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1 Introduction

One dollar today is better than one dollar tomorrow. And one dollar tomorrow is obviously
better than one dollar in a year. The question that captures us is what we should pay
today for a guaranteed cash payment of one dollar at some specified time in the future.
This is the question we deal with when pricing a zero-coupon bond. It has been one of
the main challenges in interest-rate theory to find the driving factors of these zero-coupon
bond prices. Therefore many different interest-rate models evolved such as the models by
[Vasicek [1977]], [Brennan and Schwartz [1979]] or [Ho and Lee [1979]] and many modifi-
cations have been made as well, e.g. by [Cox et al. [1985]].

Another important reason for developing interest-rate models is the pricing of interest
rate derivatives, i.e. financial instruments whose payoffs depend in some way on the level
of the underlying interest rates. The notional amount of interest rate derivatives globally
outstanding at the end of 2009 increased by 6% from the year before to an estimated
$426.8 trillion after a year of a decline due to the financial crisis.1Hence the interest rate
derivatives market can be considered the world´s biggest market.

Interest rate derivatives are more difficult to evaluate than equity or foreign exchange
derivatives which is due to a number of reasons. First of all the behaviour of an indi-
vidual interest rate is more complicated than that of a stock price or an exchange rate,
i.e. interest rates are driven by macroeconomic factors such as gross domestic products or
volatilities, which exhibit long-range dependence. We refer to [Henry and Zaffaroni [2003]]
for empirical evidence of this finding and will get back to it in detail later on. Secondly,
for many products it is necessary to develop a model that describes the entire zero-coupon
yield curve in order to valuate them. Moreover, the volatilities of different points on the
yield curve are different. And most obviously, interest rates are used both for discounting
and as the underlying defining the payoff of the derivative, which is different to the valu-
ation of stock options for example.

Due to these complexities new approaches for interest-rate models had to be developed.
For instance, amongst other models, [Heath et al. [1992]] came up with a more general and
unifying framework for interest-rate models. The aim of this thesis is to implement the
above mentioned long-range dependence of interest rates into the Heath-Jarrow-Morton
interest-rate model. The commonly used Brownian motion does not reflect this long-range
dependence due to its independent increments. Therefore we will embed fractional Brown-
ian motion into a Heath-Jarrow-Morton model following an approach by [Ohashi [2009]] in

1Numbers from [International Swaps and Derivatives Association [2009]]

1



1 Introduction

order to capture this dependence in our model. A line of argumentation for this approach
will be given. Therefore our mathematical focus is targeted at fractional Brownian motion,
where a lot of theory exists for, e.g. by [Samorodnitsky and Taqqu [2000]], [Pipiras and
Taqqu [2000]] or [Duncan et al. [2002]]. We will work through this theory always focused
on the purpose of interest-rate modelling. There has already been some research done
with embedding fractional Brownian motion into interest-rate models such as in [Fink
et al. [2010], Section 4] for a fractional Vasicek model. Even for a Heath-Jarrow-Morton
model other fractional approaches exist, for instance in [Gapeev [2004]] whereas his paper
only focuses on the Markovian case.

This thesis is organized as follows. We will start with some basic definitions used in
the course of this thesis and introduce the important notions for interest-rate markets in
Section 2.1. In Section 2.2 we will give a definition of fractional Brownian motion and an-
alyze its most relevant properties. Moreover we come up with an integration theory with
respect to fractional Brownian motion, which is different to ordinary stochastic calculus
and a bit more sophisticated. We will build our fractional Heath-Jarrow-Morton model
upon those preliminaries later on.

We will introduce some famous interest-rate models in Chapter 3, i.e. short-rate mod-
els that have been developed some time ago already, but which are still important for
interest-rate modelling theory. Hereby we will get an idea of what interest-rate modelling
is about and where problems may arise. Furthermore, this illustrates the evolution of those
interest-rate models. Additionally to our summary in the end, we will always provide a
conclusion for every chapter in order to point out the main results.

Afterwards we will go into detail with the Heath-Jarrow-Morton model in Chapter 4,
a model that takes on a different and more general approach by modelling forward rates.
We will give a closed form solution of bond prices in Section 4.1 and derive a no-arbitrage
condition in Section 4.2. This chapter is a very important step in order to understand
the differences to the short-rate models mentioned above and for providing the basics and
a thorough background for the fractional Heath-Jarrow-Morton model in Chapter 5, our
main focus of this thesis.

In Chapter 5 we start with the set-up of the fractional Heath-Jarrow-Morton model in
order to derive a closed form solution for the bond price process. We will need a lot of
maths in order to come up with a no-arbitrage framework and the change of measure for
deriving the no-arbitrage drift condition, which is a lot more sophisticated than in the
classical case as it will turn out. Consequently, this will enable us to state the bond price
in a conditional expectation form as well.

In Chapter 6 we will run simulations for the paths of fractional Brownian motion, the
underlying stochastic differential equations of some interest-rate models and finally for the
bond prices, too. This will necessitate mathematical prework as well and we will need to
specify our economic environment. The purpose of this chapter is to illustrate our results.
Therefore we will present several graphs for models under different assumptions.
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2 Preliminaries

2.1 Interest-Rate Markets

We will start off with some basic knowledge of interest-rate markets and introduce termi-
nology we will need throughout this thesis.
The guaranteed cash payment of one dollar in the future is one of the basic assets in
the interest-rate market. It is called a zero-coupon bond. At the evaluation time t ∈ R+

we have to pay a price P (t, T ) to receive that one dollar at the maturity date T ∈ R+,
T ≥ t, denoted in years. Zero-coupon bonds are traded in face value, also called nominal
value. ’Zero-coupon’ refers to the fact that there will be no payments during the lifetime
of this contract. Conversely, in interest-rate markets there are so-called coupon bonds as
well. For those the holder of the coupon bond receives some specified periodic payments
from the issuer of the coupon bond during the lifetime of the bond - the coupons. In
European markets coupons are usually paid once a year, whereas in the United States
coupon bonds may have semi-annual payments. Throughout this thesis we will focus on
the pricing of zero-coupon bonds since coupon bonds can be considered as a portfolio of
many zero-coupon bonds. In order to illustrate this let C(Ti), i = 1, ..., N , N ∈ N, with
0 ≤ T1 < T2 < ... < TN = T , denote the coupons of the bond paid at time Ti and T
the maturity of the bond. For this matter we denote the price of the coupon bond by
PC(t, T ). Then we can write

PC(t, T ) =
N∑

i=1

C(Ti)P (t, Ti),

where the last coupon payment C(TN) includes the face value of the bond as well.
The time T − t refers to the period of time t to T and is called time to maturity. Moreover
we focus on the case of non-defaultable bonds, assuming the issuer of the bond can
always meet its liabilities and will not go bankrupt. Formally this can be expressed by
P (T, T ) = 1. We will touch on the much more sophisticated case of defaultable bonds in
brief later on.
Now we will state some important definitions, we will need in the following chapters of
this thesis.

Definition 2.1 (The short rate). The short rate is the interest rate at time t for an
infinitesimal period of time given the limit exists, which is why we refer to it as the
instantaneous short rate. Formally this is

r(t) := R(t, t) := − lim
∆tց0

logP (t, t+ ∆t)

∆t
,

3



2 Preliminaries

where R(t, T ) is the zero rate (or spot rate) that denotes the appreciation of one unit at
time t in an interval [t, T ] and P (t, T ) is the price of the zero-coupon bond at time t with
maturity T and face value (or liability) L = 1. [Zagst [2007]]

We repeat that the term ’instantaneous’ refers to the fact that at time t one borrows
money at a certain interest rate and pays it back just one instant later.

Remark 2.2. The mapping T 7→ R(t, T ) is the zero curve (or spot curve), which describes
the evolution of spot rates for different maturities. The mapping T 7→ P (t, T ) is called
discount curve at time t. So, a simple approach to a bond price would be

P (t, T ) = e−R(t,T )(T−t).

The zero curve is called normal if its slope is positive, i.e. the mapping T 7→ R(t, T ) is
increasing whereas the zero curve is called inverse if its slope is negative, i.e. the mapping
T 7→ R(t, T ) is decreasing. A flat zero curve would be characterized by a slope of zero.

Figure 2.1: Zero curves of the German Bundesbank at different times in history2

We observe many normal zero curves in Figure 2.1 except of the yellow curve in 1990,
which can be considered flat and the green curve in 1991, which is inverse. This develop-
ment was caused by the German reunification, an extraordinary economic circumstance.

2Numbers from [Deutsche Bundesbank]
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2.1 Interest-Rate Markets

Remark 2.3. Moreover the short rate can be viewn in a different way, that is

− ∂

∂T
logP (t, t) : = − ∂

∂T
logP (t, T )

∣∣∣∣
T=t

= − lim
∆tց0

logP (t, T + ∆t) − logP (t, T )

∆t

∣∣∣∣
T=t

= − lim
∆tց0

logP (t, T + ∆t)

∆t

∣∣∣∣
T=t

+ lim
∆tց0

logP (t, T )

∆t

∣∣∣∣
T=t

= − lim
∆tց0

logP (t, t+ ∆t)

∆t
= r(t),

where the last equation stems from the fact that the second part of the sum equals zero
since P (t, t) = 1.

Definition 2.4 (The forward short rate). The instantaneous forward short rate (from
now on only referred to as forward rate) is the interest rate for an infinitesimal period of
time at time T measured at time t ≤ T , i.e.

f(t, T ) := − lim
∆tց0

logP (t, T + ∆t) − logP (t, T )

∆t
= − ∂

∂T
logP (t, T ). (2.1)

The mapping T 7→ f(t, T ) is called forward curve. Obviously r(t) = f(t, t) holds. [Zagst
[2007]]

There is also a different, more intuitive approach to the forward rate in [Zagst [2002],
chapter 4]. We imagine a contract (a so-called forward zero-coupon bond) in which, at
time t, we agree at no cost to exchange a zero-coupon bond at a future time T1 ≥ t with
maturity T2 ≥ T1 for a cash payment denoted by P (t, T1, T2). The question is how large the
price P (t, T1, T2) has to be. Therefore we come up with a simple no-arbitrage argument.
We sell a number P (t, T1, T2) of the zero-coupon bonds with maturity T1 at time t and
we agree to invest at the future time T1 the amount P (t, T1, T2)P (t, T1), that we receive
from this sale, in a zero-coupon bond with maturity T2. By a simple no-arbitrage reasoning
this portfolio has to be identical to a zero-coupon bond with maturity T2. Otherwise there
would be an opportunity for a risk-less profit. Therefore the price of the portfolio has to
equal the price of the T2-zero-coupon bond at all times. Formally this is

P (t, T1, T2)P (t, T1) = P (t, T2)

⇔ P (t, T1, T2) =
P (t, T2)

P (t, T1)
.

(2.2)

Analogously to the zero rate in Definition 2.1 we denote the corresponding forward zero
rate by R(t, T1, T2). Then we know

P (t, T1, T2) = e−R(t,T1,T2)(T2−T1) ⇔ R(t, T1, T2) = − logP (t, T1, T2)

T2 − T1

,
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2 Preliminaries

which yields by 2.2

R(t, T1, T2) = − logP (t, T2) − logP (t, T1)

T2 − T1
.

We let T2 − T1 approach zero and T1 = T to come up with the instantaneous forward
short rate

f(t, T ) := R(t, T, T ) := − lim
∆t→0

logP (t, T + ∆t) − logP (t, T )

∆t
= − ∂

∂T
logP (t, T ).

Remark 2.5. If the zero curve is normal then the forward curve lies above the zero curve,
since it has to balance the gap between short maturity and long maturity (see Figure 2.2
below). Conversely, if the zero curve is inverse then the forward curve lies below the zero
curve. Moreover the zero curve and the forward curve coincide for t = T . Formally this
can be easily verified by

f(t, T ) = − ∂

∂T
logP (t, T ) =

∂

∂T

(
R(t, T )(T − t)

)
= R(t, T ) + (T − t)

∂

∂T
R(T, t),

where ∂
∂T
R(T, t) is positive for a normal zero curve and negative for an inverse zero curve

respectively. For t = T we obviously get f(T, T ) = R(T, T ) = r(T ).

Figure 2.2: Zero curve and forward curve3

In Figure 2.2 we can easily see how forward rate and zero rate drift apart, then move back
towards each other and finally coincide at t = T in the case of a normal zero curve.

In the following chapters we will see that both the short rate r(t) and the forward rate
f(t, T ) are starting points for many interest rate models in order to describe the evolution
of interest rates over time that is the term structure of interest rates.

3Figure from [Murray State University]
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2.2 Fractional Brownian Motion

2.2 Fractional Brownian Motion

In this section we will give some important mathematical background knowledge - defini-
tions and conclusions we will need throughout this thesis. The main parts of this section
on fractional Brownian motion are based on the chapter about self-similar processes in
[Samorodnitsky and Taqqu [2000]].

Definition 2.6 (Fractional Brownian motion). A fractional Brownian motion (fBm)
{BH(t)}t∈R with Hurst parameter H ∈ (0, 1) is a Gaussian zero-mean process with BH(0) =
0, stationary increments and covariance function

RH(t1, t2) := Cov
(
BH(t1), B

H(t2)
)

=
1

2

(
|t1|2H + |t2|2H − |t1 − t2|2H

)
Var(BH(1)), (2.3)

for t1, t2 ∈ R.

From now on we will always deal with the standard fractional Brownian motion, that is
Var(BH(1)) = 1. In this case and for H = 1

2
we get a standard Brownian motion, since

the increments will be independent in this case.
Recall that a real valued process {X(t)}t∈R has stationary increments if for h ∈ R+ we

have {X(t+ h) −X(h)}t∈R
d
= {X(t) −X(0)}t∈R.

There are some important properties of fractional Brownian motion, which we will discuss
in the following.

Definition 2.7 (Self-similarity). A real valued process {X(t)}t∈R is self-similar with in-
dex H > 0 (H-ss) if for all a > 0 the finite-dimensional distributions of {X(at)}t∈R

are identical to the finite-dimensional distributions of {aHX(t)}t∈R, i.e. if for any d ≥
1, t1, ..., td ∈ R and any a > 0

(
X(at1), ..., X(atd)

) d
=

(
aHX(t1), ..., a

HX(td)
)
. (2.4)

Lemma 2.8. (i) For every H-self-similar process X we have X(0) = 0 a.s., since for

each a > 0 we get X(0) = X(a0)
d
= aHX(0).

(ii) Every H-self similar process X with stationary increments (H-sssi) is symmetric,
i.e.

X(−t) = X(−t) −X(0)
d
= X(0) −X(t)

(i)
= −X(t) for all t ∈ R. (2.5)

Theorem 2.9. Fractional Brownian motion exists and is the only Gaussian process that
is self-similar with index H ∈ (0, 1) and has stationary increments.

Proof. Existence: Let X be a zero-mean Gaussian random variable whose characteristic
function is given by

ϕX(θ) := E[eiθX ] = exp(−σ2θ2), θ ∈ R, σ ∈ R+.

7



2 Preliminaries

The finite-dimensional distributions of a Gaussian process {X(t)}t∈R satisfy

E[ei
∑m

j=1 θjX(ti)] = exp

(
− 1

2

m∑

j=1

m∑

k=1

A(tj, tk)θjθj +
m∑

j=1

µ(tj)θj

)
,

where θ1, ...θm ∈ R, m ≥ 1, µ(tj) is a real-valued function for all j = 1, ..., m, t ∈ R and
{A(t1, t2) : t1, t2 ∈ R} is non-negative definite.
Conversely, to each µ and A corresponds a Gaussian process with µ being its mean and
A being its autocovariance function.
Now fix 0 < H < 1:
Since the function {|t1|2H + |t2|2H − |t1 − t2|2H : t1, t2 ∈ R} is non-negative definite (for
a proof see [Samorodnitsky and Taqqu [2000], Lemma 2.10.8]), there exists a Gaussian
process {X(t)}t∈R with mean zero and covariance function

RH(t1, t2) =
1

2

(
|t1|2H + |t2|2H − |t1 − t2|2H

)
, (2.6)

t1, t2 ∈ R.
We still need to show that this process is self-similar: We get

Cov
(
X(at1), X(at2)

)
=

1

2

(
|at1|2H + |at2|2H − |at1 − at2|2H

)

=
a2H

2

(
|t1|2H + |t2|2H − |t1 − t2|2H

)
,

where the self-similarity index is H ′ := 2H > 0. The mean is zero on both sides. Since
the Gaussian distribution is completely determined by its mean and covariance, we can
conclude that this process is self-similar.
Similarly the stationarity of the increments can be shown:

Cov
(
X(t1 + h) −X(h), X(t2 + h) −X(h)

)
=

1

2

(
|t1 + h|2H + |t2 + h|2H − |t1 − t2|2H

)

− 1

2

(
|t1 + h|2H + |h|2H − |t1|2H

)
− 1

2

(
|h|2H + |t2 + h|2H − |−t2|2H

)

+
1

2

(
|h|2H + |h|2H

)
=

1

2

(
|t1|2H + |t2|2H − |t1 − t2|2H

)

= Cov
(
X(t1) −X(0), X(t2) −X(0)

)

Since the mean is zero in either case, the same reasoning for a Gaussian distribution as
for self-similarity yields stationarity of the increments.
Uniqueness: Let {Y (t)}t∈R be another H-sssi Gaussian process and Var(Y (1)) = 1 as
for the standard fractional Brownian motion. We utilize these properties to derive the
covariance as

E[Y (t1)Y (t2)] =
1

2

(
E[Y 2(t1)] + E[Y 2(t2)] − E[(Y (t1) − Y (t2))

2]
)

=
1

2

(
E[Y 2(t1)] + E[Y 2(t2)] − E[(Y (t1 − t2) − Y (0))2]

)

=
1

2

(
|t1|2H + |t2|2H − |t1 − t2|2H

)
.

8



2.2 Fractional Brownian Motion

The first step is a simple rearrangement. The second step is due to the stationary in-
crements where we use the result of Lemma 2.8, (i) for a H-self-similar process, that is
Y (0) = 0 a.s. The last step utilizes the H-self similarity of Y and E[Y 2(1)] = 1.
Moreover we will have to calculate the mean of Y (t): Since Y (t) is H-sssi and Y (0) = 0,
we know that E[Y (1)] = E[Y (2) − Y (1)] = 2HE[Y (1)] − E[Y (1)] = (2H − 1)E[Y (t)]. We
can conclude E[Y (1)] = 0 and hence E[Y (t)] ≡ 0, because E[Y (−1)] = −E[Y (1)] due to
Lemma 2.8, (ii) and E[Y (t)] = |t|HE[Y (sign(t))], which is obvious by self-similarity.
So all H-sssi Gaussian processes have the covariance function from above and mean zero.
For a given H these processes only differ by a multiplicative constant. This proves that

Y (t)
d
= BH(t) and so uniqueness is proved.

Remark 2.10. The increments of fractional Brownian motions are called fractional Gaus-
sian noise. One can show that for H ∈ (1

2
, 1) an fBm displays long-range dependence, that

is its autocovariance function γBH (h) := Cov(BH(t + h), BH(t)) decreases so slowly at
large lags that

∑∞
h=−∞ γBH (h) = ∞ as γBH (h) → 0 holds. Intuitively, when long-range

dependence is present, high-lag correlations may be individually small, but their cumulative
effect is significant.

Proof: Considering the covariance function RH(t1, t2) the autocovariance function of an
fBm is given by

γBH (h) =
1

2

(
|h− 1|2H − 2|h|2H + |h+ 1|2H

)
.

