and thresholds presented in this section have been derived experimentally. In

case the consistency check is passed successfully, wn is forwarded to the Execution Layer.

B.5. Execution Layer

The Execution Layer obtains global waypoints from the Behavior Control module which

has been described in the previous section. These are given as input to the Obstacle

Avoidance module, which generates motor commands for the mobile platform. This module

takes into account dynamic obstacles in the vicinity of the robot and ensures safe local

129

B. The ACE Project: Mobile Robot Navigation in Urban Environments

navigation. A method similar to [94] is used to generate smooth and safe robot trajectories.

Scenes and corresponding output of different behaviors from the conducted field exper-

iment with the ACE robot are shown in the next section.

B.6. Experimental Results

The navigation subsystem of the ACE robot has been tested in several indoor and outdoor

scenarios, over several months. In this section results and experiences from the major field

experiment are presented.

The objective of the experiment was for the ACE robot to reach Marienplatz, the central

square of Munich, starting from the Technical University of Munich. This is a distance

of approximately 1.5 km in the most active part of downtown Munich. The robot did not

have prior map knowledge or GPS and relied only on interactions with passers-by to get

directions and on its on-board sensors, described in Sec. B.2, in order to navigate safely.

The experiment was conducted successfully on 31 August 2008. The robot interacted with

38 persons before reaching its final goal after approximately 5 hours. The large number of

interactions explains also the relatively long completion time. Many people were curious

and wanted to try out the robot, therefore frequently stopping it in order to interact with

it. In some not so populated parts of the route, the robot was able to safely navigate on

the sidewalk in a given direction, for up to 250m before arriving at a crossroad.

For illustrative purposes, an aerial photo of the area where the robot navigated can

be found in Fig. B.7. The approximate trajectory of the robot is indicated by a yellow

line. During the experiment, a large occupancy grid map was build online by the SLAM

module. The algorithm, which was described in Sec. B.3.1, ran at 2Hz, used 200 particles

and retrieved data from the LMS200 laser range finder. Parts of the acquired map are

illustrated in Fig. B.7(a)-(b). Both occupancy grids have been overlapped with satellite

images taken from Google Earth to illustrate the accuracy of the maps, which have a

resolution of 15 cm. It can be seen that the described algorithm delivers accurate metric

maps from intersection to intersection and across larger areas.

Fig.B.8 shows three exemplary scenes encountered during the experiment (left side) and

the corresponding outputs of the Control Layer and Processing Layer (right side). Scene

(a) shows a situation in Follow behavior, where the robot is guided by the vision system. In

scene (b), the robot is located in a narrow sidewalk passage, where it retrieves a direction

from a passer-by and plans a drivable path by making use of the dual planning approach.

Scene (c) is in a highly populated street, where the straight direction of travel is blocked by

people. ACE circumvented the people by dynamically adjusting the behavior constraints.

The right side of Fig. B.8 shows the part of the occupancy grid, which is transformed

to C-Space and used for path planning. The transformation is indicated by the dark blue

regions around the obstacles (black). The black coordinate raster has a cell size of 5×5m
and is only used for illustration purposes. Replanning was performed at 2Hz. In scene (a),

the ACE robot (green triangle) crossed a street in Follow behavior. It can be observed

from the corresponding output (a2), that the planning module is inactive. The robot is

directly send to the position of the person (red dot), which is received from the vision

system [78].

130

B.6. Experimental Results

(a) (b)

64m64m

263m

a

b

B.8(a)

B.8(b)

B.8(c)

Fig. B.7.: Downtown area of Munich. The route (∼ 1.5 km) of the robot from the Techni-
cal University of Munich to Marienplatz is indicated by the yellow line. (a)-(b):
Parts of the map generated by the SLAM module during navigation that cor-
respond to the two representative situations which were chosen for the interde-
pendence analysis in Section 4.4.3. The occupancy grids have been overlapped
with satellite images taken from Google Earth to illustrate the accuracy of the
maps. The rectangles mark the positions of the scenes described in Fig. B.8.

131

B. The ACE Project: Mobile Robot Navigation in Urban Environments

(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. B.8.: Three different scenes encountered during the experiment (left side) and the
corresponding outputs of the Control and Processing Layer (right side). (a)
shows the ACE robot in Follow behavior, (b) shows the GoInDirection be-
havior on a narrow sidewalk and (c) shows the GoInDirection behavior in a
crowded place. The coordinate raster (black lines) has a cell size of 5m×5m
and is only used for illustrative purposes.

132

B.6. Experimental Results

(a) (b)

Fig. B.9.: Two scenes from the field experiment in the Deutsches Museum.

