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3.4 Estimation of the Lévy Increments . . . . . . . . . . . . . . . . . . . . . . 23

4 Applications and Examples 27

4.1 Compound Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Simulation and Estimation . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Gamma Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Simulation and Estimation . . . . . . . . . . . . . . . . . . . . . . . 43

5 Nonparametric Inference 49

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Definition of the Cumulant M-Estimator . . . . . . . . . . . . . . . . . . . 51
5.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Applications and Examples 59

6.1 Support Reduction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.2 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Determination of the Probability Density Function . . . . . . . . . . . . . 67
6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.1 Estimation from the Ornstein-Uhlenbeck process . . . . . . . . . . . 68

v



vi CONTENTS

6.3.2 Estimation from i.i.d. Data . . . . . . . . . . . . . . . . . . . . . . . 70

A Support Reduction Algorithm 73

A.1 Calculation of the basis functions . . . . . . . . . . . . . . . . . . . . . . . 73
A.1.1 Calculation of < vθj

, vθk
>w . . . . . . . . . . . . . . . . . . . . . . 73

A.1.2 Calculation of < vθj
, g >w . . . . . . . . . . . . . . . . . . . . . . . 74

A.2 Support Reduction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 75



Chapter 1

Introduction

The Ornstein-Uhlenbeck process, which is named after the physicists Leonard Ornstein
(1900−1988) and George Eugene Uhlenbeck (1880−1941), is a stochastic process (Xt)t≥0

given by the stochastic differential equation

dXt = −aXtdt+ σdLt

where a > 0 is the mean reversion parameter, σ > 0 the variance parameter and (Lt)t≥0

denotes the background driving Lévy process.
The Ornstein-Uhlenbeck process is the most widely used mean reverting stochastic

process in financial mathematics, mostly to model interest rates, commodity prices and
currency exchange rates. The name mean reverting comes from the fact that the OU-
process is, in contrast to the Wiener process, dependent on the current value of the
process. If the current value of the process is less than the mean zero, the drift −aXt will
be positive. If the current process value is greater than zero, the drift is negative.

In particular, positive OU-processes were used for stochastic volatility modeling by
Barndorff-Nielson and Shephard, see for instance Barndoff-Nielsen and Shephard (2001a)
or Barndoff-Nielsen and Shephard (2001b). This stochastic volatility model has the form

St = S0 expXtdYt =
(
µ+ βσ2

t

)
, dt+ σtdWt + ρdLt

dσ2
t = −λσ2

t dt+ dLt,

where (St)t≥0 is the price of an asset, (Yt)t≥0 the corresponding log-return, ρ ≤ 0 and λ > 0.
Let (Wt)t≥0 be a standard Brownian motion and (Lt)t≥0 be the background driving Lévy
process which is assumed to be a subordinator without drift.

In Benth et al. (2007) a model for the electricity spot price dynamics is introduced.
In this paper they propose to model the spot price dynamics directly by an non-Gaussian
Ornstein-Uhlenbeck process. Then electricity forward and futures prices can be calculated
based on the proposed spot price dynamics.

This diploma thesis is concerned with the estimation of positive Lévy driven Ornstein-
Uhlenbeck type processes like in the model by Barndorff-Nielson and Shephard. In this
thesis we assume that the Lévy process is a subordinator without drift component. This
work discusses both parametric and nonparametric inference. Although it is not possible to
observe e.g. the volatility and so the Ornstein-Uhlenbeck process in the Barndorff-Nielson
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2 CHAPTER 1. INTRODUCTION

and Shephard model cannot be estimated, nevertheless it is a step towards estimating
this models.

In the first part of the thesis we estimate the parameters of an Ornstein-Uhlenbeck
process and its background driving Lévy process. For the estimation of the mean reversion
parameter the highly efficient Davis-McCormick estimator is used. In the second one, by
using Lévy Khintchine representation, we rewrite the characteristic function of Ornstein-
Uhlenbeck type processes with a so-called canonical function which we estimate with the
Support Reduction Algorithm. Note that the Support Reduction Algorithm can also be
used for a parametric estimation. For this the parameters of a specified distribution are
estimated by this algorithm, see Jongbloed and Van Der Meulen (2006).

The fundamental difference between this two estimation methods is not only the way
of estimation. One time we estimate the background driving Lévy process, the other time
we estimate the stationary distribution of the Ornstein-Uhlenbeck process.

The remainder of this thesis is organized as follows. In Chapter 2 we discuss some prop-
erties of Lévy processes. Furthermore, we show the relationship between self decompos-
ability and the representation of the characteristic function. We outline some definitions
and theorems as well, which we need to show the consistency of the estimates. In Chapter
3 the parametric estimation method is presented. First we define the Davis-McCormick
estimator for the mean reversion coefficient a. Next the consistency of the estimator of a
is shown by using point processes like in Davis and McCormick (1989). Then we estimate
σ and the distribution of the background driving Lévy process. In Chapter 4 we give some
examples for the parametric inference. First a compound Poisson process driven Ornstein-
Uhlenbeck process, second a gamma driven Ornstein-Uhlenbeck process. In Chapter 5 we
present the nonparametric inference. Therefore, we write the characteristic function of
the Ornstein-Uhlenbeck process in terms of a canonical function. Then the cumulant M-
estimator can be defined as the projection of a preliminary estimate onto the class of
cumulant functions of self-decomposable distributions, relative to a weighted L2-distance.
Then we show the consistency of this estimator. A possible preliminary estimator for the
cumulant function is given. In Chapter 6 we introduce the Support Reduction Algorithm
and show the efficiency of this algorithm for different examples. We also show a way to
determine the density of the stationary distribution of the Ornstein-Uhlenbeck process.
The show the nonparametric estimation for two different types of data. One time we esti-
mate the canonical and density function using data from the Ornstein-Uhlenbeck process,
the other we estimate from i.i.d. data. The estimation from i.i.d. data shows, that the
nonparametric estimation method is not limited to Ornstein Uhlenbeck processes but can
also used for positive self-decomposable distributions



Chapter 2

Preliminaries

In this chapter we will briefly recall some important facts about Ornstein-Uhlenbeck
processes, Lévy processes and some fundamental information about point processes as
well. We will omit the proofs completely and refer to the well-known standard literature
like Sato (1999), Protter (2004) or Resnick (2007).

In this thesis we assume that (Ω,F , P, (Ft)t≥0) is a filtered probability space.

2.1 Lévy-driven Ornstein-Uhlenbeck Type Process

Definition 2.1. (Lévy driven OU process) An Ornstein-Uhlenbeck (OU) process driven
by a Lévy process (Lt)t≥0 with parameters a ∈ R and σ > 0 is defined to be the solution
to the stochastic differential equation

dXt = −aXtdt+ σdLt. (2.1)

Continuous time autoregressive process CAR(1) is another expression for the OU-
process.

Provided that the process is strictly stationary and exists, the solution of the stochastic
differential equation is given by

Xt = e−a(t−s)Xs + σ

t∫

s

e−a(t−u)dLu, (2.2)

since with partial integration

eatXt = easXs +

∫ t

s

aeauXudu+

∫ t

0

eaudXu

= easXs +

∫ t

s

aeauXudu+

∫ t

s

eau(−aXudu+ σdLu)

= easXs +

∫ t

s

aeauXudu+

∫ t

s

−eauaXudu+ σ

∫ t

0

eauLudu

= easXs + σ

∫ t

s

eaudLu.

3



4 CHAPTER 2. PRELIMINARIES

2.2 Lévy process

Let us define some definitions and results for Lévy processes.

Definition 2.2. A random variable X is said to be self-decomposable if for every c ∈ (0, 1)

there exists a random variable Xc independent of X, such that X
d
= cX +Xc.

Definition 2.3. (Applebaum, 2004) Let X be a random variable taking values in R with
law µX. Then X is said to be infinitely divisible if for all n ∈ N there exist i.i.d. random
variables X

(n)
1 , X

(n)
2 , . . . , X

(n)
n such that

X
d
= X

(n)
1 +X

(n)
2 + . . .+X(n)

n .

Definition 2.4. (Sato, 1999, cf. Definition 24.16.) A measure ρ on R is degenerate
if there are a ∈ R and a proper linear subspace V of R (that is a linear subspace with
dimV ≤ d− 1) such that Sρ ⊂ a+ V , where Sρ is the support of ρ. Otherwise, ρ is called
non-degenerate.
Let Xt be a Lévy process on R. Xt is said to be degenerate if PXt is degenerate for every
t. Otherwise Xt is non-degenerate.

Remark 2.5. In particular one can show that all degenerate random variables in R are
self-decomposable.

Definition 2.6. The characteristic function ψµ(z) of a probability measure µ on R is
defined by

ψµ(z) =

∫

R

eizxµ(dx).

The characteristic function of the distribution PX of a random variable X on R is denoted
by ψX(z), i.e.

ψX(z) = E
(
eizX

)
=

∫

R

eizxPX(dx).

The class of self-decomposable distributions is a subclass of the infinitely divisible
distributions. Since every Lévy process is infinitely divisible, the Lévy Khintchine repre-
sentation can be used to obtain the characteristic function.

Theorem 2.7. Lévy Khintchine representation (Sato, 1999, Theorem 8.1. )
(i) If µ is an infinitely divisible distribution on R, then

ψµ(z) = exp

(
−1

2
Az2 + iγz +

∫

R

(eizx − 1 − izx1D(x))ρ(dx)

)
, (2.3)

z ∈ R, where A ≥ 0 and D = {x : |x| ≤ 1}, ρ is a measure on R satisfying

ρ({0}) = 0 (2.4)
∫

R

(|x|2 ∧ 1)ρ(dx) <∞ (2.5)

and γ ∈ R.
(ii) The representation of ψ(z) in (i) by A, ρ, and γ is unique.
(iii) Conversely, if A ≥ 0, ρ is a measure satisfying (2.4) and (2.5) and γ ∈ R, then there
exists an infinitely divisible distribution µ whose characteristic function is given by (2.3).
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Definition 2.8. (Sato, 1999, Definition 8.2.) We call (A, ρ, γ) in Theorem 2.7 the gen-
erating triplet of µ. A and ρ are called, respectively, the Gaussian covariance matrix and
the Lévy measure of µ. When A = 0, µ is called purely non-Gaussian.

Remark 2.9. (Sato, 1999, cf. Remark 8.4.) The integrand of the integral in the right hand
side of (2.3) has to be integrable with respect to ρ. Let c(x) be a bounded measurable
function from R to R satisfying

c(x) = 1 + o(|x|) as |x| → 0

c(x) = O(1/ |x|) as |x| → ∞.

Then (2.3) can be rewritten as

ψ(z) = exp

(
−1

2
Az2 + iγcz +

∫

R

(
eizx − 1 − izc(x)

)
ρ(dx)

)
(2.6)

with γc defined as

γc = γ +

∫

R

x (c(x) − 1D(x)) ρ(dx). (2.7)

The notation of the triplet in (2.6) is (A, ρ, γc)c. It is also called generating triplet and (2.6)
is also called the Lévy-Khintchine representation. If the triplet is used without subscript
c, then the representation from (2.3) is taken.
More generally, if c(x) is a measurable function and if, for every z, eizx − 1 − izxc(x) is
integrable with respect to a given Lévy measure ρ, then we have (2.6) with (2.7). The
triplet is again called a generating triplet, written as (A, ρ, γc)c. Hence, if ρ satisfies the
additional condition ∫

|x|≤1

|x|ρ(dx) <∞, (2.8)

we can use the zero function as truncation function c and get

ψ(z) = exp

(
−1

2
Az2 + iγ0z +

∫

R

(
eizx − 1

)
ρ(dx)

)
(2.9)

with γ0 ∈ R. The triplet is denoted by (A, ρ, γ0)0. The constant γ0 is called drift of µ.

Theorem 2.10. Subordinator (Sato, 1999, Theorem 24.11.) Let Lt be a Lévy process
on R. Then the following four conditions are equivalent to each other:

• Lt is a subordinator

• S(Lt) ⊂ [0,∞) for every t > 0

• S(Lt) ⊂ [0,∞) for some t > 0

• A = 0, Sρ ⊂ [0,∞),
∫ 1

0
xρ(dx) <∞ and γ0 ≥ 0,

where S(Lt) is the support of Lt. If Lt is a subordinator, then

E(e−uLt) = exp

(
t

(∫ ∞

0

(e−ux − 1)ρ(dx) − γ0z

))
,

for u ≥ 0.
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For the characteristic function of a Lévy process it follows with Theorem 2.7

ψL1(z) = exp

(
−1

2
Az2 + iγz +

∫

R

(eizx − 1 − izx1D(x))ρ(dx)

)
.

Then, since we have assumed an increasing Lévy process, which is another expression for
a subordinator, we get by applying Theorem 2.10

A = 0∫ 1

0

xρ(dx) < ∞,

where the support of ρ is positive. Then it follows with Remark 2.9 and due to the fact
that L is a Lévy process without drift component

ψL1(z) = exp

(∫ ∞

0

(eizx − 1)ρ(dx)

)
. (2.10)

Summing up, the Lévy measure ρ does fulfill the following conditions

ρ({0}) = 0 (2.11)∫ ∞

0

(x ∧ 1)ρ(dx) < ∞. (2.12)

Lemma 2.11. (Sato, 1999, Lemma 17.1.)
Let L be a Lévy process on R generated by (G, ρ, β). Let a ∈ R. Let X be a temporally
homogeneous Markov process with

E
(
eizXz |X0 = x

)
=

∫

R

eizyPt(x, dy) = exp

(
ie−atxz +

∫ t

0

g(e−asz)ds

)
(2.13)

for z ∈ R, where g(z) = logψL1(z) is the cumulant function of L1. For each t and x, the
transition kernel Pt(x, ·) is infinitely divisible with generating triplet (At, νt, γt,x) given by

At = G

∫ t

0

e−2asds

νt(B) =

∫

R

∫ t

0

1B(e−asy)ds ρ(dy), B ∈ B(R),

γt,x = e−atx+ β

∫ t

0

e−asds+

∫

R

∫ t

0

e−asy(1D(e−asy) − 1D(y))ds ρ(dy),

where D = {x : |x| < 1}. X is called the process of Ornstein-Uhlenbeck type generated by
(G, ρ, β, a).

A probability measure µ in R is the limit distribution of a temporally homogeneous
Markov process on R with a transition function Pt(x,B) if

Pt(x, ·) → µ

as t→ ∞ for any x ∈ R.
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Theorem 2.12. (Sato, 1999, Theorem 17.5.)
Fix a > 0.
(i) If ρ satisfies

∫

|x|>2

log(|x|)ρ(dx) <∞, (2.14)

the process of Ornstein-Uhlenbeck type on R generated by (G, ρ, β, a) has a limit distribu-
tion µ with

ψµ(z) = exp

(∫ ∞

0

g(e−asz)ds

)
. (2.15)

The distribution µ is self-decomposable and the generating triplet (A, ν, γ) of µ is given by

A =
1

2a
G,

ν(B) =
1

a

∫

R

∫ ∞

0

1B(e−sy)ds ρ(dy), B ∈ B(R),

γ =
1

a
β +

1

a

∫

|y|>1

y

|y|ρ(dy).

(ii) For any self-decomposable distribution µ on R, there exists a unique triplet (G, ρ, β)
satisfying (2.14) such that µ is the limit distribution of the process of the Ornstein-
Uhlenbeck type generated by (G, ρ, β, a).

A probability measure µ on R is an stationary distribution of the temporally homo-
geneous Markov process on R with transition function Pt(x,B) if

∫

R

µ(dx)Pt(x,B) = µ(B)

for t > 0 and B ∈ B(R).

Theorem 2.13. (Sato, 1999, Theorem 17.9.) A process of Ornstein-Uhlenbeck type pro-
cess satisfying (2.14) has a unique stationary distribution which is given by 2.15.

As shown before (0, ρ, 0) is the generating triplet of the subordinator L and the Lévy
measure ρ satisfies conditions (2.11) − (2.12). Thus, if condition (2.14) holds, the limit
distribution of the OU-process with generating triplet (0, ρ, 0, a) has characteristic func-
tion

ψX1(z) = exp

(∫ ∞

0

g(e−asz)ds

)
, (2.16)

where g is the cumulant function with g(z) = logψL1(z) =
∫∞
0

(eizx − 1)ρ(dx).
Then the characteristic function can be expressed by

ψX1(z) = exp

(∫ ∞

0

(
eizx − 1

)
ν(dx)

)
. (2.17)
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Theorem 2.14. (Sato, 1999, Theorem 15.11.) A probability measure µ on R is self-
decomposable if and only if

ψ(t) = exp

(
−1

2
At2 + iγt+

∫ ∞

−∞
(eitx − 1 − itx1D(x))

k(x)

x
dx

)
, (2.18)

where A ≥ 0, D = {x : |x| ≤ 1} and k(x) ≥ 0,
∫∞
−∞ (|x|2 ∧ 1)k(x)

x
dx < ∞ and k(x) is

increasing on (−∞, 0) and decreasing on (0,∞).

