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Chapter 1

Introduction

Introduced by Bedford and Cooke (2001, 2002) and discussed in detail in Kurowicka and
Cooke (2006) vines are a flexible class of high-dimensional dependency models which use
only bivariate copulas as building blocks. Recently, Aas et al. (2009) considered the special
cases of canonical vines (C-vines) and D-vines to derive multivariate copulas using pair
copula decompositions. In an application to financial time series data they constructed
and analyzed a dependency model with appropriate pair copulas such as the bivariate
t, Clayton and Gumbel copulas. However, in high dimensions C- and D-vines impose a
rather restrictive dependency structure on the data. The more general class of regular vines
(R-vines) is less restrictive in this regard and a convenient graphical model to describe
pair copula constructions. Inference of R-vines using graph theoretic algorithms has been
developed in Difimann (2010).

The flexibility though comes along with an exponentially increasing complexity in high
dimensions (see Morales-Népoles et al. (2010) for the number of possible R-vines). In order
to counteract this problem and the issue of restricted time or resource availability when
constructing models, we propose different approaches to facilitate the construction of reg-
ular vines using iterative Vuong tests (Vuong 1989) and Akaike and Bayesian information
criteria (Akaike (1973), Schwarz (1978)). In particular, we consider two types of facili-
tated models: simplification means that we replace pair copulas in higher order R-vine
trees by Gaussian copulas, while truncation refers to the greatest possible ”simplification”
which implies replacing higher order tree copulas with independence copulas, i.e., if it is
possible to truncate an R-vine, this means a significant reduction of computational com-
plexity both for maximum likelihood estimation of parameters and for simulating from
the model, e.g., to compute the Value-at-Risk of a portfolio which requires a large number
of simulations.

As a special case we consider the joint simplification of C-vines with a multivariate
Gaussian copula to capture the dependency remaining in the model after modeling a
certain number of trees with pair copulas as introduced by Valdesogo (2009). We extend
his results to the more general case of R-vines with ” C-vine-like” structures. The fit of the
multivariate Gaussian copula is assessed using copula goodness-of-fit tests as discussed
in Berg (2009) and Genest et al. (2009). In this context, we also consider the problem
of joint truncation where we use multivariate independence tests to determine whether
variables of higher order trees are jointly independent.
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3: R-vine
(7o) I
struction

2: Pre- 5: Model 6: Trun- 7: Simpli- 9: Model 11: Ap-
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4: 8: C-vine
Goodness- simpli-
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Figure 1.1: Paths through the thesis.

Due to the high complexity, our models have to be constructed heuristically using
a sequential procedure. Appropriate construction principles of R-, C- and D-vines are
discussed as well as selection criteria of the best-fitting pair copula for given bivariate
data, such as the AIC, Vuong tests and bivariate goodness-of-fit tests as proposed by
Genest and Rémillard (2008). Bivariate copulas are chosen from a range of ten one- and
two-parameter bivariate copula families which include, e.g., rotated Clayton and Gumbel
copulas to model possible asymmetric negative dependencies. These methods as well as
the truncation and simplification procedures are validated by extensive simulation studies
using adequate model selection and evaluation criteria.

Based on simplified C-vines, Heinen and Valdesogo (2009) constructed an extended
version of the Capital Asset Pricing Model that can account for non-linearity and non-
normality in the dependence structure of assets. We construct such a model for 46 stocks
of the Euro Stoxx 50 as well as five leading national stock indices and evaluate it in detail,
since it imposes some rather restrictive independence assumptions in order to fit a factor
model to a C-vine structure. Moreover, we develop an alternative model based on the
more flexible structure of R-vines, the so-called regular vine market sector model, and
compare the models.

We also analyze a 19-dimensional financial data set from Norway with respect to
dependencies among different asset classes and asymmetric (tail) behavior of returns.
Truncation and simplification results allow for insightful statements regarding the type
and quality of dependencies. Furthermore, we investigate dependencies between exchange
rates to the US Dollar and complement results of Schepsmeier (2010) and Dimann (2010).

The thesis is organized as follows, where connections between the chapters and possible
paths through the thesis are shown in Figure 1.1. In Chapter 2, we recapitulate basic
results from the theory of copulas and dependence measures as well as graph theoretical
fundamentals as basis of R-vines. Moreover, linear and non-linear time series models are
considered which are needed for transforming observed data to be suitable for working
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with copulas. Subsequently, the construction of R-vines, in particular of R-vine trees, is
discussed in Chapter 3 and different dependence measures are proposed which are required
for the construction. In particular, we discuss the construction of D-vines which turns out
to be an extremely challenging problem. In Chapter 4, copula goodness-of-fit as well as
independence tests are described, which will be used for joint simplification and truncation
of C-vines as well as for bivariate copula selection. The latter issue is discussed in Chapter 5
after introducing the common model selection criteria AIC and BIC as well as the Vuong
test. In Chapters 6 and 7, we first turn to the problem of R-vine truncation and then
consider simplification, where appropriate model specification procedures are motivated by
those for truncation. Joint simplification of C-vines is subsequently discussed in Chapter
8. Using appropriate model evaluation criteria, which are proposed in Chapter 9, the
simplification and truncation procedures are extensively evaluated in different simulations
studies in Chapter 10. Finally, we apply all aspects of model specification, which are
discussed in this thesis, to three different data sets in Chapter 11. The models we obtain
are critically evaluated and economical interpretations are given. The thesis closes with a
summary of the main points and an outlook for future research in Chapter 12.



Chapter 2

Preliminaries

In this chapter we present some of the basic concepts that are used throughout the thesis.
In particular, we introduce copulas and discuss the important classes of elliptical and
Archimedean copulas. Then we present a broad range of bivariate copula families and
their relationships to the common dependence measures Kendall’s 7 and tail dependence.
Bivariate copulas are the building blocks of flexible multivariate copula models, so-called
pair copula constructions. Since the number of possible pair copula constructions is quite
large, they need to be classified using regular vines which are based on graph theoretical
concepts for modeling dependence. Finally, we consider time series models which will be
used to analyze and pre-process data in our applications in Chapter 11.

2.1 Copulas

In the following, we mainly follow Nelsen (2006), while an illustrative introduction to the
topic is given in Genest and Favre (2007) and further information can be found, e.g., in
Joe (1997).

According to Nelsen (2006), copulas can briefly be described as ”functions that join or
‘couple’ multivariate distribution functions to their one-dimensional marginal distribution
functions”. This description is motivated by the important result of Sklar (1959) and
explains the name ”copula”. It also highlights the main feature of copulas: they allow
to model dependency among random variables separately of their margins. We will now
formally discuss the concept of copulas and their properties. In doing so we first shortly
discuss bivariate copulas by way of illustration and then turn to general multivariate
copulas.

Definition 2.1 (Bivariate opula.) A two-dimensional copula is a function C : [0,1]* —
[0, 1] with the following properties:

(i) For every uy,us € [0,1],
C’(ul, 0) =0= C(O, UQ>

and

C(uy, 1) = uy and C(1,u) = us.
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(i) C is 2-increasing, i.e., for every uiy,usi, Uiz, usy € [0,1] such that uy; < ug and
U2 < Usgo,

C<U217 U22) - C(U/Qla U12) - C(U11,U22) + C(Un, Ulz) > 0.

Hence, a two-dimensional copula is a bivariate distribution function with uniform
margins, i.e., C(u1,uz) = P(U; < uy, Uy < up) for uniform random variables Uy and Us,.
In contrast, the joint survival function C'is given by

C(Ul,UQ) = P(Ul > Uy, UQ > UQ) =1—u —us+ C(Ul,UQ). (21)

The simplest example of a copula is given by the bivariate independence copula
II(uy,u2) = wjug. Property (i) of Definition 2.2 is obviously satisfied, while property
ii) can easily be checked:

H(“Qla U22) - H(U21, U12) - H(Un, U22) + H(Ull, U12) = U21Ug2 — U21U12 — U1 U2 + U11UL2
= (u21 - Un)(uzz - U12) >0,
for all U11, Ug1, U2, U2 € [0, 1] such that Ui1 S U921 and U12 S U929.
Definition 2.2 can be generalized to the multivariate case. Property (i) directly trans-

lates to arbitrary dimension d, but the second characteristic property of copulas has to
be extended.

Definition 2.2 (Copula.) A d-dimensional copula is a function C : [0,1]% — [0, 1] with
the following properties:

(i) For every u = (uy,...,uq)" € [0,1]4,
C(u) = 0 if at least one coordinate of u is 0,

and for all j =1, ...,d,
C(l, ey 1,Uj, 1, ey 1) = Uj.

(i1) C is d-increasing (see Nelsen (2006)).

As in the bivariate case, d-dimensional copulas are thus multivariate distribution func-
tions with uniform margins. An important property of them is stated in the following
theorem.

Theorem 2.3 (Fréchet-Hoeffding bounds.) Let C be a d-dimensional copula. Then
for every u € [0, 1]¢,
W) < Clu) < M (u), (2:2)

where Wo(u) := max(u; + ... + ug — d + 1,0) and M%(w) := min(uy, ..., uq).
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It can be shown that the lower bound M¢? is a copula, while the upper bound W¢ is a
copula only for d = 2. We will exploit this in Section 3.1.5 and denote the bivariate Fréchet-
Hoeffding bounds by W (uy,us) := W?2(uy,ug) = max(u; + ug — 1,0) and M (uy,up) :=
M?(uy, uz) = min(ug, us).