In scene (b), a person was pointing into the direction the ACE robot should follow

in order to reach Marienplatz. The direction is perceived by the vision system with a

detection rate of 80.2% and an accuracy of 6.8◦, and send to the Behavior Control module.

There it is transformed and forwarded to the Path Planning module, which is active in

this situation. In Fig. B.8(b2) the Voronoi Graph (blue lines), which traverses the free

space (white), and resulting path (three parallel red lines) can be seen. The shown path

illustrates the advantage of the dual path planning approach. The first two waypoints

(red dots) correspond to nodes retrieved from the Voronoi Graph. While the path would

proceed straight to the corner of the obstacle in the bottom (below the second waypoint)

if only the bounding boxes were used, the extension with the Voronoi Graph keeps the

robot in the center of the narrow sidewalk leading to a maximal clearance from obstacles.

However, the passage in the area of the third and fourth waypoint is closer than the

preferred obstacle distance used for the Voronoi Graph. To drive through this area, the

ACE robot needs to get as close to the obstacles as possible. This is enabled by using

the nodes from the bounding boxes. The solid red center line indicates the actual path

through free C-Space. The dashed red lines on the left and right indicate the path through

free space (i.e. without C-Space transformation) broadened by the robot width.

Fig. B.8(c) shows the GoInDirection behavior in a crowded street where the direct way

is blocked. To proceed into the goal direction ϕgp, indicated by the line between the 2nd

and 3rd waypoint, the ACE robot is forced to bypass the persons by driving almost into

the opposite direction (1st waypoint). This leads to an inconsistency with the desired goal

accuracy, what is mastered by temporarily relaxing the goal accuracy and consequently

allowing the ACE robot to temporarily deviate from ϕgp. The maximum allowed deviation

has been experimentally set to ∆ϕ = 90◦.

In 2008 also a second field experiment was conducted where the robot was part of

a museum exhibition from which scenes are shown in Fig. B.9. The demonstration was

successfully performed without any required algorithmic modifications to the system, what

indicates the suitability of the navigation subsystem for both indoor and outdoor settings.

133

B. The ACE Project: Mobile Robot Navigation in Urban Environments

B.7. Conclusion

This chapter described the navigation subsystem of the ACE robot, which has been de-

signed to navigate autonomously in highly populated urban environments, based only on

information extracted by interactions with humans and its on-board sensors. ACE in-

tegrates innovative algorithms for dealing with the problems of SLAM, path planning in

unstructured environments and the selection, monitoring and control of different naviga-

tion behaviors. Results from an extensive field experiment, conducted in the downtown city

area of Munich (www.ace-robot.de), show that the robot is capable of navigating safely

in highly populated environments over long time periods, while dealing with unexpected

situations which occur frequently in real-world settings.

134

C. Map Overview

During the experimental evaluation described in Section 4.5.3 the maps described in the

following were used. The maps differ with respect to the four parameters shown in Ta-

ble C.1. The ratio = x/y specifies that x dynamic objects are located on the short and y

dynamic objects on the long way between robot and goal. Swapped indicates whether the

start and goal positions are mirrored, e.g. map 13 has the mirrored positions of map 1.

Shifted relates to a clockwise shift of start and goal position by the respective percentage

of the short path length. The latter always remains the same. The parameter Rotation

indicates a clockwise rotation of the entire map by the specified value.

The maps 1 to 20 were obtained by generating all possible combinations of Swapped,

Shifted and Rotation and then randomizing those sequence. Next each map was assigned

a specific ratio, such that each ratio occurs exactly four times.

Parameter Range of values

Ratio 1/1, 1/3, 3/1, 1/5, 5/1
Swapped yes, no
Shifted 0%, 20%, 40%
Rotation 0◦, 90◦, 180◦, 270◦

Tab. C.1.: Map parameters and respective ranges of values.

135

C. Map Overview

robot

dynamic object

goal

object path

Map 4 Map 5Map 3

Map 6

Ratio Swapped Shifted Rotation

Map 3 5/1 No 0% 180°

Map 4 1/3 No 0% 270°

Map 5 5/1 No 20% 0°

Map 6 1/5 No 20% 90°

136

Ratio Swapped Shifted Rotation

Map 7 1/1 No 20% 180°

Map 8 1/1 No 20% 270°

Map 9 3/1 No 40% 0°

Map 10 3/1 No 40% 180°

Map 7 Map 8 Map 9

Map 10

Map 14

Map 13Map 11 Map 12

Ratio Swapped Shifted Rotation

Map 11 1/5 No 40% 270°

Map 12 1/3 Yes 0% 0°

Map 13 5/1 Yes 0% 90°

Map 14 1/3 Yes 0% 180°

137

C. Map Overview

Map 15 Map 17Map 16

Map 18

Ratio Swapped Shifted Rotation

Map 15 1/5 Yes 0% 270°

Map 16 3/1 Yes 20% 90°

Map 17 1/5 Yes 20% 270°

Map 18 1/1 Yes 40% 0°

138

Bibliography

[1] G.T. Anderson and Y. Gang. A proposed measure of environmental complexity for

robotic applications. In Proc. of the Int. Conf. on Systems, Man and Cybernetics,

2007.