Since X is self-decomposable, the measure ν has a special representation. It has a
density with respect to Lebesgue measure and with Theorem 2.14 we have

ν(dx) =
k(x)

x
dx,

where k is a decreasing function on (0,∞), known as the canonical function which is
assumed to be right-continuous. Thus, each non-degenerate, positive, self-decomposable
random variable is characterized by a decreasing function k on (0,∞).

The Ornstein-Uhlenbeck process driven by an increasing Lévy process without drift
component is characterized by the following characteristic function

ψX1
(z) = exp

(∫ ∞

0

(eizx − 1)

x
k(x)dx

)
. (2.19)

2.3 Regular Variation

Definition 2.15. (Resnick, 1987, cf. p.13) A measurable function F : R+ → R+ is
regularly varying at zero with index α (written F ∈ RVα) if for x > 0

lim
t↘0

F (tx)

F (t)
= xα. (2.20)

α is called the exponent of variation.

Note that regular variation at zero of F is equivalent to regular variation at ∞ (with
exponent −α) of the function F ( 1

x
), since

lim
t→∞

F
(

1
tx

)

F
(

1
t

) = lim
t↘0

F
(

t
x

)

F (t)
=

(
1

x

)α

= x−α (2.21)

for all x > 0.

Lemma 2.16. (Davis and McCormick, 1989, Lemma 2.1.) Let Z and Y be two positive,
independent random variables with F and G denoting the corresponding distribution func-
tions. Assume F is regularly varying at zero with exponent α and EY β < ∞ for some
β > α. Then

lim
x↘0

P (ZY −1 ≤ x)

P (Z ≤ x)
= EY α.
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Proof. The left hand side can be rewritten as

lim
x↘0

P (ZY −1 ≤ x)

P (Z ≤ x)
= lim

x→∞

P
(
ZY −1 ≤ 1

x

)

P
(
Z ≤ 1

x

) = (∗) .

Note that the distribution of Z−1 is regular varying at infinity with exponent −α. It
follows by dominated convergence

(∗) = lim
x→∞

∫ ∞

0

P (Z−1 ≥ x/y)

P (Z−1 ≥ x)
dG(y) =

∫ ∞

0

(
1

y

)−α

dG(y) = EY α,

cf. Proposition 3 (Breiman, 1965).

2.4 Point Process

Let E be locally compact Hausdorff space with a countable basis, i.e. every x ∈ E has a
compact neighborhood, and there exists a sequence of open sets (Gn)n≥1 such that any
open G can be written as G = ∪α∈IGα for a countable index set I. Furthermore, let E be
the Borel σ-algebra over E, cf. Resnick (1987).

For x ∈ E define the measure εx on E by

εx (A) =

{
1 x ∈ A
0 x /∈ A

for A ∈ E .

Definition 2.17. (Resnick, 1987, p. 123) A point measure on E is a measure ξ of the
following form: Let (xi)i≥1 be a countable collection of (not necessarily distinct) points of
E. Then

ξ :=

∞∑

k=1

εxi
, (2.22)

and if K ∈ E is compact, then ξ(K) < ∞ (i.e. ξ is Radon, meaning the measure of
compact sets is always finite).

Let M+ (E) be the class of N0-valued Radon measures on E and C+
c (E) the collection

of continuous functions E → [0,∞) with compact support. M+ (E) is the corresponding
σ-algebra which is the smallest σ-algebra of subsets of M+ (E) making the maps µ →
µ(f) =

∫
E
fdµ from M+ (E) → R measurable for all f ∈ C+

c (E).

Definition 2.18. (Bauer, 1992) The vague topology is the coarsest topology such that the
functions

M+(E) → R, µ 7−→
∫

X

fdµ

are continuous for every function f ∈ C+
c (E).

Mp(E) is the set of all Radon point measures of the form (2.22) and Mp (E) the
σ-algebra generated by the vague topology.
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Definition 2.19. (Resnick, 1987, p. 124) A point process on E is a measurable map

ξ : (Ω,A, P ) → (Mp (E) ,Mp (E)),

i.e. a point process is a random element of Mp (E). The probability law, denoted by Pξ of
the point process ξ, is the measure P ◦ ξ−1 = P (ξ ∈ ·) on Mp (E).

Definition 2.20. (Resnick, 2007, Definition 5.1.) Let ξ be a point process. ξ is a Poisson
process on (E, E) with mean measure µ or synonymously a Poisson random measure with
mean µ or PRM(µ) for short if

1. For A ∈ E

P (ξ(A) = k) =

{
exp{−µ(A)}(µ(A))k

k!
if µ (A) <∞

0 if µ (A) = ∞

2. If A1, . . . , Ak are disjoint subsets of E in E , then ξ(A1), . . . , ξ(Ak) are independent
random variables.

Remark 2.21. (Resnick, 2007, p. 49) If µn ∈ M+(E) for n ≥ 0, then µn converges
vaguely, i.e. converges in the vague topology, to µ0, written µn

v→ µ0, if for all f ∈ C+
c (E),

we have

µn(f) :=

∫

E

f(x)µn(dx) −→ µ0(f) :=

∫

E

f(x)µ0(dx) (2.23)

as n→ ∞.

Proposition 2.22. (Resnick, 1987, Proposition 3.17.) The vague topology on M+ is
metrizable as a complete, separable metric space.

Remark 2.23. (Resnick, 2007, p. 51) There exist some sequence of functions fi ∈ C+
c (E)

such that for ξ1, ξ2 ∈M+(E) the vague metric is given by

ρ(ξ1, ξ2) =

∞∑

i=1

|ξ1(fi) − ξ2(fi)| ∧ 1

2i
,

where ξ(f) =
∫
fdξ.

For the following theorem we need a condition D* which we now define.
Condition D* (Davis and Resnick, 1988, p. 47) For each N ≥ 0, let (WN,i)i≥1 be a
stationary sequence of random elements of E. In order to define the mixing condition, let
T > 0 be fixed and let C be a finite collection of functions

C = {h0, h1, . . . , hm} ,
where h0 ≡ 0, hi ∈ C+

c (E), i = 1, . . . , m. The array (WN,j)N≥1,j≥1 is said to satisfy
condition D* if for any two disjoint intervals of integers I1 and I2, which are contained in
1, 2, . . . , bnT c and separated by l,i.e. max {|i1 − i2| : i1 ∈ I1, i2 ∈ I2} ≥ l, we have

∣∣∣∣∣∣
E

2∏

j=1

∏

i∈Ij

gi(WN,i) −
2∏

j=1

E
∏

i∈Ij

gi(WN,i)

∣∣∣∣∣∣
≤ αN,l,

where 1 − gi ∈ C and αN,l(N) → 0 as N → ∞ for some subsequence l(N) → ∞ with
l(N) = o(N). The function αN,l(N) may depend on both C and T .
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Theorem 2.24. (Davis and Resnick, 1988, Theorem 2.1.)
Suppose for each N ≥ 1, (WN,i)i≥1 is a stationary sequence of random elements of E
and that the array {WN,i, i ≥ 1, N ≥ 1} satisfies condition D∗. Further assume that there
exists a Radon measure ν on E such that

NP (WN,1 ∈ ·) v→ ν,

where
v→ denotes vague convergence and for any g ∈ C+

c (E) , g ≤ 1,

lim
k→∞

lim sup
N→∞

N

bN/kc∑

i=2

E (g (WN,1) g (WN,i)) = 0.

Then in Mp ([0,∞) × E),

∞∑

k=1

ε(kN−1,WN,k) ⇒
∞∑

k=1

ε(tk ,jk),

where the limit is PRM (dt× dν) and ⇒ denotes convergence in distribution.

Theorem 2.25. (Billingsley, 1968, Theorem 4.2.) Let M+(E) be equipped with the vague
metric ρ. Assume that, for each q, ξN,q ⇒ ξq as N → ∞ and that ξq ⇒ ξ as q → ∞.
Suppose further that

lim
q→∞

lim sup
N→∞

P (ρ (ξN,q, ξN) ≥ ε) = 0 (2.24)

for each positive ε. Then ξN ⇒ ξ as N → ∞.

Proposition 2.26. (Resnick, 1987, Proposition 3.18.) Suppose that E, E ′ are two spaces
which are locally compact with countable bases.
Suppose T : E → E ′ is continuous and satisfies

T−1(K ′) is compact in E for every compact K ′ in E ′. (2.25)

Then T̂ : M+(E) → M+(E ′) defined by

T̂µ = µ ◦ T−1

is continuous.
Note that T̂ restricted to Mp(E) is of the form

T̂
(∑

εxi

)
=
∑

εTxi

so that a continuous function on the points which also satisfies (2.25) induces a continuous
function on the point measures.

Theorem 2.27. Continuous Mapping Theorem (Resnick, 1987, p. 152)
Let (Si, di), i = 1, 2 be two metric spaces and suppose Xn, n ≥ 0, are random elements of
(S1,S1) and Xn ⇒ X as n→ ∞. If h : S1 → S2 satisfies

P (X ∈ Dh) = 0,

where Dh = {s1 ∈ S1 : h is discontinuous at s1}, then

h(Xn) ⇒ h(X)

in S2.
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2.5 Probability Theory on Metric Spaces

Let (S,S) be a metric space.

Definition 2.28. (Billingsley, 1968) Let Π be a family of probability measures on (S,S).
Π is said to be relatively compact if every sequence in Π contains a weakly convergent
subsequence, that is if, for every µn ∈ Π, there exists a subsequence (nk) and a proper
probability measure µ0 such that µnk

⇒ µ0.

Definition 2.29. (Billingsley, 1968) A family Π of probability measures on (S,S) is said
to be tight if for all ε > 0, there exists a compact set K such that

µ (K) > 1 − ε

for all µ ∈ Π.

Definition 2.30. (Klenke, 2008, Definition 15.20.) Let (S, d) be a metric space. A family
(Fi)i∈I of maps S → R is called uniformly equicontinuous if, for every ε > 0, there exists
a δ > 0 such that |Fi(t) − Fi(s)| < ε for all i ∈ I and all t, s ∈ S with d(s, t) < δ.

Theorem 2.31. (Klenke, 2008, Theorem 15.21.) Let M1 (R) be the set of probability
measures on R. If F ⊂ M1 (R) is a tight family, then {ψF : F ∈ F} is uniformly equicon-
tinuous. In particular, every characteristic function is uniformly continuous.

Lemma 2.32. (Klenke, 2008, Lemma 15.22.)
Let (S, d) be a metric space and F0, F1, F2, . . . be maps S → R with FN → F0 pointwise
as N → ∞. If (FN)N∈N

is uniformly equicontinuous, then F0 is uniformly continuous and
(FN)N∈N

converges to F0 uniformly on compact sets, i.e. for every compact set K ⊂ S,
we have

sup
s∈K

|FN(s) − Fi(s)| → 0

as N → ∞.

Theorem 2.33. Prokhorov’s Theorem (Billingsley, 1968) Let (S,S) be a separable
and complete metric space. The family Π of probability measures is relatively compact if
and only if Π is tight.



Chapter 3

Parametric Inference

In this chapter we present a method for estimating the parameters of an Ornstein-
Uhlenbeck process. For this, we use the highly efficient Davis-McCormick estimator for
the Ornstein-Uhlenbeck parameter a. We will show the convergence of this estimator.
Afterwards we estimate the variance of the OU-process as well as the increments of the
background driving Lévy process. This estimation method is shown in Brockwell et al.
(2007).

First we need some assumptions on the Ornstein-Uhlenbeck process to present the two
different estimation methods.

Assumption 1. We assume that the parameter a > 0 and that the background driving
Lévy process (BDLP) L is a subordinator, i.e. an increasing Lévy process, without drift
component. The Lévy measure ρ from the Lévy process L satisfies

∫ ∞

2

log xρ(dx) <∞.

Another assumption is that (Lt)t≥0 has a.s. right continuous sample paths and existing
left hand limits.

3.1 Parameter Estimation based on the Discretely

Sampled Process

Setting t = nh and s = (n− 1)h in (2.2) for any h > 0, the sampled process (X
(h)
n )n≥0 is

the discrete time AR(1) process satisfying

X(h)
n = φX

(h)
n−1 + Zn, (3.1)

where 0 < φ < 1 with
φ = e−ah, (3.2)

and positive i.i.d. distributed Zn given by

Zn = σ

∫ nh

(n−1)h

e−a(nh−u)dLu. (3.3)

13
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In addition to Assumption 1 we need some more assumptions for this estimation
method.

Assumption 2. We assume that the distribution function F of Zn is regularly varying
at zero with exponent α and F (0) = 0. Moreover, we assume that the moment condition

∫

R

xβF (dx) <∞ (3.4)

holds for some β > α.

Since 1−φz 6= 0 for all |z| ≤ 1 and
∫∞
2

log xF (dx) <∞, the assumptions of Theorem 1
in Brockwell and Lindner (2009) are satisfied and the strictly stationary solution of (3.1)
is given by

Xn =

∞∑

j=0

φjZn−j.

3.2 Estimator for the Mean Reversion Parameter

Let the process (Xt)0≤t≤T be observed at times 0, h, 2h, . . . , Nh, where N = bT/hc. Then,
since 0 < φ < 1 and Zn are nonnegative, an intuitive estimator for φ is the Davis-
McCormick estimator, given by

φ̂
(h)
N = min

1≤n≤N

Xn

Xn−1
. (3.5)

To simplify notation we write φ̂N instead of φ̂
(h)
N , but keep in mind that the Davis-

McCormick estimator depends on N and h.

The convergence of the estimator for φ can be shown with some results from point
processes as done by Davis and McCormick (1989). In the following we present an extended
version of that proof.

We show that kN
−1(φ̂

(h)
N − φ)cα converges in distribution with

kN = F←(N−1) = inf
{
x : F (x) ≥ N−1

}
(3.6)

and

cα = (EXα
1 )1/α (3.7)

by rewriting P
(
kN
−1(φ̂

(h)
N − φ)cα ≤ x

)
in terms of a point process and by showing the

convergence in distribution of these point processes. Hence, it follows by probability theory

φ̂
(h)
N → φ, a.s.

as N → ∞.
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Lemma 3.1. (Davis and McCormick, 1989, Theorem 2.2.) Let (Xn)n≥0 be a stationary
AR(1) process where F satisfies (2.20) and (3.4). Let ξN and ξ be point processes on the
space E = [0,∞) × (0,∞] defined by

ξN =

N∑

n=1

ε(kN
−1Zn,Xn−1)

and

ξ =
∞∑

n=1

ε(jk,Yk),

where
∞∑

k=1

εjk
is PRM (αxα−1dx) and (Yk)k≥0 is an i.i.d. sequence of random variables

which are independent of
∞∑

k=1

εjk
with Y1

d
= X1 . So, ξ is PRM (αxα−1dx×G(dy)), where

G(y) = P (X1 ≤ y). Then in Mp(E),

ξN ⇒ ξ.

Proof. Since F is regular varying at zero with exponent α and kN = inf
{
x : F (x) ≥ 1

N

}
,

we have

F (kN) = F

(
F←

(
1

N

))
∼ 1

N

as N → ∞. So

lim
N→∞

N · F (kNx) = lim
N→∞

F (kNx)
1
N

== lim
N→∞

F (kNx)

F (kN)
= xα. (3.8)

for x > 0, since kN → 0 for N → ∞. For q > 1 let Xn,q be the moving average process

Xn,q =

q∑

j=0

φjZn−j,

and set

ξN,q =
N∑

n=1

ε(α−1
N Zn,Xn−1,q).

First we show that ξN,q ⇒ ξq. This can be shown using Theorem 2.24. For this, we have
to prove two conditions. By defining WN,i := (k−1

N Zi, Xi−1,q), we have to show

NP (WN,1 ∈ ·) v→ ν,

where ν is a Radon measure. For any (c1, d1] × (c2, d2] ∈ E we have, since Zn and Xn−1,q

are independent and (3.8),

NP (WN,1 ∈ (c1, d1] × (c2, d2])

= NP (k−1
N Z1 ∈ (c1, d1] , X0,q ∈ (c2, d2])

= NP (k−1
N Z1 ∈ (c1, d1])P (X0,q ∈ (c2, d2])

= N
(
P
(
a−1

N Z1 ≤ d1

)
− P

(
a−1

N Z1 ≤ c1
))
P (X0,q ∈ (c2, d2])

−→ (dα
1 − cα1 )P (Y0,q ∈ (c2, d2]) ,
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as N → ∞, where Y0,q :=
q∑

j=0

φjZj

(
d
= X0,q

)
. Define Yk,q :=

∑q
j=0 φ

jZn−j.