Define the function g(x) = (1−x)2H −2+ (1+x)2H and note that γBH (h) = 1
2
h2Hg(1/h),

for h ≥ 1. Using a Taylor expansion at the origin of g(1/h) to the second degree one can
see that

γBH (h) ∼ H(2H − 1)h2H−2

for h→ ∞ and so for H > 1
2

the series
∑∞

h=−∞ γBH (h) obviously diverges. 2

Long-range dependence is one of the key facts why fractional Brownian motions are more
reasonable for financial modelling compared to ordinary Brownian motions in some ar-
eas. Dependent on the data the independent increments of Brownian motions may not be
very realistic when observing time series into the past. In empirical studies of financial
time series, for instance, [Mandelbrot [1997]] demonstrated that log-returns exhibit this
long-range dependence, a finding that is very controversial and he supports solely. More
interestingly for our examination later on, [McCarthy et al. [2004]] and many others have
detected long-range dependence for macroeconomic data, i.e. interest rates or volatilities.
This is where our new modelling approach for interest-rate markets in Chapter 5 applies.

Remark 2.11. Instead of analyzing a stochastic process in the time domain, processes can
also be analyzed in the so-called frequency or spectral domain. A stationary time-domain
series can be transformed into a frequency-domain series without loss of information by
the so-called Fourier transform, defined by f̂(t) = 1

2π

∫ ∞
−∞ f(x)e−itxdx [Rudin [2005]]. This

means that the time-domain series is perfectly recovered from the frequency-domain series

9



2 Preliminaries

by the so-called inverse Fourier transform. A deterministic function or a realization of
a stochastic process can be thought of to consist of trigonometric functions with differ-
ent frequencies. The information to which extent each frequency is present in the signal
is then summarized in the so-called spectral density, which is defined as the square of
the magnitude of the Fourier transform, that is Φ(θ) = | 1

2π

∫ ∞
−∞ f(x)e−iθxdx|2. So it cap-

tures the frequency content of stochastic processes and helps identify periodicities. In the
case of long-range dependence the spectral density increases like a power function at low
frequencies and explodes at the origin.

Moreover, as Theorem 2.9 points out, there are alternative ways to define a fractional
Brownian motion, which we will summarize in the following corollary:

Corollary 2.12. Fix 0 < H < 1 and let σ2 = E[X2(1)] = 1.
The following statements are equivalent:

(i) X(t), t ∈ R, is Gaussian and H-self-similar with stationary increments

(ii) X(t), t ∈ R, is an fBm with self-similarity index H

(iii) X(t), t ∈ R, is Gaussian, has mean zero and covariance

Cov(X(t1), X(t2)) =
1

2

(
|t1|2H + |t2|2H − |t1 − t2|2H

)
, t1, t2 ∈ R.

10



2.2 Fractional Brownian Motion

2.2.1 Integral Representations of Fractional Brownian Motion

In the following we will present two integral representations of a fractional Brownian mo-
tion - the time representation and the spectral representation. Each representation will
take the integral form

∫ ∞
−∞ ft(x)M(dx) but with its own set of deterministic functions

ft, t ∈ R, and its own random measure M . For our means it is sufficient to consider M
as a Brownian motion B for the time representation and a Gaussian measure B̃ for the
spectral representation, respectively. These integral representations are another way to
characterize fractional Brownian motion, but more importantly we will need them in or-
der to define an integration theory with respect to fractional Brownian motion, which we
will outline in the subsequent subsection 2.2.2.

The time representation

This representation is also called the moving average representation of fractional Brownian
motion.

Proposition 2.13. Let (Ω,F) be a measure space and let B be a standard Brownian
motion defined on R. Let H ∈ (0, 1). Then the standard fractional Brownian motion
BH(t), t ∈ R has the integral representation

BH(t)
d
=

1

C1(H)

∫ ∞

−∞

(
((t− s)+)H− 1

2 − ((−s)+)H− 1
2

)
dB(s), t ∈ R,

where C1(H) =
( ∫ ∞

0
((1 + s)H− 1

2 − sH− 1
2 )2ds+ 1

2H

) 1
2 .

See [Samorodnitsky and Taqqu [2000], Prop. 7.2.6] for a proof.

The spectral representation

This integral representation is also known as the harmonizable representation and is of the
form

∫ ∞
−∞ f̃t(x)M̃(dx), where f̃t is a complex and deterministic function and M̃ is a specific

complex measure. We will focus on a simplified special case which will be sufficient for our
purposes. We will integrate with respect to a complex Gaussian measure B̃ = B1 + iB2

such that B1(A) = B1(−A), B2(A) = −B2(−A) and E[B1(A)]2 = E[B2(A)]2 = 1
2
|A|, for

a Borel set A of finite Lebesgue measure |A|.
Proposition 2.14. Let 0 < H < 1. Then the standard fractional Brownian motion
{BH(t), t ∈ R} has the integral representation

BH(t)
d
=

1

C2(H)

∫ ∞

−∞

eixt − 1

ix
|x|−(H− 1

2
)dB̃(x), t ∈ R, (2.7)

where C2(H) =

(
π

HΓ(2H) sin(Hπ)

) 1
2

.

For a proof of this see Samorodnitsky and Taqqu [2000].
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2.2.2 Integration With Respect to Fractional Brownian Motion

In our subsequent analysis of the fractional Heath-Jarrow-Morton model in chapter 5 we
will make use of the time representation when we come up with an integration approach
with respect to fractional Brownian motion. These insights are based on [Pipiras and
Taqqu [2000]].
In order to explain the difficulty of defining a stochastic integral with respect to fractional
Brownian motion we contrast it with the standard Brownian motion case. Therefore we
define E as the set of all elementary functions

f(u) :=
n∑

k=1

fk1[uk,uk+1)(u), u ∈ R, (2.8)

where fk and uk < uk+1 are real numbers. Moreover we need to define an integral of f ∈ E

with respect to the fBm BH for H ∈ (0, 1) as

I
H(f) :=

∫

R

f(u)dBH(u).

Then denote the closed span of BH by

Sp(BH) := {X : I
H(fn)

L2

→ X for some (fn) ⊆ E }.

An element X ∈ Sp(BH) is a zero-mean Gaussian random variable with variance Var(X) =
limn→∞Var(I H(fn)). Let fX denote the equivalence class of sequences of elementary func-

tions (fn) such that I H(fn)
L2

→ X and write the integral with respect to fBm on the real
line as

X =

∫

R

fXdB
H . (2.9)

We recall that the characterization for the standard Brownian motion B
1
2 simplifies due

to its independent increments and so Var(I
1
2 (f)) =

∫
R
f 2(u)du, f ∈ E .

Hence, if (fn) ⊆ E and if I
1
2 (fn) converges to X ∈ Sp(B

1
2 ) in the L2-sense, there is a

unique function fX ∈ L2(R) such that

Var(X) = lim
n→∞

Var(I
1
2 (fn)) = lim

n→∞

∫

R

f 2
n(u)du =

∫

R

f 2
X(u)du,

due to the fact that L2(R) is a complete space. So, in contrast to the general case in (2.9),

X ∈ Sp(B
1
2 ) can more easily be characterized by a single function fX ∈ L2(R) as

X =

∫

R

fXdB
1
2 (u). (2.10)

The crucial fact is that for X, Y ∈ Sp(B
1
2 ) we can state that

E[XY ] =

∫

R

fX(u)fY (u)du

12
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and therefore we can say that Sp(B
1
2 ) and L2(R) are isometric, i.e. there is a linear and

injective mapping between the spaces that preserves the inner products [Kallsen [2007],
Theorem 5.1.2].
Therefore our goal is to find a Hilbert space C of functions on the real line that is isometric
to Sp(BH) as well in order to come up with an integral form in the spirit of (2.10). When we
proceed to our fractional Heath-Jarrow-Morton model in Chapter 5 we will only consider
the long-range dependent case where 1/2 < H < 1 and that is why we can focus on
this case. Unfortunately, spaces isometric to Sp(BH) could not be found, yet. But we can
come up with spaces that are isometric to linear subspaces of Sp(BH). Therefore we cite
a proposition that shows us how to construct those classes of integrands:

Proposition 2.15. Let E be the set of elementary functions as in (2.8). Let I H(f) :=∫
R
f(u)dBH(u) be an integral of f ∈ E with respect to the fBm BH for H ∈ (0, 1). Suppose

that C is a set of deterministic functions on the real line such that

(i) C is an inner product space with an inner product (f, g)C , for f, g ∈ C ,

(ii) E ⊆ C and (f, g)C = E[I H(f)I H(g)], for f, g ∈ E and

(iii) the set E is dense in C .

Then there is an isometry between the space C and a linear subspace of Sp(BH), which
is an extension of the mapping f → I H(f), for f ∈ E .
Moreover C is isometric to Sp(BH) itself if and only if C is complete.

For a proof of this proposition we refer to [Pipiras and Taqqu [2000]].

There are several ways to come up with classes of integrands both for the time represen-
tation and for the spectral representation of fBm. We will focus on the class of integrands
in the time domain, because we will use this integration approach in chapter 5.
So by (ii) of Proposition 2.15 we start with the calculation of the covariance

E[I H(f)I H(g)] =

∫

R

∫

R

f(u)g(ν)d2RH(u, ν),

where RH is the covariance function of a fractional Brownian motion. The double integral
is defined to be linear and to satisfy

∫

[a,b]

∫

[c,d]

d2RH(u, ν) = RH(d, b) − RH(d, a) − (RH(c, b) − RH(c, a)), u, ν ∈ R

for any real numbers a < b and c < d. This suggests that we can define our class of
integrands as

|Λ|H :=
{
f :

∫

R

∫

R

|f(u)||f(ν)|d2|RH |(u, ν) <∞
}
,

where |RH | is the total variation measure of RH , which is only defined in the case 1/2 <
H < 1 as

13
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|RH |(E) = sup
Π

∑

i

|RH(Ei)| for all E ∈ F ,

where Π := ∪iEi is an arbitrary partition of E with measurable subsets Ei and F is the
σ-algebra of the measure space (Ω,F).
By differentiating the covariance function RH as defined in (2.3) with respect to u and
with respect to ν we get

d2RH(u, ν) = H(2H − 1)|u− ν|2H−2du dν.

Hence we can finally define our class of integrands that satisfies all conditions of Proposi-
tion 2.15 and accordingly an isometry between this class and a linear subspace of Sp(BH)
exists.

Definition 2.16.

|Λ|H :=
{
f :

∫

R

∫

R

|f(u)||f(ν)||u− ν|2H−2du dν <∞
}
,

for 1
2
< H < 1, whereas the inner product on |Λ|H can be expressed as

(f, g)|Λ|H = H(2H − 1)

∫

R

∫

R

f(u)g(ν)|u− ν|2H−2du dν.

We state an important result, that characterizes the functions in the space |Λ|H. We
provide a large subset of that space.

Proposition 2.17. Let 1
2
< H < 1. Then

L1(R) ∩ L2(R) ⊆ |Λ|H.

Remark 2.18. We can give an analogon to Itô’s isometry in the fractional case with the
help of Proposition 2.13. Therefore let Iα−φ denote a fractional integral of order α > 0 of
a function φ defined by

(Iα−φ)(s) =
1

Γ(α)

∫

R

φ(u)(s− u)α−1
− du, s ∈ R.

Hence, for f ∈ E and 1
2
< H < 1, [Pipiras and Taqqu [2000]] find the isometry

∫

R

f(u)dBH(u)
d
=

Γ(H + 1/2)

C1(H)

∫

R

(IH− f)(s)dB(s).

This gives rise to a class of functions of the form

{
f :

∫

R

(
(IH− f)(s)

)2
ds <∞

}

as a step prior to our Definition 2.16.
We will specify this isometry in Chapter 5, when we get to the change of measure.
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3 Short-Rate Models

In this chapter we want to give a brief overview about some popular interest-rate models
and their evolution. Interest-rate modelling in theory was originally based on the as-
sumptions of specific one-dimensional dynamics for the instantaneous spot rate process
r. For this direct modelling approach all fundamental quantities are defined by no ar-
bitrage arguments. In particular, the existence of a risk-neutral measure Q implies that
the arbitrage-free price of a zero-coupon bond at time t with maturity T is given by the
conditional expectation

P (t, T ) = EQ

[
e−

∫ T

t
r(s)ds

∣∣Ft

]
. (3.1)

This formula calls for some general definitions, which we will assume to hold for all of the
three models covered in this chapter. Let (Ω,F ,P) be a complete probability space that
models the uncertainty in our economy, where Ω is the state space, F is the σ-algebra
representing measurable events and P is the real-world probability measure. Moreover,
let (Ft)t∈[0,T ] be a complete, right-continuous filtration defined by Ft := σ(Bi(s) : s ≤
t)t∈[0,T ],i=1,...,d, where Bi, i = 1, ..d, are d independent Brownian motions. We refer to it
as the filtration generated by the Brownian motions, which includes all information from
the past.
In contrast to P, Q is the associated risk-neutral probability measure that can be attained
by a change of measure. We will cover this more precisely in chapters 4 and 5, because in
this chapter we will start modelling right away with the dynamics under the risk-neutral
measure and so we will not need this approach. For the pricing of interest-rate derivatives
it is totally sufficient to directly model the dynamics under the risk-neutral measure.
We will cover some of the most popular early interest-rate models and give their stochastic
differential equations (sde) representing their dynamics. We will explain the Vasicek model
and then compare it to the Cox-Ingersoll-Ross model and the Hull-White model, which
introduce certain modifications.
All of the three models belong to the group of affine term-structure models where the
continuously compounded zero rate R(t, T ) is an affine function in the short rate r(t),
i.e.

R(t, T ) = a(t, T ) + b(t, T )r(t),

where a and b are deterministic functions of time. Then the model is said to possess an
affine term structure. This is always satisfied if the zero-coupon bond price can be written
in the form

P (t, T ) = D(t, T )e−A(t,T )r(t).

This chapter is based on the one-factor short-rate models in the book of [Brigo and
Mercurio [2007]].
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3 Short-Rate Models

3.1 The Vasicek Model

We assume that the instantaneous spot rate under the risk-neutral measure evolves as an
Ornstein-Uhlenbeck process with constant coefficients, drift term k(θ−r(t)) and diffusion
term σ, i.e.

dr(t) = k(θ − r(t))dt+ σdB(t), r(0) = r0, (3.2)

where k, θ, σ and r0 are positive real-valued constants. Moreover θ is considered as mean.
We can observe that the drift is positive whenever the short rate is below θ and negative
otherwise. It can also be formally shown that r is mean-reverting, that is E[r(t)|Ft] → θ
for t→ ∞, which is obvious by looking at (3.3) underneath. Hence we can conclude that r
is pushed to be closer to the level θ with every time step. We refer to σ as the volatility of
B, i.e. taking into account the sensitivity of r with respect to random shocks, represented
by the standard Brownian motion B. We call k the speed of adjustment.
The simulations of the Vasicek sde in chapter 6 illustrate the dynamics of this model very
well.

In order to come up with the spot-rate process as a solution of the stochastic differential
equation (3.2) we use the integrating factor ekt and obtain

d(ektr(t)) = ektdr(t) + kektr(t)dt

= ekt
(
k(θ − r(t))dt+ σdB(t)

)
+ kektr(t)dt

= ektkθdt+ ektσdB(t).

By integration we get

ektr(t) = r(s)eks + θk

∫ t

s

ekudu+ σ

∫ t

s

ekudB(u), 0 ≤ s ≤ t,

which resolves to

r(t) = r(s)e−k(t−s) + θ(1 − e−k(t−s)) + σ

∫ t

s

e−k(t−u)dB(u), 0 ≤ s ≤ t.

Due to the driving Brownian motion B(t), r(t) conditional on Fs is normally distributed
with mean and variance respectively given by

E[r(t)|Fs] = r(s)e−k(t−s) + θ
(
1 − e−k(t−s)

)
and

Var(r(t)|Fs) = E

[(
σ

∫ t

s

e−k(t−u)dB(u)

)2]

= σ2E

[ ∫ t

s

e−2k(t−u)du

]
by Itô’s Isometry

=
σ2

2k

(
1 − e−2k(t−s)).

(3.3)
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3.1 The Vasicek Model

From the expectation and variance in (3.3) we can easily see that the rate r(t) can be
negative with positive probability at each time t, which is a major drawback of the Va-
sicek model, because this is usually not a realistic event, although there might be negative
interest rates in times of deflation. For a suitable choice of the parameters, however, the
probability of negative values can be kept marginally small. On the other hand, an ad-
vantage of the model is its analytical tractability implied by a Gaussian density, which is
hardly achieved when assuming other distributions for r. This property is very helpful for
historical estimation.

The bond price for the Vasicek model can be derived by starting with (3.1) and hence
computing the condititional expectation under Q. Hence we come up with the formula

P (t, T ) = D(t, T )e−A(t,T )r(t),

where

A(t, T ) =
1

k

(
1 − e−k(T−t)

)

and D(t, T ) = exp

((
θ − σ2

2k2

)(
A(t, T ) − T + t

)
− σ2

4k
A(t, T )2

)
.

Proof: Write X(u) = r(u)− θ. So, X(u) is the solution of the Ornstein-Uhlenbeck equa-
tion

dX(t) = −kX(t)dt+ σdB(t) with X(0) = r0 − θ.

By applying exactly the same procedure as for the sde of the spot-rate process r(t) before,
we obtain a solution to this sde by using the integrating factor eku again, i.e. the process

X(u) = e−ku
(
X(0) +

∫ u

0

σeasdB(s)

)
. (3.4)

Obviously,X(u) is a Gaussian process with continuous sample paths and therefore
∫ t

0
X(u)du

is Gaussian, too. Hence we have E[X(u)] = X(0)e−ku and thus

E

[ ∫ t

0

X(u)du

]
=
X(0)

k

(
1 − e−kt

)
. (3.5)

In this chapter all expectations are taken under the risk-neutral measure without further
mentioning, since we model the dynamics under this measure. Similarly,

Cov(X(t), X(u)) = σ2e−k(u+t)E

[ ∫ t

0

eksdB(s)

∫ u

0

eksdB(s)

]

= σ2e−k(u+t)

∫ u∧t

0

e2ksds

=
σ2

2k
e−k(u+t)(e2k(u∧t) − 1)

17



3 Short-Rate Models

and so

Var

( ∫ t

0

X(u)du

)
= Cov

( ∫ t

0

X(u)du,

∫ t

0

X(s)ds

)

= E

[( ∫ t

0

X(u)du− E

[ ∫ t

0

X(u)du

])( ∫ t

0

X(s)ds− E

[ ∫ t

0

X(s)ds

])]

=

∫ t

0

∫ t

0

E
[(
X(u) − E[X(u)]

)(
X(s) − E[X(s)]

)]
du ds

=

∫ t

0

∫ t

0

Cov
(
X(u), X(s)

)
du ds =

∫ t

0

∫ t

0

σ2

2k
e−k(u+s)

(
e2k(u∧t) − 1

)
du ds

=
σ2

2k3

(
2kt− 3 + 4e−kt − e−2kt

)
.

(3.6)

Since we have X(u) = r(u) − θ, we get

E

[
−

∫ t

0

r(u)du

]
= E

[
−

∫ t

0

(X(u) + θ)du

]

and so, together with expression (3.5) we obtain

E

[
−

∫ T

t

r(u)du

]
=
r(t) − θ

k

(
1 − e−k(T−t)

)
− θ(T − t). (3.7)

Moreover, by result (3.6) we derive

Var

(
−

∫ T

t

r(u)du

)
= Var

(
−

∫ T

t

X(u)du

)

=
σ2

2k3

(
2k(T − t) − 3 + 4e−k(T−t) − e−2k(T−t)).

(3.8)

From the Itô integral representation of r(t), we conclude that the defining process for the
short rate is Markovian (for a proof see [Karatzas and Shreve [1988], p.355]). Hence

P (t, T ) = E

[
e−

∫ T

t
r(u)du

∣∣Ft

]
= E

[
e−

∫ T

t
r(u)du

∣∣r(t)
]
,

where we can write r(u) as a function of r(t), i.e. r(u, r(t)), so that

P (t, T ) = E

[
e−

∫ T

t
r(u)du

∣∣r(t)
]

:= E

[
e−

∫ T

t
r(u,r(t))du

]
.