The most fundamental theorem, which constitutes the important role of copulas for
describing dependence in statistics, is the theorem of Sklar (1959). It establishes the link
between multivariate distribution functions and their univariate margins. We only state
it for the continuous case which is relevant for us.

Theorem 2.4 (Sklar.) Let F' be a d-dimensional distribution function with continuous
margins Fy, ..., Fy. Then there exists a unique copula C' such that for all x = (x1, ..., 24)" €
(R U {_OO’ OO})d,

F(x) = C(Fi(x1), ..., Fg(xq)). (2.3)

Conversely, if C is a copula and Fy, ..., Fy are distribution functions, then the function F
defined by (2.3) is a joint distribution function with margins F, ..., Fy.

Statement (2.3) directly yields a construction method for copulas, the so-called in-
verston method. Given a multivariate distribution function F' with invertible margins
Fy, ..., F,;, we easily obtain a copula by

C(u) = F(FT Y (uy), ..., Fy N ug)). (2.4)

Examples of copula families that are constructed in this way are the Gaussian and t
copulas (see (2.7) and (2.9)).

In terms of random variables and their distribution functions Sklar’s Theorem 2.4
states that, if X; ~ F;, i = 1,...,d, and X = (X3,..., Xy) ~ F, where Fy,...,F; are
continuous, then there exists a wnique copula such that (2.3) holds. Hence C' will be
called the copula of X and describes the dependence between X, ..., Xj.

Furthermore, if all necessary derivatives exist, the copula density ¢ can be derived by
partially differentiating and applying the chain rule as

B IC(Fi(21), ..., Fa(za)) B OIC(Fy (1), ..., Fy(zq))
= 8x1...(9xd o 8F1<x1)8F(33d> fl(l'l)...fd(l’d) (25)
_ 0C(Fi(x1), oo Fu(wa)) f(x)

& c(Fi(xr), ..., Fa(ng)) := OF (10 0Fa(zd) — Fi@)ofa(ea)

where fi,..., fg and f denote the density functions corresponding to Fi,..., F; and F|,
respectively.
If C' is the d-dimensional independence copula I1¢(u) = u;...ug4, then

/(@)

L OME (1), .., Fa(za)) O [Fy(21). Fu(za)]
T (Fi(n). oo, Falwa) = OF (). 0Fs(za) OB (1) 0Fa(wg)

and hence Equation (2.5) reduces to the well-known factorization of densities if random
variables X7, ..., X; are independent:

f(@) = fi(21)-. fa(za). (2.6)
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This motivates the following convenient description of multivariate independence based
on copulas. Furthermore, the Fréchet-Hoeffding bounds characterize perfect negative (for
d = 2) and positive dependence.

Theorem 2.5 For d > 2, let X,..., Xy be continuous random variables with copula C'.
Then

(i) Xi,..., X4 are independent iff C = 114,

(i) each of the random variables X, ..., X4 is almost surely a strictly increasing function
of any of the others iff C = M?, and

(iii) X1 and Xy are almost surely strictly increasing functions of each other iff C = W?2.

Another important property of copulas is stated in the following theorem:

Theorem 2.6 Let Xy,..., Xy be continuous random variables with copula C'. Then C' is
wmvariant under strictly increasing transformations of X, ..., X4.

In the following, we will discuss two important classes of copulas: elliptical and Ar-
chimedean copulas which will be fundamental in our further analyses. However note that
there are also copulas which are neither elliptical nor Archimedean.

2.1.1 Elliptical copulas

Elliptical copulas are copulas generated by elliptical distributions using the inversion
method (2.4) as discussed above (see, e.g., Owen and Rabinovitch (1983)).

Definition 2.7 (Elliptical distribution.) The d-dimensional random vector X has an
elliptical distributions iff the density function fx(x) has the representation

fx(@) = ca 22 g((x — p)S (@ — p)),

with some constant cg € R, mean vector p € R4, 3 € R symmetric positive definite,
and some function g which is independent of d.

The most famous example of an elliptical distribution is the multivariate normal dis-
tribution with ¢; = (27)"%2 and g(s) = exp(—4s) Vs > 0. Using the inversion method
(2.4), this yields the multivariate Gaussian copula as

Clu) =P (" (w1), .., 2 (ug)) , (2.7)

where ®~1 denotes the inverse of the standard normal cumulative distribution function
(cdf) @ and ®g the multivariate standard normal cdf with symmetric positive definite
correlation matrix R € [—1,1]%. The density is then given by

c(u) = |R| "} exp(%w’([d _ R Y)a), (2.8)
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where = (11, ...,24) € R? with ; = & Y(w;), i = 1,...,d.
Another widely used elliptical copula is the multivariate t copula (cp. Demarta and

MecNeil (2005)) which is derived from the multivariate t distribution with constant cq =
(wd)~%20(44)/T(%) and g(s) = (1 + £)~#+9/2 ¥s > (. It is hence defined as

Clu) = try (6 (W), ..ty (ua)) (2.9)

where tr, denotes the cdf of the multivariate standard t distribution with correlation
matrix R € [—1,1]¢ and v > 0 degrees of freedom, while ¢! is the inverse of the cdf ¢,
of the univariate standard t distribution with v degrees of freedom. The density of the
bivariate t copula can be found in Section 2.1.3.

2.1.2 Archimedean copulas

Archimedean copulas are particularly easy to construct and have many convenient prop-
erties such as symmetry and associativity (see Nelsen (2006)).

Theorem 2.8 (Archimedean copula.) Let ¢ : [0,1] — [0,00] be a continuous strictly
decreasing function such that p(0) = oo and p(1) = 0 and let o' denote the inverse of
© such that it is completely monotonic'. Then

Clu) = ¢ (p(ur) + ... + p(ua))

1S a copula.

The copula C' in Theorem 2.8 is called a d-dimensional Archimedean copula with
generator . In the bivariate case, the assumptions of complete monotonicity and ¢(0) =
oo are not necessary, when the pseudo-inverse ¢l of a convex generator ¢ is considered
instead of ¢ ~!. The pseudo-inverse is defined as

A1) :{ 3_1(’5)’ O(SO)SS

(0),

t < o0.

If however p(0) = oo, ¢ is called strict and o= = ™' E.g., W = W? with ¢(t) =
1—t, t €0,1] is Archimedean and II = IT* with ¢(t) = —logt is strictly Archimedean,
while M = M? is not an Archimedean copula.

Theorem 2.8 yields an easy method to construct multivariate copulas of arbitrary
dimension. However, since most commonly used generators ¢ depend on one or at most
two parameters (cp. Section 2.1.3), there are only one or two parameters to model the
dependency of d random variables, which is quite restrictive. Elliptical copulas such as
the multivariate Gaussian and t have correlation parameters for each pair of variables,
i.e., d(d — 1)/2 correlation parameters. Hence, we will concentrate on elliptical copulas
for dimensions d > 2, while Archimedean copulas are very appealing in the bivariate case
(see the following Section 2.1.3).

LA function g(t) is completely monotonic on an interval J if it is continuous there and if it satisfies
(- l)kjtkg( ) > 0 for all ¢ in the interior of J and k € Ny.
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2.1.3 Bivariate copula families

Here, we describe various bivariate copula families which will be important as building
blocks of our models in the following (see Section 2.1.4) and which we will concentrate
on in our simulation studies (Section 5.4.4, Chapter 10) and applications (Chapter 11).
Extensive overviews of bivariate copulas, also called pair copulas, can be found, e.g., in
Table 4.1 of Nelsen (2006) and in Chapter 5 of Joe (1997). References to both sources
are given in brackets, where the first number refers to Nelsen (2006) and the second to
Joe (1997). Further properties such as Kendall’s 7’s and tail dependence parameters (see
Section 2.2) will be given in Table 2.1, scatter and contour plots for standard normal
margins in Appendix A.

Gaussian copula [2.3.6/B1]

According to the multivariate version defined in (2.7), the bivariate Gaussian copula with
correlation parameter p € (—1,1) is defined as

Clur,us) = @, (7' (wr), @ (u2)) ,

where ®, denotes the bivariate standard normal cdf with correlation p. The corresponding
density is then given by
1 P2 (2% + 22) — 2pw 170

C(U1,U2) = —F7/——=€Xp )
V1=p? 2(1—p?)

where z; = @7 1(uy) and x5 = & (uy).

As special case of the multivariate Gaussian copula, the bivariate Gaussian copula of
course also belongs to the class of elliptical copulas (see Section 2.1.1). It is reflection
symmetric, i.e., if a random vector (U, Us) follows a bivariate Gaussian copula, then
(1 = Uy, 1 — Us) is distributed as the same bivariate Gaussian copula. Moreover, C' = W
forp— —1,C=1lfor p=0and C =M for p — 1.

t copula

The bivariate t copula (cp. (2.9)) is a two-parametric elliptical copula with copula distri-
bution function

C(u17u2) = tp,l/ (t;l(ul)7t;1(u2)) )

where t,,, denotes the cdf of the bivariate standard t distribution with correlation param-
eter p € (—1,1) and v > 0 degrees of freedom. This yields the following density:

v42

L(452)/T(3) af + a3 = 2pmwy| 2
vrdt, (z1)dt, (12)\/1 — p? v(1—p?) ’

c(uy, ug) =

where z; = t;1(u;), i = 1,2, and dt, is the probability density of the univariate standard
t distribution with v degrees of freedom.