[2] T. Arai, E. Pagello, and L.E. Parker. Editorial: Advances in multi-robot systems.

IEEE Transactions on Robotics and Automation, 18:655–661, 2002.

[3] K. J. Arrow. Essays in the theory of risk-bearing. Markham Publishing Company,

1971.

[4] T. Asfour, K. Regenstein, P. Azad, J. Schröder, N. Vahrenkamp, and R. Dillmann.

ARMAR-III: An integrated humanoid platform for sensory-motor control. In Proc.

of the Int. Conf. on Humanoid Robots (Humanoids), 2006.

[5] A. Avizienis, J.C. Laprie, and B. Randell. Fundamental concepts of computer sys-

tem dependability. In Proc. of the Workshop on Robot Dependability: Technological

Challenge of Dependable Robots in Human Environments, 2001.

[6] P. Beeson, N. K. Jong, and B. Kuipers. Towards autonomous topological place

detection using the extended voronoi graph. In Proc. of the IEEE Int. Conf. on

Robotics and Automation (ICRA), 2005.

[7] D.P. Bertsekas. The auction algorithm for assignment and other network flow prob-

lems: A tutorial. Interfaces, 20:133–149, 1990.

[8] R. P. Bonasso, D. Kortenkamp, D. P. Miller, and M. Slack. Experiences with an

architecture for intelligent, reactive agents. Journal of Experimental and Theoretical

Artificial Intelligence, 9:237–256, 1995.

[9] S. Bothelho and R. Alami. Robots that cooperatively enhance their plans. In Proc.

of the Int. Symposium on Distributed Autonomous Robotic Systems (DARS), 2000.

[10] J. Bredin, R. T. Maheswaran, C. Imer, T. Basar, D. Kotz, and D. Rus. A game-

theoretic formulation of multi-agent resource allocation. In Proc. of the Int. Conf.

on Autonomous Agents, 2000.

[11] P. Brucker. Scheduling Algorithms. Springer Verlag, 2007.

[12] A. Campbell, A. S. Wu, and R. Shumaker. Multi-agent task allocation: Learning

when to say no. In Proc. of the Conf. on Genetic and Evolutionary Computation,

2008.

139

Bibliography

[13] H. Chan. Sensitivity Analysis of Probabilistic Graphical Models. PhD thesis, Univer-

sity of California, Los Angeles, 2005.

[14] J. Chen, X. Yan, H. Chen, and D. Sun. Resource constrained multirobot task allo-

cation with a leader-follower coalition method. In Proc. of the IEEE Int. Conf. on

Intelligent Robots and Systems (IROS), 2010.

[15] F. Chenavier and J.L. Crowley. Position estimation for a mobile robot using vision

and odometry. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),

1992.

[16] H.I. Christensen and W. Förstner. Performance characteristics of vision algorithms.

Machine Vision and Applications, 9:215–218, 1997.

[17] E.J. Clarke and B.A. Barton. Entropy andMDL discretization of continuous variables

for Bayesian belief networks. Int. Journal of Intelligent Systems, 15:61–92, 2000.

[18] T.H.J. Collett, B.A. MacDonald, and B.P. Gerkey. Player 2.0: Toward a practical

robot programming framework. In Proc. of the Australasian Conf. on Robotics and

Automation (ACRA), 2005.

[19] W. Cook and A. Rohe. Computing minimum-weight perfect matchings. INFORMS

Journal on Computing, 11:138–148, 1999.

[20] G.F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic

networks from data. Machine Learning, 9:309–347, 1992.

[21] T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley & Sons,

1991.

[22] J.W. Crandall and M.A. Goodrich. Measuring the intelligence of a robot and its

interface. In Proc. of the Workshop on Performance Metrics for Intelligence Systems

(PerMIS), 2003.

[23] O. Cuisenaire. Distance Transformations: Fast Algorithms and Applications to Med-

ical Image Processing. PhD thesis, Universite Catholique de Louvain, 1999.