In the Gaussian case we know that

P (t, T ) = exp

{
E

[
−

∫ T

t

r(u, r(t))du

]
+

1

2
Var

(
−

∫ T

t

r(u, r(t))du

)}
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3.1 The Vasicek Model

and we can conclude the proof by plugging in (3.7) and (3.8):

P (t, T ) = exp

{
r(t) − θ

k

(
1 − e−k(T−t)

)
− θ(T − t)

+
1

2

σ2

2k3

(
2k(T − t) − 3 + 4e−k(T−t) − e−2k(T−t))

}

= exp

{
−

(
1 − e−k(T−t)

k

)
r(t) + θ

(
1 − e−k(T−t)

k
− (T − t)

)

− σ2

2k2

(
1 − e−k(T−t)

k

)
+

σ2

2k2
(T − t) − σ2

4k

(
1 − 2e−k(T−t) + e−2k(T−t)

k2

)}

= exp

{
− A(t, T )r(t) + θA(t, T ) − θ(T − t)

− σ2

2k2
A(t, T ) +

σ2

2k2
(T − t) − σ2

4k
A(t, T )2

}

= D(t, T ) exp
(
−A(t, T )r(t)

)
.

2
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3 Short-Rate Models

3.2 The Cox-Ingersoll-Ross Model

The Cox-Ingersoll-Ross (CIR) interest dynamics are formulated under the risk-neutral
measure Q with a modification of the diffusion term in comparison to the Vasicek model,
in order to avoid negative values for r(t) given that reasonable values for the parameters
are chosen. Therefore a square-root term is introduced into the diffusion term. So the
risk-neutral interest rate dynamics are assumed to be

dr(t) = k(θ − r(t))dt+ σ
√
r(t)dB(t), r(0) = r0, (3.9)

where k, θ, σ and r0 are positive constants with the same interpretations as for the Va-
sicek model. Once again B denotes a standard Brownian motion. In order to ensure the
positivity of r(t) we postulate 2kθ > σ2. The process r features a non-central chi-squared
distribution.

The zero-coupon bond price is given by the same form as for the Vasicek model, that
is

P (t, T ) = D(t, T )e−A(t,T )r(t),

but with different specifications for A(t, T ) and D(t, T ), i.e.

A(t, T ) =
2
(
exp((T − t)h) − 1

)

2h+ (k + h)
(
exp((T − t)h) − 1

) ,

D(t, T ) =

(
2h exp

( (k+h)(T−t)
2

)

2h + (k + h)
(
exp((T − t)h) − 1

)
) 2kθ

σ2

,

h =
√
k2 + 2σ2.

We forego a derivation in this case, since our focus is not upon the short-rate models in
the first place and so we refer to [Cox et al. [1985]].
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3.3 The Hull-White Model

Hull and White tried to improve the poor fitting of the initial term structure of interest
rates implied by the Vasicek model. Therefore they introduced time-varying parameters
into the Vasicek model, i.e. deterministic functions instead of the constants in the short-
rate dynamics. They assume that the risk-neutral short rate evolves according to

dr(t) = (ν(t) − a(t)r(t))dt+ σ(t)dB(t), r(0) = r0, (3.10)

where a, σ and ν are deterministic and positive functions of time that are chosen so as to
exactly fit the term structure of interest rates being currently observed in the market.
However, we choose a and σ as positive constants because quotes of market volatilities
are not always significant due to liquidity issues in some markets and so perfect fitting
can be dangerous. Thus we can speak of a Vasicek model with a time-dependent reversion
level of the form

dr(t) = (ν(t) − ar(t))dt+ σdB(t), r(0) = r0.

In the Hull-White model r(t) conditional on Fs is normally distributed and again the
zero-coupon bond price takes on the form

P (t, T ) = D(t, T )e−A(t,T )r(t),

where this time

A(t, T ) =
1

a

(
1 − e−a(T−t)

)
,

D(t, T ) =
P (0, T )

P (0, t)
exp

(
A(t, T )f(0, t) − σ2

4a
(1 − e−2a(T−t)) − 3

2a

)
,

with P (0, · ) denoting the initial bond price given by the market.
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3 Short-Rate Models

3.4 Conclusion

The Vasicek model and the CIR model are called endogenous term-structure models,
which refers to the fact that the current term structure of interest rates is an output
and not an input of the models. We can illustrate that by setting the evaluation time
t = 0, which yields the initial interest-rate curve as an output. In practice one has to find
suitable parameters that force the initial bond price curve to be as close as possible to
the market curve, but usually three parameters are not enough to reproduce the market
term structure satisfactorily. This is contrasted by the so-called no-arbitrage models like
the Hull-White model or the more general Heath-Jarrow-Morton approach, on which we
will focus in the following chapters. They are called exogenous and today’s term structure
of interest rates is an input.
A clear drawback of the Vasicek model is that interest rates can assume negative values
with positive probability, a problem that is tackled by the CIR model. On the other hand
its linearity enables an explicit solution which makes the model attractive from an an-
alytical point of view. As a consequence several expressions and distributions of useful
quantities related to the interest-rate world, for instance volatility, can be easily obtained.
This is not given for every model, e.g. the CIR model with its non-centrally chi-squared
distributed interest rate is less analytically tractable.
As we have already seen by the different pros and cons one has to weigh up what is more
important when choosing a certain model. It is a matter of positive interest rates, distri-
bution of the process and explicitly computable bond prices or option prices. Moreover,
questions about mean reversion, implied volatility structures, computation and estimation
techniques arise - in a nutshell: a very difficult choice for which many factors have to be
considered.
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4 The Heath-Jarrow-Morton Model

The Heath-Jarrow-Morton (HJM) model is a more general approach to an interest-rate
model than what we have already seen for the short-rate models. We will cover this
model more precisely because understanding of this classical case is essential for a detailed
analysis of the fractional Heath-Jarrow-Morton model in chapter 5, the main focus of this
thesis. The HJM approach starts off by modelling the forward rate instead of the short
rate which allows to capture the evolution of the entire forward rate curve. This will
facilitate a more precise calibration of the model to the inital forward rate curve. As it
will turn out in the arbitrage-free framework, the forward-rate dynamics will be fully
specified by their instantaneous volatility structures. This is a major difference to the
one-factor short-rate models covered in the previous chapter, where also the drift has to
be specified in order to characterize the relevant interest-rate model. We will get to the
advantages and disadvantages of this approach in our conclusion later on.
This chapter is based on the original article of [Heath et al. [1992]] and adds to it.

4.1 The Set-Up

Let (Ω,F ,P) be a complete probability space that characterizes the uncertainty in our
economy and let T ∗ > 0 so that [0, T ∗] is the trading interval in our continuous trading
economy. Let (Ft)t∈[0,T ∗] be a complete, right-continuous and augmented filtration defined
by Ft := σ(Bi(s) : s ≤ t)t∈[0,T ],i=1,...,d, where Bi, i = 1, ..., d, d ∈ N, are d independent
standard Brownian motions.
There is a continuum of default-free discount bonds, each bond trading with a different
maturity, one for each date T ∈ [0, T ∗]. Hence for the price of the T-maturity bond P (t, T )
we require:

(i) P (T, T ) = 1 for all T ∈ [0, T ∗];

(ii) P (t, T ) > 0 for all T ∈ [0, T ∗], t ∈ [0, T ];

(iii) ∂
∂T

logP (t, T ) exists for all T ∈ [0, T ∗], t ∈ [0, T ].

The first equation implies that this is a default-free market, because the bond payoff equals
100% at maturity. The second equation exludes trivial arbitrage opportunities. The last
equation ensures that the forward rates are well-defined.
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4 The Heath-Jarrow-Morton Model

Recall the definition of the instantaneous forward rate f(t, T ) at time t ∈ R+ for maturity
T > t from (2.1), that is

f(t, T ) = − ∂

∂T
logP (t, T ) for all T ∈ [0, T ∗], t ∈ [0, T ].

Conversely, this yields for the bond price

P (t, T ) = exp

(
−

∫ T

t

f(t, s)ds

)
for all T ∈ [0, T ∗], t ∈ [0, T ].

We observe the major difference between the Heath-Jarrow-Morton model and the short-
rate models, that is the HJM model is based on forward rates and not on short rates.
As a consequence we will see that in the HJM framework we can derive arbitrage-free
conditions for the stochastic evolutions of the entire yield curve.

Condition 1 - A family of forward-rate processes

We will start off with an assumption on the family of stochastic processes for the for-
ward rate movements, that is

f(t, T ) − f(0, T ) =

∫ t

0

α(ν, T )dν +

d∑

i=1

∫ t

0

σi(ν, T )dBi(ν) for all 0 ≤ t ≤ T, (4.1)

where T ∈ [0, T ∗] is fixed, but arbitrary and Bi, i = 1, ..d are d independent Brownian
motions that model the stochastic fluctuation of the entire forward rate curve starting
from a fixed, non-random initial forward rate curve {f(0, T ) : T ∈ [0, T ∗]} given by the
market. Furthermore we impose the following conditions:

(i) f(0, · ) : ([0, T ∗],B[0, T ∗]) → (R,B) is measurable with B[0, T ∗] denoting the Borel-
σ-algebra restricted to [0, T ∗].

(ii) α : {(t, s) : 0 ≤ t ≤ s ≤ T} × Ω → R is a B{(t, s) : 0 ≤ t ≤ s ≤ T} ×
F -jointly measurable and adapted stochastic process itself. Moreover α satisfies∫ T

0
|α(t, T )| dt <∞ P-a.s.

(iii) The volatilites σi : {(t, s) : 0 ≤ t ≤ s ≤ T} × Ω → R are B{(t, s) : 0 ≤ t ≤ s ≤
T} × F -jointly measurable and adapted stochastic processes.

They satisfy
∫ T

0
σ2
i (t, T )dt <∞ P-a.s. for i = 1, ..., d.

The differing volatility coefficients reflect the sensitivity of a particular maturity forward
rate’s change to each Brownian motion. The d independent Brownian motions imply that
the restrictions for our economy are the continuous sample paths of the forward-rate pro-
cesses and a finite number of random shocks across the entire forward rate curve, i.e. for
all maturities. This is a major difference to short-rate models where different maturities
are not taken into account when modelling the spot rate.
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4.1 The Set-Up

Now, given the forward-rate process in (4.1) we can easily compute the spot-rate pro-
cess as

r(t) = f(t, t) = f(0, t) +

∫ t

0

α(ν, t)dν +
d∑

i=1

∫ t

0

σi(ν, t)dBi(ν) for all t ∈ [0, T ]. (4.2)

Condition 2 - Regularity of the money market account

Notation: For convenience we define

B0(t) = exp

( ∫ t

0

r(y)dy

)
for all t ∈ [0, T ∗] (4.3)

as our money market account or numeraire.

We need to make sure that the value of the money market account is finite. Therefore we
postulate for the money market account to hold

∫ T ∗

0

|f(0, ν)|dν <∞

and ∫ T ∗

0

( ∫ t

0

|α(ν, t)|dν
)
dt <∞ Q-a.s.

The dynamics of the bond price process

Condition 3 - Regularity of the bond price process

In order to ensure that the bond price process is well-behaved, i.e. that integrals are
well-defined, we impose three conditions on the bond price process:

(i)
∫ t

0

(∫ t

ν
σi(ν, y)dy

)2

dν P-a.s. for all t ∈ [0, T ∗], i = 1, ..., d;

(ii)
∫ t

0

(∫ T

t
σi(ν, y)dy

)2

dν P-a.s. for all t ∈ [0, T ], i = 1, ..., d;

(iii) t 7→
∫ T

t

( ∫ t

0
σi(ν, y)dBi(ν)

)
dy is continuous P-a.s. for all T ∈ [0, T ∗], i = 1, ..., d.
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4 The Heath-Jarrow-Morton Model

Theorem 4.1. Let Conditions 2 and 3 hold. Then the dynamics of the bond price process
are

logP (t, T ) = logP (0, T ) +

∫ t

0

(r(ν) + b(ν, T ))dν

− 1

2

d∑

i=1

∫ t

0

ai(ν, T )2dν +
d∑

i=1

∫ t

0

ai(ν, T )dBi(ν) P-a.s.,

where ai(t, T ) = −
∫ T

t

σi(t, ν)dν for i = 1, ..., d

and b(t, T ) = −
∫ T

t

α(t, ν)dν +
1

2

d∑

i=1

ai(t, T )2.

(4.4)

Proof: In order to prove Theorem 4.1 we will need the following lemma:

Lemma 4.2 (Generalized form of Fubini’s theorem for stochastic integrals). Let (Ω,F ,P)
be a probability space and let (Ft)t∈[0,T ∗] be a filtration satisfying the usual conditions (i.e.
complete and right-coninuous), which is generated by the Brownian motion B.
Let {Φ(t, a, ω) : (t, a, ω) ∈ [0, T ∗] × [0, T ∗] × Ω} be a family of real random variables such
that:

(i) ((t, ω), a) ∈ {([0, T ∗]×Ω)× [0, T ∗]} → Φ(t, a) is L×B[0, T ∗]-measurable where L is
the predictable σ-field;

(ii)
∫ t

0
Φ2(s, a)ds <∞ a.s. for all t ∈ [0, T ∗];

(iii)
∫ t

0

(∫ T ∗

0
Φ(s, a)da

)2

ds <∞ a.s. for all t ∈ [0, T ∗].

If t 7→
∫ T ∗

0

( ∫ t

0
Φ(s, a)dB(s)

)
da is continuous a.s., then:

∫ t

0

( ∫ T ∗

0

Φ(s, a)da

)
dB(s) =

∫ T ∗

0

( ∫ t

0

Φ(s, a)dB(s)

)
da for all t ∈ [0, T ∗].

Moreover we will apply the following corollary that we will state without proof since it is
just one straightforward rearrangement.

Corollary 4.3. Let the hypotheses of Lemma 4.2 hold. Define

Φ(s, a) :=

{
σ(s, a)1{s≤a} if (s, a) ∈ [0, t] × [0, t],
0 if (s, a) /∈ [0, t] × [0, t].

Then

∫ y

0

(∫ t

s

σ(s, a)da

)
dB(s) =

∫ t

0

( ∫ s∧y

0

σ(s, a)dB(s)

)
da for all y ∈ [0, t].
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4.1 The Set-Up

Now we can start with our proof by using Conditions 1-3:

logP (t, T ) = −
∫ T

t

f(t, s)ds

= −
∫ T

t

f(0, y)dy −
∫ T

t

(∫ t

0

α(ν, y)dν

)
dy −

d∑

i=1

∫ T

t

( ∫ t

0

σi(ν, y)dBi(ν)

)
dy

= −
∫ T

t

f(0, y)dy −
∫ t

0

(∫ T

t

α(ν, y)dy

)
dν −

d∑

i=1

∫ t

0

( ∫ T

t

σi(ν, y)dy

)
dBi(ν),

where all integrals are well-defined due to Conditions 1 and 2 and where we used Lemma
4.2. We are now splitting up the integrals by changing their limits and then rearrange and
apply Corollary 4.3. Moreover recall expression (4.2) where r(t) = f(0, t)+

∫ t

0
α(ν, y)dν+∑d

i=1

∫ t

0
σi(ν, y)dBi(ν). So we can rearrange

logP (t, T ) = −
∫ T

0

f(0, y)dy −
∫ t

0

(∫ T

ν

α(ν, y)dy

)
dν −

d∑

i=1

∫ t

0

( ∫ T

ν

σi(ν, y)dy

)
dBi(ν)

+

∫ t

0

f(0, y)dy +

∫ t

0

(∫ t

ν

α(ν, y)dy

)
dν

︸ ︷︷ ︸
=

∫ t

0

∫ t∧ν

0
α(ν,y)dνdy

+
d∑

i=1

∫ t

0

( ∫ t

ν

σi(ν, y)dy

)
dBi(ν)

︸ ︷︷ ︸
=

∫ t

0

∫ t∧ν

0
σi(ν,y)dydBi(ν)

= logP (0, T ) +

∫ t

0

r(y)dy −
∫ t

0

( ∫ T

ν

α(ν, y)dy

︸ ︷︷ ︸
=−b(ν,T )+ 1

2

∑d
i=1 ai(ν,T )2

)
dν

−
d∑

i=1

∫ t

0

( ∫ T

ν

σi(ν, y)dy

︸ ︷︷ ︸
=−ai(ν,T )

)
dBi(ν)

= logP (0, T ) +

∫ t

0

(r(y) + b(y, T ))dy − 1

2

d∑

i=1

∫ t

0

ai(ν, T )2dν +
d∑

i=1

∫ t

0

ai(ν, T )dBi(ν).

2

In order to come up with the stochastic differential equation (sde) that represents the
bond price dynamics and of which the bond price process P (t, T ) is a strong solution, we
apply Itô’s lemma. First recall:

Lemma 4.4 (Itô’s lemma). Let X(t) = X(0)+
∫ t

0
b(s)ds+

∫ t

0
σ(s)dB(s) be an Itô process

with drift b and diffusion σ, t ∈ R+ and B a Brownian motion.
Let f ∈ C2(R,R). Then (f(X(t)))t∈R+ is an Itô process of the form:

f(X(t)) = f(X(0)) +

∫ t

0

f ′(X(s))dX(s) +
1

2

∫ t

0

f ′′(X(s))d[X,X]s,
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4 The Heath-Jarrow-Morton Model

where {[X,X]t}t∈R+ with [X,X]t :=
∫ t

0
σ2(s)ds is called the quadratic variation of X.

[Kallsen [2007], Theorem 5.4.8]

So, in our case we define

X(t) =

∫ t

0

(r(ν) + b(ν, T ))dν − 1

2

d∑

i=1

∫ t

0

ai(ν, T )2dν +
d∑

i=1

∫ t

0

ai(ν, T )dBi(ν).

Then Itô’s lemma with f(x) = ex yields:

dP (t, T ) = df(X(t)) = 0 + eX(t)dX(t) + eX(t) 1

2

d∑

i=1

ai(t, T )2dt

= eX(t)

(
(r(t) + b(t, T ))dt− 1

2

d∑

i=1

ai(t, T )2dt+
d∑

i=1

ai(t, T )dBi(t)

)

+ eX(t) 1

2

d∑

i=1

ai(t, T )2dt

= eX(t)

(
(r(t) + b(t, T ))dt+

d∑

i=1

ai(t, T )dBi(t)

)

= (r(t) + b(t, T ))P (t, T )dt+
d∑

i=1

ai(t, T )P (t, T )dBi(t).

(4.5)

Our bond price process is in general non-Markov because its drift term (r(t) + b(t, T ))
and its volatility coefficients ai(t, T ) can depend on the history of the Brownian motions
Bi, i = 1, ..., d.

The relative bond price process

We can easily determine the relative (or discounted) bond price process for a T -maturity

bond. Let Zt(T ) = P (t,T )
B0(t)

denote the relative bond price for a T -maturity bond at time t

for T ∈ [0, T ∗] and t ∈ [0, T ], where the numeraire B0(t) was defined earlier in expression
(4.3). Zt(T ) is the bond’s value expressed in units of the accumulation factor and not in
dollars, which is particularly useful for analysis and no-arbitrage theory which we will see
later on. Analogously to Theorem 4.1 we get the relative bond price process as

logZt(T ) = logZ0(T ) +

∫ t

0

b(ν, T )dν − 1

2

d∑

i=1

∫ t

0

ai(ν, T )2dν

+

d∑

i=1

∫ t

0

ai(ν, T )dBi(ν) P-a.s.

(4.6)

with ai(t, T ) and b(t, T ) defined as in Theorem 4.1.
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4.2 Arbitrage Free Bond Pricing

4.2 Arbitrage Free Bond Pricing

Similarly to the original no-arbitrage theory of [Harrison and Pliska [1981]] we derive nec-
essary and sufficient conditions on the forward-rate process in order to ensure existence
and uniqueness of an equivalent martingale measure. We proceed step by step.