Let g be in C+
c (E) with g ≤ 1. Since the stationary sequence {(Zn, Xn−1,q) ,

n = 0,±1, . . .} is (q + 1) dependent, condition D∗ is automatically satisfied, cf.
Davis and Resnick (1988, p. 51). For all (x, y) ∈ [0,∞) × (0,∞] it follows

lim sup
N→∞

N

bN/kc∑

i=2

E (g(WN,1)g(WN,i))

≤ lim sup
N→∞

N

bN/kc∑

i=2

E
(
ε(a−1

N Z1,X0,q) ((0, x] × (0, y]) ε(a−1
N Zi,Xi−1,q) ((0, x] × (0, y])

)

≤ lim sup
N→∞

N

bN/kc∑

j=1

P
(
k−1

N Z1 ≤ x,X0,q ≤ y, k−1
N Zj+1 ≤ x,Xj,p ≤ y

)

≤ lim sup
N→∞

N(N/k) (P (Z1 ≤ kNx))
2

= x2α/k

−→ 0, (3.9)

as k → ∞.
Therefore, from Theorem 2.24,

ξN,q ⇒ ξq, (3.10)

where ξq =
∞∑

k=1

ε(jk,Yk,q) and (Yk,q)k≥0,q≥0 is i.i.d. with Yk,q
d
= Y1,q.

Since ξq is PRM with intensity measure αxα−1dx × P (Y1,q ∈ dy) which converges
vaguely to the intensity measure of ξ, it follows that

ξq ⇒ ξ, as q → ∞.

To finish the proof of this lemma, it is left to show the convergence ξN ⇒ ξ. For this we
use Theorem 2.25 and the definition of the vague metric. Since

ρ(ξN,q, ξN) =

∞∑

i=1

|ξN,q(fi) − ξN(fi)| ∧ 1

2i
,

we have to show that

P

( ∞∑

i=1

|ξN,q(fi) − ξN(fi)| ∧ 1

2i
> ε

)

converges to 0 as N → ∞ and q → ∞. Since
∑∞

i=1 1/2i < ∞ there exists an i0 ∈ N such
that

∞∑

i=i0+1

1

2i
<
ε

2
,
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and we have for the probability

P

( ∞∑

i=1

|ξN,q(fi) − ξN(fi)| ∧ 1

2i
> ε

)
≤ P

(
i0∑

i=1

|ξN,q(fi) − ξN(fi)| ∧ 1

2i
>
ε

2

)

≤
i0∑

i=1

P

( |ξN,q(fi) − ξN(fi)| ∧ 1

2i
>
ε

2

)

≤
i0∑

i=1

P

( |ξN,q(fi) − ξN(fi)|
2i

>
ε

2

)

=

i0∑

i=1

P
(
|ξN,q(fi) − ξN(fi)| > ε2i−1

)
.

If

P (|ξN,q(fi) − ξN(fi)| > η) → 0, (3.11)

as first N → ∞ and then q → ∞ for every fi ∈ C+
c (E) and for every η > 0, the condition

from Theorem 2.25 is satisfied. So, we have to show that for all η > 0 and f ∈ C+
c (E),

f ≤ 1,

lim
q→∞

lim sup
N→∞

P

(∣∣∣∣∣

N∑

k=1

f(k−1
N Zk, Xk−1) −

N∑

k=1

f(k−1
N Zk, Xk−1,q)

∣∣∣∣∣ ≥ η

)
= 0. (3.12)

Suppose that f is supported on the compact set [0, c] × [0,∞]. Since f is uniformly
continuous, there exists for every given ε > 0 a δ > 0 such that

|f(x, y) − f(x, z)| < ε,

whenever |y − z| < δ.

Then divide the event in (3.12) in two disjoint sets, the set

V =

N⋂

k=1

({
k−1

N Zk > c
}
∪ {|Xk−1 −Xk−1,q| < δ}

)
,

and its complement

V c =

N⋃

k=1

({
k−1

N Zk ≤ c
}
∩ {|Xk−1 −Xk−1,q| ≥ δ}

)
.

Consider

∣∣∣∣∣

N∑

k=1

f(k−1
N Zk, Xk−1) −

N∑

k=1

f(k−1
N Zk, Xk−1,q)

∣∣∣∣∣ <
N∑

k=1

εk−1
N Zk

([0, c]) · ε,
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if |Xk−1 −Xk−1,q| < δ. Then the probability in (3.12) is bounded by

P

(∣∣∣∣∣

N∑

k=1

f(k−1
N Zk, Xk−1) −

N∑

k=1

f(k−1
N Zk, Xk−1,q)

∣∣∣∣∣ ≥ η, V c

)

+ P

(∣∣∣∣∣

N∑

k=1

f(k−1
N Zk, Xk−1) −

N∑

k=1

f(k−1
N Zk, Xk−1,q)

∣∣∣∣∣ ≥ η, V

)

≤ P

(
N⋃

k=1

{
k−1

N Zk ≤ c, |Xk−1 −Xk−1,q| ≥ δ
}
)

+ P

(
N∑

k=1

εk−1
N Zk

([0, c]) > η/ε

)

≤ NP
(
k−1

N Z1 ≤ c
)
P (|X0 −X0,q| ≥ δ) + P

( ∞∑

k=1

εk−1
N Zk

([0, c]) > η/ε

)

−→ cαP (|X0 −X0,q| ≥ δ) + P (ξ ([0, c] × [0,∞]) > η/ε) ,

as N → ∞. By choosing ε > 0 small and then q large, this bound can be made arbitrarily
small.
So, with Theorem 2.25

ξN ⇒ ξ.

Theorem 3.2. (Davis and McCormick, 1989, Theorem 2.3.) Let (Xn)n≥0 be the station-
ary AR(1) process (3.1) where F is regularly varying at zero with exponent α and satisfies
the moment condition

∫
xβF (dx) <∞ for some β > α. Define the point processes ηN and

η on [0,∞) by

ηN =
n∑

n=1

εa−1
n ( Xn

Xn−1
−φ)

and

η =
∞∑

k=1

εjk/Yk

with
∑∞

k=1 εjk
and (Yk)k≥0 as defined in Lemma 3.1. In particular, η is

PRM (EXα
1 (αxα−1dx)). Then in Mp ([0,∞)), the class of nonnegative integer valued

Radon measures on E,
ηN ⇒ η.

Proof. Let M > 0 be a continuity point of the distribution of X1 and consider the map
T : [0,M ] × (0,∞] → [0,∞) given by

T (x, y) =
x

y
.

Since T is continuous and T−1(K) is compact for K compact in [0,M ] × (0,∞], the as-

sumptions of Theorem 2.26 are fulfilled and there exists a continuous map T̂ : M+([0,M ]×
(0,∞]) →M+([0,∞)), where

T̂
(∑

ε(x,y)

)
=
∑

εT (x,y).
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Then we have

N∑

n=1

εk−1
N Zn/Xn−1

1(k−1
N Zn≤M) =

N∑

n=1

εT (k−1
N Zn,Xn−1)

1(k−1
N Zn≤M)

= T̂

(
N∑

n=1

ε(kN
−1Zn,Xn−1)

)
1(k−1

N Zn≤M)

= T̂ (ξN) .

Since T̂ is continuous and ξn ⇒ ξ by Lemma 3.1, it follows from the Continuous Mapping
Theorem

T̂ (ξN) ⇒ T̂ (ξ) .

Hence,

T̂ (ξ) = T̂

( ∞∑

k=1

ε(jk ,Yk)

)
1(jk≤M) =

∞∑

k=1

εT (jk ,Yk)1(jk≤M) =

∞∑

k=1

ε(jk/Yk)1(jk≤M).

So, we showed that in Mp ([0,∞))

N∑

n=1

εk−1
N Zn/Xn−1

1(k−1
N Zn≤M) ⇒

∞∑

k=1

ε(jk/Yk)1(jk≤M).

As M → ∞,

∞∑

k=1

ε(jk,Yk)1(jk≤M) →
∞∑

k=1

ε(jk ,Yk) a.s..

Similarly to the proof of Lemma 3.1 we show by using Theorem 2.25

ηN ⇒ η.

Then, instead of showing (3.11) we apply the Markov inequality and prove that for all
f ∈ C+

c ([0,∞)), f ≤ 1,

lim
M→∞

lim sup
N→∞

E

(∣∣∣∣∣

∫
fdηN −

N∑

n=1

f
(
k−1

N Zn/Xn−1

)
1(k−1

N Zn≤M)

∣∣∣∣∣

)
= 0.
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Consider

E

(∣∣∣∣∣

∫
fdηN −

N∑

n=1

f
(
k−1

N Zn/Xn−1

)
1(k−1

N Zn≤M)

∣∣∣∣∣

)

= E

(∣∣∣∣∣

N∑

n=1

f
(
k−1

N Zn/Xn−1

)
−

N∑

n=1

f
(
k−1

N Zn/Xn−1

)
1(k−1

N Zn≤M)

∣∣∣∣∣

)

= E

(∣∣∣∣∣

N∑

n=1

f
(
k−1

N Zn/Xn−1

)
1(k−1

N Zn>M)

∣∣∣∣∣

)

= N E
(
f
(
k−1

N Z1/X0

)
1(k−1

N Z1>M)

)

≤ N E
(
1(k−1

N Z1/X0<c)1(k−1
N Z1>M)

)

≤ N P
(
k−1

N Z1/X0 < c, k−1
N Z1 > M

)
,

where we have assumed that the support of f is contained in [0, c]. Then the last term
can be bounded by

N P
(
k−1

N Z1 < cX0, k
−1
N Z1 > M

)
≤ N P

(
k−1

N Z1 < cX0, cX0 > M
)
.

By defining Y := cX01(cX0>M) we can apply Lemma 2.16

lim
N→∞

N P
(
k−1

N Z1 < Y
)

= lim
N→∞

N P
(
Z1Y

−1 < kN

)

= lim
N→∞

N P (Z1Y
−1 < kN)

N P (Z1 < kN)

= EY α

= cαEXα
0 1(cX0>M).

Since EXβ < ∞ holds for some β > α, we have EXα
0 < ∞ and the limit converges to

zero as M → ∞.
Hence,

ηN ⇒ η.

Corollary 3.3. (Davis and McCormick, 1989, Corollary 2.4.)

With φ̂N = min1≤n≤N
Xn

Xn−1
, we have

lim
N→∞

P
(
k−1

N

(
φ̂N − φ

)
cα ≤ x

)
= 1 − exp(−xα), x > 0,

where cα = (EXα
1 )1/α and φ̂→ φ a.s.. In particular, φN is consistent.

Proof. Since

ηN ([0, x/cα]) =
N∑

n=1

εa−1
n (Xn/Xn−1−φ) ([0, x/cα])

{
= 0 if k−1

N (φ̂N − φ) > x/cα
> 0 else

,
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we have using Theorem 3.2

P
(
k−1

N (φ̂N − φ)cα > x
)

= P (ηN ([0, x/cα]) = 0)

−→ P (η ([0, x/cα]) = 0)

as N → ∞. Since η is PRM (EXα
1 (αxα−1dx)) and µ the appropriate intensity measure,

it follows

µ ([0, x/cα)) =

∫ x/cα

0

EXα
1 αy

α−1dy = xα,

where cα = (EXα
1 )1/α. So, by Definition 2.20

P (η ([0, x/cα]) = 0) = exp {−xα} .

Since k−1
N → ∞ we must have φ̂N

P−→ φ for N → ∞. But this implies φ̂N −→ φ a.s. since

φ̂N ≥ φ and φ̂N is non increasing.

In summary,

lim
N→∞

P
(
k−1

N

(
φ̂N − φ

)
cα ≤ x

)
= Gα(x),

where Gα is the Weibull distribution function,

Gα(x) =

{
1 − exp(−xα) if x ≥ 0
0 if x < 0

.

The estimator φ̂
(h)
N can be obtained from the observation

{
X

(h)
n , n = 0, 1, 2, . . . , N

}

and from relation (3.2), an estimator for the mean reversion coefficient a is given by

â
(h)
N = −h−1 log φ̂

(h)
N . (3.13)

By defining g(φ) := −h−1 log(φ) and by Chapter 6 in Brockwell and Davis (1991) it
follows from

k−1
N

(
φ̂N − φ

)
cα =⇒ V,

where V is Weibull distributed with parameter α that

k−1
N

(
g(φ̂N) − g(φ)

)
cα =⇒ g′(φ)V.

Thus,
k−1

N (−h)e−ah (âN − a) cα =⇒ V.

So we have for the estimator âN again a Weibull distribution function and we get

lim
N→∞

P
(
k−1

N (−h)e−ah(âN − a)cα ≤ x
)

= Gα(x).

With the same argumentation like in Corollary 3.3 it follows that âN is consistent and
âN → a a.s..
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3.3 Estimator for the Variance of the OU-Process

The variance of the AR(1)-process Xn var(Xn) can be obtained if some additional as-
sumptions on L hold.

Let L be a second-order Lévy process, i.e. E
(
L1

2
)
<∞.Then there exist real constants

µ and σ with E (Lt) = µt and varLt = σ2t for t ≥ 0. In order to avoid confusion with
OU-parameter σ the Lévy process L is assumed to be scaled with varLt = t for all t ≥ 0
instead of varLt = σ for all t ≥ 0. Then L is called a standardized second-order Lévy
process.

Lemma 3.4. Let Lt be a standardized second-order Lévy process. Then

var(Xn) =
σ2

2a
. (3.14)

Proof. Since Xn =
∑∞

j=0 φ
jZn−j the variance can be obtained in the following way.

var (Xn) = var

( ∞∑

j=0

φjZn−j

)
=
∞∑

j=0

φ2jvar (Zn−j). (3.15)

The second identity is true since
∑∞

j=0 φ
j < ∞, |EZ1| < ∞, and |EZ2

1 | < ∞, see for
instance Brockwell and Davis (1991). The last condition will be proved below. Since we
have assumed that Z is i.i.d. distributed, we have

var (Xn) =
∞∑

j=0

φ2jvar (Z1) . (3.16)

So, by (3.3), Proposition 4.44 inJacod and Shiryaev (2003), and the dominated conver-
gence theorem,

var(Z1) = var

(
σ

∫ h

0

e−a(h−u)dLu

)

= σ2e−2ahvar

(∫ h

0

eaudLu

)

= σ2e−2ahvar

(
lim

N→∞

N∑

j=1

eah( j
N
− j−1

N )
(
Lh j

N
− Lh j−1

N

))

= σ2e−2ahvar

(
lim

N→∞

N∑

j=1

eah( j
N
− j−1

N )Lh( j
N
− j−1

N )

)
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= σ2e−2ah lim
N→∞

var

(
N∑

j=1

eah( j
N
− j−1

N )Lh( j
N
− j−1

N )

)

= σ2e−2ah lim
N→∞

N∑

j=1

e2ah( j
N
− j−1

N )var
(
Lh( j

N
− j−1

N )

)

= σ2e−2ah lim
N→∞

N∑

j=1

e2ah( j
N
− j−1

N )h

(
j

N
− j − 1

N

)

= σ2e−2ah

∫ h

0

e2audu

= σ2e−2ah 1

2a

(
e2ah − 1

)

=
σ2

2a

(
1 − e2ah

)
. (3.17)

Thus, by setting (3.17) in (3.16) and applying (3.2),

var(Xn) =
σ2

2a

(
1 − e2ah

) ∞∑

j=0

φ2j =
σ2

2a

(
1 − e2ah

) 1

1 − φ2

=
σ2

2a

(
1 − e2ah

) 1

1 − e2ah
=
σ2

2a
.

By defining X̄
(h)
N = 1

N+1

∑N
n=0X

(h)
n an estimator for σ2 is

σ̂2
N =

2â
(h)
N

N

N∑

n=0

(
X(h)

n − X̄
(h)
N

)2

. (3.18)

Remark 3.5. By Theorem 4.3. in Masuda (2004) it follows that the Ornstein-Uhlenbeck
process is ergodic and by Theorem 3.1. in Jongbloed et al. (2005) X is β-mixing. There-
fore, it follows that the estimator for σ is convergent.