Like the bivariate Gaussian copula, it is a special case of the corresponding general
multivariate copula (2.9), it is reflection symmetric and its limiting cases are C' = W for
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p— —1, C=1Ifor p=0and C = M for p — 1. As the t distribution tends to the
normal distribution when the degrees of freedom increase, the t copula also tends to the
Gaussian copula with increasing degrees of freedom, i.e., C* — CV for v — oo, where C?
denotes a t copula with v degrees of freedom and CVV a Gaussian copula with the same
correlation parameter p € (—1,1).

Clayton copula [4.2.1/B4]

The Clayton copula (or ”Kimeldorf and Sampson copula” as in Joe (1997)) is an Archi-
medean copula (see Section 2.1.2) with generator ¢(t) = 5(¢% — 1) and therefore given
by

=

Cuy,ug) = (ul_e + u2—0 — 1)_

for & > 0. The extension to parameters § € [—1,0) and negative dependence is not
considered here, since the generator is not strict in this particular case. The density of
the Clayton copula can be obtained as

(2.10)

_1l_o

clur,up) = (1 +0)(uguz) % (uy? +uy® — 1) 77 (2.11)

The limiting cases are C' =11 for § — 0 and C = M for § — oo.

Rotated Clayton copula

Since the Clayton copula as defined in (2.10) can only capture positive dependence (cp.
Table 2.1), we also consider a rotated version, where "rotated” refers to a rotation of 90° in
contrast to 180° which is often considered in the literature. Hence, we say that a random
vector (U, Us) € [0,1]? is distributed as a rotated Clayton copula with parameter 6 < 0
iff (U, 1—Us) follows a Clayton copula with parameter —f. Then the copula distribution
function is readily derived as

C(Ul,UQ) = Uy — C(Cle)(ul, 1-— UQ),
(cp. Theorem 2.4.4 in Nelsen (2006)) and the density as
c(ula u2) = C(C—G) (u17 1- UQ),

where C’((i p) and 0(0_9) denote the Clayton copula distribution and density functions with
parameter —@ as given in (2.10) and (2.11), respectively. Corresponding to the Clayton
copula but with negative dependence, the limiting cases are C' =1l for # — 0 and C =W
for 0 — —oo.

Gumbel copula [4.2.4/B6]

The Gumbel copula is also an Archimedean copula. Its generator is ¢(t) = (—logt)?
which yields

1

C(uy, uz) = exp [— ((—logui)? + (—logUQ)Q)ﬂ , (2.12)
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where 6 > 1. The corresponding density is given by

C(Ul, U2> (lOg Uq log U2>6_1

Wtz ((~loguy)® + (~loguy)?)* ™0 (2.13)
X [((—1ogu1)9 + (—logus)?)* + 6 — 1} :

(1, uz) =

Similar to the Clayton copula, the limiting cases are C' = II for # = 1 and C' = M for
0 — oo.

Rotated Gumbel copula

As for the Clayton copula, we also consider the rotated Gumbel copula, where a random
vector (Uy, Us) € [0, 1]% is distributed as a rotated Gumbel copula with parameter § < —1
iff (Uy,1—Us) follows a Gumbel copula with parameter —6. Denoting the Gumbel copula
distribution and density functions with parameter —6 as given in (2.12) and (2.13) by
C'(Ci 0) and c(Gfa), respectively, this yields the following distribution function:

C(Ul,UQ) = Uy — C(Ci@)(ul, 1-— UQ),
and density:
c(uy, ug) = c(G_e) (ug, 1 —ug).

The independence copula II is obtained for § = —1, while C = W for § — —oo as for the
rotated Clayton copula.

Frank copula [4.2.5/B3]

An example of an Archimedean copula for negative and positive dependence is the Frank

e 0t_1
e—0—1

copula with generator ¢(t) = — log [ } and corresponding distribution function

(eféul o 1)(679u2 o 1)
e ? —1 ’

1
C(uy,ug) = —alog [1 +

where 6 € R\ {0}. The density is
e—Q(U1+U2)

e — 1+ (e7fm1 — 1)(e vz — 1)]2'

clug,up) = 0™ — 1)

The limiting cases are similar to the Gaussian and t copulas: C = W for § — —o0, C =11
for 6 — 0 and C' = M for § — oo. Furthermore, it is also reflection symmetric.

Joe copula [4.2.6/B5]

The Joe copula is another Archimedean copula with generator ¢(t) = —log [1 — (1 —t)’]
and therefore given by

S

C(ug,up) =1— [(1 —uy)? + (1 —up)? — (1 —uy)?(1 — uQ)G}
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with # > 1 and the following density:

c(ur, uz) = [(1 - u)? + (1 —up)? — (1 —uy)?(1 — u2)9:| i (1 =)’ 11 = uy)?!
x[0—1+1—w)’+(1—u)’ = (1—w)(1—u)?].

As for the Gumbel copula, C'=1I for # — 1 and C' = M for § — oc.

Clayton-Gumbel copula [4.5.3/BB1]

The Clayton-Gumbel copula is a two-parametric Archimedean copula and can be regarded
as a generalization of the one-parametric Clayton and Gumbel families. To avoid confu-
sion, it will simply be called BB1 copula in the following. Its generator is ¢(t) = (t*H — 1)(S
which yields

Clunuz) = [1+ [(ui” =1+ (5" = 1)°]

where § > 0 and 0 > 1. The corresponding copula density and other properties can
be found in Schepsmeier (2010). Similar to Clayton and Gumbel copulas, we obtain the
independence copula Il for § — 0 and 6 = 1 as well as C' = W for § — oo and § — oo.
More interestingly, the Clayton copula is a subfamily when § = 1 and the Gumbel copula
is the limiting case of § — 0.

S

Joe-Clayton copula [-/BB7]

Similar to the BB1 copula, the Joe-Clayton copula is a two-parametric generalization of
the corresponding one-parametric copula families. In the following, we will also simply
refer to it as BB7 copula. The generator of this Archimedean copula is defined as ¢(t) =

[1—(1-1)%)] R 1, giving the copula distribution function

Clunyu) = 1= [1= [(1 = (1= u)") "+ (1= (1= w)) ] F]°

for & > 1 and § > 0. As above, the density can be found in Schepsmeier (2010). The
limiting cases are C'=1II for # = 1 and § — 0 as well as C' = W for § — oo and § — oc.
Furthermore, the Clayton copula is again a subfamily for § = 1, while the Joe copula is
obtained for 6 — 0.

2.1.4 Pair copula constructions

The following discussion of pair copula constructions is based on Aas et al. (2009) who
use a cascade of bivariate copulas to model multivariate data. In contrast to the mul-
tivariate copulas we encountered so far (elliptical and Archimedean, which both impose
some constraints on the respective models), such constructions are a simple and flexible
way to specify multivariate dependence models.

The idea of a pair copula construction can be best explained in a small-dimensional
example.
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Example 1 (Pair copula construction in 3 dimensions.) Consider the three-dimen-
sional random vector X = (X1, Xo, X3) with joint density function f and univariate den-
sities f1, fo and f3. Using the definition of conditional densities we know that

f(@1, 22, 23) = f3(23) f(w2|2s) f (21|22, 23). (2.14)
From Sklar’s Theorem 2.4 and Equation (2.5), we further know that
f(9€1,$2,~’173) = 0123(F1(5E'1), F2(962), F3(333))f1($1)f2(9€2)f3(3?3)7 (2-15>

where c193 1S the density of a three-dimensional copula. In the bivariate case, this yields

f(x2,23) = coz(Fo(x2), F3(x3)) fa(22) f3(73)

for a bivariate copula density co3. Hence, it follows that

i f($2,953) .
f(@2|zs) = TR ca3(Fa(x2), F3(w3)) f2(2). (2.16)
Similarly, we can decompose
f($1‘$2, 96’3) = % = 013\2(F(1’1’1’2), F($3|5L’2))f($1|1’2)» (2'17)

where ci93 s an appropriate pair copula for the transformed variables F(x1|z2) and
F(z3|xa). Decomposing f(x1|z2) as in (2.16) gives

f(@i]we, 23) = crzp(F(v1]22), F(2s|v2))ci2(Fi(x1), Fa(x2)) fi (1)

Combining all decompositions and plugging them into Equation (2.14) yields

f(-Tl,iUQ, 1’3) = 012(F1($1)7 F2($2))023(F2($2), F3($3))C13|2(F($1‘5U2), F($3‘$2))
X fi(z1) f2(2) f3(23)-

Getting back to Equation (2.15), we see that we have constructed a trivariate copula density
using only bivariate copulas as building blocks:

0123(F1(5U1), F2($2),F3(1’3)) = 012(F1(951),F2($2))023(F2(332),Fz(l’:s))
X crgp(F (1)), F(z3]22)).