Condition 4 - Existence of the market prices for risk

Fix S1, ..., Sd ∈ [0, T ∗] such that 0 < S1 < ... < Sd ≤ T ∗. Assume there exist solutions

γi((· , · );S1, ..., Sd) : Ω × [0, S1] → R for i = 1, ..., d P × λ - a.s.,

where λ is the Lebesgue measure, to the following system of equations:


b(t, S1)

...
b(t, Sd)


 +



a1(t, S1) · · · ad(t, S1)

...
...

a1(t, Sd) · · · ad(t, Sd)






γ1(t;S1, ..., Sd)

...
γd(t;S1, ..., Sd)


 =




0
...
0


 (4.7)

which satisfy

(i)
∫ S1

0
γi(ν;S1, ..., Sd)

2dν <∞ P-a.s. for i = 1, ..., d;

(ii) E

[
exp

( ∑d
i=1

∫ S1

0
γi(ν;S1, ..., Sd)dBi(ν) − 1

2

∑d
i=1

∫ S1

0
γi(ν;S1, ..., Sd)

2dν

)]
= 1;

(iii) E

[
exp

( ∑d
i=1

∫ S1

0
[ai(ν, y) + γi(ν;S1, ..., Sd)]dBi(ν)

− 1
2

∑d
i=1

∫ S1

0
[ai(ν, y) + γi(ν;S1, ..., Sd)]

2dν

)]
= 1 for y ∈ {S1, ..., Sd}.

This condition will ensure the existence of an equivalent martingale measure as we will
see in Proposition 4.5. Solving the system of equations in expression (4.7) provides us
with γi(t;S1, ..., Sd) for i = 1, ..., d. We can interpret the γi’s as the market prices for risk
associated with the random factors Bi(t) for i = 1, ..., d, respectively. In order to point
this out it helps to rearrange expression (4.7) to

b(t, T ) =
d∑

i=1

ai(t, T )(−γi(t;S1, ..., Sd)) =
d∑

i=1

∫ T

t

σi(t, ν)dν γi(t;S1, ..., Sd), (4.8)

where b(t, T ) is the instantaneous excess expected return on the T-maturity bond exceding
the risk-free rate r(t), since the drift of our bond price dynamics under the real-world
measure as in expression (4.5) is (r(t)+b(t, T )). Obviously the right-hand side of expression
(4.8) is the sum of all market prices of risk γi times the forward rate volatility coefficients
σi for all factors i = 1, ..., d. The volatility coefficients can also be considered as the
instantaneous covariance between the T-maturity bond’s return and the ith random factor
Bi. By looking at expression (4.7) we can see that the solutions of this equation system
depend on the vector of bonds [S1, ..., Sd] chosen (or more precisely the bonds associated
with those maturities). However, b is the premium an investor would expect for taking
over the risk of the bond.
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4 The Heath-Jarrow-Morton Model

Proposition 4.5 (Existence of an equivalent martingale measure). Fix S1, ..., Sd ∈ [0, T ∗]
such that 0 < S1 < ... < Sd ≤ T ∗. Let [α(· , S1), ..., α(· , Sd)] be a vector of forward rate
drifts and let [σi(· , S1), ..., σi(· , Sd)] be a vector of forward rate volatilities that both satisfy
conditions 1-3.
Then Condition 4 holds if and only if there exists an equivalent probability measure
QS1,...,Sd

such that [Zt(S1), ..., Zt(Sd)] are martingales with respect to (Ft)t∈[0,S1].

Proof: We need the following two lemmas to prove the proposition:

Lemma 4.6. Let Conditions 1-3 hold for fixed S1, ..., Sd ∈ [0, T ∗] such that
0 < S1 < ... < Sd ≤ T ∗. Define

X(t, y) =

∫ t

0

b(ν, y)dν +
d∑

i=1

∫ t

0

ai(ν, y)dBi(ν) for all t ∈ [0, y] and y ∈ {S1, ..., Sd}.

Then γi : Ω × [0, T ∗] → R for i = 1, ..., d satisfies condition 4 if and only if there exists a
probability measure QS1,...,Sd

such that

(a) dQS1,...,Sd
/dP = exp

(∑d
i=1

∫ S1

0
γi(ν)dBi(ν) − 1

2

∑d
i=1

∫ S1

0
γi(ν)

2dν
)
;

(b) B̃S1,...,Sd

i (t) = Bi(t) −
∫ t

0
γi(ν)dν are independent Brownian motions on

(Ω,F ,QS1,...,Sd
, (Ft)t∈[0,S1]) for i = 1, ..., d;

(c)



dX(t, S1)

...
dX(t, Sd)


 =



a1(t, S1) · · · ad(t, S1)

...
...

a1(t, Sd) · · · ad(t, Sd)






dB̃S1,...,Sd

1 (t)
...

dB̃S1,...,Sd

d (t)


 for t ∈ [0, S1];

(d) Zt(Si) are martingales on (Ω,F ,QS1,...,Sd
, (Ft)t∈[0,S1]) for i = 1, ..., d.

The proof of this lemma is straightforward. Obviously expression (4.7) holds if and only
if (c) holds. (i) holds if and only if the integral in (a) is well-defined as well. (b) is a
QS1,...,Sd

-Brownian motion according to the Girsanov theorem where QS1,...,Sd
is given by

Girsanov in (a). (ii) und (iii) coincide with the martingale property in (d).

Lemma 4.7. The same setting as in Lemma 4.6 is given.
Then there exists a probability measure Q equivalent to P such that Zt(Si) are martingales
on (Ω,F ,Q, (Ft)t∈[0,S1]) for all i = 1, ..., d if and only if there exist γi : Ω× [0, T ∗] → R for
i = 1, ..., d and a probability measure QS1,...,Sd

such that (a), (b), (c) and (d) of Lemma
4.6 hold.

This obviously proves the equivalence in Proposition 4.5, since condition 4 is equivalent
to (a)-(d). 2
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4.2 Arbitrage Free Bond Pricing

As we have seen earlier the market prices of risk depend on the vector of bonds [S1, ..., Sd]
and hence so does the martingale measure. In order to come up with a no-arbitrage prop-
erty we need to impose a uniqueness condition for an equivalent martingale measure,
that is one single measure that simultaneously makes all vectors of relative bond prices
[Zt(S1), ..., Zt(Sd)], 0 < S1 < ... < Sd ≤ T ∗, martingales. In Proposition 4.8 we will
show that the following condition is both necessary and sufficient for the uniqueness of
an equivalent martingale measure.

Condition 5 - Uniqueness of the equivalent martingale measure

Fix S1, ..., Sd ∈ [0, T ∗] such that 0 < S1 < ... < Sd ≤ T ∗. Assume that



a1(t, S1) · · · ad(t, S1)

...
...

a1(t, Sd) · · · ad(t, Sd)


 is nonsingular Q × λ-a.s. (4.9)

Proposition 4.8. Fix S1, ..., Sd ∈ [0, T ∗] such that 0 < S1 < ... < Sd ≤ T ∗. Let the vec-
tors of forward rate drifts [α(· , S1), ..., α(· , Sd)] and volatilities [σi(· , S1), ..., σi(· , Sd)], i =
1, ..., d, respectively, satisfy conditions 1-4.
Then condition 5 holds if and only if the (equivalent) martingale measure is unique.

For a detailed proof of this proposition we refer to the appendix of [Heath et al. [1992]].

In the following proposition we will show that with a unique equivalent martingale mea-
sure all relative bond prices really are martingales.

Proposition 4.9 (Absence of arbitrage). Let the vectors of the forward rate drifts
[α(· , S1), ..., α(· , Sd)] and volatilities [σi(· , S1), ..., σi(· , Sd)], i = 1, ..., d, respectively, sat-
isfy conditions 1-5.
Then the following are equivalent:

(i) Q := QS1,...,Sd
for any S1, ..., Sd ∈ (0, T ∗] is the unique equivalent martingale measure

such that Zt(T ) is a martingale for all T ∈ [0, T ∗] and t ∈ [0, S1];

(ii) we have γi(t;S1, ..., Sd) = γi(t;T1, ..., Td) for i = 1, ..., d and all S1, ..., Sd, T1, ..., Td ∈
[0, T ∗], t ∈ [0, T ∗] such that 0 ≤ t < S1 < ... < Sd ≤ T ∗ and 0 ≤ t < T1 < ... < Td ≤
T ∗;

(iii) α(t, T ) = −
∑d

i=1 σi(t, T )(φi(t) −
∫ T

t
σi(t, ν)dν) for all T ∈ [0, T ∗] and t ∈ [0, T ],

where for i = 1, ..., d, φi(t) = γi(t;S1, ..., Sd) for any S1, ..., Sd ∈ (t, T ∗] and t ∈
[0, S1].

Proof: By using Proposition 4.8 we can conclude that QS1,...,Sd
is the unique equivalent

martingale measure, for each vector [S1, ..., Sd] with S1 < ... < Sd ≤ T ∗, that makes Zt(Si)
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4 The Heath-Jarrow-Morton Model

a martingale over t ≤ S1 for i = 1, ..., d.
”⇔” Since Q := QS1,...,Sd

is defined in [Lemma 4.6, (a)] via γi, these measures are all
equal to Q if and only if γi(t;S1, ..., Sd) = γi(t;T1, ..., Td) for all i = 1, ..., d and all
S1, ..., Sd, T1, ..., Td ∈ [0, T ∗], t ∈ [0, T ∗], such that 0 ≤ t < S1 < ... < Sd ≤ T ∗ and
0 ≤ t < T1 < ... < Td ≤ T ∗.
”⇔” Due to (ii) it is obvious that [φ1(t), ..., φd(t)] is independent of T . We will start off

with expression 4.8, where γi(t;S1, ..., Sd) = φi(t), substitute for b(t, T ) = −
∫ T

t
α(t, ν)dν+

1
2

∑d
i=1 ai(t, T )2 and ai(t, T ) = −

∫ T

t
σi(t, ν)dν, i = 1, ..., d, and take the partial derivative

with respect to T :

b(t, T ) = −
d∑

i=1

ai(t, T )φi(t)

⇔ −
∫ T

t

α(t, ν)dν +
1

2

d∑

i=1

ai(t, T )2 =

d∑

i=1

∫ T

t

σi(t, ν)dν φi(t)

⇒ ∂

∂T

( ∫ T

t

α(t, ν)dν

)
=

d∑

i=1

σi(t, T )

∫ T

t

σi(t, ν)dν −
d∑

i=1

σi(t, T )φi(t),

which proves (iii). 2

There are major implications of this proposition for arbitrage theory and financial mar-
kets, i.e. the first equivalence shows that the existence of a unique equivalent probability
measure Q (expression (i)) making relative bond prices martingales is equivalent to the
fact that market prices of risk γi, i = 1, ..., d, are independent of the vector of bonds
[S1, ..., Sd] (expression (ii)). Moreover this is also equivalent to a restriction on the fam-
ily of forward rate drifts α (expression (iii)), known as the Heath-Jarrow-Morton drift
condition. This condition will be mostly used in contingent claims valuation in order to
ensure the existence of a unique equivalent martingale measure, since not all potential
forward-rate processes satisfy this restriction.
From the martingale property in (i) we also get the bond price as a conditional expectation
that is

P (t, T ) = B0(t)EQ

[
exp

( d∑

i=1

∫ T

0

φi(t)dBi(t) −
1

2

d∑

i=1

∫ T

0

φi(t)
2dt

)/
B0(T )

∣∣Ft

]
.

From this expression we can easily see the factors that impact the bond price, i.e. the
forward rate drifts (α(· , T ))T∈[0,T ∗] and the forward rate volatilities (σi(· , T ))T∈[0,T ∗] for
i = 1, ..., d implicitly through the market prices for risk φi(t), i = 1, ..., d, since they
are obtained by the equation system (4.7). Another price-influencing factor is the initial
forward rate curve (f(0, T ))T∈[0,T ∗] implicitly given by the money market account B0(T ).
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4.3 Conclusion

Consequently we will come up with a short analysis of the HJM model in comparison to
the short-rate models. An obvious advantage of the HJM model is that they capture the
full dynamics of the entire forward rate curve, while the short-rate models only capture
the dynamics of a point on the curve, the short rate. As already pointed out this allows for
a better fitting to the initial forward rate curve. Another advantage of directly modelling
the forward rate is that the current term structure of rates f(0, T ) is an input of the
selected model, which is not given when modelling the short rate. This enables a better
fitting than in the Vasicek or the CIR model as well. These are very strong arguments in
favour of this approach.
On the other hand the short-rate approach provides a larger liberty in choosing the related
dynamics due to the specific choice of its drift.
Consequently, as we already pointed out in the conclusion of Chapter 3 there are a num-
ber of factors that have to be considered when choosing a model appropriate to a certain
purpose.
One can say that the HJM model is a very general model. Many short-rate models can
be derived within the more general Heath-Jarrow-Morton framework and we will provide
one example of that, i.e. we will derive the Hull-White model.

As we have emphasized many times, the short-rate process r in the HJM model is not
Markovian in general, which is a more realistic approach but more difficult to implement
and work with. However, with a suitable specification of σ the short-rate process can be
made Markovian (as proved by [Carverhill [1994]]), which is

σi(t, T ) = ξi(t)νi(T ) for each i = 1, ..., d,

where ξi and νi are strictly positive and deterministic functions of time. We recall the
short-rate process in our HJM framework from expression (4.2) and combine it with the
HJM drift condition from Proposition 4.9, (iii). So we obtain

r(t) = f(0, t) +

∫ t

0

α(ν, t)dν +
d∑

i=1

∫ t

0

σi(ν, t)dBi(ν)

= f(0, t) +

∫ t

0

(
−

d∑

i=1

σi(ν, t)
(
φi(ν) −

∫ t

ν

σi(ν, u)du
))
dν +

d∑

i=1

∫ t

0

σi(ν, t)dBi(ν)

= f(0, t) −
d∑

i=1

∫ t

0

ξi(ν)ψi(t)

(
φi(ν) −

∫ t

ν

ξi(ν)ψi(u)du

)
dν +

d∑

i=1

∫ t

0

ξi(ν)ψi(t)dBi(ν)

= f(0, t) −
d∑

i=1

ψi(t)

∫ t

0

ξi(ν)φi(ν)dν +
d∑

i=1

ψi(t)

∫ t

0

ξ2
i (ν)

∫ t

ν

ψi(u)du dν

+
d∑

i=1

ψi(t)

∫ t

0

ξi(ν)dBi(ν).
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4 The Heath-Jarrow-Morton Model

From now on we only focus on the one-factor case d = 1 in order to arrive at the one-factor
Hull-White model. Hence we define the deterministic function A by

A(t) := f(0, t) − ψ(t)

∫ t

0

ξ(ν)φ(ν)dν + ψ(t)

∫ t

0

ξ2(ν)

∫ t

ν

ψ(u)du dν.

So r(t) simplifies to

r(t) = A(t) + ψ(t)

∫ t

0

ξ(ν)dB(ν).

We assume differentiability of A and so we are able to derive

dr(t) = A′(t)dt+ ψ′(t)

∫ t

0

ξ(s)dB(s) + ψ(t)ξ(t)dB(t)

=

(
A′(t) + ψ′(t)

r(t) − A(t)

ψ(t)

)
dt+ ψ(t)ξ(t)dB(t)

=
(
a(t) + b(t)r(t)

)
dt+ c(t)dB(t),

where

a(t) := A′(t) − ψ′(t)

ψ(t)
A(t)

b(t) :=
ψ′(t)

ψ(t)

c(t) := ψ(t)ξ(t).

This expression is obviously of the same form as the dynamics in the Hull-White model
given by equation (3.10).
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5 The Fractional Heath-Jarrow-Morton

Model

In the preceding chapter we studied the classical Heath-Jarrow-Morton model, in which
Brownian motion was the driving factor for randomness in the forward-rate process. But
many empirical studies (e.g. [McCarthy et al. [2004]]) propose a long-memory behaviour
in bond markets that is in particular inherent in interest rates and originated by the
fundamentals of an economy e.g. gross domestic product. One major drawback of the
classical HJM approach is that this long-memory behaviour is not captured by Brownian
motion due to its independent increments. Therefore we will try to incorporate this long-
range dependence and model our forward rates with fractional Brownian motion as the
driving noise factor. As we have already shown in chapter 2, fractional Brownian motion
with Hurst parameter H ∈ (1

2
, 1) exhibits long-range dependence over time and so we

hope to get a more realistic forward-rate process. On the other hand this causes a new
problem. The existing arbitrage theory from the classical case is now not valid anymore,
since for fractional Brownian motion with H 6= 1

2
one major condition, the semimartingale

condition for the process, is not satisfied anymore. As [Gapeev [2004]] has outlined this
implies arbitrage opportunities in the absence of transaction costs.
So we will have to come up with a new framework in order to introduce an arbitrage-free
interest-rate model. This will turn out to be a drift restriction, too, but a drift restriction
that differs from the classical case. Consequently, the non-Markovianity property of fBm
makes predictions more complicated.
This chapter is mainly based on the article of [Ohashi [2009]].

5.1 The Set-Up

Let (Ω,F ,P) be a complete probability space with the filtration (Ft)t≥0 satisfying the
usual conditions, i.e. right-continuous and complete. Let BH = (BH

i )i=1,...,d, d ∈ N, be a
d-dimensional fractional Brownian motion with Hurst parameter H ∈ (1

2
, 1) whereas the

d fractional Brownian motions are independent of each other.
In order to state our forward-rate dynamics we need to introduce several definitions in
advance.
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5 The Fractional Heath-Jarrow-Morton Model

Definition 5.1 (Semigroup). A one-parameter semigroup of contractions on the Hilbert
space E is a family of bounded, linear operators {S(t) : t ∈ R+} on E for which

(1) S(s+ t) = S(s)S(t) for all s, t ≥ 0,

(2) S(0) = 1,

(3) ‖S(t)‖ ≤ 1 for all t ≥ 0,

(4) the mapping R+ → L(U,E), t 7→ S(t) is strongly continuous at zero, that is
limtց0 ‖S(t)ψ − ψ‖ = 0 for all ψ ∈ E.

We consider the special case of the right-shift semigroup {S(t) : t ∈ R+} on E, which is
defined by the operator S(t)g(x) := g(t+x) for any function g : R+ → R and satisfies the
above conditions. [Applebaum [2004], Section 3.2]

As the second step we will specify the separable Hilbert space E in concurrence with
[Filipovic [2001], Sections 4 and 5] such that three minimum criteria are fulfilled:

(i) The functions h ∈ E are continuous and the pointwise evaluation Jx(h) := h(x) is
a continuous linear functional on E, for all x ∈ R+.

(ii) The semigroup {S(t) : t ∈ R+} is strongly continuous in E, that is
lims→t ‖Stψ − Ssψ‖ = 0 for all t ≥ 0, ψ ∈ E.

(iii) There exists a constant K such that ‖Sh‖E ≤ K ‖h‖2
E for all h ∈ E with Sh ∈ E,

whereas the E-norm is specified below.

From now on let U denote a d-dimensional vector space with an orthonormal basis
(ei)i=1,...,d and let L(U,E) be the space of bounded linear operators from U into E with
the norm ‖ · ‖E defined by

‖ h‖E = | h(0)|2 +

∫

R+

| h′(x)|2w(x)dx, h ∈ E,

where w : R+ → [1,∞) is a non-decreasing C1-function such that w− 1
3 ∈ L1(R+). We will

conveniently denote this norm by ‖ · ‖ from now on.

Throughout this chapter we will work with the Musiela reparametrization of the for-
ward rate, that is rt(x) := f(t, t + x), (t, x) ∈ R2

+, where T ∈ R+, T ≥ t, denotes the
maturity as usual and hence x = T − t is the time to maturity. There is a precise analysis
of the advantages of this representation in [Filipovic [2001], p.5 ff], e.g. this modification
eliminates the difficulty that the state space is a space of functions on an interval varying
with t. Now that we have set all the groundwork we assume the forward curve x 7→ rt(x)
to be a Hilbert space-valued stochastic process under the real-world measure described
by a linear stochastic partial differential equation

drt =
(
Art + αt

)
dt+

d∑

i=1

σitdB
H
i (t), r0(·) = ξ ∈ E, (5.1)
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5.1 The Set-Up

where we assume that the coefficient functions are defined as α
�
: R2

+ → E and
σi

�

: R2
+ → E, i = 1, ..., d, and the first-order derivative operator A : Dom(A) → E,

A := ∂
∂x

is the infinitesimal generator of the right-shift semigroup, which we will have
to outline according to [Applebaum [2004], Section 3.2]. Basically we look for a linear
operator A for which St = etA can be given meaning in view of the stochastic differential
equation in (5.1). Therefore we define the linear space

DA =

{
ψ ∈ E : ∃φψ ∈ E such that lim

tց0

∥∥∥∥
Stψ − ψ

t
− φψ

∥∥∥∥ = 0

}
.