[24] DARPA. Urban challenge - rules, 2007.

[25] M.B. Dias. TraderBots: A New Paradigm for Robust and Efficient Multirobot Coor-

dination in Dynamic Environments. PhD thesis, Robotics Institute, Carnegie Mellon

University, 2004.

[26] S. Dubowsky, F. Genot, S. Godding, H. Kozono, A. Skwersky, H. Yu, and L.S. Yu.

PAMM - a robotic aid to the elderly for mobility assistance and monitoring: A

”helping-hand” for the elderly. In Proc. of the IEEE Int. Conf. on Robotics and

Automation (ICRA), 2000.

[27] J.M. Evans. HelpMate: An autonomous mobile robot courier for hospitals. In Proc.

of the IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 1994.

140

[28] A. Farinelli, L. Iocchi, and D. Nardi. Multi robot systems: A classification focused

on coordination. IEEE Transactions on System Man and Cybernetics, part B:2015–

2028, 2004.

[29] A. Farinelli, L. Iocchi, D. Nardi, and V.A. Ziparo. Assignment of dynamically per-

ceived tasks by token passing in multi-robot systems. In Proc. of the IEEE Special

issue on Multi-Robot Systems, 2006.

[30] R.B. Fierro, A.K. Das, J.R. Spletzer, J.M. Esposito, V. Kumar, J.P. Ostrowski, G.J.

Pappas, C.J. Taylor, Y. Hur, R. Alur, I. Lee, G.Z. Grudic, and B. Southall. A

framework and architecture for multi-robot coordination. Int. Journal of Robotics

Research, 21:977–998, 2002.

[31] R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial intelligence, 2:189–208, 1971.

[32] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the ACM (JACM), 34:596–615, 1987.

[33] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems.

SIAM Journal on Computing, 18:1013–1036, 1989.

[34] G. Garibott, S. Masciangelo, M. Ilic, and P. Bassino. Robolift: A vision guided au-

tonomous fork-lift for pallet handling. In Proc. of the IEEE Int. Conf. on Intelligent

Robots and Systems (IROS), 1996.

[35] E. Gat. Artificial intelligence and mobile robots, chapter Three-layer architectures,

pages 195–210. MIT Press, Cambridge, MA, USA, 1998.

[36] B. P. Gerkey and M. J. Matarić. Sold!: Auction methods for multirobot coordination.

IEEE Transactions On Robotics And Automation, 18:758–768, 2002.

[37] B. P. Gerkey and M. J. Matarić. A formal analysis and taxomony of task allocation

in multi-robot systems. Int. Journal of Robotics Research (IJRR), 23:939–954, 2004.

[38] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and

D. Wilkins. PDDL: The planning domain definition language, version 1.2. Technical

report, Yale Center for Computational Vision and Control, 1998.

[39] P. J. Gmytrasiewicz and E. H. Durfee. Rational communication in multi-agent en-

vironments. Autonomous Agents and Multi-Agent Systems, 4:233–272, 2001.

[40] G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based SLAM with Rao-

Blackwellized particle filters by adaptive proposals and selective resampling. In Proc.

of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2005.

[41] H.-M. Gross, H.-J. Böhme, Ch. Schröter, S. Müller, A. König, C. Martin, M. Merten,

and A. Bley. ShopBot: Progress in developing an interactive mobile shopping assis-

tant for everyday use. In Proc. of the Int. Conf. on Systems, Man and Cybernetics,

2008.

141

Bibliography

[42] E. Guizzo. Three engineers, hundreds of robots, one warehouse. Spectrum, IEEE,

45:26–34, 2008.

[43] G.S. Guthart and J.K. Salisbury. The intuitiveTM telesurgery system: Overview and

application. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),

2000.

[44] D. Haehnel, W. Burgard, D. Fox, and S. Thrun. A highly efficient FastSLAM al-

gorithm for generating cyclic maps of large-scale environments from raw laser range

measurements. In Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems

(IROS), 2003.

[45] U. D. Hanebeck, N. Saldic, and G. Schmidt. A modular wheel system for mobile

robot applications. In Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems

(IROS), 1999.

[46] J. Held, A. Lampe, and R. Chatila. Linking mobile robot performances with the

environment using system maps. In Proc. of the IEEE Int. Conf. on Intelligent

Robots and Systems (IROS), 2006.

[47] J.M. Hollerbach et al. A roadmap for US robotics: From internet to robotics. Tech-

nical report, Computing Community Consortium, 2009.

[48] B. Horling and V. Lesser. A survey of multi-agent organizational paradigms. The

Knowledge Engineering Review, 19:281–316, 2005.