Note however that this decomposition is not unique. In Equation (2.14) the variables can
be permuted in 3! = 6 ways. Appropriate pair copulas can be found, e.g., in Section 2.1.3.

Moreover, note that we assume that the pair copula ci3p in Equation (2.17) is inde-
pendent of the conditioning variable X, i.e.,

cizp(F(w1]22), F(x3|22); 22) = c1zpp(F(21|22), F(23]22)).

This assumption is necessary in order to construct flexible models. Hobek Haff et al.
(2010) call this the simplified pair copula construction (which is contrary to our notation
of simplification (see Section 7.1)) and show that it is a good approzimation to the correct
decomposition.
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In general, we can decompose a d-dimensional random vector X = (X7, ..., X3) with
joint density f into

f(x) = fa(za) f(xg-1|Ta) f(wa—2|Ta—1, xq)...f (21|22, ..., Ta). (2.18)

[terating the arguments in Example 1, we can decompose each term in (2.18) into marginal
densities and adequate bivariate copulas using the general formula

f(@|v) = oo, (F(x|v-5), Fvj|lv-5)) f(2]Vv-)),

where v is an m-dimensional vector, v; is an arbitrary component of v and v_; denotes the

(m—1)-dimensional vector v excluding v;. Hence, under appropriate regularity conditions

this yields a multivariate copula density expressed as the product of bivariate copulas.
The pair copulas are applied to transformed variables, which are marginal conditional

distributions of the form F'(z|v). According to Joe (1996) these can be obtained for every

7 as

OCu,w_; (F(zlv_5), F(v5|v_5))

OF (vj[v—;) ’

where C,,|,_; is a bivariate copula distribution function.

We have seen that there is no unique pair copula construction of a d-dimensional
random vector. Moreover, the number of possible decompositions increases significantly
with increasing dimension d: there are, e.g., already 240 different constructions for a five-
dimensional density (Aas et al. 2009)! Hence, we need a way to describe such models
appropriately. This will be established using so-called reqular vines in Section 2.4. But
prior to that, we will discuss some more basic concepts such as dependence measures and
graph theory which will be needed for this classification of pair copula constructions.

Falv) =

(2.19)

2.2 Dependence measures

As we have seen in the previous section, bivariate dependence is even fundamental for
explaining dependence among large numbers of variables. Thus, the question arises how
this dependence can be measured appropriately.

Classically, Pearson’s product-moment correlation coefficient between two random
variables X; and X, which is given by

corr(Xy, Xs) = Cov( Xy, Xy) (2.20)

— /Var(X;)/Var(X,)

has been widely used in statistics. However, corr is a measure of linear dependence only
and not invariant under non-linear strictly increasing transformations. Furthermore, it is
not defined for distributions with non-finite second moments (e.g., the Cauchy distribu-
tion) and the possible values of (2.20) depend on the marginal distributions of X; and
Xy (Kurowicka and Cooke 2006). Hence, we will concentrate on so-called ”measures of
association” which do not exhibit these disadvantages. As before, we mainly follow Nelsen
(2006), where the proofs of the following theorems can be found.
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2.2.1 Measures of association

While ”correlation” usually refers to linear dependence, ”association” refers to any possi-
ble type of dependence between two random variables X; and X,. The idea is therefore to
investigate, whether ”large” values of one variable are ”associated” with "large” values of
the other and similarly for ”small” values. This naturally leads to the consideration of con-
cordance: according to Nelsen (2006), two pairs of observations (z;1, x;2) and (z;1, z;2) from
the continuous random vector (X, X») are called concordant if x;1 < xj; and x5 < xj9,
or if x;; > ;1 and x;2 > o, or equivalently if (z;7 — z;1)(2i2 — xj2) > 0. Similarly, the
pairs are discordant if (x;1 — 1) (22 —xj2) < 0. The case (x4 —xj1) (22 — 2j2) = 0 cannot
occur, when X; and X, are continuous.

Based on these notations, Kendall’s 7 is defined as the probability of concordance
minus the probability of discordance of two random variables X; and Xs, i.e.,

T(Xl,X2> = P((XH — X21)<X12 — X22) > O) — P((X11 — X21)<X12 — X22) < O), (221)

where (X371, X12) and (Xa1, Xog) are independent and identically distributed copies of
(X17 XQ) :

An important relationship between concordance and copulas is given in the following
theorem:

Theorem 2.9 Let X and X5 be continuous random variables with copula C'. Then
T(Xl,XQ) = 4/ C(UhUQ)dC(Ul, UQ) — 1.
(0,1

In particular for Archimedean copulas, this yields a convenient expression of Kendall’s
7 in terms of the generator :

")
7(X1,Xe) =1+ 4/0 cp’(t)dt'

An alternative measure of association is given by Spearman’s p. Empirically it is defined
as the correlation of the pairs of ranks (cp. (3.1)). The population version is however
also defined in terms of concordance. For this let (Xi1, X12), (Xo1, Xo2) and (X31, X32)
independent and identically distributed copies of (X7, X5). Then Spearman’s p is defined
to be proportional to the probability of concordance minus the probability of discordance
of the two vectors (X1, Xi12) and (Xo1, X32), i.e.,

p(X1, Xo) = 3[P((X11 — Xo1)(Xi2 — X32) > 0) — P((X11 — Xo1)(Xi2 — X32) < 0)].
(2.22)
Note that the copula of (X1, Xi2) is C, while (X3, X32) are independent and thus their
copula is II. As a result the corresponding version of Theorem 2.9 for Spearman’s p is
stated as follows:

Theorem 2.10 Let X; and X5 be continuous random variables with copula C. Then

p(X1, Xs) = 12/

[0,1]2

O(U17 u2)du1du2 -3 = 12/ u1u2d0(u1, UQ) - 3.

[0,1]2
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Since both Kendall’s 7 and Spearman’s p can be stated in terms of the copula of
two random variables (Theorems 2.9 and 2.10), it follows from Theorem 2.6 that both
measures are invariant under strictly increasing transformations and independent of the
marginal distributions of X; and X5 — in contrast to Pearson’s product-moment corre-
lation coefficient as noted above. Moreover, they are always well defined and it can be
shown that 7(X1, X3), p(X1, X2) = 1 if X, is almost surely an increasing function of X7,
and 7(X71, Xs), p(X1, Xo) = —1 if X, is almost surely an decreasing function of X; (cp.
Theorem 2.5).

2.2.2 Tail dependence

While Kendall’s 7 and Spearman’s p measure dependence on the whole space [0, 1]2, tail
dependence takes an alternative approach. We are again interested in describing whether
"large” ("small”) values of one variable appear with ”large” (”small”) values of the other,
but now concentrate on the lower-left and upper-right quadrants of [0, 1]2. Hence we define
the lower tail dependence parameter \°¢" of random variables X; and X, as

Aower — Jim P(X, < Fy H(8)| X, < FTA(t)), (2.23)
t—0t+
and similarly the upper tail dependence parameter \*PP" as
NPPET = Tim P(Xy > Fy H(4)| X, > Fy (1), (2.24)
t—1—

if the limits exist. The following theorem shows that the tail dependence parameters can
also be stated in terms of the copula C' of X; and Xo.

Theorem 2.11 Let X, and X5 be continuous random wvariables with copula C'. If the
limits (2.23) and (2.24) exit, then

t,t
Mewer — 1im et (2.25)
t—0+ t
and o c
1-2
yowver _ iy CBO g 122+ O (2.26)
t—1— 1 —t¢ t—1— 1-—t¢

where C'is the joint survival function (2.1).

E.g., the lower tail dependence parameter of the independence copula II is easily

obtained as I )
t,t t
Aewer — Jim ng.t) _ lim — = lim ¢t = 0,
0+ t t—ot t t—0+

while the upper Fréchet-Hoeffding bound M (cp. Theorem 2.3) exhibits perfect lower tail

dependence:

M(t,t t

yower iy M0 T g
t—0+ t t—0+ 1  t—0+

The tail dependence parameters of the bivariate copula families discussed in Section
2.1.3 except for the rotated Clayton and Gumbel copulas can be found in the literature,
but those of the latter families have to be calculated.
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(i) Lower tail dependence parameter of the rotated Clayton copula:

/\lower = lim m — lim t— C( 6)(t 1- t)

t—0t+ t t—0+ t
1
0

@+0-0'-y" (t@+(1-t>9_1>$

t@

=1— lim
t—0+ t t—0t

1
0 7
1—1
=1— lim <1+ (—) —t9> <1-1=0,
t—0+ t
where C’(Cl 0) denotes the Clayton copula distribution function with parameter —@ as

given in (2.10).

(ii) Upper tail dependence parameter of the rotated Clayton copula:

1— 924 CO(t. ¢ 1-2t4+t—-C%, (t,1 -t
yorer — Ji 1T 2HECOED ol 171
t—1— 11—t t—1— 1—t
1 1
t? 4+ (1—¢t)? —1)° (11—t —1\°?
B G et ) KPR (A )
t—1— 11—t t—1— (1 — t)e

NG %9
—1— 1 — 1—(1-=0""°] =1-1=0.
t;fga((l_t) ey )

(iii) Lower tail dependence parameter of the rotated Gumbel copula:

Ctt) _ L= Clyt,1-1)

)\lower — lim

t—0+ t t—0+ t
exp [~ ((~log ) + (~log(1 - ))*) ]

=1- lim
t—0t t

— 1 [ “log ) + (= log(1 — 1)) 7 1 t]
t—1>r(])%r exp | ogt)™" + (—log( ) ) og( )/

—0 ;srzt—>0Jr
=1-1=0,

where Cﬁ 0) denotes the Gumbel copula distribution function with parameter —6 as
given in (2.12).