This enables us to define the infinitesimal generatorA in E, with domainDA, by Aψ := φψ,
so that for each ψ ∈ DA we have

Aψ = lim
tց0

Stψ − ψ

t
.

The assumption for the dynamics in (5.1) is equivalent to assuming the forward rate
analogously to chapter 4 as

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

d∑

i=1

∫ t

0

σi(s, T )dBH
i (s), (5.2)

where the drift function α : R2
+ → E and the volatility functions σi : R2

+ → L(U,E), for
all i = 1, ..., d, are deterministic. They concur with the coefficient functions in (5.1), where
just a different notation is used. The d fractional Brownian motions represent different
random noises with different sensitivities σi, i = 1, ..., d. f(0, · ) is a given non-random
inital forward rate curve.
In order for the integrals in equation (5.2) to be well-defined we postulate

∫ T

0

|α(s, T )|ds <∞ and

∫ T

0

∫ T

0

| σi(s, T )||σi(t, T )|φH(t− s) ds dt <∞

for all i = 1, ..., d and all T ∈ (0,∞) and where φH(u) := H(2H − 1)|u|2H−2, u ∈ R. The
latter condition stems directly from the integration with respect to fBm (see the definition
of the inner product in Definition 2.16).

Applying the operator S(t) on r, α and σi, i = 1, ..., d, and recalling rt(x) = f(t, t + x),
we can rewrite the forward-rate process using the Musiela reparametrization as

rt(x) = S(t)r0(x) +

∫ t

0

S(t− s)α(s, s+ x)ds+

d∑

i=1

∫ t

0

S(t− s)σi(s, s+ x)dBH
i (s). (5.3)

Moreover we define ∆2 := {(t, T ) ∈ R2| 0 ≤ t ≤ T < ∞} as the subset of R2, on which
all the action takes place. This enables us to come up with the term structure of interest
rates

{rt(x) : (t, T ) ∈ ∆2}.
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5 The Fractional Heath-Jarrow-Morton Model

So, we are finally set up to introduce a term structure of bond prices {P (t, T ) : (t, T ) ∈ ∆2}
with P (t, T ) being a zero coupon bond at time t with maturity T . It is given by

P (t, T ) = exp

(
−

∫ T

t

f(t, u)du

)
= exp

(
−

∫ T−t

0

rt(x)dx

)
, (5.4)

using the reparametrization u = t+ x. The usual normalization condition P (t, t) = 1 for
all t > 0 holds, which implies that all bonds are non-defaultable. Moreover P (t, T ) is a.s.
continuously differentiable. Moreover, we introduce a convenient notation. Set αt( · ) :=
α(t, t+ · ) and σ = (σi)i=1,...,d, where σit( · ) := σi(t, t+ · ) for all i = 1, ..., d. This notation
also concurs with the notation of the Musiela reparametrization for the forward-rate
dynamics in (5.1).
We suppose that these coefficient functions satisfy the following four assumptions (5.5)-
(5.8), which we will need for Theorem 5.2 and where the last three assumptions stem
from the theory of integration with respect to fractional Brownian motion (see Section
2.2.2): ∫ T

0

‖αs‖ds+

∫ T

0

‖σs‖2ds <∞ for every 0 < T <∞. (5.5)

A straightforward conclusion of (5.5) is
∫ T

0
‖S(t− s)σt‖2dt < ∞ for every 0 < T < ∞,

and therefore the stochastic convolution defined as

d∑

i=1

∫ t

0

S(t− s)σisdB
H
i (s), t > 0,

which appears in the forward-rate process (5.3), is a well-defined E-valued Gaussian pro-
cess. The following assumption will be essential for the existence of a continuous version
for the mild solution of the sde in (5.1). We assume that there is a γ ∈ (0, 1

2
) such that

∫ T

0

∫ T

0

u−γν−γ ‖S(u)σu‖ ‖S(ν)σν‖φH(u− ν)du dν <∞ for every 0 < T <∞. (5.6)

We will make two further assumptions, which we will need for the stochastic Fubini
theorem, in order to get well-defined bond prices {P (t, T ); (t, T ) ∈ ∆2} in Theorem 5.2:

∫

[0,T ]4

‖σu(s)‖ ‖σν(r)‖φH(u− ν)du dν ds dr <∞ for every 0 < T <∞ (5.7)

and ∫

[0,T ]3

‖σu(t)‖ ‖σν(t)‖φH(u− ν)dν du dt <∞ for every 0 < T <∞. (5.8)

Analogously to the classical Heath-Jarrow-Morton model in the previous chapter we define
the numeraire as

B0(t) := exp

(∫ t

0

rs(0)ds

)
<∞.
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So we can also define the relative (or discounted) bond prices as

Zt(T ) :=
P (t, T )

B0(t)
, (t, T ) ∈ ∆2.

We introduce a convenient notation before we will state our bond price theorem:

Notation: Let ν : [0, T ] × R+ → R be a function that is locally integrable in R+.
Then define

Iν(s, T ) :=

∫ T−s

0

νs(x)dx.

Theorem 5.2. Assume that the coefficients α and σ satisfy the assumptions (5.5), (5.6),
(5.7) and (5.8). Then the forward rate rt given by the Musiela reparametrization in (5.3)
is the continuous mild solution of the sde in (5.1).
Moreover the term structure of bond prices is given by the continuous process

P (t, T ) = P (0, T ) exp

( ∫ t

0

(rs(0) − Iα(s, T ))ds+
d∑

i=1

∫ t

0

−Iσi(s, T )dBH
i (s)

)
(5.9)

for (t, T ) ∈ ∆2.

Proof: The first statement of Theorem 5.2 can be proved in two steps. At first one
will show that the forward rate (5.3) is a mild solution of the sde in (5.1) [see Duncan
et al. [2002], Proposition 3.1]. In a second step we can prove that if condition (5.6) holds,
then there is a version of rt(x) with continuous sample paths [see Duncan et al. [2002],
Proposition 3.2].
In order to come up with the bond price we recall equation (5.4)

P (t, T ) = exp

(
−

∫ T−t

0

rt(x)dx

)
= exp

(
− Ir(t, T )

)
.

We will compute Ir(t, T ). Fix (t, T ) ∈ ∆2 and subsitute rt(x) by the Musiela equation
(5.3), where we make use of the notation αt( · ) := α(t, t+· ) and σit( · ) := σi(t, t+· ) for
all i = 1, ..., d:

Irt(t, T ) = IS(t)r0(t, T ) +

∫ t

0

IS(t−s)αs
(t, T )ds+

d∑

i=1

∫ t

0

IS(t−s)σi
s
(t, T )dBH

i (s).

Note that I(t, T ) ◦ S(t) = I(0, T ) − I(0, t). This yields

Irt(t, T ) = Ir0(0, T ) − Ir0(0, t) +

∫ t

0

(Iαs
(s, T ) − Iαs

(s, t))ds

+
d∑

i=1

∫ t

0

(Iσi
s
(s, T ) − Iσi

s
(s, t))dBH

i (s).
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5 The Fractional Heath-Jarrow-Morton Model

We will split up the integrals into two parts, that is Irt(t, T ) := I1 − I2, where

I1 := Ir0(0, T ) +

∫ t

0

Iαs
(s, T )ds+

d∑

i=1

∫ t

0

Iσi
s
(s, T )dBH

i (s),

I2 := Ir0(0, t) +

∫ t

0

Iαs
(s, t)ds+

d∑

i=1

∫ t

0

Iσi
s
(s, t)dBH

i (s).

We need to transform the integrals in I2 using

σ̃is(u) =

{
σis(u− s), if s ≤ u
0 otherwise.

Substituting u = x+ s, we get

Iσi
s
(s, t) =

∫ t−s

0

σis(x)dx =

∫ t

s

σis(u− s)du =

∫ t

0

σ̃is(u)du.

Since the assumptions (5.7) and (5.8) hold, we can apply the stochastic Fubini theorem
to the fractional Brownian motion term [see Krvavich and Mishura [2001], Theorem 1] in
I2 and substitute backwards to get

d∑

i=1

∫ t

0

Iσi
s
(s, t)dBH

i (s) =
d∑

i=1

∫ t

0

(∫ t

0

σ̃is(u)du

)
dBH

i (s)

=

∫ t

0

( d∑

i=1

∫ t

0

σ̃is(u)dB
H
i (s)

)
du

=

∫ t

0

( d∑

i=1

∫ u

0

σis(u− s)dBH
i (s)

)
du.

(5.10)

With the ordinary Fubini theorem we similarly find
∫ t

0

Iαs
(s, t)ds =

∫ t

0

( ∫ u

0

αs(u− s)ds

)
du. (5.11)

Results (5.10) and (5.11) combined we can derive

I2 =

∫ t

0

(
S(u)r0(0) +

∫ u

0

S(u− s)αs(0)ds+
d∑

i=1

∫ u

0

S(u− s)σis(0)dBH
i (s)

)
du

=

∫ t

0

ru(0)du.

In I1 we observe that Ir0(0, T ) = − logP (0, T ) and left with the remaining terms we come
up with

logP (t, T ) = logP (0, T ) +

∫ t

0

(rs(0) − Iα(s, T ))ds+

d∑

i=1

∫ t

0

−Iσi
s
(s, T )dBH

i (s),

which proves our expression for the bond price in (5.9). 2
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5.2 Arbitrage Free Bond Pricing

5.2 Arbitrage Free Bond Pricing

In the presence of proportional transaction costs, semimartingales are not the only arbitrage-
free assets anymore. At the same time, not all strategies are permitted or meaningful, as
trading volume must remain finite. In other words, as the class of reasonable integrators
enlarges, the set of admissible integrands shrinks, i.e. we focus on a particular set of strate-
gies, the measure-valued elementary processes. First of all we will have to come up with a
definition of our wealth process also known as portfolio value process and with the notion
of admissible trading strategies. Therefore we introduce a setting that takes transaction
costs into account which is essential for a no-arbitrage framework in the fractional case.

The portfolio setting

Let MT ∗ denote the space of all finite signed measures on [0, T ∗] endowed with the total
variation norm ‖ · ‖TV , where T ∗ is the upper limit of our trading interval.

Definition 5.3 (Finite signed measure). Let F be a σ-Algebra.
A function µ : F → (−∞,∞) is called a (finite) signed measure on F , if

(i) µ(∅) = 0,

(ii) for any pairwise disjoint sequence (An)
∞
n=1 ⊆ F , we have

µ(

∞⋃

n=1

An) =

∞∑

n=1

µ(An).

[Klenke [2006], Definition 7.40]

Basically a signed measure is a measure that takes on negative values, too.

Definition 5.4 (Total variation norm). Let µ be a signed measure on a measurable space
(Ω,F) and the Jordan decomposition is given by µ = µ+ − µ−. Let Ω = Ω+ ⊎ Ω− be the
Hahn decomposition. Then the total variation norm is defined by

‖µ‖TV : = sup{µ(A) − µ(Ω\A) : A ∈ F}
= µ(Ω+) − µ(Ω−)

= µ+(Ω) − µ−(Ω).

[Klenke [2006], Corollary 7.45]

The Jordan decomposition and the Hahn decomposition exist by the sole existence of a
signed measure according to [Klenke [2006], Corollary 7.44] and [Klenke [2006], Theorem
7.43].
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5 The Fractional Heath-Jarrow-Morton Model

Let µ be a measure-valued elementary process that is defined as

µt(ω, · ) :=
N−1∑

i=0

χFi×(ti,ti+1](ω, t)mi(· ), (5.12)

where mi ∈ MT ∗ , 0 = t0 < ... < tN ≤ T ∗, N ∈ N and Fi ∈ Fti . ω emphasizes the impact
of coincidence within this process. µ will later function as our trading strategy.
Let Sb denote the set of all elementary processes of the form (5.12) endowed with the
following norm

‖µ‖2
V := E

[
sup

(t,T )∈[0,T ∗]2
‖µt‖2

TV

]
(5.13)

and V being the completion of Sb with respect to this norm.

We assume that all economic activity takes place on the bounded set [0, T ∗]2 and hence in
the following we have Zt(T ) = 0 if (t, T ) /∈ ∆2. As a direct consequence of Theorem 5.2 the
discounted bond price process Zt(T ) satisfies the following mild integrability assumption
if the assumptions (5.5)-(5.8)hold:

Condition A

{Zt(T ) : (t, T ) ∈ [0, T ∗]2} is a jointly continuous real-valued stochastic process such
that

E

[
sup

(t,T )∈[0,T ∗]2
|Zt(T )|2

]
<∞.

Let µ ∈ Sb as in (5.12). Then the integral with respect to the discounted price process,
that represents the capital gain of the portfolio µ (which will be the same as the capital
value of the portfolio for zero inital capital), is defined as

∫ t

0

µsdZs :=
N−1∑

i=0

χFi
(Zti+1∧t − Zti∧t)mi, (5.14)

where Ztimi is considered as the dual action of a stochastic process Z and a measure m.
This dual action term can be interpreted by the following form:

(Zti+1∧t − Zti∧t)mi :=

∫ T ∗

0

(Zti+1∧t(x) − Zti∧t(x))mi(dx). (5.15)

The expression
∫ ·
0
µsdZs is well-defined for every µ ∈ V by the definition of V and the

following lemma:

Lemma 5.5. Let ‖ · ‖∞ denote the uniform topology norm on the space of real-valued
bounded functions defined on [0, T ∗] given by the supremum, i.e. ‖Zt‖∞ := sup{Zt : t ∈
[0, T ∗]}. Then we have

E

[
sup

0≤t≤T ∗

∣∣∣∣
∫ t

0

µsdZs

∣∣∣∣
]
≤ ‖µ‖V E

[
sup

0≤s,t≤T ∗
‖Zs − Zt‖2

∞

]1/2

<∞ for all µ ∈ V.
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5.2 Arbitrage Free Bond Pricing

Proof: We will prove this inequality by applying some estimates and the Hölder inequal-
ity. First of all we consider the easiest case, that is N = 1. So the elementary process
simplifies to µt(ω, · ) = χF0×(0,tN ](ω, t)m0(· ) and the integral with respect to Z simplifies
to

∫ t

0

µsdZs = χF0(ZtN∧t − Z0∧t)m0 = χF0

∫ T ∗

0

(ZtN∧t(x) − Z0∧t(x))m0(dx)

= χF0

∫ T ∗

tN∧t
(ZtN∧t(x) − Z0∧t(x))m0(dx),

where we use the fact that ZtN∧t(x) = 0 ⇔ x < tN ∧ t. Hence we obtain

E

[
sup

0≤t≤T ∗

∣∣∣∣
∫ t

0

µsdZs

∣∣∣∣
]

= E

[
sup

0≤t≤T ∗

∣∣∣∣χF0

∫ T ∗

tN∧t
(ZtN∧t(x) − Z0∧t(x))m0(dx)

∣∣∣∣
]

≤ E

[
sup

0≤t≤T ∗
χF0

∣∣∣∣
∫ T ∗

tN∧t
(ZtN∧t(x) − Z0∧t(x))m0(dx)

∣∣∣∣
]

≤ E

[
sup

0≤t≤T ∗

(
χF0 sup

x∈[tN ,T ∗]

∣∣ZtN∧t(x) − Z0∧t(x)
∣∣

︸ ︷︷ ︸
≤‖ZtN∧t−Z0∧t‖

∞
by def of ‖· ‖∞

∫ T ∗

tN∧t
|m0|(dx)

︸ ︷︷ ︸
=|m0|([tN∧t,T ∗])≤‖m0‖TV

)]
.

We observe that ‖ZtN∧t − Z0∧t‖∞ = 0, if t /∈ (0, tN ] and so we can just insert χ(0,tN ] into
the equation. This yields

≤ E

[
sup

0≤t≤T ∗

(
‖ZtN∧t − Z0∧t‖∞

∥∥χF0×(0,tN ]m0

∥∥
TV

)]

= E

[
sup

0≤t≤T ∗

(
‖ZtN∧t − Z0∧t‖∞ ‖µt‖TV

)]

≤ E

[
sup

0≤s,t≤T ∗

‖Zs − Zt‖∞ sup
0≤t≤T ∗

‖µt‖TV
]

Hölder

≤ E

[
sup

0≤s,t≤T ∗
‖Zs − Zt‖2

∞

]1/2

E

[
sup

0≤t≤T ∗
‖µt‖2

TV

]1/2

= E

[
sup

0≤s,t≤T ∗

‖Zs − Zt‖2
∞

]1/2

‖µ‖V ,

where we apply the definition of the norm from (5.13). Hölder holds, since for positive
functions f we have (sup f)2 ≤ sup(f 2), where in our case ‖ · ‖ is the positive function.
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5 The Fractional Heath-Jarrow-Morton Model

We can now proceed to the general case, that is µt(ω, · ) :=
∑N−1

i=0 χFi×(ti,ti+1](ω, t)mi(· ),
and derive the inequality analogously.

E

[
sup

0≤t≤T ∗

∣∣∣∣
∫ t

0

µsdZs

∣∣∣∣
]

(5.15)
= E

[
sup

0≤t≤T ∗

∣∣∣∣
N−1∑

i=0

χFi

∫ T ∗

0

(Zti+1∧t(x) − Zti∧t(x))mi(dx)

∣∣∣∣
]

= E

[
sup

0≤t≤T ∗

∣∣∣∣
N−1∑

i=0

χFi

∫ T ∗

ti∧t
(Zti+1∧t(x) − Zti∧t(x))mi(dx)

∣∣∣∣
]

≤ E

[
sup

0≤t≤T ∗

(N−1∑

i=0

χFi

∣∣∣∣
∫ T ∗

ti∧t
(Zti+1∧t(x) − Zti∧t(x))mi(dx)

∣∣∣∣
︸ ︷︷ ︸

≤ sup
x∈[ti∧t,T∗]

|Zti+1∧t(x)−Zti∧t(x)|
T∗∫

ti∧t

|mi|(dx)

)]

≤ E

[
sup

0≤t≤T ∗

(N−1∑

i=0

χFi

∥∥Zti+1∧t − Zti∧t
∥∥
∞ ‖mi‖TV

)]

= E

[
sup

0≤t≤T ∗

(N−1∑

i=0

∥∥Zti+1∧t − Zti∧t
∥∥
∞ χFi×(ti,ti+1] ‖mi‖TV

)]

= E

[
sup

0≤t≤T ∗

(N−1∑

i=0

∥∥Zti+1∧t − Zti∧t
∥∥
∞

∥∥χFi×(ti,ti+1]mi

∥∥
TV

)]

≤ E

[
sup

0≤s,t≤T ∗
‖Zs − Zt‖∞ sup

0≤t≤T ∗

( N−1∑

i=0

∥∥χFi×(ti,ti+1]mi

∥∥
TV

︸ ︷︷ ︸
=‖µt‖TV since all summands are positive

)]

Hölder

≤ E

[
sup

0≤s,t≤T ∗

‖Zs − Zt‖2
∞

]1/2

E

[
sup

0≤t≤T ∗

‖µt‖2
TV

]1/2

= E

[
sup

0≤s,t≤T ∗
‖Zs − Zt‖2

∞

]1/2

‖µ‖V .