3.4 Estimation of the Lévy Increments

If the CAR(1) process is observed continuously on [0, T ], then the integrated form of (2.2)
immediately gives

Lt = σ−1

(
Xt −X0 + a

∫ t

0

Xsds

)
.

The increments of the driving Lévy process on the interval ((n− 1)h, nh] can be expressed
by

∆L(h)
n := Lnh − L(n−1)h = σ−1

(
Xnh −X(n−1)h + a

∫ nh

(n−1)h

Xudu

)
. (3.19)

There exists different methods of approximating the integral in (3.19). We introduce
two numerical integration methods, an trapezoidal approximation and a method using
Simpson’s rule.
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Trapezoidal Approach

First, replacing the integral by a trapezoidal approach and the Ornstein-Uhlenbeck pa-
rameters by their estimators, the estimated Lévy increments can be obtained by

∆L̂(h)
n = σ̂−1

N


X(h)

n −X
(h)
n−1 +

â
(h)
N h

(
X

(h)
n +X

(h)
n−1

)

2


 . (3.20)

If one intends to compare different methods as we plan to, it is useful to have estimates
for one time unit. Therefore, we add these estimates in blocks of length 1/h to obtain
estimated increments of L in one time unit. Let p = 1/h be the number of estimated
increments in one time unit. Then

∆L̂
(1)
k

:=

p∑

j=1

∆L̂
(h)
(k−1)p+j

=

p∑

j=1

σ̂−1



X(h)
(k−1)p+j −X

(h)
(k−1)p+j−1 +

â
(h)
N h

(
X

(h)
(k−1)p+j +X

(h)
(k−1)p+j−1

)

2





= σ̂−1

(
X

(h)
kp +X

(h)
(k−1)p +

â
(h)
N h

2

(
X

(h)
(k−1)p + 2X

(h)
(k−1)p+1 + . . .+ 2X

(h)
kp−1 +X

(h)
kp

))

= σ̂−1

(
X

(h)
kp +X

(h)
(k−1)p + â

(h)
N h

(
1

2
X

(h)
(k−1)p +X

(h)
(k−1)p+1 + . . .+X

(h)
kp−1 +

1

2
X

(h)
kp

))
.

(3.21)

Simpson’s rule

In the other approach we use the Simpson rule. In contrast to the trapezoidal approxima-
tion we look at two time intervals. Then the estimator for the Lévy increment is

∆L̂(2h)
n = σ̂−1



X(h)
n+1 −X

(h)
n−1 +

â
(h)
N h

(
X

(h)
n+1 + 4X

(h)
n +X

(h)
n−1

)

6



 . (3.22)
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Then, after adding the estimator in blocks of length 1/2h, we get

∆L̂
(2h)
k

:=

q∑

j=1

∆L̂
(h)
(k−1)q+j

=

q∑

j=1

σ̂−1

(
X

(h)
(k−1)q+j+1 −X

(h)
(k−1)q+j−1

+
â

(h)
N h

(
X

(h)
(k−1)q+j−1 + 4X

(h)
(k−1)q+j +X

(h)
(k−1)q+j+1

)

6

)

= σ̂−1

(
X

(h)
kq −X

(h)
kq−q

+
â

(h)
N h

(
X

(h)
kq−q + 4X

(h)
kq−q+j+1 + 2X

(h)
kq−q+j+2 + . . .+ 2X

(h)
kq−2 + 4X

(h)
kq−1 +X

(h)
kq

)

6

)
,

(3.23)

where q = 1/2h.

Remark 3.6. Note that not all distribution functions F of Zn, cf. (3.3), are regularly
varying. Since we assumed that F has to fulfill the regular variation condition, the con-
vergence of φ̂ is no longer clear. For example, if the background driving Lévy process is a
compound Poisson process, the distribution is not regular varying. So, we have to show
the consistency of the estimators stand-alone, but without a distribution limit theorem.
We will show this in Chapter 4. Otherwise, it is enough to verify the regular variation
condition. For this case we will also give an example, cf. Example 3.
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Chapter 4

Applications and Examples

In this section we want to introduce two different methods to simulate an Ornstein Uh-
lenbeck process - the Euler method and a direct simulation. Besides, we want to apply
different background driving Lévy processes, so Example 1 and Example 2 will present a
compound Poisson process and Example 3 will provide a standardized gamma process.

4.1 Compound Poisson Process

Definition 4.1. Let (Nt)t∈R+ be a Poisson process with rate λ > 0 and Y1, Y2, . . . i.i.d-
distributed random variables with distribution function Q which is also independent of
(Nt)t∈R+. Define

St =
Nt∑

i=1

Yi.

Then (St)t∈R+ is said to be a compound Poisson process with rate λ and jump size distri-
bution Q.

4.1.1 Consistency

Since a compound Poisson process does not satisfy the regular variation condition (2.20),
one cannot use the results from Chapter 3. Thus, the consistency has to be proven for the
compound Poisson process stand-alone.

Let (Ln)0≤n≤N be the BDLP observed at times 0, h, 2h, . . . , Nh. The Lévy increments
for the time interval h are defined as

∆Ln = Lnh − L(n−1)h

for n = 1, . . . , N .

Since for a compound Poisson process P (∆Ln = 0) > 0 and the increments of a Lévy

27
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process are independent, it follows that

lim
N→∞

P (∃n ∈ {1, . . . , N} : ∆Ln = 0) = lim
N→∞

(1 − P (∆Ln = 0 ∀n ∈ {1, . . . , N}))

= lim
N→∞

(
1 −

(
P (∆L1 = 0)︸ ︷︷ ︸

<1

)N)

= 1

4.1.2 Simulation and Estimation

For the compound Poisson process we want to introduce two methods to simulate the
Ornstein-Uhlenbeck process, the Euler method and a direct approach. Let the OU-process
Xt be given by

dXt = −aXtdt+ σdLt, (4.1)

where Lt is a compound Poisson process with intensity λ and jump distribution exp(ξ)
and mean reversion parameter a > 0. We want to introduce these two simulation methods
and illustrate the estimation procedure first using an Euler method for the simulation of
the OU-process and second a direct approach.

Euler Schema

The general idea of the Euler method is a central formula. The stochastic differential
equation (4.1) is substituted by the following simple recursive formula

Xtn = Xtn−1 − aXtn−1(tn − tn−1) + σ
(
Ltn − Ltn−1

)
, (4.2)

where Ltn is a Lévy process obtained at times t0, t1, t2, . . . , tN . For ease of notation we
write Xtn = Xn, i = 1, . . . , N and h = tn − tn−1. Here we apply the Euler approximation
for a compound Poisson process, but the process can be replaced by any other Lévy
process. a > 0 and σ > 0 are the parameters of the OU-process.

Example 1. The compound Poisson-driven OU-processes defined by

dXt = −2Xtdt+ dLt, (4.3)

was simulated at times 0, 0.001, 0.002, . . . , 5000. We simulated a compound Poisson pro-
cess with intensity parameter λ = 2 and with a jump size which is exponential distributed
with mean 1

2
. Figure 4.1 shows the compound Poisson process up to t = 10 and Figure 4.2

the corresponding Ornstein-Uhlenbeck process. Figure 4.3 displays the OU-process for a
longer time horizon.

Estimation of a From the N = 5000000 simulated process values X0, . . . , XN we ob-
tained the Davis-McCormick estimator

φ̂0.001
N = min

1≤n≤N

Xn

Xn−1
= 0.9980, (4.4)
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Figure 4.1: Compound Poisson process of intensity 2 with exponential jumps of expecta-
tion 1/2

and with

â0.001
N = −1

h
log φ̂ = 2.002 (4.5)

we get an estimator for the CAR(1) coefficient a.
In Figure 4.4 we computed the Davis McCormick estimator at different subintervals,

h = 0.01, 0.02, 0.03 . . .. There φ̂h
n∗ or equivalently âh

n∗ are obtained as follows. If, for exam-
ple, h = 0.01, we only deal with the sample X0, X100, X200, . . . , XN . So we have in total
n∗ = 50000 observation points, denoted by X1, X2, . . . , Xn∗

φ
(h)

n∗ = min
1≤n≤n∗

Xn

Xn−1

.

Then the OU-estimator is a
(0.01)
50000 = 2.002. If n∗ = 250, then 250 values from the times

series were used for the estimation and so h = 20 or equivalently every 50000th value was
used for the estimation for a, X0, X20000, X40000, . . .. Here ā

(20)
250 = 0.5159.

In general, if n∗ in Figure 4.4 is small, then the interval h is large. In this case only a
few data points are used for the estimation of a and the estimator â is according to this
imprecise. Otherwise, if n∗ is large, the grid of the corresponding sample is small. From
the structure of the Davis-McCormick estimator we would expect

φ̂ ≥ φ,

where φ is the true value. Then with (3.2)

â ≤ a.
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Figure 4.2: Ornstein-Uhlenbeck Process driven by a compound Poisson process (cf. Fig-
ure 4.1)

But (4.5) (or Figure 4.4) shows the contrary, since we know the true value of a. This fact
is a result from the structure of the Euler Schema. If h is chosen small enough, there exist
time periods without a jump in between. Hence, the estimator can be obtained directly.
This is the case in our example. The intensity measure is 2, so there are on average two
jumps in one unit. Since we have 5000 units with 1000 time points for each time unit, so
totally 5000000 observations, there exist many time grids without jumps to compute the
estimator exactly. Thus, with the definition of the Davis-McCormick estimator and (4.2)
it follows for an interval without any jumps

φ̂ =
Xn

Xn−1

=
Xn−1 − ahXn−1

Xn−1

= 1 − ah.

For the real value φ we know

φ = e−ah =

∞∑

j=0

(−ah)j

j!
= 1 − ah +

(ah)2

2!
− (ah)3

3!
+ . . . .

Since
∞∑

j=2

(−ah)j

j!
=

∞∑

j=1

(ah)2j(1 + 2j − ah)

(1 + 2j)!
≥ 0,

it follows
1 − ah ≤ e−ah.
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Figure 4.3: Ornstein-Uhlenbeck Process for a longer time horizon

Then
φ̂ ≤ φ

and
â ≥ a.

Note that the estimated value â we obtained, cf. (4.5), is exactly the one we would expect
from our calculations above

â = − 1

0.001
log (1 − 2 · 0.001) = 2.002.

In order to get more detailed information of the estimator we concentrate on the samples
of the process at six different intervals, h = 0.01, h = 0.1, h = 1, h = 5, h = 10 and
h = 100 by selecting every 10th, 100th, 1000th, 5000th, 10000th, and 100000th value
respectively. We generated 100 such realizations of the process and applied the above
estimation procedure to generate 100 independent estimates, for each h, of the parameters
a and σ. The sample means and standard deviation of these estimators are shown in Table
4.1. Figure 4.5 shows the Weibull probability plot comparing the distributions of the data
to the Weibull distribution where we used different grids for the data. The plot induces
also a reference line useful for judging whether the data follows a Weibull distribution.

Even though the distribution of a compound Poisson process is not regularly varying,
we wanted to check if the distribution of â is similar to a Weibull distribution. Figure 4.5
illustrates, that the distribution of â is no longer as a Weibull distribution recognizable if
you look to the tails of the samples with h ≥ 5 .
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Figure 4.4: Computing the estimator â at different subintervals h, n∗ number of observa-
tion points used for estimation, n∗ = 5000

h
.

Table 4.1: Estimated parameters based on 100 replicates on [0, 5000] of the Compound-
Poisson driven OU-process, observed at times nh, n = 0, . . . , bT/hc.

h Parameter Sample mean Sample standard
of estimator deviation of estimator

0.01 â 2.002 0.0
σ̂ 1.0033 0.0344

0.1 â 2.002 0.0
σ̂ 1.0032 0.0343

1 â 2.002 0.0
σ̂ 0.9907 0.0497

5 â 1.1786 0.2432
σ̂ 0.7557 0.1110

10 â 0.5159 0.1136
σ̂ 0.4962 0.0926

100 â 0.0293 0.0135
σ̂ 0.1076 0.0523
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Figure 4.5: Weibull probability plot for three different step sizes, from left to right: h =
100, h = 10, h = 5 and h = 1
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Exact Simulation

Another possibility to simulate a Compound-Poisson Process driven OU-process is an
exact simulation. Using the solution of the stochastic differential equation (2.2)

Xt = e−a(t−s)Xs + σ

∫ t

s

e−a(t−u)dLu,

the process is simulated.
If there is no jump before the next time point, we have

Xtn = e−ahXtn−1 , (4.6)

where h = tn − tn−1 for all n, since the time-lags are assumed to be equidistant. If there is
a jump within the next time point, more calculations have to be done. First we calculate
Xjumptime, the value of the OU-process just before the jump

Xjumptime = e−a(jumptime−tn−1)Xtn−1 , (4.7)

then

Xjumptime = Xjumptime + Y, (4.8)

where Y is the jump size, here in our example exponential distributed with mean 1
ξ
. If

there is another jump before the next time point tn another iteration like (4.7) and (4.8)
has to be done. Otherwise the process value for the next observation point is

Xtn = e−a(tn−jumptime)Xjumptime. (4.9)

In the following we apply the exact method by using the same parameters like in Example
1.

Example 2. We simulate the Ornstein-Uhlenbeck process characterized by

dXt = −2Xtdt+ dLt.

at times 0, 0.1, 0.2, . . . , 5000. The background driving Lévy process Lt is a compound
Poisson process of intensity 2 with exponential jumps of expectation 1

2
. Figure 4.6 and

Figure 4.7 show the OU-process simulated with the exact method for a short and long
period, respectively.

The Davis-McCormick estimator is

â0.1
N = 2. (4.10)

So, in comparison to the Euler approximation the Davis-McCormick estimator works for
the exact method precisely. The following is the reason for this. The time grid is fine and
we have only two jumps on average per time unit. Then there exists two observations Xn

and Xn−1 with no jump in between and the estimator can be obtained directly by using
(4.6).
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Figure 4.6: Compound Poisson driven Ornstein Uhlenbeck Process with intensity λ = 2
and exponential jumps of expectation 1/2

In Figure 4.8 the development of the estimator â is pointed out. So already with
1500 data points, i.e. about every 35th process value is used for the calculation of â, the
estimator is equal to the real value a = 2.

We generated 100 replicates of the Ornstein-Uhlenbeck process in order to get the
estimators’ sample means and standard deviations for a variety of time grids. Table 4.2
illustrates these quantities for h = 0.1, h = 1, h = 2, h = 5, h = 10 and h = 10.

Figure 4.9 shows the Weibull probability plot comparing the distributions of the data
to the Weibull distribution where we used different grids for the data. The plot induces
also a reference line useful for judging whether the data follows a Weibull distribution.
Even though we do not know the asymptotic distribution of the estimator âN we wanted
to check if the distribution of âN is similar to a Weibull distribution. Figure 4.9 displays
that the distribution of âN is no longer as a Weibull distribution recognizable if you look
to the tails of the samples with h = 5 and h = 10 compared to the reference line.
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Figure 4.7: Ornstein Uhlenbeck Process for a longer time horizon
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Figure 4.8: Computing the estimator â at different subintervals h, n∗ number of observa-
tion points used for estimation, n∗ = 5000
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.
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Table 4.2: Estimated parameters based on 100 replicates on [0, 5000] of the compound
Poisson driven OU-process, observed at times nh, n = 0, . . . , bT/hc.

h Parameter Sample mean Sample standard
of estimator deviation of estimator

0.1 â 2.0 0.0
σ̂ 1.0013 0.0145

1 â 2.0 0.0
σ̂ 1.0039 0.0221

2 â 2.0 0.0
σ̂ 1.0058 0.0324

5 â 1.4485 0.2318
σ̂ 0.8590 0.0804

10 â 0.6571 0.1217
σ̂ 0.5796 0.0637
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Figure 4.9: Weibull probability plot for three different step sizes, from left to right: h = 10,
h = 5 and h = 2
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4.2 Gamma Process

In this section we want to illustrate the parameter estimation method for the case in which
the background Lévy process is a standardized Gamma process. So the Gamma-driven
OU-process Xt is defined by the probability density function

dXt = −aXtdt+ σdGt,

where the background Lévy process Gt is a standardized Gamma process.
First we give some properties of the gamma process. The Gamma distribution with

shape parameter α and inverse scale parameter β is defined by

f(x) =
βα

Γ(α)
xα−1e−xβ1[0,∞).