(iv) Upper tail dependence parameter of the rotated Gumbel copula: similarly to (iii),
it holds that A\*PP" = (.

Kendall’s 7’s and tail dependence parameters of the bivariate copula families discussed
in Section 2.1.3 are now shown in Table 2.1. By inversion, copula parameters can be
expressed in terms of Kendall’s 7 and/or tail dependence parameters (cp. Section 4.1.2).
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Copula family Kendall’s 7 Lower tail Upper tail
dependence dependence
Gaussian 2 arcsin(p) 0 0

t 2 arcsin(p) 2t,41 (—\/V + 14 /1—;?)

Clayton % 2-1/0 0
Rotated Clayton —9% 0 0
Gumbel 1—3 0 9 _91/6
Rotated Gumbel % -1 0 0
Frank® 1-4+ 4DITW) 0 0
Joe® 1+ [*2+2W+210g22{(2%)“1/(%%”9 0 9 _91/0
BB1 1-— m 9—1/(6%) 9 _91/s
BB7¢ 1~ 5509 + g B + 1,0 +2) 271/ 2 — 21/

Table 2.1: Kendall’s 7’s and tail dependence parameters of the bivariate copula families
discussed in Section 2.1.3.

0 5/9 .
“D1(0) = [y splaj—1d (Debey function)
by = lim, o0 (M1, 2 —logn) &~ 0.57721 (Euler’s constant), ¥(z) = % log(T'(z)) (Digamma function)

°B(z,y) = [y t*+1(t — 1)¥~'dt (Beta function)
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2.3 Graph theory

This section gives a brief introduction to graph theory which will be needed in Section 2.4
to classify pair copula constructions. The exposition here mainly follows Diestel (2006)
and is meant as a reference for the following parts of the thesis. Obviously, we begin our
collection of definitions and theorems with the description of a graph. Examples for the
notations presented here are shown in Figures 2.1 and 2.2.

Definition 2.12 (Graph, node, edge, degree.) A graph is a pair G = (N, E) of sets
such that E C {{z,y} : x,y € N}. The elements of E are called edges of the graph G, the

elements of N are its nodes. The number of neighbors of a node v € N is the degree of v,
denoted by d(v).

The graph defined above is usually referred to as undirected, since the order of nodes
corresponding to an edge is arbitrary. In a directed graph, it holds that £ C {(x,y) :
x,y € N}. If there is a function w : E — R, then G is called weighted and denoted by
G = (N, E,w), i.e., weights are assigned to each edge. Moreover, if E = {{x,y} : x,y € N}
in Definition 2.12, then G is called complete.

A subgraph of a graph G = (N, F) is a graph G' = (N, E') with N’ C N and E' C E.
Important examples of graphs are paths and cycles which often occur as subgraphs of
interest.

Definition 2.13 (Path, cycle.) A path is a graph P = (N, E) with N = {vg,v1, ..., v }
and E = {{vg,v1}, {v1,v2}, ..., {vg—1,vc } }. A cycle is a path with vy = vy.

A graph G is called connected if any two of its nodes are linked by a path in G.
Furthermore, a path in G containing every node of G is called a Hamiltonian path, such
a cycle is a Hamiltonian cycle.

The most important class of graphs that will be considered in the following are trees,
which are connected and do not contain cycles. They can be characterized by the following
theorem, where GG + e denotes a graph with removed/additional edge e.

Theorem 2.14 (Characterization of trees.) The following statements are equivalent
for a graph T = (N, E):

(i) T is a tree.
(i1) Any two nodes of T are linked by a unique path in T.

(11i) T is minimally connected, i.e., T is connected but T — e is disconnected for every
edge e € F.

(i) T is maximally acyclic, i.e., T" contains no cycle but T + {x,y} does for any two
non-adjacent nodes xr,y € N.

A spanning tree of a graph G = (N, E) is a subgraph T' = (N, Er), which is a tree
with Ny = N. Moreover, a tree, which has a node vy with d(vy) = |N| — 1, will be called
a star and vy the root node. Obviously, in stars it holds that d(v) =1 Vv € N \ {vo}.
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i

Figure 2.1: Left panel: connected graph G = (N, FE) with nodes N = {1,2,3,4,5,6}
and edges E = {{1,2},{2,3},{2,6},{3,4},{3,5},{3,6},{4,5},{5,6}}. E.g., the degree
of node 3 is d(3) = 4, a cycle is given by 2 —3 — 5 — 6 — 2 and a (Hamiltonian) path
by 1 —-2—-3—4—5—6. Middle panel: disconnected graph with components on nodes
Ny ={1,2} and Ny, = {3,4,5,6}. Right panel: spanning tree of the graph in the left panel.

Figure 2.2: Left panel: directed graph. Middle panel: complete graph on four nodes. Right
panel: (spanning) star with root node 1 in a complete graph.

2.4 Regular vines

As seen in Section 2.1.4, we need a way to classify different pair copula constructions.
This has been established by Bedford and Cooke (2001, 2002) who introduced a graphical
model called reqular vines. Briefly, a regular vine can be described as a nested set of trees,
where the edges of tree ¢ are the nodes of tree i+ 1, and where two edges in tree ¢ are joined
by an edge in tree i + 1 only if they share a common node. In order to build a statistical
model, edges will correspond to pair copulas which then constitute a decomposed density
as discussed in Section 2.1.4.
Firstly, we formally define regular vines (Kurowicka and Cooke 2006):

Definition 2.15 (Regular vine.) V is a regular vine on d elements if
(i) V=(T1,....Ta1).

(i) Ty = (N1, Ey) is a tree with nodes Ny = {1,...,d}. Fori=2,...n—1, T, = (N;, E;)
1s a tree with nodes N; = E;_;.

(i) Fori=2,..,n—1,if {a,b} € E;, where a = {ay,a2} and b = {by, by}, then exactly
one of the a;’s equals one of the b;’s.
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Property (iii) in Definition 2.15 is usually referred to as prozimity condition, since it
expresses the fact that two nodes are adjacent in tree T; only if the corresponding edges
in tree T;_; are adjacent, i.e., share a common node. An example of an R-vine on seven
nodes is shown in Figure 2.3 (cp. Difmann (2010)).

The number of possible regular vines on d nodes is however still very large ((g) X (d—
2)! x 2(“2") as shown in Morales-Népoles et al. (2010)). Therefore, two special cases of
regular vines have recently attracted special attention: canonical vines and D-vines? (see
Aas et al. (2009)). These impose additional restrictions and hence limit the number of
different models. It can be shown that there are d!/2 different canonical vines and D-vines
on d nodes, respectively. They are described in the following definition (cp. Section 2.3
and Kurowicka and Cooke (2006)).

Definition 2.16 (Canonical vine, D-vine.) A regular vine is called a

(i) canonical vine if each tree T;, i = 1,...,d — 1, is a star, i.e., if each tree T; has a
unique node of degree d — 1, the root node.

(i) D-vine if Ty is a path, i.e., if each node in 11 has a degree of at most 2.

Note that the first tree T} of a D-vine uniquely determines all higher order trees
Ty, ...,T;—1 due to the proximity condition (iii) in Definition 2.15. Examples of canonical
and D-vines on 5 nodes are shown in Figures 2.4 and 2.5. In the following, regular and
canonical vines will usually be denoted as R-vines and C-vines, respectively.

It was shown in Bedford and Cooke (2002) and Kurowicka and Cooke (2006) that the
edges of an R-vine can be uniquely identified by two nodes, called conditioned nodes and
a set of conditioning nodes. Czado (2010) proposed to identify the edges in tree T; by
jk|D where j < k and D is the conditioning set. Here the conditioned nodes {j, k} are
ordered to make the order of the arguments of the bivariate copulas unique which will be
identified by the edges. If D = &, the corresponding edge is denoted by jk.

The notation of an edge e in T; will depend on the two edges in T;_;, which by the
proximity condition (cp. Definition 2.15) have a common node in 7; ;. Denote these
edges by a = j(a),k(a)|D(a) and b = j(b), k(b)|D(b) with V(a) := {j(a), k(a), D(a)} and
V() := {j(b), k(b), D(b)}, respectively. The nodes a and b in tree T; are therefore joined
by edge e = j(e), k(e)|D(e), where

jle) :=min{i:ie (V(a) UV (b)) \ D(e)},
k(e) :==max{i:ie (V(a) UV (D)) \ D(e)},
D(e) .=V (a) NV (b).

Note however that this unique order of the conditioned nodes is not necessary but made
out of convenience. Inference is usually based on unordered conditioned sets (see Diimann
(2010)).