The inequality follows for all µ ∈ V by classical limit argument.
Moreover, the expression is finite due to condition A. 2

The liquidation value of a portfolio with zero initial capital consists of the capital gain
of an elementary portfolio µ as defined in (5.12) from time 0 to t minus the transaction
costs of all transactions incurred minus the final cost of liquidation, that is

V k
t (µ) =

∑

ti<t

χFi
(Zti∧t − Zti+1∧t)mi − k

∑

ti<t

Zti |µti+1
− µti | − kZt|µt|, (5.16)

where k is an arbitrary positive number, which stands for the proportional transaction
costs in the bond market, and | · | denotes the total variation measure which we will define
in the following:
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5.2 Arbitrage Free Bond Pricing

Definition 5.6 (Total variation measure). Let µ be a signed measure on a measurable
space (Ω,F). Let E be a measurable subset of F . Let Π := ∪iEi be an arbitrary partition
of E with measurable subsets Ei. Then the total variation measure |µ| is defined by

|µ|(E) = sup
Π

∑

i

|µ(Ei)| for all E ∈ F .

In words, the supremum over all partitions Π of a measurable set E into a finite number
of disjoint measurable subsets is taken. The total variation measure can be interpreted as
the infinitesimal version of the absolute value.

Consequently, we will extend the wealth process from a finite number of transactions to
continuous trading:

Condition B

Let PT ∗ be the set of all partitions of [0, T ∗]. We assume that

ΠT ∗(µ) := sup
π∈PT∗

∑

ti∈π

∥∥µti+1
− µti

∥∥
TV

is square integrable.

Lemma 5.7 (Convergence of the wealth process). Let µ ∈ V satisfy Condition B. Then
the wealth process in (5.16) converges to

V k
t (µ) =

∫ t

0

µsdZs − k

∫ t

0

Zsd|µs| − kZt|µt|, (5.17)

where
∫ t

0
Zsdµs is defined as

∫ t

0

Zsdµs := lim
n→∞

∫ t

0

Z
n

sdµs = lim
n→∞

∫ t

0

Zn
sdµs (5.18)

with Zn and Zn being the upper and the lower approximations of Z, respectively, along
the partition tni := iT ∗

2n .

For a proof of this lemma see [Guasoni [2002]].

45



5 The Fractional Heath-Jarrow-Morton Model

The no-arbitrage framework

No-arbitrage theory is a lot more complicated in the fractional case and we will demon-
strate an approach completely different to the classical case. First, there are three impor-
tant expressions which are commonly used and which we need to define for no-arbitrage
theory under transaction costs - an admissible trading strategy, an arbitrage opportunity
and a k-arbitrage free bond market.

Definition 5.8. µ ∈ V is an admissible trading strategy if it satisfies condition B, it is
weakly Ft-adapted and there exists a constant M > 0 such that V k

t (µ) ≥ −M a.s. for
every t ≤ T ∗. The last assumption excludes the possibility of infinite losses.
An admissible trading strategy is called an arbitrage opportunity with transaction costs
k > 0 on [0, T ∗], if V k

T ∗(µ) ≥ 0 a.s. and P(V k
T ∗(µ) > 0) > 0.

The bond market is called k-arbitrage free on [0, T ∗] if no such strategy exists.

We will need the following lemma in order to prove the important upcoming proposition:

Lemma 5.9. Let Z and Z̃ be càdlàg functions such that |Zt − Z̃t| < kZt a.s. for all
t ∈ (0,∞). If θ : [0,∞) → R is a left-continuous function of bounded variation, then

V k
t (θ) ≤

∫ t

0

θsdZ̃s for all t ∈ (0,∞)

and equality holds for t if and only if θs = 0 for all s ≤ t. [Guasoni [2006], Lemma 2.1]

Now we can come up with a very general no-arbitrage criterion.

Proposition 5.10. Fix k > 0. If for every (Ft)t≥0-stopping time τ , that satisfies
P(τ < T ∗) > 0, we have

P

(
sup

τ≤t≤T≤T ∗

∣∣∣∣
Zτ (τ)

Zt(T )
− 1

∣∣∣∣ < k, τ < T ∗
)
> 0,

then the bond market is arbitrage free on [0, T ∗] with transaction costs k.

Proof: Let θ be a strategy that is not identically zero. Define the stopping time τ and
the event A, respectively, as

τ := T ∧ inf{t : θt 6= 0} and A :=

{
sup

τ≤t≤T≤T ∗

∣∣∣∣
Zτ (τ)

Zt(T )
− 1

∣∣∣∣ < k, τ < T ∗
}
.

Since θt 6= 0 for at least one t ∈ [0, T ], we obviously have P(τ < T ∗) > 0. Now we will
assume P(A) > 0 to hold.

We define Z̃t = Zt∧τ and apply Lemma 5.9 on the event A. The assumptions of the lemma
are satisfied due to the choice of A. This yields

V k
T (θ) =

∫ T

0

θsdZs − k

∫ T

0

Zsd|θs| − kZT |θT |

≤
∫ T

0

θsdZ̃s = 0

and since θs 6= 0 by assumption, we get V k
T (θ) < 0 and so θ is not an arbitrage. 2
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5.2 Arbitrage Free Bond Pricing

Intuitively, we have chosen τ as the first trading point in time, which generates transaction
costs k. For an arbitrage opportunity this will have to be made up for in the future by a
price movement larger than k. So we choose A as the event for which the price movement
is not large enough. If there is a positive probability for this event to occur, we cannot
avoid the risk of a loss and so arbitrage is impossible.

Remark 5.11. We have seen so far that for every k > 0 we can come up with a no-
arbitrage criterion and for k = 0 there is an arbitrage strategy due to [Gapeev [2004]].
One might ask what would happen for the limit k → 0. Due to the choice of the event
A Proposition 5.10 would not make sense anymore and so we cannot make any state-
ment concerning this case. This is not surprising, since intuitively at k = 0 we have a
discontinuity.

Now we will come up with conditions which ensure a k-arbitrage free bond market for every
k > 0. Therefore we will combine the full-support property on C∆2

T∗
with a suitable choice

on the drift α of the forward-rate process. We define ∆2
T ∗ := {(t, T ) : 0 ≤ t ≤ T ≤ T ∗}

and denote by C∆2
T∗

the space of all real-valued continuous functions on the metric space

∆2
T ∗ . We start off with the definition of the important full-support property:

Definition 5.12 (Full support). Let X be a Polish space, i.e. a metric, separabel and
complete topological space. A random element ξ : Ω → X has P-full support if
Pξ := P ◦ ξ−1(U) > 0 for every non-empty open set U in X .

Example 5.13. In order to clarify the notion of full support we provide an easy example
for what is described by ”support”. The exponential distribution is given by the density
f(x) = λe−λx for all x ≥ 0 and f(x) = 0 for all x < 0. We say that the exponential
distribution has support on R+.

In contrast to that the normal distribution given by f(x) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
for all

x ∈ R has support on the complete real line R.

By the full-support property we can give a condition when Proposition 5.10 can be used:

Lemma 5.14. Let Y : Ω → C∆2
T∗

be a measurable map such that X := log Y has P-full
support. Then Y satisfies the assumption in Proposition 5.10, that is the probability of the
event A is positive.

Proof: Let ε > 0 and let τ be an Ft-stopping time such that P(τ < T ∗) > 0. Since

log Yt(T ) − log Yτ (τ) = log
Yt(T )

Yτ (τ)
< ε

⇔ Yt(T )

Yτ (τ)
− 1 < ε,

it is sufficient to check that

P

(
sup

τ≤t≤T≤T ∗

|X(t, T ) −X(τ, τ)| < ε, τ < T ∗
)
> 0.
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5 The Fractional Heath-Jarrow-Morton Model

Applying the triangle inequality we can easily derive for p ∈ C∆2
T∗

:

{
sup

(t,T )∈∆2
T∗

|X(t, T ) − p(t, T )| < ε

2
, τ < T ∗

}

⊆
{

sup
(t,T )∈∆2

T∗

|X(t, T ) −X(τ, τ)| < ε, τ < T ∗
}
.

(5.19)

We denote P the set of all polynomials p on ∆2
T ∗ with rational coefficients such that

p(0, 0) = 0. We claim that there exists p ∈ P such that

P

(
sup

(t,T )∈∆2
T∗

|X(t, T ) −X(τ, τ)| < ε

2
, τ < T ∗

)
> 0. (5.20)

If we can prove (5.20), the actual statement of Lemma 5.14 follows due to ”⊆” in (5.19).
Therefore we are going to make a proof by contradiction, i.e. assume that (5.20) is violated,
that is P

(
sup(t,T )∈∆2

T∗
|X(t, T ) −X(τ, τ)| < ε

2
, τ < T ∗) = 0 for every p ∈ P. So we easily

get
{

sup
(t,T )∈∆2

T∗

|X(t, T ) − p(t, T )| < ε

2
, τ < T ∗

}
⊆ {τ ≥ T ∗} P-a.s. for all p ∈ P

and hence ⋃

p∈P

{
sup

(t,T )∈∆2
T∗

|X(t, T ) − p(t, T )| < ε

2

}
⊆ {τ ≥ T ∗} P-a.s.. (5.21)

The density of P in C∆2
T∗

and the full support property of X combined, we can conclude
that

P

( ⋃

p∈P

{
sup

(t,T )∈∆2
T∗

|X(t, T ) − p(t, T )| < ε

2

})
= 1

and due to the ”⊆” in (5.21) we get P(τ ≥ T ∗) = 1. So we have P(τ < T ∗) = 0 which is
a contradiction to the assumption in the very beginning. 2

Remark 5.15. Our next step towards the absence of arbitrage makes use of the Hölder
continuity of the paths of a fractional Brownian motion for any order γ < H. (For a proof
of this fact see [Decreusefond and Üstünel [1999], Theorem 3.1].)

Definition 5.16 (γ-Hölder continuous). Let (E, d) and (E ′, d′) be metric spaces and let
γ ∈ (0, 1]. A mapping ϕ : E → E ′ is called Hölder continuous in r ∈ E of order γ, if
there are constants ε > 0 and C <∞ such that for every s ∈ E with d(s, r) < ε we have
d′(ϕ(r), ϕ(s)) ≤ C d(r, s)γ. [Klenke [2006], Definition 21.2]

We observe that for γ = 1 this definition is equivalent to the definition of a Lipschitz
continuous function.

Remark 5.17. Moreover there is an fBm Wiener measure on a separable Banach space
W continuously embedded on the space CR+ such that the elements of W are γ-Hölder
continuous functions on any compact interval. (For a proof of this finding see [Hairer and
Ohashi [2007], Lemma 4.1].)
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5.2 Arbitrage Free Bond Pricing

We will make use of this remark in the following lemma, which states the crucial volatility
conditions in order to come up with absence of arbitrage in the bond market.

Lemma 5.18. Assume that Iσi(t, T ) is γ-Hölder continuous on ∆2
T ∗ for every i ≥ 1 where

1
2
< γ < 1. Then the process

∑d
i=1

∫ t

0
Iσi(s, T )dBH

i (s) has P-full support on C∆2
T∗

.

A detailed proof of this lemma is outlined in [Ohashi [2009], Lemma 3.2].

This lemma almost completes our framework in order to conclude the absence of ar-
bitrage, which we will briefly summarize. Combining Lemma 5.14 and Proposition 5.10
we observe that if logZ has P-full support, then the bond market is k-arbitrage free for
every k > 0. We ensure this full support property for logZ by imposing conditions on the
volatilities σi, i = 1, ..., d, in Lemma 5.18, i.e. the Hölder continuity.
There is still one more step to go, because so far there are still infinitely many choices
of α that ensure the full support property and so absence of arbitrage in the fractional
bond market. We will see that there is a unique choice for the drift that will guarantee
the existence of a quasi-martingale measure.

Definition 5.19 (Quasi-martingale measure). An equivalent probability measure Q ∼ P

is called a quasi-martingale measure if the discounted bond price process Zt(T ) has
Q-constant expectation, i.e. for every 0 < T <∞, we have

EQ[Zt(T )] = P (0, T ) for t ∈ [0, T ].

But first of all we derive the drift condition under the real-world measure P. We will later
convert this to the risk-neutral case using the change of measure.

Theorem 5.20. The P-constant expectation E [Zt(T )] = P (0, T ) holds for every
T ∈ (0,∞), t ∈ [0, T ], if and only if the drift α satisfies

αt( · ) =
d∑

i=1

(
σit( · )

∫ t

0

Iσi(θ, ·+t)φH(t− θ) dθ

+

∫ ·

0

σit(y)dy

∫ t

0

σiθ(·+t− θ)φH(t− θ) dθ

)
.

(5.22)

Proof: We start with the discounted bond price process easily derived from Theorem 5.2

Zt(T ) =
P (t, T )

B0(t)
= P (0, T ) exp

(
−

∫ t

0

Iα(s, T )ds−
d∑

i=1

∫ t

0

Iσi(s, T )dBH
i (s)

)
,

(t, T ) ∈ ∆2. Since we need the constant expectation to hold, we need to prove that

E

[
exp

(
−

∫ t

0

Iα(s, T )ds−
d∑

i=1

∫ t

0

Iσi(s, T )dBH
i

)]
= 1. (5.23)

First we will examine the latter part of the exponential. So we define
y(t, T ) := E

[
exp

(
−

∑d
i=1

∫ t

0
Iσi(s, T )dBH

i

)]
for 0 ≤ t ≤ T .

Now we need the Itô formula in the fractional Brownian motion case:

49



5 The Fractional Heath-Jarrow-Morton Model

Lemma 5.21. Let f be a function of class C2(R). Assume that u = {ut, t ∈ [0, T ]} is
a process such that the indefinite integral X(t) =

∫ t

0
usdB

H(s) is a.s. continuous. Then
f(X(t)) is a process of the following form

f(X(t)) =f(0) +

∫ t

0

f ′(X(s)usdB
H(s)

+H(2H − 1)

∫ t

0

f ′′(X(s))us

(∫ T

0

|s− σ|2H−2

( ∫ s

0

∂

∂σ
uθdB

H(s)

)
dσ

)
ds

+H(2H − 1)

∫ t

0

f ′′(X(s))us

(∫ s

0

uθ(s− σ)2H−2dθ

)
ds

for 0 ≤ t ≤ T . [For a detailed analysis and proof see Alòs and Nualart [2003]]

Applying the Itô formula with f(x) = ex yields for T ∈ (0,∞)

y(t, T ) = 1 +
d∑

i=1

∫ t

0

y(s, T )Iσi(s, T )

(∫ s

0

Iσi(θ, T )φH(s− θ)dθ

)
ds, (5.24)

where we recall φH(s− θ) = H(2H − 1)|s− θ|2H−2. Thereafter applying the variation of
constants formula for differential equations [Pontryagin [1962]] yields

y(t, T ) = exp

( ∫ t

0

e(s, T )ds

)
,

where e(t, T ) :=
∑d

i=1 Iσi(t, T )
∫ t

0
Iσi(θ, T )φH(t− θ)dθ for 0 ≤ t ≤ T .

So, obviously equation (5.23) holds if and only if

Iα(t, T ) =

∫ T−t

0

αt(y) dy = e(t, T ) for every T ∈ (0,∞), t ∈ [0, T ]. (5.25)

We will now differentiate expression (5.25) with respect to y on both sides and make a
change of variables x = T − t:

αt(x) =
de(t, T )

dy
=

d∑

i=1

σit(x)

∫ t

0

Iσi(θ, x+ t)φH(t− θ) dθ

+

d∑

i=1

∫ x

0

σit(y)dy

∫ t

0

σiθ(x+ t− θ)φH(t− θ) dθ,

(5.26)

which exactly coincides with expression (5.22) in the theorem. 2
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5.2 Arbitrage Free Bond Pricing

The change of measure

We are now going to face the change of measure. We need to begin with an important re-
sult obtained by a detailed analysis of [Alòs and Nualart [2003]]. Therefore we specify the
d-dimensional vector space U from the beginning of our set-up in Section 5.1 as U = Rd.
Let H be the Cameron-Martin space associated to the fractional Brownian motion. This
is a subspace of the Wiener space with absolutely continuous paths ω : [0,∞) → R satis-
fying ω(0) = 0 and

∫ ∞
0

|ω′(s)|2ds <∞. Hence it is also a subspace of L2.
We define H = Image K, where

Kh(t) :=

∫ t

0

KH(t, s)h(s)ds, h ∈ L2([0, T ∗])

and the square integrable kernel function KH for 1
2
< H < 1 is given by

KH(t, s) := cHs
1
2
−H

∫ t

s

(u− s)H− 3
2uH− 1

2du, t > s, (5.27)

with cH =
√

H(2H−1)

β(2−2H,H− 1
2
)

and where β denotes the beta function defined as

β(x, y) :=
∫ 1

0
tx−1(1 − t)y−1dt, for x > 0, y > 0 [Rudin [2005]].

In [Alòs and Nualart [2003]] it turns out that this is a wisely chosen kernel since we can
verify that ∫ t∧s

0

KH(t, u)KH(s, u)du = RH(t, s),

where RH is the covariance function of a fractional Brownian motion with Hurst parameter
H as defined in chapter 2, expression (2.6). We introduce a linear operator K∗ defined by

(K∗ϕ)(s) :=
∫ T

s
ϕr

∂K
∂r

(r, s)dr, where ϕ is a step function. One can show that K∗ provides
an isometry between H and L2([0, T ∗]), which makes the process B defined by

B(t) = BH((K∗)−1(1[0,t])), t ∈ [0, T ], (5.28)

a standard Brownian motion. Consequently the fractional Brownian motion can be rep-
resented by a standard Brownian motion, i.e.

BH(t) =

∫ t

0

KH(t, s)dB(s), (5.29)

which is essential for the Girsanov theorem in the fractional case:
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5 The Fractional Heath-Jarrow-Morton Model

Theorem 5.22. Let BH = (BH
1 , ..., B

H
d ) be a d-dimensional fractional Brownian motion

and let {γ(t) : 0 ≤ t ≤ T ∗} be an Rd-valued measurable function such that∫ T ∗

0
‖γ(t)‖Rddt <∞ and R(· ) :=

∫ ·
0
γ(s)ds ∈ H.

Then B̃H(t) := BH(t) −
∫ t

0
γ(s)ds is a d-dimensional QT ∗-fBm on [0, T ∗] such that

dQT ∗

dP
= E(K−1R ·B)T ∗, (5.30)

where

E(K−1R ·B)T ∗ := exp

(
(K−1R ·B)T ∗ − 1

2

∫ T ∗

0

∥∥K−1R(t)
∥∥2

Rddt

)
(5.31)

is the stochastic exponential of (K−1R ·B)T ∗ and (K−1R ·B)T ∗ is the usual Itô stochastic
integral with respect to the Brownian motion B associated to BH as outlined in (5.28).
In this case we may write

B̃H(t) =
d∑

i=1

B̃H
i (t)ei,

where B̃H
i (t) := BH

i (t)−
∫ t

0
γisds is a real-valued independent QT ∗-fBm for each i = 1, ..., d.

and (ei)
d
i=1 is an orthonormal basis.

This is the usual Girsanov theorem [see Filipovic [2001], Theorem 2.3.3] applied to
(K−1R ·B)T ∗ . Hence, with the help of relation (5.29) the change of measure can also be
expressed for an fBm BH .
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5.2 Arbitrage Free Bond Pricing

The no-arbitrage drift condition in the fractional HJM model

We can now go on with the main result for the absence of arbitrage, sort of an equivalent
to the famous fundamental theorem of asset pricing by [Harrison and Pliska [1981]]. There-
fore we recall that all economic activity is restricted to [0, T ∗]. We fix the proportional
transaction costs k > 0. And we define

SHσt( · ) :=
d∑

i=1

(
σit( · )

∫ t

0

Iσi(θ, ·+t)φH(t− θ) dθ

+

∫ ·

0

σit(y)dy

∫ t

0

σiθ(·+t− θ)φH(t− θ) dθ

)
,

which corresponds to αt in equation (5.22). We will assume regularity of the volatilities,
i.e. ∫ T

0

‖SHσt‖ dt <∞ (5.32)

for every T ∈ (0,∞).