The standardized gamma process Gt has the density fGt given by

fGt(x) =
γ1/2γt

Γ(γt)
xγt−1e−xγ1/2

1[0,∞)

and the process has mean γ1/2t and variance t. Then, since the increments of the Gamma
process are gamma distributed, we have increments with

Gn −Gn−1 ∼ Gamma
(
γh, γ1/2

)
,

where h = tn − tn−1.
The Laplace transform of Gt is

ϕGt(s) := Ee−sGt =

∫ ∞

0

e−sxfGt(x)dx =
γ1/2

(γ1/2 + s)γt
=

1

(1 + γ−1/2s)γt
= e−tΦ(s) (4.11)

for <(s) ≥ 0, where Φ(s) = log (1 + βs)γ = γ log (1 + βs) with β = γ−1/2 and γ > 0.
We estimate the discrete-time autoregression coefficient φ and the Ornstein-Uhlenbeck

process parameters a and σ2 using (3.13) and (3.18) based on h-spaced observations

(X
(h)
n )0≤n≤N . Afterwards, the Lévy increments will be estimated in two different ways, one

time using a trapezoidal approximation and the other time a Simpson’s rule approach.
From this estimated parameters we will estimate the parameter γ of the standardized
gamma process.

4.2.1 Consistency

To obtain the asymptotic distribution of φ
(h)
N and a

(h)
N as N tends to infinity with h fixed

we check the regular variation condition of F , the distribution function of Zn in (3.3),

where Zn = σ
∫ nh

(n−1)h
e−a(h−t)dGt first. Then we calculate the coefficients kN and cα. We

follow here Brockwell et al. (2007, p. 982).
In order to show the regular variation condition we first give an appropriate represen-

tation of the Laplace transform of Z1 by using power series expansion.
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By defining Wh := Z1/σ the Laplace transform of Wh is

ϕWh
(s) = Ee−s

Z1
σ

= Ee−
1
σ

∫ h
0

se−a(h−t)dGt

= exp

(
−
∫ h

0

Φ
(
se−at

)
dt

)

= exp

(
−
∫ h

0

γ log
(
1 + βse−at

)
dt

)
, (4.12)

where Φ is defined as in (4.11). The second equality holds with Cont and Tankov (2004,
Theorem 15.1).
Thus,

−
∫ h

0

γ log
(
1 + βse−at

)
dt = −γ

∫ h

0

log

(
βse−at

(
1 +

1

βse−at

))
dt

= −γ
∫ h

0

(
log
(
βse−at

)
+ log

(
1 +

1

βse−at

))
dt.

Next we simplify the terms in the last line as follows

∫ h

0

log
(
βse−at

)
dt =

∫ h

0

(
log (βs) + log

(
e−at

))
dt

= h log (βs) − ah2

2
.

Using a Taylor series expansion log (1 + x) =
∞∑

n=0

(−1)n xn+1

n+1
for |x| < 1 and |x| 6= −1 and

applying monotone convergence we get for the other part

∫ h

0

log

(
1 +

1

βse−at

)
dt =

∫ h

0

∞∑

n=0

(−1)n

n + 1

(
1

βse−at

)n+1

dt

=
∞∑

n=0

(−1)n

n + 1

(
1

βs

)n+1 ∫ h

0

eat(n+1)dt

=
∞∑

n=0

(−1)n+1

(n + 1)2

(
1

βs

)n+1
1

a

(
1 − e(n+1)ah

)
.

With the previous calculations the exponent in (4.12) can be rewritten as

−γ
∫ h

0

log
(
1 + βse−at

)
dt

= log (βs)−γh +
aγh2

2
− γ

∞∑

n=0

(−1)n+1

(n+ 1)2

(
1

βs

)n+1
(
1 − e(n+1)ah

)

a

= log (βs)−γh +
aγh2

2
+
γ
(
1 − eah

)

βsa
− γ

(
1 − e2ah

)

4β2s2a
+ o

(
1

s2

)
.
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Applying another Taylor series expansion for the exponential function it follows

ϕWh
(s) = exp

(
log (βs)−γh +

aγh2

2
+

γ

βsa

(
1 − eah

)
− γ

4β2s2a

(
1 − e2ah

)
+ o

(
1

s2

))

= (βs)−γh exp

(
aγh2

2

)
exp

(
γ

βsa

(
1 − eah

)
− γ

4β2s2a

(
1 − e2ah

)
+ o

(
1

s2

))

= (βs)−γh exp

(
aγh2

2

)(
1 +

(
γ
(
1 − eah

)

βsa
+
γ
(
1 − e2ah

)

4β2s2a
+ o

(
1

s2

))

+
1

2

(
γ(1 − eah)

βsa
+
γ
(
1 − e2ah

)

4β2s2a
+ o

(
1

s2

))2

+ o

(
1

s2

)


=
β−γh

sγh
exp

(
aγh2

2

)
+

C1

sγh+1
+

C2

sγh+2
+ o

(
1

sγh+2

)
,

where C1, C2, . . . are constants depending on γ, β, h and a. Since ϕZ1(s) = ϕWh
(σs), it

follows that

sγhϕZ1(s) = sγhϕWh
(σs)

= (σβ)−γh exp

(
aγh2

2

)
+
C1σ

−γh−1

s1
+
C2σ

−γh−2

s2
+ o

(
1

s2

)

−→ (σβ)−γh exp

(
γah2

2

)

as s → ∞. By Theorem 30.2 of (Doetsch, 1976) the density of Z1, fZ1 , has the following
expansion in a neighborhood of 0, namely

fZ1(x) = (σβ)−γh exp

(
aγh2

2

)
xγh−1

Γ (γh)
+
C1σ

−γh−1xγh

Γ (γh + 1)
+
C2σ

−γh−2xγh+1

Γ (γh + 2)
+ . . . .

Then

fZ1(x)

xγh−1
= (σβ)−γh exp

(
aγh2

2

)
1

Γ (γh)
+
C1σ

−γh−1x

Γ (γh+ 1)
+
C2σ

−γh−2x2

Γ (γh+ 2)
+ . . .

−→ (σβ)−γh exp

(
aγh2

2

)
1

Γ (γh)
,

as x→ 0. Since

FZ1(x)

xγh
−→

(σβ)−γh exp
(

γah2

2

)

Γ (γh + 1)

as x→ 0 and

FZ1(x) ∼
xγh (σβ)−γh exp

(
γah2

2

)

Γ (γh+ 1)
(4.13)
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as x→ 0, it follows that

FZ1(λx)

FZ1(x)
∼ λγh, (4.14)

which means F is regularly varying at 0 with exponent γh.

In the following we give a way to calculate k−1
n and cα. Recall that kN = F←(N−1)

then

1

N
=

∫ kN

0

FZ1(du). (4.15)

Together with (4.13) we have

1

N
∼
kγh

N (σβ)−γh exp
(

γah2

2

)

Γ (γh+ 1)
, (4.16)

and hence

k−1
N ∼ exp

(
ah
2

)
N

1
γh

σ β Γ (γh + 1)
1

γh

, (4.17)

as N → ∞.

For computing cγh we need E

((
X

(h)
n

)γh
)

, whereX
(h)
n =

∞∑
j=0

φjZn−j. Then the Laplace

transform is

ϕ
X

(h)
n

(s) = E
(
exp

(
−sX(h)

n

))
=

∞∏

j=0

E
(
exp

(
−sφjZn−j

))
=

∞∏

j=0

ϕZ1(sφ
j). (4.18)

Thus, it follows

log
(
ϕ

X
(h)
n

(s)
)

=
∞∑

j=0

log
(
ϕZ1(sφ

j)
)

=

∞∑

j=0

log
(
ϕWh

(sσφj)
)

=
∞∑

j=0

log

(
exp

(
−γ
∫ h

0

(
log
(
1 + βsσφje−at

))
dt

))

= −γ
∞∑

j=0

∫ h

0

(
log
(
1 + βsσφje−at

))
dt.
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Then, by an appropriate substitution we have

ϕ
X

(h)
n

(s) = exp

(
−γ

∞∑

j=0

∫ h

0

(
log
(
1 + βsσφje−at

))
dt

)

= exp

(
−γ
a

∞∑

j=0

∫ 1+βsσφje−ah

1+βsσφj

log u

1 − u
du

)

= exp

(
γ

a

∞∑

j=0

dilog
(
1 + βsσφj

)
− dilog

(
1 + βsσφje−ah

)
)
,

where dilog denotes the dilogarithm function,

dilog (x) =

∫ x

1

log (u)

1 − u
du.

Recall that φ = e−ah, then

ϕ
X

(h)
n

(s) = exp

(
γ

a

∞∑

j=0

(
dilog

(
1 + βsσφj

)
− dilog

(
1 + βsσφj+1

))
)

= exp
(γ
a

dilog (1 + βsσ)
)
.

Applying Theorem 2.1. of Brockwell and Brown (1978) it follows for γh < 1

E
(
X(h)

n

)γh
=

1

Γ (1 − γh)

∫ ∞

0

s−γh
∣∣∣DϕX

(h)
n

(s)
∣∣∣ ds

=
γ

aΓ (1 − γh)

∫ ∞

0

s−γh−1 exp
(γ
a

dilog (1 + βsσ)
)

dilog (1 + βsσ)ds,

(4.19)

where Dϕ denotes the derivative of ϕ. In this way cγh can be numerically computed
from formula (4.19) for h fixed. Theorem 2.1. covers also the case γh ≥ 1, but we deal
primarily with small h. With k−1

N and cα it is possible to obtain confidence intervals of
the estimators.
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Figure 4.10: Standardized Gamma-driven OU process with γ = 2 for a short period

4.2.2 Simulation and Estimation

For the following example we use again the Euler scheme, so the following formula anal-
ogous to (4.2) is used for the simulation

Xn = Xn−1 − aXn−1h + σ (Gn −Gn−1) . (4.20)

Example 3. Now we simulate a Gamma driven OU-process, defined by

dXt = −0.6Xtdt+ dLt, (4.21)

where Lt is the standardized Gamma Process with parameter γ = 2. We obtained the
CAR(1) process using the Euler-Maruyama method at times 0, 0.001, 0.002, . . . , 5000.
Figure 4.10 and Figure 4.11 shows the Gamma driven OU process for a short distance
and for a long time horizon. Figure 4.12 shows the estimator depending on the different
subintervals h or alternatively depending on n∗, the numbers of data points used for the
estimation. For the estimation of the OU-parameter a and σ we sampled the process at
subintervals h = 0.01, h = 0.1, h = 1, h = 2, h = 5, h = 10 and h = 100. To get for each h
independent estimates for a and σ we simulated 100 replicates of the process. The sample
means and the standard deviations for the different subintervals are shown in Table 4.3,
where a remarkable accuracy is illustrated. Like in Example 1 the estimated values for a
are greater than the real value if you choose a small h. Once again, the Euler method is
the reason for this.
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Figure 4.11: Standardized Gamma-driven OU process with γ = 2 for a longer time horizon
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Figure 4.12: Estimator for a, depending on different time grids
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Table 4.3: Estimated parameters based on 100 replicates on [0, 5000] of the gamma-driven
OU-process, observed at times nh, n = 0, . . . , bT/hc.

h Parameter Sample mean Sample standard
of estimator deviation of estimator

0.01 â 0.6002 0.0
σ̂ 0.9990 0.0166

0.1 â 0.6002 0.0
σ̂ 0.9990 0.0167

1 â 0.5927 0.0036
σ̂ 0.9930 0.0244

2 â 0.5380 0.0188
σ̂ 0.9453 0.0170

5 â 0.3235 0.0343
σ̂ 0.7320 0.0471

10 â 0.1629 0.0192
σ̂ 0.5196 0.0396

100 â 0.0117 0.0024
σ̂ 0.1450 0.0304

Thereafter, analogous to Example 1, we want to analyze the distribution of the es-
timator â. For this purpose, we utilized the Weibull probability plot (Figure 4.13) by
comparing the independent OU-estimator for the different time grids h with the Weibull-
distributed data. Like in the previous example the distribution is for h ≥ 2 not similar to
a Weibull distribution.
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Figure 4.13: Weibull probability plot for different step sizes, from left to right: h = 100,
h = 10, h = 5, h = 2 and h = 1
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Now we estimate the parameters of the driving Lévy process. Therefore we first have
to estimate the increments. As in Chapter 3 introduced, we apply both the trapezoidal
and the Simpson approach.

Trapezoidal approach

For each h and each replicate we used the estimated OU-process parameters in (3.19) to

compute the estimated Lévy increments ∆L̂
(h)
n , n = 1, . . . , 5000/h in (3.20). Then we add

these estimates in blocks of length 1/h. So we get 5000 independent estimated increments

of L, ∆L̂1
k, k = 1, . . . , 5000, in one time unit, cf. (3.21). In Figure 4.14 the histogram for

one realization with h = 0.01 is shown, together with the true probability density of G1,
Gamma(γ, γ

1
2 ).
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Figure 4.14: Probability density of the increments of the standardized Lévy process with
γ = 2 and the histogram of the estimated increments from one realization of the OU-
process, obtained by computing ∆L

(0.01)
n , n = 1, . . . , 5, 000, 000 with the trapezoidal ap-

proximation (3.20) and adding values in blocks of 100 to give estimated increments per
unit time.
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Table 4.4: Estimated parameters of the standardized driving Lévy process based on 100
replicates on [0, 5000] of the gamma-driven OU-process.

h Parameter Sample mean Sample standard
of estimator deviation of estimator

0.01 γ 2.0039 0.0314
0.1 γ 2.0043 0.0340
1 γ 1.9967 0.0539

Table 4.4 shows the estimators for the parameter of Gamma distribution function.
Even if we do not know that the BDLP is a gamma process, the histogram in Figure 4.14
strongly suggest that ∆L is gamma distributed. Figure 4.15 illustrates the histogram of
the increments ∆L̂k of all replicates for h = 0.01. Again without knowing the distribution
at all, the histogram is an indicator for the gamma distribution. The histogram is a really
smooth approximation of the true density function.
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Figure 4.15: Probability density of the increments of the standardized Lévy process with
γ = 2 and the histogram of the estimated increments for all 100 realization of the OU-
process, obtained by computing ∆L

(0.01)
n , n = 1, . . . , 5000000 with the trapezoidal approx-

imation (3.20) and adding values in blocks of 100 to give estimated increments per unit
time for each realization.
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Simpson’s rule

Second, the Simpson’s rule approach is shown. There, the estimator for ∆L is defined
for an interval of length 2h by (3.22). Thereafter the estimated values ∆L̂

(2h)
n , n =

1, . . . , 5000/(2h) were summed up in blocks of length 50 to calculate 5000 independent
increments of the gamma process in one time unit. Figure 4.16 illustrates the histogram
for one of these iterates of G1 combined with the true density of the increment function.
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Figure 4.16: Probability density of the increments of the standardized Lévy process with
γ = 2 and the histogram of the estimated increments from one realization of the OU-
process, obtained by computing ∆L

(0.01)
n , n = 1, . . . , 5000000 with the approximation using

Simpson’s rule (3.22) and adding values in blocks of 100 to give estimated increments per
unit time.

Remark 4.2. Even if we have no results for the convergence of the estimated Lévy
increments, the simulations strongly suggest a convergence to the real background driving
Lévy process.



Chapter 5

Nonparametric Inference

In this section we introduce another estimation method (suggested by Jongbloed et al.
(2005)) based on the characteristic function of the Ornstein-Uhlenbeck process. As shown
in Chapter 2 the characteristic function of the OU-process without drift component can
be written in terms of a so-called canonical function

ψ (z) = exp

(∫ ∞

0

(eizx − 1)
k(x)

x
dx

)
. (5.1)

The cumulant M-estimator we introduce in this chapter is defined as the projection of a
preliminary estimate onto the class of cumulant functions of self-decomposable distribu-
tions, relative to a weighted L2-distance. To define this estimator in Section 5.2 we first
need to define some sets. At the end of the chapter, in Section 5.3 we show the consistency
of the estimator.

5.1 Introduction

Definition of K, Ψ and G

We need the following three sets for the estimation of the canonical function. The set of
canonical functions K ⊆ L1(π) defined by

K :=
{
k ∈ L1(π) : k(x) ≥ 0, k is decreasing and right-continuous

}

is a convex cone which contains precisely the canonical functions of all non-degenerate
self-decomposable distributions on R+ and the degenerate distribution at 0. Here the
measure π is a Borel measure on (0,∞) defined by

π(dx) =
1 ∧ x
x

dx

and L1(π) is the space of π-integrable functions on (0,∞). The semi-norm ‖·‖π on L1(π)
is defined by ‖k‖π =

∫
|k| dπ Let us define the set of appropriate characteristic functions

by

Ψ =

{
ψ : R → C| ψ(z; k) = exp

(∫ ∞

0

(eizx − 1)
k(x)

x
dx

)
for some k ∈ K

}
.