Now we can build up a statistical model on an R-vine with node set N := {Ny, ..., Ny_1}
and edge set €& = {Fi,...,E41} by associating each edge e = j(e),k(e)|D(e) in E;

2According to Kurowicka and Cooke (2006), D-vines were originally called ”drawable” vines, while
the name ”canonical” vines is due to the fact that sampling from such vines is most natural.
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Figure 2.3: Example of a seven-dimensional R-vine.
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4,5/1123
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Figure 2.4: Example of a five-dimensional C-vine.
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Figure 2.5: Example of a five-dimensional D-vine.
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with a bivariate copula density c;j)ke)pe)- Let Xpe) be the sub random vector of
X = (Xi,...,Xy) indicated by the indices contained 1n D(e). Then an R-vine distri-
bution is defined as the distribution of the random vector X with marginal densities
fr, ¥ =1,...,d, and the conditional densities of (X, X)) given the variables Xpc
specified as cj(e) k(e)|D(e) for the R-vine with node set N and edge set £. Kurowicka and
Cooke (2006) prove that the joint density of X is uniquely determined and given by

Hfr Ty) X H I i (F(zj(e)lTDe)), F(@hie) [ D(e)))s (2.27)

i=1eck;

where () denotes the subvector of x indicated by the indices contained in D(e). The
joint density in (2.27) is called an R-vine density.

The specific features of C- and D-vines are that C-vines have a conditioned set which
only depends on the tree level, i.e., D(e) = D; Ve € E;, while in D-vines the conditioning
sets of edges e = (a, b) are always those nodes which lie between the nodes a and b in the
first tree T}. In particular, a C-vine density can be written as

d d—1 d—i
f(w) H xT X HHCHJr]H (i—-1) = Hfr l'r X H H Ci j|1:(i—1) (228)
r=1 i=1 j=1 i=1 j=i+1
where Cjkjizin = Cikfir,...im (F(Tj|Tis oo T4, ), F (@] s, -0y 24, ). Accordingly, a D-vine den-

sity is obtained as

d d—1 d—i
f(:B) H .’Ifr X H H CJ G| (j4+1):(j+i—1)- (229)
=1 j=1

Statistical inference for C- and D-vines has been discussed in Aas et al. (2009). The
general case of R-vines was recently explored by Diffimann (2010) and will be the funda-
mental basis of this thesis. Amongst others, algorithms for likelihood computation and
simulation are given as well as a convenient representation of an R-vine in terms of a
matrix, a so-called R-vine matriz. As we will use these matrices to display results of our
applications in Chapter 11, we present this concept in the following section.

2.4.1 Regular vine matrices

R-vine matrices (RVM’s) have recently been introduced by Difimann (2010) based on work
of Kurowicka (2009). In order to formally define them, we need the following notations.
For this let M = (m; ;)i j=1. a4 € {1,...,d}*? be a lower triangular matrix.

.....

(i) We denote the set of the non-zero entries in the i-th column of M by
LM(Z) = {mm, ...,mdﬂ}.
(ii) Further we define the following two sets

BM(Z) = {(mi,i, D) . k? = l —f- 1, ...,d, D = {m]m', ...,mdﬂ‘}},
Bun(i) = {(mes, D) ik =i+1,....d, D={mi;} U{mpsrs,...,mai}}.
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Using these notations we can now define an RVM (see Definition 1.14 in Diimann (2010)).

Definition 2.17 (R-vine matrix.) Let M € {1,...,d}?*? be a lower triangular matriz.
M = (m; ;)i j=1,. a is called an R-vine matriz if it satisfies the following conditions:

-----

(1) mi; ¢ Ly(i+1) fori=1,..,d—1, and
(iii) fori=1,..,d—1 and for allk =i+ 1,...,d — 1,

(mk,i, {mk+17i, ...,mdﬂ-}) € BM(Z + 1) U...uU BM(d — 1)

~ ~ (2.30)
UBM(i+1)U...UBy(d—1).

It can be shown that conditions (i) and (ii) follow from condition (iii), but they fa-
cilitate understanding of the definition. Condition (i) states that all entries of a column
have to be contained in all columns on the left of this column. Together with the second
condition, which ensures that there is a new entry on the diagonal in each column, this
means that the variables are added to the RVM sequentially from the right to the left.
The third property (2.30) is however rather tedious to check for a given matrix, but it
is the critical condition of Definition 2.17 and corresponds to the proximity condition in
Definition 2.15. Instead of going too much into the details here (cf. Diimann (2010)),
we will now consider how to "read” an RVM, i.e., how to construct an R-vine from a
given RVM. This can be done as follows. Note however that RVM’s are not unique, but
there are 2471 different RVM’s which correspond to the same R-vine (see Theorem 3.20
in Difimann (2010)).

(i) The nodes of T are given by 1, ...,d.
(ii) The edges of T}, and hence the nodes of Ty, are given by
{{mii,ma;}:i=1,....,d—1},
i.e., by the diagonal element and the last element of columns i =1,...,d — 1.
(iii) The edges of T, (and nodes of T3) are given by
{{mii,ma—1ilma;} i=1,....,d — 2}, (2.31)

i.e., by the diagonal element and the second last element conditioned on the last
element of columns i =1,...,d — 2.

(iv) In general, the edges of T} are given by
Ui, ma—jriilma—jizi omaiy ri=1,..,d =2},

i.e., by the diagonal element and the element in row d — j + 1 conditioned on the
last elements of columns ¢ =1,...,d — j
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45123
&

Figure 2.6: Five-dimensional R-vine corresponding to the RVM given in (2.32).

An illustrative example will be given in the following. General algorithms to transform
R-vines into RVM’s and vice versa can be found in Dimann (2010).

Example 2 (Five-dimensional RVM.) Let us consider the five-dimensional shown in
Figure 2.6. A corresponding RVM is given by

, (2.32)

I
RO Lo O
MO Ot o
— N O

2
11
where zero entries in the upper triangle are omitted for simplicity.

It is obvious that conditions (i) and (i) of Definition 2.17 are satisfied: the variables
are considered in the order 1 —2 —5 —3 —4 and each column is contained in all columns
on the left of it. Condition (2.30) can also be checked with some more effort.

As described above, the R-vine corresponding to M and given in Figure 2.6 can then
be constructed as follows:

(i) Edges of tree Ty and nodes of tree To: {my1,m51} = {1,4}, {mag2,ms2} = {2,3},
{ms3,ms3} = {1,5} and {my4,ms4} = {1,2}.
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(ii) According to (2.31), the edges of tree Ty (and nodes of tree Ts) can then be obtained

by .
5
3

and similarly for the second and third columns: {mao,myalmsa} = {1,3]2} and
{ms 3, maglms s} = {2,5|1}.

[+]

{ml,la m4,1‘m5,1} = {27 4’1}

3
5 5
1 2 2
2111

(11i) As in the previous step, we obtain the edges of tree Ty and the nodes of tree Ty as

{m171,m3,1 m471,m571} = {374|172} d

and {m272, m3,2]m472, m572} = {3, 5‘1, 2}
(i) Finally, the edge of tree Ty is given by {my1,ma1|ms1,may1,ms1} = {4,5]1,2,3}.

C- and D-vines as defined in Defintion 2.16 can be represented by particularly well-
structured RVM'’s.

(i) C-vine:
d
d—1 d-1
V d—2 d—2 d—2
2 2 2 2
1 1 1 1 1

This RVM corresponds to a C-vine which is defined by its root nodes: 1 in the first
tree T}, 2 in the second tree 75, and so on. This order can easily be obtained by
reading the first column bottom-up. The characteristic property of C-vines that the
copulas of each tree have a common conditioning set is easily validated, since the
entries within each row are the same.
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(ii) D-vine:
d
1 d—1
M=
d—3 - 1 3
d—2 d-3 1 2
d-1 d-2 d-3 -+ 1 1

The first R-vine tree constructed according to this RVM is obviously given by the
pairs 1-2, 2-3,..., (d—1)~d which is the first tree of a D-vine. As D-vines are uniquely
determined by their first tree, this RVM defines a D-vine. The characteristic feature
of D-vines, that conditioning sets consist of those nodes lying in between in the first
tree, is satisfied by this RVM, since the entries within each row decrease by one per
column from left to right.

Chosen copula types and parameters corresponding to an R-vine specification with pair
copulas can easily be denoted in matrix form as well. Since the diagonal entry in each
column uniquely defines one element of the conditioned sets of the edges corresponding
to this column, the corresponding pair copula types and parameters can be stored in
the corresponding off-diagonal entry, i.e., copula type and parameter(s) corresponding
to {mi, mgi|mrg—14,...,ma;}, k < i, are stored in entry myg,. This is illustrated in the
following example.

Example 3 (R-vine copula type and parameter matrices.) We consider again the
R-vine of Example 2 defined by the RVM given in (2.32). Further, let us consider the fol-
lowing R-vine copula type and parameter matrices T' and Py, respectively:

N 0.20

T=1|10 G , P, =000 1.75 ,
C N 1II 0.67 0.30 0.00
N C N F 0.85 2.70 0.60 1.35

where I1 denotes an independence copula, N a Gaussian, C a Clayton, G a Gumbel, and
F a Frank. Then we can identify, e.g., the copula type and parameter of the edge 1,3|2 as
described above:

4
5 3 N 0.20

M=1|3 5 5 T=|1m @ ,Pr=1000 1.75
2 [1] 2 2 C [N] @ 0.67 [0.30] 0.00
1 2 111 N C N F 0.85 2.70 0.60 1.35
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i.e., the copula of the edge 1,3|2 is a Gaussian copula with parameter 0.30. Other copula
types and parameters are identified similarly.