[49] M. Hosseini. Statistical Models for Agroclimate Risk Analysis. PhD thesis, University

of British Columbia, 2009.

[50] H.M. Huang, E. Messina, R. Wade, R. English, B. Novak, and J. Albus. Auton-

omy measures for robots. In Proc. of the Int. Mechanical Engineering Congress &

Exposition, 2004.

[51] M.N. Huhns and M.P. Singh. Readings in Agents. Morgan Kaufmann Publishers,

1998.

[52] T.L. Huntsberger, A. Trebi-Ollennu, H. Aghazarian, P.S. Schenker, P. Pirjanian, and

H.D. Nayar. Distributed control of multi-robot systems engaged in tightly coupled

tasks. Autonomous Robots, 17:79–92, 2004.

[53] A. Jacoff, E. Messina, and J. Evans. Performance evaluation of autonomous mobile

robots. Industrial Robot: An Int. Journal, 29:259–267, 2002.

[54] E. Jones, B. Browning, M.B. Dias, B. Argall, M. Veloso, and M. Stentz. Dynamically

formed heterogeneous robot teams performing tightly-coordinated tasks. In Proc. of

the IEEE Int. Conf. on Robotics and Automation (ICRA), 2006.

[55] N. Kalra, M.B. Dias, R.M. Zlot, and A. Stentz. Market-based multirobot coordina-

tion: A survey and analysis. Proc. of the IEEE, 94:1257–1270, 2006.

142

[56] N. Kalra, D. Ferguson, and A. Stentz. Hoplites: A market-based framework for

planned tight coordination in multirobot teams. In Proc. of the IEEE Int. Conf. on

Robotics and Automation (ICRA), 2005.

[57] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi. Humanoid robot

HRP-3. In Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems (IROS),

2008.

[58] J. Karvanen. Estimation of quantile mixtures via L-moments and trimmed L-

moments. Computational Statistics & Data Analysis, 51:947–959, 2006.

[59] J. Kiener and O. von Stryk. Cooperation of heterogeneous, autonomous robots: A

case study of humanoid and wheeled robots. In Proc. of the IEEE Int. Conf. on

Intelligent Robots and Systems (IROS), 2007.

[60] R. Koenker. Quantile Regression. Cambridge Univ Press, 2005.

[61] R. Korn and E. Korn. Option Pricing and Portfolio Optimization, volume 31. Amer-

ican Mathematical Society, 2001.

[62] B.H. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.

Springer Verlag, 2008.

[63] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research

Logistics, pages 83–97, 1955.

[64] V. Kumar, D. Rus, and S. Singh. Robot and sensor networks for first responders.

Pervasive Computing, IEEE, 3:24–33, 2005.

[65] A. Lampe and R. Chatila. Performance measure for the evaluation of mobile robot

autonomy. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),

2006.

[66] P. Langley, J.E. Laird, and S. Rogers. Cognitive architectures: Research issues and

challenges. Cognitive Systems Research, 10:141–160, 2009.

[67] R.N. Lass, E.A. Sultanik, and W.C. Regli. Metrics for Multiagent Systems, chapter 1,

pages 1–19. Springer, 2009.

[68] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[69] D. Lecking, O. Wulf, V. Viereck, J. Tödter, and B. Wagner. The RTS-STILL robotic

fork-lift. EURON Technology Transfer Award, 2005.

[70] V.J. Leon, D. Kortenkamp, and D. Schreckenghost. A planning, scheduling and con-

trol architecture for advanced life support systems. In NASA Workshop on Planning

and Scheduling for Space, 1997.

[71] K. Lerman, C. Jones, A. Galstyan, and M.J. Matarić. Analysis of dynamic task

allocation in multi-robot systems. Int. Journal of Robotics Research, 25:225–241,

2006.

143

Bibliography

[72] B. Liepert et al. Strategic Research Agenda for robotics in Europe. Technical report,

The European Robotics Technology Platform (EUROP), 2009.

[73] H. Lim, Y. Kang, J. Lee, J. Kim, and B.J. You. Multiple humanoid cooperative con-

trol system for heterogeneous humanoid team. In Proc. of the IEEE Int. Symposium

on Robot and Human Interactive Communication, 2008.

[74] M. Matarić, G. Sukhatme, and E. Stergaard. Multirobot task allocation in uncertain

environments. Autonomous Robots, 14:255–263, 2003.

[75] G. A. Mills-Tettey, A. Stentz, and M. B. Dias. The dynamic Hungarian algorithm for

the assignment problem with changing costs. Technical Report CMU-RI-TR-07-27,

Robotics Institute, Carnegie Mellon University, 2007.