49
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Equivalently to Ψ there exists the set of cumulant functions

G := T (Ψ) =

{
g : R → C|g(z) =

(∫ ∞

0

(eizx − 1)
k(x)

x
dx

)
for some k ∈ K

}
.

Definition of Q, L and T

In the follow we introduce mappings which create relations between the different sets.
The mapping

Q : K −→ Ψ

assigns to each canonical function k ∈ K its corresponding characteristic function in Ψ.
The mapping Q is onto and one-to-one.

A result from complex analysis shows us the connection between Ψ and G.

Proposition 5.1. (Chung, 2001, Theorem 7.6.2.) Let ψ be continuous with ψ(0) = 1 and
ψ(z) 6= 0 for all z ∈ [−Z,Z]. Then there exists a unique function g : [−Z,Z] → C, such
that g(0) = 0 and eg(z) = ψ(z) for all z ∈ [−Z,Z]. Under proper assumptions [−Z,Z] can
be replaced by [−∞,∞]. g is called the distinguished logarithm of ψ. If ψ is a characteristic
function, g is called the cumulant function.

Since ψ has as a characteristic function of an infinitely divisible distribution no zeros,
see for instance (Sato, 1999, Lemma 7.5.), we have

ψ(z) = eg(z) and g(0) = 0.

Then the mapping T : Ψ → G is defined as

[T (ψ)] (z) = g(z),

where ψ ∈ Ψ and z ∈ R. By the uniqueness of the distinguished logarithm it follows that
T is one-to-one and onto.
Another mapping between canonical and cumulant functions is

L : K −→ G

with L = T ◦Q and

[L(k)] (z) =

∫ ∞

0

(eizx − 1)
k(x)

x
dx

for all z ∈ R.
Figure 5.1 illustrates the relations between the different sets.

For notation: If we use in the following the parameter k, ψ, g, we always mean

k ∈ K

ψ ∈ Ψ

g ∈ G.
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Figure 5.1: Sets K, Ψ and G and mappings Q, L and T

5.2 Definition of the Cumulant M-Estimator

The unique stationary probability distribution of X is denoted by µ0. Any reference to
the true underlying distribution is denoted by a subscript 0. For example, F0 denotes the
true underlying distribution function of X1 and k0 the true underlying canonical function.
For the estimation of the canonical function based on discrete-time observations from X
we need a preliminary estimator ψ̃N for ψ0 first. A natural preliminary estimator is the
empirical characteristic function which is introduced in Section 6.

Besides Assumption 1 we need another assumption.

Assumption 3. For the following the estimator ψ̃N has to satisfy either

ψ̃N is a characteristic function for all N and ψ̃N (z) → ψ0(z) a.s. for N → ∞, (5.2)

or

ψ̃N is a characteristic function for all N and ψ̃N (z)
P→ ψ0(z) for N → ∞. (5.3)

The general idea of the cumulant M-estimator is the minimization of the distance
between ψ̃N and Q(k). w is the positive weight function which is (Lebesgue) integrable
and compactly supported. Let Sw be the support of this weight function, here in this
work, in particular in the applications, it is assumed to be the interval (−z∗, z∗).

The M-estimator might be defined by

k̂N = argmin
k∈K

∫ ∣∣∣[Q(k)] (z) − ψ̃N(z)
∣∣∣
2

w(z)dz. (5.4)

Since the objective function Q(k) is not convex, we use instead the function L which is
obviously linear. So the cumulant M-estimator is defined by

k̂N = argmin
k∈K

∫
|[L(k)] (z) − g̃N(z)|2w(z)dz, (5.5)

where g̃N(z) = log ψ̃N (z) and log is the distinguished logarithm.
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Detailed derivation of the cumulant M-estimator

In the following we want to describe the estimator more precisely. The space of square
integrable functions with respect to w(z)dz is defined by

L2(w) :=

{
f : R −→ C|f is Borel measurable and

∫
|f(z)|2w(z)dz <∞

}
.

The inner-product < ·, · >w on L2(w) is defined by

< f, g >w= <
∫
f(z)g(z)w(z)dz, (5.6)

where the bar over g denotes the complex conjugation and < is the operation of taking
the real part of an element of C. Define the norm by ‖g‖w =

√
< g, g >w for g ∈ L2(w).

The space (L2(w), < ·, · >w) is a Hilbert space.
Define the estimator for the real cumulant function g0 = T (ψ0) as a minimizer of

ΓN (g) := ‖g − g̃N‖2
w =

∫
|g(z) − g̃N(z)|2w(z)dz.

The mapping ΓN is defined by
ΓN : G∗ → C, (5.7)

where G∗ ⊆ G which is an appropriate subspace L2(w) that we determine in the following.
If G∗ is a nonempty, closed, and convex subset of the Hilbert space L2(w), then there

exists a unique element g∗ ∈ G∗ which minimizes ΓN (g), g ∈ G∗. Since ΓN is a squared
norm in a Hilbert space, we only need to specify an appropriate subset of G, which is
nonempty, closed and convex.

Lemma 5.2. (Jongbloed et al., 2005)
L : K −→ G is continuous, onto and one-to-one.

Proof. First we show the continuity of L. Let (kN)N≥1 be a sequence in K converging to
k∗ ∈ K with ‖kN − k∗‖π → 0 as N → ∞. Consider

|[L (kN)] (z) − [L (k∗)] (z)| =

∣∣∣∣
∫ ∞

0

eizx − 1

x
(kN(x) − k∗(x)) dx

∣∣∣∣

≤
∫ ∞

0

∣∣eizx − 1
∣∣ |kN(x) − k∗(x)|

|x| dx

≤ (∗) .

Using the inequality |eiz − 1| ≤ min {|z| , 2} we get

(∗) ≤ |z|
∫ 1

0

|kN(x) − k∗(x)| dx+

∫ ∞

1

2 |kN(x) − k∗(x)|
|x| dx.

Recall the definition of the measure π

π (dx) =
1 ∧ x
x

dx,
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and the definition of ‖·‖π, then

|[L (kN)] (z) − [L (k∗)] (z)| ≤ max {|z| , 2}
∫ ∞

0

(kN(x) − k∗(x)) π(dx)

= max {|z| , 2} ‖kN − k∗‖π .

Then L (kN) − L (k∗) converges uniformly on Sw which implies ‖L (kN) − L (k∗)‖w → 0
as N → ∞. The definition of G already shows the surjectivity of L. If g1 and g2 ∈ G
and ‖g1 − g2‖w = 0, then g1 = g2 on Sw. Then also ψ1 := g1 = g2 := ψ2 on Sw. Section
13 in Loève (1977) implies that ψ1 = ψ2 on R. Since Q : K → Ψ is one-to-one we have
k1 = k2.

Since G is not closed we introduce another set G′ by

G′ =

{
g : R −→ C : g(z) = β0iz +

∫ ∞

0

eizx − 1

x
k(x)dx, β0 ≥ 0, k ∈ K

}
,

which is closed under weak convergence. To show this, let S be a compact set containing
the origin. If there exists a sequence (gN)N≥0 ∈ G′ with

sup
z∈S

|gN(z) − g(z)| −→ 0

as N → ∞ for some g, then it follows

sup
z∈S

|ψN (z) − ψ(z)| −→ 0

as N → ∞. Denote by XN the random variable belonging to the characteristic func-
tion ψN . Applying Lévy’s continuity theorem the random variables XN are uniformly
continuous and so uniformly tight.

As the random variables XN are uniformly tight, it follows with Prohorov’s theorem
that (XN)N≥0 is relatively compact, i.e. there exists a subsequence Nl such that

XNl
⇒ X∗.

Recall that XN is a positive self-decomposable random variable. Since the class of pos-
itive self-decomposable random variables is closed under weak convergence X∗ is self-
decomposable as well. Denote the cumulant function of X∗ by g∗. Then it follows

g∗ ∈ G′

and
sup
z∈S

|gNl
(z) − g∗(z)| −→ 0

as N → ∞. With the continuity of g and g∗ on S we have

g = g∗

on S and
g = g∗ ∈ G′

Thus, G′ is closed in L2(w).
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Example 4. Let S be a compact set containing the origin and let (kN)N≥1 ∈ K be a
sequence with kN(x) = N · 1[0, 1

N )(x). Then, for each z ∈ R,

gN(z) = [L (kN)] (z) = N

∫ 1
N

0

eizx − 1

x
dx = lim

M→∞

M∑

m=1

N

(
iz 1

N

)m

m ·m!
−→ iz

as N → ∞. Let g(z) = iz. Then, as gN and g are uniformly continuous on the compact
set S, we have

sup
z∈S

|gN(z) − g(z)| −→ 0

as N → ∞. Recall that G =
{
g : R → C|g(z) =

∫∞
0

(eizx − 1)k(x)
x
dx for some k ∈ K

}

and therefore g /∈ G and ψ(z) = eiz. This is an example which preclude closedness of G.
The example also shows that the set G is not closed in L2(w).

Since G is not closed under weak convergence, we have to obtain an appropriate closed
subset of G. This can be done with envelope functions. Let R > 0. Then there exists
canonical functions kR ∈ K such that ‖kR‖π ≤ R. A possible choice is kR(x) = R

4
√

x
. The

sequence (kR)R>0 defines a set of envelope functions. Then the set of canonical function
is defined by

KR := {k ∈ K|k(x) ≤ kR(x) for x ∈ (0,∞)}
and the corresponding set of cumulant functions by

GR := L(KR),

i.e. GR is the image of KR under L.

Lemma 5.3. (Jongbloed et al., 2005, Lemma 4.3.) Let R > 0. Then

1. KR is a compact, convex subset of L1(π).

2. GR is a compact, convex subset of L2(w).

Proof. 1. The convexity of KR is obvious. Let us denote by (kN)N≥1 a sequence in KR.
The sequence kN is bounded on all strictly positive rational numbers, so we can use
Cantor’s diagonal argument to take a subsequence Nj of N such that

lim
j→∞

kNj
(x) = k∗(x) pointwise

for all x > 0 and x ∈ Q. Then define

k̃(x) = sup {k∗(q), x < q, q ∈ Q}

for all x ∈ (0,∞). k∗ is by definition a decreasing and right continuous function and
we have k̃(x) ≤ kR(x) for all x ∈ (0,∞). Then it follows k̃ ∈ KR. Besides,

lim
j→∞

kNj
(x) = k̃(x) pointwise
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at all continuity points of k̃. Given that the discontinuity points of k̃ are at most
countable, we have

lim
j→∞

kNj
(x) = k̃(x) π − a.s

on x ∈ (0,∞). Since kNj
≤ kR on (0,∞) and kR ∈ L1(π), it follows with dominated

convergence ∥∥∥kNj
− k̃
∥∥∥

π
→ 0

as Nj → ∞. So, KR is sequentially compact, which is equivalent to compact.

2. GR is compact, since it is the image of the compact set KR under the continuous
mapping L. GR is convex since KR is convex, since L is linear.

Corollary 5.4. The inverse operator of L, L−1 : GR → KR is continuous.

Proof. This is a standard result from topology, see for instance Werner (2007, Corollary
IV.3.4.).

One last step is missing for defining the objective function in terms of canonical func-
tions. Until now we only know that ΓN has unique minimizer over GR, since GR is compact
and convex. However, since the mapping L : KR −→ GR is onto and one-to-one and so to
the each g ∈ GR there exists a unique k ∈ KR, then there exists also a unique minimizer
of ΓN ◦ L(= ΓNL) over KR. The following theorem shows this more detailed.

Theorem 5.5. (Jongbloed et al., 2005)

Let ĝN = argming∈GR
ΓN(g). Then k̂N = argmink∈KR

[ΓNL] (k) exists. Moreover, k̂N =

L−1(ĝN) and k̂N is unique.

Proof. Recall that L : KR −→ GR is onto and one-to-one, so there exists to each g ∈ GR

a unique k ∈ KR, such that L(k) = g. It follows that

γ = min
g∈GR

ΓN(g) = min
k∈KR

[ΓNL] (k). (5.8)

Define k̂N = L−1(ĝN) and choose an arbitrary k ∈ KR, but k 6= k̂N . Then k̂N ∈ KR and

[ΓNL] (k̂N) = ΓN(ĝN) = γ < [ΓNL] (k).

So, k̂N is the unique minimizer of ΓNL over KR.
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5.3 Consistency

We discuss in the following section the consistency of the cumulant M-estimator by
strengthening the point wise convergence in (5.2) to uniform convergence.

Theorem 5.6. (Jongbloed et al., 2005, Lemma 5.2, Theorem 5.3) Let (Ω,A, P ) be a
probability space. Assume that for the sequence of preliminary estimators ψ̃N holds that
ψ̃N is a characteristic function for all N and ψ̃N (z)

a.s.→ ψ0(z) for N → ∞. If k0 ∈ KR for
some R > 0, then the cumulant M-estimator is consistent. That is

‖ĝN − g0‖w −→ 0 a.s. N → ∞,∥∥∥k̂N − k0

∥∥∥
π

−→ 0 a.s. N → ∞.

The same results hold in probability if we only assume that ψ̃N is a characteristic function

for all N and ψ̃N(z)
P→ ψ0(z) for N → ∞.

Proof. For the proof of the consistency we present an extended version of the proof in
Jongbloed et al. (2005). For the convergence in probability which we omit we refer as well
to Jongbloed et al. (2005).

Let A ⊆ Ω be the set with P (A) = 1 on which the convergence occurs. Let F̃N(·, ω)
and F0 be the corresponding distribution functions to ψ̃N (·, ω)and ψ0. Let Sw denote the
support of the weight function.
If for every subsequence N there exists a further subsequence Nl and a set A ∈ Ω with
P (A) = 1 such that

F̃N(·, ω) → F0

for all ω ∈ A along each subsequence, then the family F :=
(
F̃N

)

N≥0
is tight.

By assumption there exists for each sequence N a characteristic function ψ̃N such that
∀z ∈ R

ψ̃N (z, ω) → ψ0(z) a.s..

For every δ > 0

∫

|x|>2/δ

F̃N (dx, ω) = 1 −
∫ 2/δ

−2/δ

F̃N(dx, ω)

≤ 2 − 1

δ

∣∣∣∣
∫ δ

−δ

ψ̃N(z, ω)dz

∣∣∣∣

=
1

δ

∫ δ

−δ

dz − 1

δ

∣∣∣∣
∫ δ

−δ

ψ̃N (z, ω)dz

∣∣∣∣

≤ 1

δ

∫ δ

−δ

∣∣∣1 − ψ̃N(z, ω)
∣∣∣ dz

:= bN (δ, ω), (5.9)
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where we used for the first inequality the Lemma in (Chung, 2001, p.170). Then define

b(δ, ω) := 1
δ

∫ δ

−δ
|1 − ψ0(z)| dz and with Fubini’s theorem it follows

E

(
sup

M≥N
|bN (δ, ·) − b(δ)|

)
≤ 1

δ

∫ δ

−δ

E

(
sup

M≥N

∣∣∣
∣∣∣1 − ψ̃M (z, ·)

∣∣∣− |1 − ψ0(z)|
∣∣∣
)
dz

≤ 1

δ

∫ δ

−δ

E

(
sup

M≥N

∣∣∣ψ̃M(z, ·) − ψ0(z)
∣∣∣
)
dz

→ 0 (5.10)

as N tends to ∞. This implies that

|bN (δ, ·) − b(δ)| → 0 a.s. as N → ∞

for all δ > 0. Together with (5.9) we have

lim sup
N→∞

∫

|x|>2/δ

F̃N(dx, ω) ≤ b(δ, ω)

for all δ ∈ Q and ω ∈ A1 for some set A1 ∈ F with P (A1) = 1. Since

b(δ) =
1

δ

∫ δ

−δ

|1 − ψ0(z)| dz ≤ 2 max
z∈(−δ,δ)

|1 − ψ0(z)| → 0

as δ → 0, the sequence F is tight for ω ∈ A1.
By assumption A2 ∈ F is a set of probability one such that ψ̃N(z, ω) → ψ0(z), for all

z ∈ Q and for all ω ∈ A2.
If G is a limit of F̃N (·, ω), then

∫
eizxdG(x) = lim

j→∞

∫
eizxF̃Nj

(dx, ω) =

∫
eizxdF (x)

for all z ∈ Q and for all ω ∈ A2.
Hence F = G and F has only one limit. So, F̃N(·, ω) ⇒ F for all ω ∈ A := A1 ∩A2.