If a copula belongs to a two-parametric family such as the t, BB1 and BB7 copulas (cp.
Section 2.1.3), we need to specify a second copula parameter matriz P, for the respective
second parameter, e.q., the degrees of freedom of a t copula.

2.5 Time series analysis

After having concentrated on the copula part of multivariate copula distributions, we will
now turn to the modeling of the margins. In particular, we consider time series as they are
usually found in financial applications. One of the purposes of time series analysis is to
remove serial dependence among observations in order to obtain i.i.d. data. This data can
then be used as input for copula models. Here we will introduce some basic concepts and
two fundamental models, namely the linear ARMA- and the non-linear GARCH-model.
The discussion of the basics and the ARMA-model is based on the standard work by
Brockwell and Davis (1991).

2.5.1 Basic definitions

A time series is a set of realizations of a stochastic process, i.e., a family of random
variables (X;);er on a probability space (2, F, P), where T is called the time domain and
in the following we consider T" = Z. The characteristic feature of a time series is hence
its chronological order which has to be accounted for in an adequate analysis and model
building.

Like covariance matrices for finite numbers of random variables, the autocovariance
function summarizes important information about the dependency of infinite collections
of random variables:

Definition 2.18 (Autocovariance function.) If (X;)cz is a stochastic process with
E(X?) < oo Vt € Z, then the autocovariance function (ACF) vx of (X)iez is defined as

vx(r,s) = Cou(X,, Xy), 1,5 € Z. (2.33)

Most of the theory of time series analysis is built on stationary processes, which can
be defined as follows:

Definition 2.19 (Stationarity.) The time series (X;)iez is called stationary if
(i) E(X?) < ooVt €Z,
(1)) E(X;) =m e RVt e€Z, and

(1it) yx(r,s) =yx(r+t,s+1t)Vr,s,t € Z
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Figure 2.7: Empirical ACF’s of the log returns of the 3-month Euro Interbank Offered
Rate (EURIBOR) and the Oslo Stock Exchange main index (OSEBX) with lags A up to 30
and 95%-confidence intervals (dashed lines). The observed time period is from 3/25/2003
to 3/26,/2008 (see Section 11.2).

Definition (2.19) is often referred to as weak stationarity. We will however concen-
trate on this property, since the concept of strict stationarity is too ”strict” in many
circumstances. Hence, when we talk about stationarity, we mean weak stationarity.

Obviously, the ACF (2.33) of a stationary process only depends on |r — s|, since
vx(r,s) = vx(r — s,0). Therefore we can redefine the ACF of a stationary process as

vx(h) == vx(h,0) = Cov(Xiyn, X¢) Vi, h € Z.

In practice, the ACF is then estimated by its empirical analogue

() = 2 37 (w0 — (s — 30, [hl <.

J=1

where 7 is the sample mean z = %Z?:l x;. Examples are shown in Figure 2.7 which
displays the empirical ACF’s of the log returns of the 3-month Euro Interbank Offered
Rate (EURIBOR) and the Oslo Stock Exchange main index (OSEBX) with lags h up to
30 and confidence intervals at the 95% level (cp. Section 11.2).

An important example of a stationary process is the so-called white noise:

Definition 2.20 (White noise.) A stationary process (Z;)iez with E(Z;) = 0Vt € Z

and ACF > forh
_J oz for h=0,
7z2(h) = { 0 for h#0,

where 0% > 0, is called white noise and denoted as (Z;)iez ~ WN(0,0%).
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2.5.2 The ARMA-model

Autoregressive moving average (ARMA) models are the fundamental class of linear time
series models and very popular in practice. A short introduction to such models is given
in the following. Detailed theoretical results can be found in Brockwell and Davis (1991).

Definition 2.21 (ARMA(p,q) process.) The process (X;)iez is called an ARMA (p,q)
process if (Xy)iez is stationary and if for everyt,

p q
X — Z 0jXi—j = Zi + Z 0;Zi—j, (2.34)
j=1 j=1

where p,q € No, ¢1, ..., Op, 01, ...,0, € R and (Z;)rcz ~ WN(0,0%). (Xy)iez is called an
ARMA (p,q) process with mean p if (X; — )iz is an ARMA(p,q) process.

Introducing the Backward shift operator B as B/(X;) = X;_; for all j > 1 and t € Z
for a process (X;)iez, we can rewrite (2.34) as

®(B)X;, =0O(B)Z, Vt € Z, (2.35)
where ® and © are the so-called AR- and MA-polynomials defined as
O(2) =1— 12— ... — ¢p2P, and
O(z) =14 612+ ... + 0,2%

Then a fundamental result on the existence of a unique solution to the ARMA-equation
(2.35) is given in the following theorem.

Theorem 2.22 If ®(z) # 0 for all z € C such that |z| = 1, then the ARMA-equation

(2.35) has the unique stationary solution

Xi= ) $iZ;VteL

j=—o00

where the coefficients (1) ez are determined by

Z V20 = O(2)®(2)"" for % <zl <y

j=—o0

with anr > 1.

2.5.3 The GARCH-model

ARMA-models as considered in the previous section are able to remove trends and sea-
sonality in observations. However, they are based on a white noise process with constant
variance 0%. Especially, in finance, observations exhibit changing volatility behavior which
contradicts the assumptions of an ARMA-model with i.i.d. noise (see Figure 2.8 which
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Figure 2.8: Log returns of the Euro Stoxx 50 and the leading national stock indices of
Germany, the Netherlands, France, Italy and Spain over a period of four years (see Section
11.3).

shows the log returns of the Euro Stoxx 50 and the leading national stock indices of five
countries over a period of four years, cp. Section 11.3). Such changing volatilities usually
occur in clusters of higher or lower volatility, i.e., the variance of the time series shows a
conditional behavior and we cannot assume that the noise is i.i.d..

Therefore we will now consider the generalized autoregressive conditional heteroscedas-
tic (GARCH) model which was introduced by Bollerslev (1986) and can capture such
non-linear behavior. Its definition is given in the following definition.

Definition 2.23 (GARCH(p,q) process.) The process (€;)iez s called a GARCH(p,q)
process if for every t,

q p
2 2 2
gy = 012y and o7 = w + g Qe+ E Bioi_j,

j=1 j=1

where p € No, ¢ € N, w >0, aq, ..., 0, b1, ..., By > 0 and (Zy)iez, is an i.i.d. sequence with
zero mean and unit variance independent of {e,_1,k > 1} for all t.

In our applications we are particularly interested in simple but often very useful
GARCH(1,1)-models. It can be shown that the GARCH(1,1) process is stationary if
a1 + (1 < 1. Furthermore we can combine the ARMA-model from Definition 2.21 with a
GARCH-model for the noise as introduced above and obtain ARMA-GARCH-models. In
particular, the ARMA(1,1)-GARCH(1,1)-model with mean g is defined as follows

Xe=p+ 01 Xoq e+ Oie,

2 2 2
oy =w+ gy + fio;_q,

(2.36)
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where ¢, = 0,Z; and (Z;);ez is defined as in Definition 2.23. The standardized residuals
of this model are then given by

. 1 . .
Zy = 6_ (Xt — =1 Xiq — 910'167121%1) ) (2-37)
t

where [, q@l, él and &, are the estimates of u, ¢y, #; and o,.

The simplest choice of an error distribution for (Z;);ez is certainly the standard normal
distribution, i.e., Z; ~ N(0,1). However, financial data often not only exhibits volatility
clustering but also negative skewness and/or heavy tails. Therefore, we will also consider
skewed and heavy-tailed distribution such as

(i) the Student-t distribution (Bollerslev 1987) (cp. Section 2.1.1);

(ii) the skewed Student-t distribution (Hansen 1994) defined through its density

v+1
2

1
(ﬁl[o,oo) (2 — p) + 71 (—oo0y (T — PJ))} ,

2 I8 (x — p)?
_7+$F(%)\/W_Vp[1+ vp

with location p € R, degrees of freedom v > 0 and skew parameter v > 0 (cp.
Fernandez and Steel (1998));

/()

(iii) the Normal Inverse Gaussian (NIG) distribution (Andersson 2001) with density

 adk, (/& + (&= p?)
Ny

where K is the modified Bessel function of third order and index 1. The parameters
satisfy 0 < |5] < a (asymmetry and tail heavyness), u € R (location) and ¢ > 0
(scale).

exp [9v/aZ = B2 + e — )]

Since Definition 2.23 requires E(Z;) = 0 and Var(Z;) = 1, we use standardized versions
of these distributions.

2.5.4 The Ljung-Box test

Having specified a time series model to given observations (X;);—1, . ,, one is usually inter-
ested in the goodness-of-fit, i.e., one investigates whether the chosen model is appropriate.
In terms of time series analysis, this corresponds to checking whether the residuals of the
fitted model still exhibit serial dependence. The test by Ljung and Box (1978) addresses
this issue by examining the hypotheses

~

Hy : (Z)4=1...n is white noise against H, : not Hy, (2.38)

77777

.....