Theorem 5.23. Assume that Iσi(t, T ) is λ-Hölder continuous on ∆2
T ∗ for every i =

1, ..., d, where 1
2
< λ < 1 (as in Lemma 5.18). Let {γ(t) : 0 ≤ t ≤ T ∗} be an Rd-valued

measurable function such that
∫ T ∗

0
‖γ(t)‖Rddt <∞ (as in Theorem 5.22) so that

σtγt = SHσt − αt, t ≥ 0, (5.33)

holds. Then there exist a quasi-martingale measure for the bond market.
Moreover the market is k-arbitrage free on [0, T ∗].

We have already seen that if for the drift αt relation (5.22) holds, the constant expectation
condition is satisfied. But now αt is arbitrary and we define SHσt as in (5.22). In Theorem
5.23 we define σtγt exactly as the difference of the two and then construct a new measure
QT ∗ using the Girsanov Theorem 5.22. Under this new measure the drift is SHσt, which
due to definition obviously satisfies (5.22) and so QT ∗-constant expectation holds, which
proves the existence of a quasi-martingale measure. We will see in the proof how this
works out in detail. By rearranging equation (5.33) to αt + σtγt = SHσt we can interpret
−γ as the market price of risk, similarly to the classical HJM approach in the preceding
chapter.
An important fact we can observe is that the change of measure from the real world to
the risk-neutral world only affects the rate of return of the bond but not its volatility.
Furthermore, in the real world an investor expects a higher return the riskier the bond
is. A most recent example has been the issuance of Greek government bonds, for which
Greece has to pay its investors higher coupons due to its higher default risk compared
to for example Germany, whose government bonds are used as the benchmark. Since we
dispense with incorporating default risk, this example refers to interest rate risk in our
case, but with the same reasoning. Opposed to that all bonds have the same expected
rate of return under the risk-neutral quasi-martingale measure QT ∗ , no matter how risky
the bonds are.
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Proof: We recall from Theorem 5.2 that the forward rate rt is the continuous mild solu-
tion of the sde

drt = (Art + αt)dt+
d∑

i=1

σitdB
H
i (t), where A :=

∂

∂x
,

under the real-world measure P. We also have dB̃H
i (t) = dBH

i (t) − γtdt from Theorem
5.22 and αt = σtγt + SHσt from (5.33). So by Theorem 5.22 we get

drt = (Art + SHσt)dt+

d∑

i=1

σitdB̃
H
i (t)

under the equivalent probability measure QT ∗ given in Theorem 5.22 by equations (5.30)
and (5.31). Due to the regularity of the volatilities according to expression (5.32) the sde
is well-defined under QT ∗ . Now obviously for the new drift SHσt equation (5.22) from
Theorem 5.20 holds and hence we have

EQT∗ [Zt(T )] = P (0, T ), for all t ∈ [0, T ] and T ∈ (0,∞).

Therefore QT ∗ is a quasi-martingale measure.
Consequently by Lemma 5.18

∑d
i=1

∫ t

0
Iσi(s, T )dB̃H

i (s) has QT ∗-full support and so logZ
obviously has QT ∗-full support as well. We can conclude absence of arbitrage by Lemma
5.14 and Proposition 5.10 as we have already outlined earlier. 2

Note that this implies that if a quasi-martingale measure exists, then it is of the form
(5.30), (5.31).
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5.2 Arbitrage Free Bond Pricing

The bond price as a conditional expectation

In the following theorem we explicitly express the bond price as a conditional expecta-
tion using the results from Theorem 5.2. For instance, this can be very useful for pricing
contingent claims.

Theorem 5.24. Assume that Q is a quasi-martingale measure. Then the bond price can
be expressed by

P (t, T ) = eξ(t,T ) EQ

[
exp

(
−

∫ T

t

rs(0)ds

)∣∣Ft

]
,

where the kernel ξ(t, T ) is given by

ξ(t, T ) = −
∫ t

0

ISHσ(s, T )ds−
d∑

i=1

∫ t

0

Iσi(s, T )dB̃H
i (s) +G(t, T )

and where

G(t, T ) =
d∑

i=1

∫ t

0

∫ T

r

θi(r, u)du dM i
r −

1

2

d∑

i=1

∫ T

t

(∫ T

r

θi(r, u)du

)2

d[M i]r.

[M i] denotes the usual quadratic variation of the martingale M i and

θi(r, t) :=

∫ t

r

σi(s, t)sH− 1
2 (s− r)H− 3

2ds, i = 1, ..., d for 0 < r < t <∞.

Proof: We start backwards and assume the bond price to be

P (t, T ) = eξ(t,T ) EQ

[
exp

(
−

∫ T

t

rs(0)ds

)∣∣Ft

]
, (5.34)

where

ξ(t, T ) = −
∫ t

0

ISHσ(s, T )ds−
d∑

i=1

∫ t

0

Iσi(s, T )dB̃H
i (s)

− log EQ

[
exp

(
−

d∑

i=1

∫ T

0

Iσi(s, T )dB̃H
i (s)

)∣∣Ft

]
.

We will prove that expression (5.34) is equal to the bond price (5.9) in Theorem 5.2 by
using dB̃H

i (t) = BH
i (t) −

∫ t

0
γsds and SHσt = σtγt + αt:

P (t, T ) = exp

(
−

∫ t

0

ISHσ(s, T )ds−
d∑

i=1

∫ t

0

Iσi(s, T )dB̃H
i (s)

− log EQ

[
exp

(
−

d∑

i=1

∫ T

0

Iσi(s, T )dB̃H
i (s)

)∣∣Ft

])

× EQ

[
exp

(
−

∫ T

t

rs(0)ds

︸ ︷︷ ︸
−

∫ T

0
rs(0)ds+

∫ t

0
rs(0)ds

)∣∣Ft

]
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= exp

(
−

∫ t

0

ISHσ(s, T )ds−
d∑

i=1

∫ t

0

Iσi(s, T )dBH
i (s) +

d∑

i=1

∫ t

0

Iσiγ(s, T )ds

+ log EQ

[
exp

(
−

d∑

i=1

∫ T

0

Iσi(s, T )dB̃H
i (s)

)∣∣Ft

]−1)

× EQ

[
exp

(
−

∫ T

0

rs(0)ds+

∫ t

0

rs(0)ds

︸ ︷︷ ︸
∈Ft

)∣∣Ft

]

= exp

(∫ t

0

rs(0)ds

)
exp

(
−

∫ t

0

Iα(s, T )ds−
d∑

i=1

∫ t

0

Iσi(s, T )dBH
i (s)

)

× EQ

[
exp

(
−

d∑

i=1

∫ T

0

Iσi(s, T )dB̃H
i (s)

)∣∣Ft

]−1

EQ

[
exp

(
−

∫ T

0

rs(0)ds

)∣∣Ft

]
.

Now we will show that

EQ

[
exp

(
−

d∑

i=1

∫ T

0

Iσi(s, T )dB̃H
i (s)

)∣∣Ft

]−1

EQ

[
exp

(
−

∫ T

0

rs(0)ds

)∣∣Ft

]
= P (0, T ).

Therefore we plug in the forward-rate process from equation (5.3), isolate the deterministic
parts and get

EQ

[
exp

(
−

d∑

i=1

∫ T

0

Iσi(s, T )dB̃H
i (s)

)∣∣Ft

]−1

× EQ

[
exp

(
−

∫ T

0

(
r0(0) +

∫ s

0

S(s− u)α(u, u)︸ ︷︷ ︸
αu(s−u)

du

+
d∑

i=1

∫ s

0

S(s− u)σi(u, u)︸ ︷︷ ︸
σi

u(s−u)

dB̃H
i (u)

)
ds

)∣∣Ft

]

= exp

(
−

∫ T

0

(
r0(0) +

∫ s

0

S(s− u)α(u, u)︸ ︷︷ ︸
αu(s−u)

du
)
ds

)

× EQ

[
exp

(
−

d∑

i=1

∫ T

0

Iσi(s, T )dB̃H
i (s)

)∣∣Ft

]−1

× EQ

[
exp

(
−

∫ T

0

d∑

i=1

∫ s

0

S(s− u)σi(u, u)︸ ︷︷ ︸
σi

u(s−u)

dB̃H
i (u) ds

)∣∣Ft

]
.

We will apply the stochastic Fubini theorem for fBm [Krvavich and Mishura [2001], The-
orem 1] to the integrals in the second conditional expectation, which causes the two
conditional expectations to exactly cancel out. Hence we are left with

exp

(
−

∫ T

0

(
r0(0) +

∫ s

0

S(s− u)α(u, u)︸ ︷︷ ︸
αu(s−u)

du
)
ds

)
= P (0, T ).
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All those parts put back together yields the bond price (5.9) from Theorem 5.2, that is

P (t, T ) = P (0, T ) exp

( ∫ t

0

(rs(0) − Iα(s, T ))ds+
d∑

i=1

∫ t

0

−Iσi(s, T )dBH
i (s)

)
(5.35)

and so the equality to expression (5.34) is shown.
From this we will only have to show that

− log EQ

[
exp

(
−

d∑

i=1

∫ T

0

Iσi(s, T )dB̃H
i (s)

)∣∣Ft

]
= G(t, T ) (5.36)

in order to finish the proof. Therefore we make use of the fact that a fractional Brownian
motion can be represented in terms of a stochastic convolution with respect to a Gaussian
martingale:

Lemma 5.25. Let

w(t, s) :=

{
c1s

1
2
−H(t− s)

1
2
−H for s ∈ (0, t),

0 for s /∈ (0, t),

where c1 =
(
2Hβ(3

2
−H,H + 1

2
)
)−1

. Then the centered Gaussian process

Mt =

∫ t

0

w(t, s)dBH(s)

has independent increments and is a martingale. [Norros et al. [1999], Theorem 3.1]

Applying this lemma we find that
∫ t

0

σi(s, T )dB̃H
i (s) =

∫ t

0

θi(r, t)dM i
r.

Then we will use conditions (5.5),(5.7) and (5.8) and change the order of integration in
order to derive∫ T

0

Iσi(s, T )dB̃H
i (s) =

∫ T

0

∫ T−s

0

σi(u)du dB̃H
i (s)

=

∫ T−s

0

∫ T

0

σi(u)dB̃H
i (s) du =

∫ t

r

∫ T

0

θi(r, u)dM i
r du

=

∫ T

0

∫ t

r

θi(r, u)du dM i
r, i = 1, ..., d.

Hence we can compute the remaining conditional expectation by the characteristic func-

tion of a Gaussian distribution, which is in general given by ϕX(t) := E[e−itX ] = eitµ+ t2

2
σ2

,
µ ∈ R, σ ∈ R+. So, for t = −i we can conclude

log EQ

[
exp

(
−

d∑

i=1

∫ T

0

Iσi(s, T )dB̃H
i (s)

)∣∣Ft

]
= −

d∑

i=1

∫ t

0

∫ T

r

θi(r, u)du dM i
r

+
1

2

d∑

i=1

∫ T

t

(∫ T

r

θi(r, u)du

)2

d[M i]r,

which proves (5.36) and hence the theorem. 2
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Remark 5.26. As we have already pointed out the conditional expectation formula for
bond prices can be used for pricing contingent claims in a formal way. Therefore we
assume that X ∈ L1(Ω,FT ,QT ) is a claim which is due at time T . Q denotes the quasi-
martingale-measure as usual. This gives rise to

P (t, T )EQT
[X|Ft] = B0(t)EQ

[
X

B0(T )

∣∣Ft

]
, (5.37)

where QT ∼ Q is defined by Girsanov as

dQT

dQ
=

P (T, T )

B0(T )P (0, T )
.

The formula in (5.37) is very useful as long as one can compute the distribution of X
under QT and its right-hand side can be formally interpreted as the price of the claim at
time t.

Remark 5.27. As a final remark we want to state that the bond prices given in Theorem
5.24 or equivalently in Theorem 5.2 are obviously not depending on the transaction costs
k. This is only a matter for the value of the portfolio given in Lemma 5.7. Moreover,
prices of contingent claims will be affected by transaction costs as well.
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5.3 Conclusion

It is very difficult to compare the classical HJM approach to the fractional one in this
chapter, since there are a lot of differences. Due to the specifics of fractional Brownian
motion such as the non-existence of the semimartingale property, it is much more dif-
ficult to come up with an appropriate set-up. Moreover, the no-arbitrage framework is
completely different due to the lack of the semimartingale property of fBm in contrast
to standard Brownian motion. Whereas in the Brownian motion case the existence of a
unique martingale measure leads to the absence of arbitrage, in the fractional case we
come up with a multi-stage process, which we will summarize in the following.
First of all the forward-rate process is given by the Musiela reparametrization in (5.3),
a modification we work with throughout this chapter. From this we derive a closed form
solution for zero-coupon bond prices in Theorem 5.2. After introducing our portfolio set-
ting, the no-arbitrage framework starts with a quite general no-arbitrage criterion for a
bond market with transaction costs in Proposition 5.10. Thereafter we impose a volatility
condition in Lemma 5.18, which guarantees the full-support property for the logarithm
of our discounted bond price process to hold. By Lemma 5.14 this can be led back, so
that the mentioned Proposition 5.10 can be applied and the absence of arbitrage holds.
Consequently, a unique choice of the drift of the fractional HJM sde in (5.1) guarantees
the existence of a quasi-martingale measure by Theorem 5.23, which is very important
for the change of measure in our case.
Finally the zero-coupon bond price is given in a conditional expectation form, which is
very useful for pricing contingent claims.
We have already shown in Chapter 2 how to price a coupon bond, i.e. by considering it as
a portfolio of zero-coupon bonds. Opposed to that the pricing of defaultable bonds causes
much more problems. This is where the approach by Ohashi faces its limitations. For the
pricing of defaultable bonds one would have to incorporate credit risk, which is usually
done by multi-factor models, where credit risk is modelled by one of the factors. It is an
interesting question what a defaultable HJM approach looks like. In the classical case this
problem has been faced already, e.g. by [Schönbucher [2006]], but the fractional case still
awaits subsequent research.
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6.1 Simulations of a Fractional Brownian Motion

We will start with the simulation of a fractional Brownian motion. Therefore we need to
define an fBm on a compact interval. Consider the interval [0, a] and let s ∈ [0, a]. An
integral over [0, s] is called left-sided, an integral over [s, a] is called right-sided.

Definition 6.1. (Fractional integral and derivative) The right-sided fractional integral of
order α > 0 on an interval [0, a] of a function f ∈ L1[0, a] is defined by

(Iαa−f)(s) =
1

Γ(α)

∫ a

0

f(u)(u− s)α−1
+ du =

1

Γ(α)

∫ a

s

f(u)(u− s)α−1du, s ∈ (0, a), (6.1)

where Γ denotes the gamma function defined as

Γ(z) =

∫ ∞

0

tz−1e−tdt

for z ∈ C with Re(z) > 0 [Rudin [2005], Definition 8.17].
The right-sided fractional derivative of order 0 < α < 1 on an interval [0, a] of a function
φ is defined by

(Dα
a−φ)(s) =

1

Γ(1 − α)

d

du

∫ a

0

φ(s)(s− u)−α+ ds, u ∈ (0, a). (6.2)

[Samko et al. [1993]]

Remark 6.2. If 0 < α < 1 and φ(s) = (Iαa−f)(s), s ∈ (0, a), then Dα
a− can be viewed as

an inverse of Iαa−, since then

f(u) = (Dα
a−φ)(u), u ∈ (0, a).

[Samko et al. [1993]]

Now we can represent a fractional Brownian motion in terms of a fractional integral on
the interval [0, a] with respect to an ordinary Brownian motion.
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Proposition 6.3. Let a > 0 and let BH be a fractional Brownian motion with index
H ∈ (0, 1) and B a Brownian motion. Then

(
BH(t)

)
t∈[0,a]

d
=

(
σ1(H)

∫ a

0

sH− 1
2

(
I
H− 1

2
a− uH− 1

2 1[0,t)(u)
)
(s)dB(s)

)
,

where

σ1(H)2 =
Γ(H − 1/2)H(2H − 1)

β(H − 1/2, 2 −H)
=

πH(2H − 1)

Γ(2 −H) sin(π(H − 1/2))
.

Since we will focus on the simulations in practice, we do not want to outline the proof of
this proposition and refer to the article of [Pipiras and Taqqu [2001], Proposition 3.1].

From this we continue by coming up with a discrete approximation scheme of a fractional
Brownian motion. This can be seen as a fractional analogue to the Donsker theorem, e.g.
in [Kallsen [2007], Theorem 4.3.10]. We recall the kernel representation of the fBm BH

with respect to the standard Brownian motion B from equation (5.29) as

BH(t) =

∫ t

0

KH(t, s)dB(s)

with the kernel function KH as in (5.27)

KH(t, s) := cHs
1
2
−H

∫ t

s

(u− s)H− 3
2uH− 1

2du, t > s

and cH =
√

H(2H−1)

β(2−2H,H− 1
2
)
.

In order to come up with an approximation we let ξ
(n)
i be i.i.d. random variables with

E[ξ
(n)
i ] = 0 and Var(ξ

(n)
i ) = 1. Denote

B(t)(n) :=
1√
n

⌊nt⌋∑

i=1

ξ
(n)
i

with ⌊x⌋ denoting the greatest integer not exceeding x. We know by Donsker’s theorem
that B(n) converges weakly to B. So now we can formulate the most important result for
our purposes.

Theorem 6.4. The random walk BH (n) is defined by

BH(t)(n) :=

∫ t

0

K
(n)
H (t, s)dB(s)(n) =

⌊nt⌋∑

i=1

n

∫ i
n

i−1
n

KH

(⌊nt⌋
n

, s

)
ds

1√
n
ξ

(n)
i ,

where the function K
(n)
H (t, · ) is an approximation to KH(t, · ), i.e.

K
(n)
H (t, s) := n

∫ s

s− 1
n

KH

(⌊nt⌋
n

, u

)
du.

BH (n) converges weakly to the fractional Brownian motion BH .
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6.1 Simulations of a Fractional Brownian Motion

For a proof see [Sottinen [2001], Theorem 1].

As we move on with our simulation we will have to outline how to implement the in-
tegrals of the random walk BH (n). Therefore we work analogously to the approximation
in the paper of [Fink et al. [2010], Example 4.2]. First, altogether we get

BH(t)(n) = cH

⌊nt⌋∑

i=1

n

∫ i
n

i−1
n

s
1
2
−H

∫ ⌊nt⌋
n

s

(u− s)H− 3
2uH− 1

2 du ds
1√
n
ξ

(n)
i .

We will obviously have to approximate two integrals for our simulation. We split the
interval [0, t] by Theorem 6.4 into sufficiently small intervals [si, si+1] = [ i−1

n
, i
n
], i =

0, ..., ⌊nt⌋ − 1, with 0 = s0 ≤ s1 ≤ ... ≤ s⌊nt⌋ = t. Moreover, for i = 0, ..., ⌊nt⌋ − 1,
we split the intervals [si, si+1] in order to calculate the inner integral. The partition is
si = vi0 ≤ vi1 ≤ ... ≤ vimi

= si+1 for some mi ∈ N, which denotes the number of single parts
for the partition. Since we consider n very large, it is appropriate to substitute s in the
function by si, because they approximately coincide. We demonstrate the decomposition
at first for the inner integral in the following:

∫ si+1

si

uH− 1
2 (u− si)

H− 3
2du

=

mi−1∑

j=0

∫ vi
j+1

vi
j

uH− 1
2 (u− si)

H− 3
2du

≈
mi−1∑

j=0

(vij)
H− 1

2 + (vij+1)
H− 1

2

2

(
(vij+1 − si)

H− 1
2 − (vij − si)

H− 1
2

) 1

H − 1
2

,

where we use the arithmetic mean for our approximation. All combined and put together
this yields

BH(t)(n) ≈ cH
(3

2
−H)(H − 1

2
)

⌊nt⌋∑

i=1

n

((
i

n

) 3
2
−H

−
(
i− 1

n

) 3
2
−H)

×
(mi−1∑

j=0

(vij)
H− 1

2 + (vij+1)
H− 1

2

2

(
(vij+1 −

i

n
)H− 1

2 − (vij −
i

n
)H− 1

2

)) 1√
n
ξ

(n)
i .