By Theorem 2.31 it follows that
{
ψ̃N : F̃N ∈ F

}
is uniformly equicontinuous. Since

by assumption ψ̃N → ψ0 pointwise and
{
ψ̃N : F̃N ∈ F

}
is uniformly equicontinuous, it

follows with Lemma 2.32 that
{
ψ̃N : F̃N ∈ F

}
converges to ψ0 uniformly on the compact

sets Sw, i.e.

sup
z∈K

∣∣∣ψ̃N (z, ω) − ψ0(z)
∣∣∣→ 0

as N → ∞.
Now fix ω ∈ A. Since the characteristic function ψ0 has no zeros there exists an ε > 0

such that
inf

z∈Sw

|ψ0(z)| > 2ε.

For this ε there exists also an N∗ ∈ N∗(ε, ω) ∈ N such that

sup
z∈Sw

∣∣∣ψ̃N (z, ω) − ψ0(z)
∣∣∣ < ε
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for all N ≥ N∗. Thus, for all N ≥ N∗ and for all z ∈ Sw we have

∣∣∣ψ̃N (z, ω)
∣∣∣ ≥ |ψ0(z)| −

∣∣∣ψ̃N (z, ω) − ψ0(z)
∣∣∣ ≥ ε > 0.

We define g̃N(ω) = log
(
ψ̃N(ω)

)
on Sw for N ≥ N∗. By Theorem 5.1 the uniform con-

vergence of ψ̃N(ω) to ψ0 on Sw carries over to uniform convergence of g̃N(ω) to g0 on Sw.
With dominated convergence it follows

lim
N→∞

‖g̃N(ω) − g0‖w = 0.

Since ĝN(·, ω) minimizes ΓN over GR, we have

‖ĝN(·, ω) − g0‖w ≤ ‖ĝN(·, ω)− g̃N(·, ω)‖w + ‖g0 − g̃N(·, ω)‖w ≤ 2 ‖g0 − g̃N(·, ω)‖w → 0

as N → ∞. By Corollary 5.4 we have

∥∥∥k̂N(·, ω) − k0

∥∥∥
π

=
∥∥L−1(ĝN(·, ω)) − L−1(g0)

∥∥
π
→ 0

as N → ∞. Thus,

lim
N→∞

∥∥∥k̂N(·, ω) − k0

∥∥∥
π

= 0

for all ω ∈ A with P (A) = 1.

As already mentioned the empirical characteristic function is a possible preliminary
estimator.

Definition 5.7. The empirical characteristic function is defined by

ψ̃N (z) =

∫
eizxdF̃N(x) =

1

N

N−1∑

k=0

eizXk , (5.11)

where (X1, . . .XN) is the sample and N the number of observations. The corresponding
empirical cumulant function is defined by

g̃N(z) = log

(∫
eizxdF̃N(x)

)
= log

(
1

N

N−1∑

k=0

eizXk

)
, (5.12)

where log is the distinguished logarithm.

With an application of Birkhoff’s Ergodic Theorem, cf. Krengel (1985), it can be shown
that for z ∈ R

ψ̃N(z)
a.s.−→

∫
eizxdF0(x) = ψ0(z),

as N → ∞. Thus, the consistency of kN follows directly from Theorem 5.6.I



Chapter 6

Computation of the cumulant

M-estimator, Applications and

Examples

In this chapter we will present the Support Reduction Algorithm, introduced by
Groeneboom et al. (2008), which gives a method to estimate the canonical function. In
the first part of this chapter we show the theory of this algorithm and how to calculate
the density of the stationary distribution of the Ornstein-Uhlenbeck process whereas in
the second part we will give examples for the algorithm’s performance.

6.1 Support Reduction Algorithm

6.1.1 Preliminaries

In order to compute the cumulant M-estimator we have to approximate the convex cone

K :=
{
k ∈ L1(π) : k(x) ≥ 0, k is decreasing and right-continuous

}

by a finite-dimensional subset. Therefore, we define a fixed set of positive numbers by

Θ = {θ1, . . . , θM}
with 0 < θ1 < . . . < θM , M ≥ 1. A possible choice is taking an equidistant grid with grid
points θj = jh, 1 < j < M , where h is the mesh width. Then define the basis functions
by

uθ(x) = 1(0,θ)(x),

where x ≥ 0. uθ(x) is decreasing on [0,∞) and positive, so the requirements for the
canonical functions are fulfilled. Taking the indicator functions as basis functions is only
one possible choice, e.g. exponential function uθ(x) = ejθx is a possible alternative. We
decided to use indicator functions since then integral of the inner-product < ·, · >w can
be simplified very well.
Consider, since k(x) = uθ(x)

vθ(z) = [Luθ] (z) =

∫ ∞

0

(eizx − 1)
k(x)

x
dx =

∫ θ

0

eizx − 1

x
dx.

59
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Let UΘ = {uθ, θ ∈ Θ} be the set of the basis functions and KΘ is defined as the convex
cone generated by UΘ

KΘ =

{
k ∈ K|k =

M∑

j=1

αjuθj
, αj ∈ [0,∞) , 1 ≤ i ≤ N

}
.

Recall the definition of the cumulant M-estimator (5.5),

k̂N = argmin
k∈K

∫
|[L(k)] (z) − g̃N(z)|2w(z)dz,

where w(z) is a weight function, and the definition of the norm ‖·‖w,

‖g‖w =
√
< g, g >w,

where < g, g >w= <
∫
g(z)g(z)w(z)dz for g ∈ L1(π). In the following we assume that

w(z) is an indicator function, i.e. w(z) = 1(−z∗,z∗) with z∗ great. But another choice is
also possible.

Since we approximate the convex cone K by the finite-dimensional cone KΘ, the M-
estimator for the canonical function k in KΘ is defined as

k̆N = argmin
k∈KΘ

[ΓNL] (k) = argmin
k∈KΘ

‖L(k) − g̃N‖2
w = argmin

α1≥0,...,αM≥0

∥∥∥∥∥

M∑

j=1

αjvθj
− g̃N

∥∥∥∥∥

2

w

. (6.1)

Furthermore, the distinguished logarithm in (6.1) can be defined only for those Xk from
the sample space for which ψ̃N as a function of z does not hit zero on (−∞,∞). For those
Xk for which this is not satisfied, [ΓNL] (k) has to be assigned an arbitrary value. It is
shown in Gugushvili (2009) that the probability of the event that ψ̃ hits zero for z in
(−∞,∞) vanishes under appropriate conditions as N → ∞.

Then

< vθj
, vθk

>w = <
∫ z∗

−z∗
vθj

(z)vθk
(z)dz

= <
∫ z∗

−z∗

∫ θj

0

eizu − 1

u
du

∫ θk

0

eizs − 1

s
ds dz

= <
∫ z∗

−z∗

∫ θj

0

eizu − 1

u
du

∫ θk

0

e−izs − 1

s
ds dz

= <
∫ z∗

−z∗

∫ θj

0

∫ θk

0

eizu − 1

u
· e
−izs − 1

s
ds du dz

= <
∫ z∗

−z∗

∫ θj

0

∫ θk

0

eiz(u−s) − eizu − e−izs + 1

us
ds du dz. (6.2)
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Consider as well

< g̃N , zθj
>w = <

∫ z∗

−z∗
g̃N(z)vθj

(z)dz

= <
∫ z∗

−z∗
log ψ̃N (z)vθj

(z)dz

= <
∫ z∗

−z∗
log

(
1

N

N−1∑

k=0

eizXk

)∫ θj

0

eizu − 1

u
du dz

= <
∫ z∗

−z∗
log

(
1

N

N−1∑

k=0

eizXk

)∫ θj

0

e−izu − 1

u
du dz, (6.3)

where log is the distinguished logarithm defined as in Tucker (1967, p.92).
In the following we want to show how the distinguished logarithm log (g̃N(z)) can be

calculated.

Remark 6.1. Numerical calculation of the distinguished logarithm

With Theorem 1 in (Tucker, 1967, Section 4.3.) there exists for each characteristic function
of an infinitely divisible distribution a continuous real valued function φ(z) such that
φ(0) = 0 and

ψ(z) = |ψ(z)| eiφ(z) (6.4)

for all z ∈ (−∞,∞), since it fulfills ψ(z) 6= 0 ∀z ∈ (−∞,∞) and ψ(0) = 1. Equation
(6.4) can be written as

logψ(z) = log |ψ(z)| + iφ(z).

The function φ is unique. Since by Theorem 2.31 characteristic functions are uniformly
continuous, ψ can be defined as a continuous function over [0,M ], where z∗ < M and
z∗ defined as before. Then we have to choose a time grid for the interval [0,M ]. The
continuity condition gives a hint to find an appropriate calibration for the time grid. By
continuity, there exists a δ > 0 such that if

0 < zj − zj−1 < δ,

then |ψ(zj) − ψ(zj−1)| < ε, where ε > 0. Then the interval can be divided by

0 = z0 < z1 < · · · < zm−1 < zm = M,

where
0 < max zj − zj−1, 1 ≤ j ≤ m < δ.

We assume in the following examples that the time grid is equidistant.
Then define φ(z) in z ∈ [z0, z1] with

φ(z) = arg (ψ(z)),

where arg (z) = arctan
(
=(z)
<(z)

)
and =(z) denotes the imaginary part of z. If φ(z) is defined

over [z0, zj ], φ is defined on z ∈ [zj−1, zj ] by

φ(z) = φ(zj) + arg

(
ψ(z)

ψ(zj)

)
.
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Since the function arctan is symmetric about the origin (0, 0i), it follows

φ(−z) = −φ(z)

for all z ∈ [0,M ] and φ is defined on [−M,M ]. Together with

log |ψ(−z)| = log

√
ψ(−z)ψ(−z) = log

√
ψ(z)ψ(z) = log |ψ(z)|,

since ψ(−z) = ψ(z), it follows

logψ(−z) = log |ψ(−z)| + iφ(−z)
= log |ψ(z)| − iφ(z)

= logψ(z).

Then we have
g̃N(−z) = g̃N(z).

Thus, (6.3) can be written as

< g̃N , vθj
>w = <

∫ z∗

−z∗
g̃N(z)vθj

(z)dz

= <
∫ z∗

0

g̃N(z)vθj
(z)dz +

∫ 0

−z∗
g̃N(z)vθj

(z)dz

= <
∫ z∗

0

g̃N(z)vθj
(z)dz +

∫ z∗

0

g̃N(−z)vθj
(−z)dz

= <
∫ z∗

0

g̃N(z)vθj
(z)dz +

∫ z∗

0

g̃N(z)vθj
(z)dz

= <
∫ z∗

0

g̃N(z)vθj
(z) + g̃N(z)vθj

(z)

= 2

∫ z∗

0

<(g̃N(z))<
(
vθj

(z)
)

+ =(g̃N(z))=
(
vθj

(z)
)
dz

= 2

∫ z∗

0

log
∣∣∣ψ̃N (z)

∣∣∣<
(
vθj

(z)
)

+ φ(z)=
(
vθj

(z)
)
dz,

where φ is defined as in the Remark before.

6.1.2 Optimality Conditions

Let DΓN L be the directional derivative of ΓNL at k1 ∈ K in the direction of k2 ∈ K
defined by

DΓN L (k2; k1) := lim
ε→0

ε−1 ((ΓNL) (k1 + εk2) − (ΓNL) (k1)).

ΓNL is the convex functional on K, where ΓN , as an L2-distance on a Hilbert space, is a
strictly convex functional on G, and L is linear. Then, with optimization theory (see for
instance Lemma 1 in Groeneboom et al. (2008))

k̂N minimizes ΓNL over KΘ ⇐⇒ DΓN L(uθj
; k̂N)

{
≥ 0 ∀j ∈ {1, . . . ,M} ,
= 0 ∀j ∈ J,

(6.5)
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where
k̂N =

∑

j∈J

αjuθj

with J = {j ∈ {1, . . . ,M} : αj > 0}.

6.1.3 Algorithm

In the following we show the procedure of the Support Reduction Algorithm. Let the
current iterate be given by

kJ =
∑

j∈J

αjuθj
.

Step 1: Determine the direction of the descent of ΓNL

Define the set of possible directions of descent by

Θ< :=
{
θ ∈ Θ : DΓN L(uθ, k

J) < 0
}
.

If there exists a direction of descent, Θ< is non empty. Let θj∗ be the index of the next
descent direction. A particular choice is the direction of the steepest descent. So,

θj∗ = argmin
θ∈Θ

DΓN L(uθ, k
J).

But we use an alternative choice. Given the current iterate we want to find a function uθ

which provides a direction of descent for ΓNL. By linearity of L we have

[ΓNL] (k + εuθ) − [ΓNL] (k) = ‖L(k + εuθ) − g̃N‖2
w − ‖L(k) − g̃N‖2

w

= ‖L(k + εuθ)‖2
w − 2 < L(k + εuθ), g̃N >w + ‖g̃N‖2

w

−‖Lk‖2
w + 2 < Lk, g̃N >w −‖g̃N‖2

w

= ‖Lk‖2
w + 2ε < Lk, Luθ >w +ε2 ‖Luθ‖2

w

−2 < L(k + εuθ), g̃N >w −‖Lk‖2
w + 2 < Lk, g̃N >w

= 2ε < Lk, Luθ >w +ε2 ‖Luθ‖2
w

−2 < Lk, g̃N >w −2ε < Luθ, g̃N >w +2 < Lk, g̃N >w

= 2ε < Lk − g̃N , Luθ >w +ε2 ‖Luθ‖2
w

= εc1(θ, k) +
1

2
ε2c2(θ),

where
c2(θ) := 2 ‖Luθ‖2

w = 2 ‖vθ‖2
w > 0 (6.6)

and
c1(θ, k) := 2 < Lk − g̃N , Luθ >w= 2 <

∑

j∈J

αjvθj
− g̃N , vθ >w . (6.7)

We have c2(θ) > 0 for all θ ∈ Θ and ε > 0. So, to get a descent direction the parameter
θj∗ has to fulfill c1(θ, k) < 0. If c1(θ, k) < 0, then

argmin
ε>0

εc1(θ, k) +
1

2
ε2c2(θ) = −c1(θ, k)

c2(θ)
=: ε̂θ. (6.8)
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Minimizing [ΓNL] (k + ε̂θuθ) − [ΓNL] (k) over all points θ ∈ Θ with c1(θ, k) < 0 gives

θ∗ = argmin
θ∈Θ,c1(θ,k)<0

[ΓNL] (k + ε̂θuθ) − [ΓNL] (k)

= argmin
θ∈Θ,c1(θ,k)<0

ε̂θc1(θ, k) +
1

2
ε̂ 2
θ c2(θ)

= argmin
θ∈Θ,c1(θ,k)<0

−c1(θ, k)
c2(θ)

c1(θ, k) +
1

2

(
−c1(θ, k)

c2(θ)

)2

c2(θ)

= argmin
θ∈Θ,c1(θ,k)<0

−c1(θ, k)
2

2c2(θ)

= argmin
θ∈Θ

c1(θ, k)√
c2(θ)

.

The last equality holds because of the monotonicity of the root function.
For implementation you can use a modified expression for c1(θ, k) and c2(θ) respectively.

c1(θ, k) = 2 <
∑

j∈J

αjvθj
− g̃N , vθ >w

= 2 <
∑

j∈J

αjvθj
, vθ >w −2 < g̃N , vθ >w

= 2
∑

j∈J

αj < vθj
, vθ >w − 2 < g̃N , vθ >w

and

c2(θ) = 2 ‖vθ‖2
w = 2 < vθ, vθ >w . (6.9)

Then

θ∗ = argmin
θ∈Θ

√
2
(∑

j∈J αj < vθj
, vθ >w− < g̃N , vθ >w

)

√
< vθ, vθ >w

.

Step 2: Computing the weights and support reduction step

Computation of the weights

Let j∗ be the index which belongs to θ∗. Then the new iterate is given by

kJ∗

=
∑

j∈J∗

βjuθj
, (6.10)

where J∗ = J ∪ {j∗} and {βj , j ∈ J∗} are the weights. Then these unknown weights have
to be determined by minimizing ΓNL(kJ∗

) with respect to {βj , j ∈ J∗} without positivity
constraints. As shown below this is a quadratic unconstrained optimization problem or in
other words a standard least-square problem.