[76] G. Montemayor and J. Wen. Decentralized collaborative load transport by multiple

robots. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2005.

[77] H.P. Moravec. Sensor fusion in certainty grids for mobile robots. Sensor Devices and

Systems for Robotics, pages 243–276, 1989.

[78] Q. Mühlbauer, S. Sosnowski, T. Xu, T. Zhang, K. Kühnlenz, and M. Buss. Naviga-

tion through urban environments by visual perception and interaction. In Proc. of

the IEEE Int. Conf. on Robotics and Automation (ICRA), 2009.

[79] Armin Müller, Alexandra Kirsch, and Michael Beetz. Transformational planning for

everyday activity. In Proc. of the Int. Conf. on Automated Planning and Scheduling

(ICAPS), 2007.

[80] N. Munoz, J. Valencia, and N. Londono. Evaluation of navigation of an autonomous

mobile robot. In Proc. of the Workshop on Performance Metrics for Intelligence

Systems, 2007.

[81] R. Murai, T. Sakai, H. Uematsu, H. Nakajima, K. Mitani, and H. Kitano. Conveyance

system using autonomous mobile robots. In IEEE Workshop on Advanced Robotics

and its Social Impacts (ARSO), 2009.

[82] K. Murphy. Bayesian map learning in dynamic environments. In Advances in Neural

Information Processing Systems, 1999.

[83] K. Murphy. The Bayes Net Toolbox for Matlab. Computing Science and Statistics,

33:1024–1034, 2001.

[84] M. Nagarajan and G. Sosic. Game-theoretic analysis of cooperation among supply

chain agents: Review and extensions. European Journal of Operational Research,

187:719–745, 2008.

[85] J.E. Oakley and A. O’Hagan. Probabilistic sensitivity analysis of complex models:

A Bayesian approach. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 66:751–769, 2004.

144

[86] T. Odashima, M. Onishi, K. Tahara, K. Takagi, F. Asano, Y. Kato, and

H. Nakashima. A soft human-interactive robot RI-MAN. Video Proc. of the IEEE

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

[87] RIKEN: The Institute of Physical and Ltd. Chemical Research, Tokai Rubber In-

dustries. Realization of transfer operations by nursing-care assistant robot RIBA.

Company News, 2009.

[88] H.K. Park, H.S. Hong, H.J. Kwon, and M.J. Chung. A nursing robot system for the

elderly and the disabled. Int. Journal of Human-friendly Welfare Robotic Systems

(HWRS), 2:11–16, 2001.

[89] L.E. Parker. ALLIANCE: An architecture for fault-tolerant multi-robot cooperation.

IEEE Transactions on Robotics and Automation, 14:220–240, 1998.

[90] L.E. Parker. Distributed intelligence: Overview of the field and its application in

multi-robot systems. Journal of Physical Agents, 2:5–14, 2008.

[91] L.E. Parker and F. Tang. Building multi-robot coalitions through automated task

solution synthesis. Proc. of the IEEE, 94:1289–1305, 2006.

[92] H.V.D. Parunak. Applications of distributed artificial intelligence in industry. Foun-

dations of distributed artificial intelligence, 4:139–164, 1996.

[93] E.P.D. Pednault. ADL and the state-transition model of action. Journal of Logic

and Computation, 4:467–512, 1994.

[94] R. Philippsen and R. Siegwart. Smooth and efficient obstacle avoidance for a tour

guide robot. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),

2003.

[95] D.V. Pynadath and M. Tambe. The communicative multiagent team decision prob-

lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence

Research, 16:389–423, 2002.

[96] R. Robinson. Counting unlabeled acyclic digraphs. Combinatorial mathematics V,

622:28–43, 1977.

[97] RoboCup@Home. www.ai.rug.nl/robocupathome.

[98] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning algorithms for

POMDPs. Journal of Artificial Intelligence Research, 32:663–704, 2008.

[99] N. Roy, W. Burgard, D. Fox, and S. Thrun. Coastal navigation: Mobile robot

navigation with uncertainty in dynamic environments. In Proc. of the IEEE Int.

Conf. on Robotics and Automation (ICRA), 1999.

[100] S. Russell and P. Norvig. Artifical Intelligence: A Modern Approach. Prentice Hall,

3rd edition, 2009.

145

Bibliography

[101] A. Saltelli, K. Chan, and E.M. Scott, editors. Sensitivity Analysis. John Wiley &

Sons Inc, 2004.

[102] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé. Coalition

structure generation with worst case guarantees. Artificial Intelligence, 111:209–238,

1999.