By this procedure we simulate the fBm for different Hurst parameters, where we only focus
on the long-range dependent case, i.e. 1

2
< H < 1. We choose n large enough, i.e. n = 400,

and a time horizon of T = 200 for demonstration purposes. In our implementation we
choose mi = 100 equally for all i = 0, ..., n − 1. In order to point out the differences for
different indices, we simulate the fBm for Hurst parameters close to 0.5 and 1 and some
in between, i.e. H = 0.55, 0.65, 0.75, 0.85, 0.95. This provides us with the following plots
of the paths of fractional Brownian motions.
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6.1 Simulations of a Fractional Brownian Motion
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6 Simulations of Interest-Rate Models
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Figure 6.1: Simulations of the paths of fractional Brownian motions for various Hurst
parameters

By looking at the scales of the y-axes of our plots we can easily determine that the paths
are much more volatile the lower the Hurst parameters are. That is, for instance, for
H = 0.95 the path is between values of −0.5 and 3 whereas for H = 0.55 the paths range
from −10 up to 25. We point out that for H = 0.55 there are only slight correlations of the
increments compared to the independent increments of a Brownian motion, because with
a limit argument of H → 0.5 we arrive at the ordinary Brownian motion as we pointed
out in the preliminaries already. For larger Hurst parameters correlations increase.
Moreover, the paths are smoother for larger H , which can be explained by the concept of
p-variation by [Mikosch and Norvaisa [2000], Proposition 2.2], which follows by a combi-
nation of the results in [Fernique [1964]] and [Kawada and Kôno [1973]].
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6.1 Simulations of a Fractional Brownian Motion

In order to emphasize the various characteristics of the path movements regarding the
different Hurst parameters we will plot another five simulated paths with the different
Hurst parameters into one single graph. One can compare the amplitudes of the several
paths more easily in here, which illustrates the differences we have already outlined above.
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6 Simulations of Interest-Rate Models

6.2 Simulations of Stochastic Differential Equations

In order to simulate the model-specific stochastic differential equations we will introduce
the Euler-Maryuama procedure for an sde with an fBm as the driving noise analogously
to the general form with a standard Brownian motion [see Pulch [2007]]. Consider the
general sde

dX(t) = a(t, X(t))dt+ b(t, X(t))dBH(t), t ∈ [0, T ],

X(0) = X0,

where a, b : [0, T ] × Rl → Rl, l ≥ 1, and (BH(t))t≥0 is a fractional Brownian motion as
usual. The interval [0, T ], with T being the final point in time that we can simulate, is
split up into equidistant parts with steps h = ∆t = T

n
. Since we will interpret our results

on interest-rate markets from now on, we consider T as given in years.
Let ∆BH

j := BH(tj+1)−BH(tj) denote the increments of the fBm. Consequently, for the

approximations X̃j = Xtj we get the recursive formula

X̃j+1 = X̃j + a(t, X̃j)h+ b(tj , X̃j)∆B
H
j , j = 0, 1, ..., n− 1, (6.3)

with X̃0 = X0 and BH(0) = 0 by definition.

In order to provide examples in practice for the various stochastic differential equations
of the models and to compare their differences we start off with the fractional Vasicek
model and specify our economy. Afterwards we will continue with the dynamics of our
fractional HJM model. We will then compare those to the ones of the classical HJM model.

The Vasicek model

We recall the short-rate dynamics for the Vasicek model given by the sde (3.2) and modify
it by including an fBm BH as the driving noise factor, that is

dr(t) = k(θ − r(t))dt+ σ dBH(t), r(0) = r0.

We assume for the fractional Vasicek model k = 0.7, mean θ = 0.1, diffusion coefficient
σ = 0.15 and an initial value of r(0) = 0.1. With these specifications we have

dr(t) = 0.7(0.1 − r(t))dt+ 0.15dBH(t), r(0) = 0.1.

In order to implement this sde by applying the Euler-Maryuama procedure as in equation
(6.3), we choose the number of discretization steps to be n = 100 and the final simulation
point T = 10. By Euler-Maryuama this yields the approximation

r̃j+1 = r̃j + k(θ − r̃j)h+ σ∆BH
j

= r̃j + 0.7(0.1 − r̃j)h+ 0.15∆BH
j , j = 0, 1, ..., 99,

with the initial value r̃0 = 0.1 and steps h = 1
10

. Hence we get the simulated short-rate
dynamics for different Hurst parameters, i.e. H = 0.95, 0.85, 0.75, 0.65, 0.55, pictured by
the graph in figure 6.2.
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6.2 Simulations of Stochastic Differential Equations
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Figure 6.2: Simulations of the fractional Vasicek interest-rate dynamics for various Hurst
parameters

We observe negative values for the interest rates, which is not conform with reality in
most cases, even though in times of deflation we might get negative interest rates for
short periods of time. However, this is a general problem of the Vasicek model as outlined
in Section 3.1. By comparing the realizations of the stochastic differential equations given
by the plots in the figures above we see that the most realistic results for common economic
scenarios are achieved for a large Hurst index, i.e. H = 0.95. In this case interest rates
are mostly positive and not too volatile. They are limited to values between −0.15 and
0.3 in this case, which is quite reasonable given an initial value of r̃0 = 0.1. Opposed to
that we get different results for a choice of H = 0.55. The values of the interest rates in
this case are very volatile and lie within an interval of [−1.5, 3.5], which is not realistic
in most cases taking into account an initial value of r̃0 = 0.1. Still, we have to consider
that we have chosen the parameters of the sde with respect to H = 0.95. For lower
Hurst parameters better results could be achieved by a different choice of the parameters
of the sde, i.e. a choice that suits a model with these specific Hurst parameters better.
Anyways, our tests with many different parameters have shown that in most cases we get
the best and most realistic results by choosing a Hurst parameter close to one. In times
of extraordinary economic evolutions or crises, however, a different choice for H has to be
considered depending on historical estimations.
Furthermore we point out that one can see the mean reversion inherent in the dynamics
very well. It is apparent that on average the values level out at the mean 0.1.
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6 Simulations of Interest-Rate Models

The fractional vs. the classical Heath-Jarrow-Morton model

We will now focus on our fractional HJM model. We already know that we will have to
simulate the forward-rate dynamics in this case, opposed to the short-rate dynamics in the
Vasicek model. We recall the stochastic differential equation representing these dynamics,
but for this purpose with the usual notation and not in the Musiela reparametrization
form, i.e.

df(t, T ) = α(t, T )dt+

d∑

i=1

σi(t, T )dBH(t), t ∈ [0, T ].

We are going to implement a model proposed by [Schönbucher [2006], p.168]. In this model
drift and diffusion coefficients are given by

α(t, T ) = σ(t)2e−a(T−t)
(
1 − e−a(T−t)

)
and

σ(t, T ) = σ(t)e−a(T−t),
(6.4)

where a ≥ 0 and σ(t) is a time-dependent, deterministic function. Since the drift ap-
proaches zero for t→ T and e−a(T−t) in the diffusion approaches one, we will choose σ(t)
as a decreasing function in order to avoid an overly strong influence of the fBm. This
would cause large jumps towards the end of our dynamics. This is also in line with reality.
The greater the time to maturity, the more sensitive it will be to changes in interest rates,
in our case the forward rate. Thus, a 1-year bond will change less than a 10-year bond
or a 30-year bond, but a 1-year bond will have the same sensitivity to interest rates as a
30-year bond with 1 year to maturity. Thus, bonds with longer remaining terms will be
more volatile than those with less time to maturity.
Intuitively this can be easily illustrated by the following reasoning. The present value of
the interest payments and of the principal diminish as interest rates rise. Likewise, the
present value increases when interest rates decrease. Equivalently for the time to matu-
rity - the greater the bond’s time to maturity, the lower the present value of the bond’s
payments. Because the present value of any future payment is inversely proportional to
the length of time and to interest rates, rising interest rates will cause the prices of bonds
with long remaining terms to drop more than those with shorter remaining terms. On
the other hand, if interest rates drop, then the present value of each payment increases
proportionately.

Additionally to Schönbucher’s model we have to realize our approach to the model incorpo-
rating d fractional Brownian motions. Therefore we will simulate d stochastic differential
equations with d fractional Brownian motions as outlined above and then combine them
by introducing weights wi, i = 1, ..., d, so that

∑d
i=1wi = 1. Formally that is

df(t, T ) =

d∑

i=1

dfi(t, T ),

where dfi(t, T ) =
σi(t)

2

wi
e−a(T−t)

(
1 − e−a(T−t)

)
dt+ σi(t)e

−a(T−t)dBH(t), i = 1, ..., d.
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6.2 Simulations of Stochastic Differential Equations

In order to implement the sde, once again we make use of the Euler-Maryuama procedure
and assume n = 100 and T = 10. We start with an inital value of f(0, T ) = 0.05. In a
second step we set d = 1, as a simplification for now, and we set σ(x) = 0.12−0.12x/(n+1),
x = 0, ..., n, as a linearly decreasing function, which does not arrive at zero. We choose
a = 0.2, since for any other choice the forward rates decrease or increase too fast given
this volatility function. We carry out these simulations for various Hurst parameters, i.e.
H = 0.95, 0.85, 0.75, 0.65, 0.55.
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6 Simulations of Interest-Rate Models
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Figure 6.3: Simulations of the fractional HJM interest-rate dynamics for various Hurst
parameters

Similarly to our simulations of the Vasicek dynamics, we observe that for H = 0.95 the
forward rate movements are not as volatile as for lower Hurst parameters, which is more
realistic when compared to forward rates in the markets under common economic scenario
assumptions. For H = 0.95 we only observe positive forward rate values whereas for lower
Hurst parameters we also get negative values. Once again we have to mention that we
might be able to fix this problem by another choice of the parameter a, since a = 0.2 has
been chosen with respect to the presumably best Hurst parameter H = 0.95, similarly
to what we pointed out in the Vasicek dynamics above. However, we usually get the
most reasonable results given an initial forward rate value of f(0, T ) = 0.05 for the Hurst
parameter H = 0.95.
In order to fit the model to the initial forward rate curve, one would estimate correlations
and volatilities empirically and then implement the observed long-range dependence. This
will influence the choice of the Hurst parameter. Thereafter a model can be fitted by a
different choice of the parameter a.
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6 Simulations of Interest-Rate Models

We can extend this notion and include more independent fractional Brownian motions,
i.e. d = 3 and σ1(x) = 0.1 − 0.1x/(n + 1), σ2(x) = 0.12 − 0.12x/(n + 1) and σ3(x) =
0.15−0.15x/(n+1), x = 0, ..., n. In the following we will always allocate equal weights to
the various noise factors, but we could also use different weights for each fBm depending
on their empirically estimated influence. We stick to a = 0.2 and this time we only consider
H = 0.95, which obviously proved to yield the best results anyways.
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We can see a finer dynamics structure that is not quite as volatile as in the case with only
one fBm driving the dynamics, which naturally stems from the fact that the three noise
factors level each other out. The approach of including several fractional Brownian motions
into our dynamics enables us to incorporate different noise factors such as macroeconomic
factors like gross domestic product or volatilities into our forward rate modelling. Hence,
we are more flexible in our modelling.
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6.2 Simulations of Stochastic Differential Equations

In order to demonstrate the superiority of the fractional HJM model compared to the
classical HJM model we will contrast their dynamics. We will simulate the evolution of
the sde of the fractional model with Hurst index H = 0.95 and the evolution of the sde
of the classical model with a concurrent choice of coefficients. We choose d = 2 and work
with the volatility functions σ1(x) = 0.1 − 0.1x/(n + 1), σ2(x) = 0.12 − 0.12x/(n + 1),
x = 0, ..., n. We maintain a = 0.2 and print both the forward rate evolution driven by
fBm and the forward rate evolution driven by Bm into one single plot.
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Figure 6.4: HJM dynamics driven by fBm with H = 0.95 vs. HJM dynamics
driven by Bm

We can see that the fluctuations in the fractional case are by far not as volatile as for the
forward rates driven by standard Brownian motion. The smoother evolution is in most
cases a more realistic approach to a HJM model considering forward rates in the markets
and as we have already outlined we can fit the fractional model better to estimations
by an appropriate choice of the Hurst parameter. However, we want to stress that the
forward rate values driven by Brownian motion are not as volatile as they might appear
at first glance, which can be verified by a look at the scales of the plot. The Bm-driven
forward rates lie in the interval [0.03, 0.12], whereas the forward rates driven by fractional
Brownian motion are within [0.05, 0.1].
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6 Simulations of Interest-Rate Models

6.3 Simulations of HJM Bond Prices

Finally, as the most complex task, we simulate prices of zero-coupon bonds by imple-
menting equation (5.9) from Theorem 5.2. However, we will have to establish a slight
modification due to our choice of the coefficients in (6.4). This will force us to implement
the following formula:

P (t, T ) = P (0, T ) exp

( ∫ t

0

(rs(0) − Iα(s, T ))ds+
d∑

i=1

∫ t

0

−Iσi(s, T )dBH
i (s)

)

= P (0, T ) exp

( ∫ t

0

(
rs(0) −

d∑

i=1

∫ T−s

0

σi(x)
2

wi
e−ax

(
1 − e−ax

)
dx

)
ds

−
d∑

i=1

∫ t

0

∫ T−s

0

σi(x)e
−axdx dBH

i (s)

)
, (t, T ) ∈ ∆2.

(6.5)

We fix the maturity at T = 10 and set the discretization frequency to n = 100. As
an inital bond price at time t = 0 we use P (0, T ) = 0.5. We use the same simulated
fractional Brownian motion terms for the noise factors in the bond-price formula (6.5)
as for the forward rates rs(0) used in this formula as well. We choose two fractional
Brownian motions as driving noises with volatility functions σ1(x) = 0.1 − 0.1x/(n + 1)
and σ2(x) = 0.12 − 0.12x/(n + 1), x = 0, ..., n. Since we have seen the best results for
H = 0.95, we will focus on this case for our bond price simulation. We will model the
bond prices for all times t ∈ [0, 10].
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Figure 6.5: Bond price simulation for t ∈ [0, 10]
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6.3 Simulations of HJM Bond Prices

We can see that for t = 10 we get P (10, 10) = 1 as demanded for default-free bond prices.

In order to compare those bond prices driven by fractional Brownian motion to bond
prices driven by standard Brownian motion we plot them into one graph for t ∈ [0, 10].
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Figure 6.6: Bond price driven by fBm vs. bond price driven by Bm

We observe that bond prices driven by fractional Brownian motion are less volatile than
bond prices driven by standard Brownian motion, as one might assume taking into account
the results for the simulations of the paths of the fractional Brownian motions and the
forward-rate dynamics as well. The fBm-bond price curve is very smooth compared to the
Bm-bond price curve. Moreover, we can see that the prices are on average at about the
same levels. The less volatile fractional prices can be considered better simulations of real
market prices of zero-coupon bonds under most economic scenarios, since we only consider
interest rate risk when modelling our bond prices and we dispense with incorporating
default risk.
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6 Simulations of Interest-Rate Models

6.4 Conclusion

In contrast to [Fink et al. [2010]] we get a different result when varying Hurst parameters.
In the mentioned paper bond prices are calculated in a fractional Vasicek model at time
t = 0 and compared for different Hurst parameters. Larger bond prices are calculated
the larger the Hurst parameters are, which can be considered a more realistic approach
in that case. However, a comparison to our fractional Heath-Jarrow-Morton model is
difficult, since we work with forward rates whereas the Vasicek model is based on short
rates. In our summary we will refer to this by explaining how this could be interesting for
further research.
Our simulations show that bond prices are less volatile the larger the Hurst parameters
are, but on average they lead to about the same level of bond prices as for lower Hurst
parameters. However, a less volatile bond price curve can be considered a more realistic
scenario under certain economic specifications. By all means a better fitting to historical
estimates can be achieved by our fractional approach.
Moreover, our results for bond prices can be led back to the simulations of fBm paths,
since the model is driven by those fractional Brownian motions. We already concluded
that their paths are less volatile than those of Bm, which consequently influences bond
prices in the same manner. The same finding holds for the simulations of the forward-rate
dynamics, which are driven by fBm, too.
For our results we have experimented a lot with many different assumptions on the model
parameters such as Hurst parameters, volatilities or number of noise factors, but we
only pictured the best and most reasonable results and provided graphs where we could
illustrate the particular differences very well.
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7 Summary

This thesis mainly focuses on the fractional approach for the Heath-Jarrow-Morton model
and all the preceding chapters aim at a better understanding of this model. Therefore we
introduced into interest-rate markets with some basic definitions and ideas. Subsequently
we worked through the necessary mathematical theory in order to create a background
for being able to understand the sophisticated fractional HJM framework. After having
given the basic definitions and properties of fractional Brownian motion we explained
an integration theory with respect to fBm, which was much more sophisticated than the
ordinary stochastic calculus with respect to Brownian motion.

Thereafter we explained some important short-rate models as an introduction into in-
terest rate modelling. As a very simple model we outlined the Vasicek model, which was
already established in 1977. We mentioned two of its extensions namely the Cox-Ingersoll-
Ross model and the Hull-White model, which tackle two of the problems of the Vasicek
model, i.e. negative interest rates and the poor fitting of the initial term structure, re-
spectively.

Afterwards we derived the classical Heath-Jarrow-Morton model in Chapter 4, a more
general interest-rate model. We found that it is possible to derive the short-rate models
from this HJM framework, which we examplarily conducted for the Hull-White model.
A big difference in contrast to the short-rate models was that we had to come up with a
no-arbitrage theory due to the change of measure from the real world to the risk-neutral
world. This was not necessary for the short-rate models since we started modelling under
the risk-neutral measure straight away. The classical HJM model led us to the fractional
one, the most important part of this thesis.

We found that there are big differences between those two, most importantly the no-
arbitrage framework. This necessitated a completely different approach, since we could
not use the semimartingale property of Brownian motions anymore. In contrast we made
use of the full-support property in order to give conditions for the absence of arbitrage
and finally end up with the fractional analogue to the Heath-Jarrow-Morton no-arbitrage
condition. We have summarized the line of argumentation in the conclusion of Chapter 5
in more detail already. Based on this new framework we provided a closed form solution
for zero-coupon bond prices depending only on observables and the forward rate volatili-
ties and we derived a conditional expectation form of zero-coupon bond prices, which is
useful for pricing contingent claims.
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7 Summary

Finally, the simulations in Chapter 6 illustrated our results and the particular differences
between the models very well. We came up with the finding that interest rate modelling in
the fractional Heath-Jarrow-Morton framework is a more realistic and flexible approach
than modelling with ordinary Brownian motions, due to a number of reasons provided in
Chapter 6. Most importantly our approach provides the opportunity to incorporate the
long-range dependence which is inherent in macroeconomic data. The larger we chose our
Hurst parameter H , the less volatile the paths of the fractional Brownian motions turned
out to be and vice versa. This was also the result of both modelling stochastic differential
equations and bond prices, where we consequently got less volatile interest rate values
and bond prices, respectively, as well.

We could continue this thesis with many applications and extensions. Moreover, there
remain many possible tasks for further research, for example the pricing of interest-rate
sensitive contingent claims similarly to the work of [Heath et al. [1992]] in the classical
case. These derivatives might include interest caps, swaptions, callable bonds, bond op-
tions and many more. The pricing of options in fractional Brownian markets has already
been explicitly investigated by [Rostek [2009]].
A very interesting extension to his book could deal with the question of embedding our
fractional term structure model into a pricing model for stock options.

Since the Heath-Jarrow-Morton model can be considered a more general model than the
short-rate models, one could investigate whether it is possible to derive a fractional Va-
sicek model starting from our fractional Heath-Jarrow-Morton model, similarly to what
we did in the classical HJM framework for the Hull-White model in the conclusion of
Chapter 4. We assume that the solution to this problem will be much more sophisticated
than in the classical case.
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E. Alòs and D. Nualart. Stochastic integration with respect to the fractional Brownian
motion. Stochastics Reports, 75:129–152, 2003.
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