Recall that

min
βj∈R,j∈J∗

ΓNL
(
kJ∗
)

= min
βj∈R,j∈J∗

∥∥∥∥∥
∑

j∈J∗

βjvθj
− g̃N

∥∥∥∥∥

2

w
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then the partial derivatives are as follows

∂ΓNL
(
kJ∗
)

∂βi
= 2 <

∑

j∈J∗

βjvθj
− g̃N , vθi

>w

= 2
∑

j∈J∗

βj < vθj
, vθi

>w − 2 < g̃N , vθi
>w,

with i ∈ J∗. Setting the partial derivative equal to zero we get the following linear equation
system Aβ = b with

Aj,i =< vθj
, vθi

>w, j, i ∈ J∗ (6.11)

bj =< vθj
, g̃N >w, j ∈ J∗ (6.12)

and β the vector with the weights. The matrix A is symmetric. So, α is the unique solution
of the system Aβ = b.

Support Reduction Step

If min {βj , j ∈ J∗} ≥ 0, then kJ∗ ∈ KΘ and kJ∗

satisfies the equality part of (6.5). The
second conclusion of (6.5) holds since

DΓNL(uθi
; kJ∗

) = lim
ε→0

ε−1
(
(ΓNL) (kJ∗

+ εuθi
) − (ΓNL) (kJ∗

)
)

= c1
(
θi, k

J∗
)

= 2 <
∑

j∈J∗

βjvθj
− ĝN , vθi

>w

= 0. (6.13)

The last equation is valid due to the definition of system Aβ = b. Then the inequality
part of (6.5) has to be proved and if a descent direction exists returned to step 1.
Otherwise, if min {βj , j ∈ J∗} < 0, we apply a support-reduction step. Then we can make
a move from kJ towards kJ∗

/∈ KΘ and stay within the cone KΘ initially. As a next iterate,
we take k := kJ + ĉ(kJ∗ − kJ), where

ĉ = max
{
c ∈ [0, 1] : kJ + c

(
kJ∗ − kJ

)
∈ KΘ

}

= max

{
c ∈ [0, 1] :

∑

j∈J

(αj + c (βj − αj)) uθj
+ cβj∗uθj∗

∈ KΘ

}

= max



c ∈ [0, 1] :

∑

j∈J

(cβj + (1 − c)αj)uθj
+ c βj∗︸︷︷︸

>0

uθj∗
∈ KΘ





= max {c ∈ [0, 1] : cβj + (1 − c)αj ≥ 0 for all βj , j ∈ J with βj < 0}

For the last equation consider, if βj ≥ 0, then

cβj︸︷︷︸
≥0

+ (1 − c)︸ ︷︷ ︸
≥0

αj︸︷︷︸
≥0

≥ 0,
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and the direction uθj
is not removed. Moreover,

cβj + (1 − c)αj ≥ 0

⇐⇒ c ≤ αj

αj − βj

. (6.14)

Then

ĉ = min

{
αj

αj − βj

, j ∈ J, for which βj < 0

}
. (6.15)

Let j∗∗ be the index which belongs to the minimum in (6.15). The coefficient for j∗∗ is
ĉβj∗∗ + (1 − ĉ)αj∗∗ = 0, the coefficient for βj ≥ 0 is in anyway greater or equal than zero
and finally the coefficient for βj < 0 is non-negative since with 6.14

ĉβj + (1 − c)αj = ĉ(βj − αj) + αj

≥ ĉ(βj − αj) + ĉ(βj − αj)

= 0.

Thus, it holds k ∈ KΘ. The support point θj∗∗ is removed whereas the other support
points are kept in the current support set. This set of support points is denoted by
J∗∗ = J∗ \ {j∗∗}. Thereafter we compute the optimal weights without constraint quali-
fication for the new iterate kJ∗∗

=
∑

j∈J∗∗ γjuθj
. If all weights γj are non-negative, the

equality part of (6.5) is satisfied, cf. (6.13) and we can check the inequality part of (6.5).
If DΓNL(uthetaj

; kJ∗∗

) ≥ 0 for all j ∈ {1, . . . , N}, the iterate kJ∗∗

minimizes ΓNL over KΘ.
Otherwise return to step 1. If min {γj, j ∈ J∗∗} < 0, another support reduction step has
to be applied. Finally, the iterate k will satisfy both the equality and the inequality part
in (6.5).
To start the algorithm, we choose a starting value θ(0) ∈ Θ. Then we determine the
function duθ(0) by minimizing ΓNL as a function of d > 0.

α1 = argmin
α≥0

‖αvθ(0) − g̃N‖2
w. (6.16)

We obtain the minimum by setting the derivative with respect to α equal to zero.

∂‖αvθ(0) − g̃N‖2
w

∂α
= 2 < αvθ(0) − g̃N , vθ(0) >w

!
= 0

α =
< vθ(0), g̃N >w

< vθ(0) , vθ(0) >w

Once the algorithm has been initialized it starts iteratively adding and removing support
points, while in between computing optimal weights.

Remark 6.2. To show that the algorithm is convergent we refer to Groeneboom et al.
(2008). There, in Theorem 1, the convergence under some assumptions is shown. In
Jongbloed et al. (2005) a proof of that is given.
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6.2 Determination of the Probability Density Func-

tion

In this chapter we give a way to calculate the stationary distribution function of the
Ornstein-Uhlenbeck process.

Due to the uniqueness of the characteristic function there exists to each characteristic
function ψ a corresponding distribution function. By an appropriate inversion theorem,
see for instance Tucker (1967) or Chung (2001), the probability density function f can be
expressed by the characteristic function

f(x) =
1

2π

∫ ∞

−∞
e−iuxψ(u)du. (6.17)

Since the characteristic function of the Ornstein-Uhlenbeck process X1 is defined by

ψ (u) = exp

(∫ ∞

0

(eiux − 1)
k(x)

x
dx

)
,

it follows for the estimated characteristic function

ψ̂(u) = exp

(∫ ∞

0

(eiux − 1)
k̂(x)

x
dx

)

= exp

(∫ ∞

0

(eiux − 1)

∑M
j=1 αjuθj

(x)

x
dx

)

= exp

(
M∑

j=1

αjvθj
(u)

)
,

where we use the same notation like in the Support Reduction Algorithm.
Thus, it follows for the estimated density of X1 based on the sample X1, . . . , XN

f̂(x) =
1

2π

∫ ∞

−∞
e−iuxe

∑M
j=1 αjvθj

(u)du. (6.18)

Since equation (6.18) is quite difficult to implement, we use an approximation for the
density function. Schorr (1975) proposed to use a Fourier approximation. Consider

f(x) =
∞∑

k=−∞
ake

ikωx (6.19)

for x ∈ (T−, T+), where

ak =
ω

2π

∫ ∞

−∞
f(u)e−ikωudu =

ωψ(−kω)

2π
,

ω =
2π

T
,

T = T+ − T−,
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and T− < T+ are such that the probability density function f(x) is ’small’ for x < T− and
x > T+. In Schorr (1975) a method to determine T− and T+ is given more precisely.

Then it follows

f̂(x) =
∞∑

k=−∞

1

T
exp

(
M∑

j=1

αj

∫ jhωk

0

e−iz − 1

z
dz + ikωx

)
. (6.20)

6.3 Examples

In this section we show the efficiency of the Support Reduction Algorithm for time for a
gamma Ornstein-Uhlenbeck process, the other time for an i.i.d. simulated Inverse Gaus-
sian distributed process. First we give some calibration details of the Support Reduction
Algorithm.

Remark 6.3. For the following examples we used 60 basis functions with a time grid
of 0.05. We set z∗ = 10. The limit of tolerance in equations (6.5) and in the positivity
condition of the coefficient vector α was set to 10−8. We need this tolerance limit to get a
termination condition for the algorithm. The parameter M we needed for the calculation
of the distinguished logarithm was chosen to be 10.

The fundamental advantage of the Support Reduction Algorithm is the run time. Even
though the calculation of matrix A, cf. (6.11), needs a long time, the algorithm works very
efficiently. If once initialized, the determination of the vector α is fast. The elapsed time
of the Support Reduction Algorithm was in the examples about 0.01 seconds.

6.3.1 Estimation from the Ornstein-Uhlenbeck process

Example 5. We simulated a compound Poisson driven Ornstein-Uhlenbeck process de-
fined by

dXt = −2Xtdt+ dLt,

where Lt is a compound Poisson process with intensity measure 4 and with exponential
jumps of expectation 1

3
. We simulated the OU-process at times 0, 0.1, 0.2, . . . , 10000. Then

we estimated with the Support Reduction Algorithm the canonical function k̂. In Figure
6.1 the true and the estimated canonical function of the gamma-OU process is illustrated.
Figure 6.2 shows the true and the estimated density function of the stationary distribution
of the Ornstein-Uhlenbeck process. For computing the probability density function we
used the method from Schorr (1975), where we set T− = 0 and T+ = 6.75 and the sum in
(6.20) is approximated by a sum with limits ±100.
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Figure 6.1: Gamma(2,3) distribution: Estimated (solid) and true(dotted) canonical func-
tion
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Figure 6.2: Gamma(2,3) distribution: Estimated (solid) and true(dotted) density function
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6.3.2 Estimation from i.i.d. Data

Here we simulate, in contrast to the previous example, from i.i.d. data. Let (Xn)1≤n≤N

be independent random variables with common distribution function F . We give two
examples, one time using the same gamma distribution like in the previous example, the
other time using an Inverse Gaussian distribution.

Example 6. In this example we simulated i.i.d data from an Gamma(2,3) process at the
times 0, 0.1, . . . 10000 like in the previous example. Then we used the Support Reduction
Algorithm to compute the estimated canonical fucntion. Figure 6.3 and Figure 6.4 show
the plots for the canonical function and the density function. Comparing the plots in
Example 5 and in Example 6 one can observe that the i.i.d. data gives an infinitesimally
better approximation of the gamma distribution.
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Figure 6.3: Gamma(2,3) distribution: Estimated (solid) and true(dotted) canonical func-
tion
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Figure 6.4: Gamma(2,3) distribution: Estimated (solid) and true(dotted) density function

In the following we give the definition of the Inverse Gaussian distribution. The Inverse
Gaussian distribution IG(δ, γ) has the following probability density function

f(x) =

(
δ2

2πx3

) 1
2

eδγ−(δ2+γ2x2)
2x 1(x>0),

where δ > 0 and γ ≥ 0.
Then the corresponding canonical function can be expressed by

k(x) =

(
δ2

2πx

) 1
2

e−
γ2x
2 1(x>0).

In Example 7 we show the nonparametric estimation of an i.i.d. IG (δ, γ).

Example 7. We simulated 200000 independent IG(2, 3) distributed random variables at
times 0, 0.5, 1, . . . , 100000. Then we applied the Support Reduction Algorithm to get the
canonical function for this data set. Figure 6.5 shows the estimated and the true canonical
function for this process. In Figure 6.6 the estimated and true density functions of Inverse
Gaussian distribution IG(2, 1) are plotted by using equation (6.20). In this example the
calibration parameters were set to T− = 0, T+ = 4.2766 and again the sum in equation
(6.20) was approximated by a sum with limits ±100.
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Figure 6.5: IG(2,1) distribution: Estimated (solid) and true(dotted) canonical function

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 6.6: IG(2,1) distribution: Estimated (solid) and true(dotted) density function



Appendix A

Support Reduction Algorithm

A.1 Calculation of the basis functions

A.1.1 Calculation of < vθj
, vθk

>w

% Calculation of the Basisfunctions (1): <vj_vk>
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% h = time grid of the basis functions
% M = number of basis functions

5 % z_star = boundaries in the indicator function 1_(−z_star,z_star)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
h = 0.05;

M = 60;

z_star = 10;

10

% integrand for computation of <v_(theta_j),v_(theta_k)>
integrandvj_vk = @(s,u,z)

((exp(i*z.*(u-s))-exp(i*z.*u)-exp(-i*z.*s)+ 1)./(u.*s));

15 % matrix with entries <v_(theta_j),v_(theta_k)>
vj_vk = zeros (M,M);

for j = 1 : M

for k = j : M

vj_vk(j,k) =

20 rea l ( triplequad

(integrandvj_vk ,10^-8,h*k,10^-8,h*j,-z_star ,z_star))

i f (k > j)

vj_vk(k,j) = vj_vk(j,k);

end

25 end

end

vj_vj = diag(vj_vk);

save (’basis functions’,’vj_vk’,’vj_vk’,’M’,’h’,’z_star’)

73
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A.1.2 Calculation of < vθj
, g >w

% Given X_0,X_1,...X_N, N observations from the stationary
% OU process
z=0:0.01:10;

function empfun = empcharfun (X,z);

% Calcualation of the distinguished logarithm
Z = length (z);

% Real and imaginary part of the characteristic function
5 for j = 1 : Z

z1(j) = mean(cos(z(j)*X));

z2(j) = mean( s in (z(j)*X));

end

psi_tilde = complex(z1,z2);

10 index = 1;

% Calculation of phi (cf. Remark 6.1.)
phi(index) = 0;

phi(index+1) = atan(h2(index+1)/h1(index +1));

for j = index+2:T

15 im_part = z2(j)*z1(j-1)-z1(j)*z2(j-1);

re_part = z1(j)*z1(j-1)+z2(j)*z2(j-1);

phi(j) = phi(j-1) + atan(im_part/re_part );

end

empfun=complex( log(abs(psi_tilde)),phi);

20 end

% Calculation of the Basisfunctions (2): <vj_g>

integrand_vj_g =@(u,z) (exp(i*u*(0:0.01:z))-1) / u;

5 v_theta=zeros (1, length (t));

for j = 1 : M

v_theta (:)=quadv(@(u)integrand_vj_g(u,z_star),10^-8,h*j);

vj_g(j) = 2*sum( rea l (empfun ).* rea l (v_theta)

+imag(empfun ).*imag(v_theta ))*0.01;

10 end
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A.2 Support Reduction Algorithm

function [J, alpha , m] = supportreduction(vj_vk ,vj_vj ,vj_g ,M)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% INPUT:
% vj_vk = Matrix (M x M)

5 % vj_vj = diag(vj_vk) (1 x M)
% vj_g = (1 x M)
% M = number og basis function
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% OUTPUT:

10 % J = logical vector, active directions (1 if basis function is
% active and 0 if inactive) (1 x M)
% alpha = vector with weights/coefficients, belonging to J (1 x M)
% m = number of iterations
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 % Variables used in the algorithm:
% index vector = just the numbers from 1 to M
% descent = descent directions evaluated at each theta_j
% max_iter = maximum number of iterations
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

20

index_vector = 1:M;

J = logical(zeros (M,1));

alpha = zeros (M,1);

descent = zeros (M,1);

25

% Starting value:
% current iterate consists of only one direction theta_1
J(1) = 1;

alpha(1) = vj_g(1) / vj_vk(1,1);

30

max_iter = 100000;

for m=1: max_iter

% compute descent direction (theta^∗)
35 descent = sqrt (2) * (vj_vk*alpha - vj_g) ./ sqrt(vj_vj);

% find minimum over descent
[min_desc , min_desc_index] = min(descent );

theta_star = min_desc_index;

40

i f min_desc >= 10^-8;

% no further descent possible; done
return;

end

45

% add new basis function theta_star
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J(theta_star) = 1;

% compute new weights
50 % length of beta = number of active thetas in J

beta = (vj_vk.*(((+J)*(+J)’))+diag(-1*(+J)+1))\( vj_g.*(+J));

betaJ = beta(J);

min_beta = min(betaJ);

55 % support reduction, if necessary
while min_beta < -10^-8

active_indices = index_vector(J);

b_negative = active_indices(betaJ <-10^-8);

60 % compute c and j_∗∗
c = alpha(b_negative)

./( alpha(b_negative)-beta(b_negative));

[min_c , min_c_index] = min(c);

j_star_star = b_negative(min_c_index);

65

% remove index j_∗∗
J(j_star_star) = 0;

% compute new weights
70 beta = (vj_vk .*(((+J)*(+J)’))

+ diag(-1*(+J)+1))\( vj_g.*(+J));

betaJ = beta(J);

min_beta = min(betaJ);

end

75

i f abs(alpha -beta) < 10^-8;

return

e l se

% set alpha to new weights
80 alpha = beta;

end

end

% maximum number of iterations exceeded
85 disp(’Maximum number of iterations exceeded ’);

end
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David Applebaum. Lévy Processes and Stochastic Calculus. Cambridge University Press,
Cambridge, 2004.

Ole E. Barndoff-Nielsen and Neil Shephard. Non-Gaussian Ornstein-Uhlenbeck based
models and some of their uses in financial econometrics. Journal of the Royal Statistical
Society Series B, 63:167–241, 2001a.

Ole E. Barndoff-Nielsen and Neil Shephard. Modelling by Lévy processes for financial
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