[103] S. Sariel, T. Balch, and N. Erdogan. Incremental multi-robot task selection for

resource constrained and interrelated tasks. In Proc. of the IEEE Int. Conf. on

Intelligent Robots and Systems (IROS), 2007.

[104] G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464,

1978.

[105] S. Seuken and S. Zilberstein. Formal models and algorithms for decentralized decision

making under uncertainty. Autonomous Agents and Multi-Agent Systems, 17:190–

250, 2008.

[106] O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation.

Artificial Intelligence, 101:165–200, 1998.

[107] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game Theoretic

and Logical Foundations. Cambridge University Press, 2009.

[108] Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics.

Springer, 2008.

[109] RoboCup Soccer. http://www.robocup.org/robocup-soccer/.

[110] S. Sosnowski, A. Bittermann, K. Kühnlenz, and M. Buss. Design and evaluation of

emotion-display EDDIE. In Proc. of the IEEE Int. Conf. on Intelligent Robots and

Systems (IROS), 2006.

[111] S. Srinivasa, D. Ferguson, M.V. Weghe, R. Diankov, D. Berenson, C. Helfrich, and

H. Strasdat. The robotic busboy: Steps towards developing a mobile robotic home

assistant. In Proc. of the Int. Conf. on Intelligent Autonomous Systems, 2008.

[112] C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration using

Rao-Blackwellized particle filters. In Proc. of Robotics Science and Systems (RSS),

2005.

[113] B. Stanczyk. Developement and Control of an Anthropomorphic Telerobotic Sys-

tem. PhD thesis, Technische Universität München, Institute for Automatic Control

Engineering, 2006.

[114] P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning

perspective. Autonomous Robots, 8:345–383, 2000.

146

[115] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox,

D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Probabilistic algorithms

and the interactive museum tour-guide robot minerva. Int. Journal of Robotics

Research (IJRR), 19:972–999, 2000.

[116] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,

J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,

P. Stang, S. Strohband, C. Dupont, L.E. Jendrossek, C. Koelen, C. Markey, C. Rum-

mel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,

A. Kaehler, A. Nefian, and P. Mahoney. Stanley - the robot that won the DARPA

grand challenge. Journal of Field Robotics, 23:661–692, 2006.

[117] C. Tovey, M. Lagoudakis, S. Jain, and S. Koenig. The generation of bidding rules for

auction-based robot coordination. In Proc. of the Int. Multi-Robot Systems Work-

shop, 2005.

[118] I. Ulrich and J. Borenstein. VFH+: Reliable obstacle avoidance for fast mobile

robots. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2002.

[119] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M.N. Clark, J. Dolan,

D. Duggins, C. Galatali, T. andGeyer, et al. Autonomous driving in urban envi-

ronments: Boss and the urban challenge. Journal of Field Robotics, 25:425–466,

2008.

[120] J. van den Berg, D. Ferguson, and J. Kuffner. Anytime path planning and replan-

ning in dynamic environments. In Proc. of the IEEE Int. Conf. on Robotics and

Automation (ICRA), 2006.

[121] L. Vig and J. A. Adams. A framework for multi-robot coalition formation. In Proc.

of the 2nd Indian Int. Conf. on Artificial Intelligence, 2005.

[122] L. Vig and J. A. Adams. Multi-robot coalition formation. IEEE Transactions on

Robotics, 22:637–649, 2006.

[123] N. Vlassis. A concise introduction to multiagent systems and distributed AI. Syn-

thesis Lectures on Artificial Intelligence and Machine Learning, 1:1–71, 2007.

[124] G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-

gence. The MIT press, 2000.

[125] B.B. Werger and M. J. Matarić. Broadcast of local eligibility: Behavior-based con-

trol for strongly cooperative robot teams. In Proc. of the Fourth Int. Conf. on

Autonomous Agents, 2000.

[126] WillowGarage. Pr2: www.willowgarage.com/pages/pr2/overview.

[127] B. Yamauchi. Frontier-based exploration using multiple robots. In Proc. of the Int.

Conf. on Autonomous Agents, 1998.

147

Bibliography

[128] M.M. Zavlanos, L. Spesivtsev, and G.J. Pappas. A distributed auction algorithm

for the assignment problem. In Proc. of the IEEE Conf. on Decision and Control

(CDC), 2008.

Own Publications

[129] D. Althoff, O. Kourakos, M. Lawitzky, A. Mörtl, M. Rambow, F. Rohrmüller,

D. Brščić, S. Hirche, and M. Buss. An architecture for real-time control in multi-robot

systems. In 3rd Int. Workshop on Human-Centered Robotic Systems, 2009.

[130] A. Bauer, K. Klasing, G. Lidoris, Q. Mühlbauer, F. Rohrmüller, S. Sosnowski, T. Xu,

K. Kühnlenz, D. Wollherr, and M. Buss. The Autonomous City Explorer: To-

wards natural human-robot interaction in urban environments. Int. Journal of Social

Robotics, 1:127–140, 2009.

[131] K. Klasing, G. Lidoris, A. Bauer, Florian Rohrmüller, D. Wollherr, and M. Buss. The

Autonomous City Explorer: Towards semantic navigation in urban environments. In

1st Int. Workshop on Cognition for Technical Systems, 2008.

[132] G. Lidoris, F. Rohrmüller, D. Wollherr, and M. Buss. System interdependence anal-

ysis for autonomous robots. Int. Journal of Robotics Research, 30:601–614, 2011.

[133] G. Lidoris, F. Rohrmüller, D. Wollherr, and M. Buss. The Autonomous City Explorer

(ACE) Project - mobile robot navigation in highly populated urban environments.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2009.

[134] M. Rambow, F. Rohrmüller, O. Kourakos, D. Brščić, D. Wollherr, S. Hirche, and

M. Buss. A Framework for Information Distribution, Task Execution and Decision

Making in Multi-Robot Systems. IEICE TRANSACTIONS on Information and

Systems, E93-D:1352–1360, 2010.

[135] F. Rohrmüller, M. Althoff, D. Wollherr, and M. Buss. Probabilistic mapping of

dynamic obstacles using Markov chains for replanning in dynamic environments. In

Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems (IROS), September

2008.

[136] F. Rohrmüller, O. Kourakos, M. Rambow, D. Brščić, D. Wollherr, S. Hirche, and

M. Buss. Interconnected performance optimization in complex robotic systems. In

Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 2010.

[137] F. Rohrmüller, G. Lidoris, D. Wollherr, and M. Buss. System interdependence anal-

ysis for autonomous mobile robots. In Proc. of the IEEE Int. Conf. on Intelligent

Robots and Systems (IROS), 2009.

148

	Introduction
	Motivation
	Practical Applications and Demands
	Taxonomy of Multi-Robot Systems (MRSs)
	Interfield Taxonomy and Terminology
	Intrafield Taxonomy: Multi-Robot Systems at a Glance

	Open Challenges in the Field
	Outline and Contributions

	Cooperative Action Selection
	The Scope of Action Selection within a General System Architecture
	Problem Definition
	Taxonomy for Multi-Robot Task Planning Problems
	Summary

	A Framework for Action Selection focusing on Task Allocation in MRSs
	Introduction
	Related Work
	Problem Definition
	The MuRoCo Framework
	General Approach
	Considering Heterogeneity
	Single-Robot Tasks
	Multi-Robot Tasks
	Robustness and Failure Recovery
	Selection of the Auctioneer Role
	Failure-Aware Cost Computation
	Error Recovery

	Analysis of the Approach
	Soundness and Completeness
	Scalability
	Computational Complexity
	Communicational Complexity
	Efficiency of Pruning Strategies

	Optimality

	Experimental Results
	Experimental Setup
	Description of the Robotic Hardware
	The Service Scenario

	The Course of Action Selection during a Cooperative Service Task
	The Course of Action Selection under Uncertainty
	Benchmark Evaluation

	Summary

	Uncertainty- and Situation-Aware Performance Estimation
	Introduction
	Related Work
	Problem Definition
	Learning System Interdependence Models
	System Interdependence Analysis
	Algorithm Overview
	Component Performance Evaluation
	Learning Bayesian Network Structures
	Information-Theoretic Criteria

	A Case Study on the ACE Robot
	Indicators for Perception Performance
	Indicators for Planning Performance
	Indicators for Execution Performance
	All Performance Indicators at a Glance

	Experimental Results
	Discussion

	Uncertainty- and Risk-Aware Reward Estimation
	Quantile-Based Reward Estimation
	An Application Example
	Experimental Results
	Situation-Aware Action Selection
	Reliable Reward Estimation
	Forecasting of Poor Performance

	Discussion

	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	Distribution of the Coalition Responsibilities in MuRoCo
	The ACE Project: Mobile Robot Navigation in Urban Environments
	Motives for the Project
	System Description
	Processing Layer
	Simultaneous Localization and Mapping
	Grid Fusion
	Path Planning

	Control Layer
	Robot Behavior Description
	Behavior Selection
	Behavior Control

	Execution Layer
	Experimental Results
	Conclusion

	Map Overview
	Bibliography