(2.37) for the ARMA(1,1)-GARCH(1,1)-model and similarly for general ARMA-GARCH-
models.
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The test statistic of the Ljung-Box test is constructed by considering the sample
autocorrelation of (Z;);=1..., which is defined as

N Z?:h—l—l ZtZt—h
Yzt
for lags h = 1,...,n — 1. Ljung and Box (1978) developed a test which jointly considers

the autocorrelations of the first m lags, where 1 < m < n — 1. The corresponding test
statistic is given by

.....

A " g

Q(p) =n(n+2) ; m——

Under the null hypothesis (2.38), Q(p) asymptotically follows a y? distribution with m —p

degrees of freedom, where p is the number of parameters in the chosen model. E.g.,

the ARMA(1,1)-GARCH(1,1)-model (2.36) uses 6 parameters if the error distribution is

normal and 7 parameters if a Student-t distribution is chosen instead, which needs an
additional shape parameter.



Chapter 3

Construction of regular vines

Before selecting any copulas or fitting any copula parameters, we have to determine which
pairs of (transformed) variables are being modeled with copulas at all, i.e., we have to
construct the trees of the R-vine for our observed data. As the number of possible R-
vines is growing exponentially with dimension d (cp. Section 2.4), one cannot simply fit
all possible R-vines and choose the best one. We therefore rely on the use of heuristic
methods to determine the structure of the trees in order to obtain a good final model.

These heuristic methods typically proceed sequentially, i.e., one tree is determined
each step. Considering the structure of pair copula constructions, this is the only feasible
approach because for the construction of tree T; we need transformed observations using
those copulas that are specified in tree T;_; (cp. (2.19)).

By this sequential method we also hope to capture the most important dependencies in
the first trees so that the R-vine can possibly be simplified, or even truncated, after having
specified a certain (hopefully small) number of trees (see Chapters 6, 7 and 8). In order to
do this we have to define what we mean when referring to ”important” dependencies. This
amounts to assigning weights to each pair of variables. We will investigate different choices
in the first part of this chapter. Subsequently we consider the general case of constructing
R-vines before turning to the special cases of C- and D-vines. Although the latter cases
both lead to the same number of possible trees (see Section 2.4), the complexity of the
tree construction methods is considerably different: constructing the first tree of a D-vine
results in an NP-equivalent problem, while a complete C-vine can be constructed in O(d?)
operations.

3.1 Weights

In this section we propose different methods to compute weights for pairs of variables.
Which method is chosen mainly depends on the purpose of the data analysis. E.g., in
finance one is often interested in capturing as much tail dependence as possible in the
first trees.

In the following we will always work with the transformed variables U; = Fj(X;), j =
1,2, where F; and F5 are the cdf’s of X; and XgZ respectively, or, if F} and F, are

unknown, their empirical versions U;; = — = nLHFj(Xij)v t=1,...,n, 7 = 1,2, where

35
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R;; is the rank of X;; and FJ the empirical cdf of Xy, ..., X,,;, j = 1,2, since we are not
interested in any measure that is dependent on the choice of margins anyway. This issue
will be discussed in more detail in Chapter 4. Furthermore, n always denotes the number
of observations, in contrast to the number of variables which is denoted by d.

3.1.1 Kendall’s 7 and Spearman’s p

A very natural choice of weights are the empirical versions of dependence measures such
as Kendall’s 7 and Spearman’s p (cp. Kurowicka and Cooke (2006)):

/f_n(XbXQ) = Cn — d” ;
\/cn+dn+e%1)\/cn—|—d +e%2) (3.1)
3.1

" (Rqn—Ry) (Rs—R

) = i (B Ro) (R~ )

\/211 zl—Rl \/Zzl 12_R2)

where ¢, denotes the number of concordant pairs, d, the number of discordant pairs
and el (e (2)) the number of tied pairs with z;; = j (zi2 = j2). Furthermore Ry =
% St Ripand Ry = i > Rio. If there are no ties, 7,, simplifies to 7, (X1, X5) = ﬁ =
(cn — dn)/(g)

These measures adequately summarize the joint behavior of two random variables in a
single value (see Section 2.2.1). However, they cannot account for (asymmetric) behavior
in the tails.

3.1.2 Tail dependence

The fundamental concept of measuring the joint tail behavior of two random variables is
certainly the lower and upper tail dependence (see Section 2.2.2). Based on the definition,
the most natural approach for estimating lower and upper tail dependence is substituting
the theoretical copula C' by its empirical version C),:

C <u17 U2 E 1{U21<’M1 Uia<uaz}s

where uy,us € [0,1] and 1 denotes the indicator function. It will be discussed in more
detail in Section 4.2.1 and defined for general dimension d in (4.5). We first investigate
an estimate of the lower tail dependence (2.25) and obtain

Cn(k k

£ L 1 &
- Tn) - E Z 1{Ui1§%7Ui2S%}
=1

)\lowe'r

n

, (3.2)
1
- E Z 1{Ri1§nT+1k7Ri2SnT+1k}’
=1

where k& € N has to be determined as a function of n with k = k(n) = oo and
k2% (). This estimator is similar to the classical estimator of Huang (1992) and to
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‘ T ‘ N true ‘ t true ‘ C true ‘ G true ‘ F true

lower | 0.25 | 0.14 0 0.26 0.20 | 0.38 0.35| 0.10 0 0.08 0
(.057) (.070) (.080) (.050) (.046)

0.5 | 0.36 0 0.46 0.40 | 0.70 0.70 | 0.24 0 0.15 0
(.074) (.076) (.066) (.068) (.059)

0.75 | 0.65 0 0.71 0.68 | 0.88 0.89 | 0.51 0 0.31 0
(.066) (.065) (.045) (.074) (.072)

upper | 0.25 | 0.14 0 0.25 0.20 | 0.05 0 0.33 0.59 | 0.07 0
(.059) (.073) (.038) (.078) (.045)

0.5 | 0.35 0 0.46 0.40 | 0.09 0 0.59 0.70 | 0.15 0
(.074) (.078) (.050) (.076) (.061)

0.75 | 0.65 0 0.71 0.68 | 0.18 0 0.81 0.84 | 0.31 0
(.067) (.066) (.064) (.054) (.073)

Table 3.1: Estimated lower and upper tail dependence S\iff,‘;” and 5\:‘;” 7" using k = |/n] for
R = 1000 repetitions and three choices of Kendall’s 7 to determine the copula parameters
(cp. Table 2.1). Standard errors are displayed in brackets, true values in the respective
columns (also see Table 2.1).

estimator /A\S;C in Dobri¢ and Schmid (2005). The latter authors prove that if C' has

continuous partial derivatives and k & y/n asymptotically, then j\ﬁw’" is weakly consistent
and asymptotically unbiased. The choice of k & /n is called the ”square root of n rule”
and we will use it in the following, to be more precise we will use k = [/n].

Similarly to the lower tail dependence estimator in (3.2) we can define an estimator
of the upper tail dependence parameter (2.26) based on an empirical version of the joint
survival function (2.1)

1 n
On(“la u2) == ; E 1{Ui1>1—U1,Ui2>1—ug}'
=1

This directly yields the following estimate

n

“k Z l{Ri1>n+l—"T+1k,Ri2>n+l—"T+1k}' (3.3)

=1

{ upper
/\n k

To evaluate the performance of these two estimators, we simulated n = 1000 observa-
tions, which we believe is a reasonable sample size in many applications, from five bivariate
copula families (Gaussian (N), t with four degrees of freedom, Clayton (C), Gumbel (G),
Frank (F)) with three different choices of Kendall’s 7 which determine the respective cop-

ula parameters and computed the lower and upper tail dependence estimates Xiﬁ’f,ﬁe" and

S\Zf’,f” as given in (3.2) and (3.3), respectively. We repeated this R = 1000 times. The
results are shown in Table 3.1.

The symmetric tail dependence of the observations generated by the t copula and
the asymmetric one of the observations from the Clayton and Gumbel copulas are well



CHAPTER 3. CONSTRUCTION OF REGULAR VINES 38

1=0.25 =05 1=0.75
5 3 ; o T
N | eyl o 7 — ocaussian|
- - t(df=4) | - - t(df=4) ; - - t(d=4) ;
true : L ‘ £ |
@ : © ‘ ) ‘
[S) : ® | 2 |
g : o 1 ® i
o g o
x ‘ g3 ‘ T © W
e ° ; T O 1 88
c | g ! g ‘
) 2 :
3 | g . e 2 |
< i O SR
z° ; 2351 i 2 I
i | # G| B
S e n R T TR ~ : N
) ‘ X | y
g ! 0. g Jni g W
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
k K )

Figure 3.1: Tail dependence of Gaussian and t copulas estimated as in Kliippelberg et al.
(2007) with three different choices of Kendall’s 7 which determine the copula parameters
(cp. Table 2.1).

estimated. The estimates of the respective opposed tails for the two latter copulas are
also essentially adequate (more accurate for the Clayton than the Gumbel copula) as
well as the estimates for the Frank copula observations. However, the estimates for the
observations from the Gaussian copula are surprisingly close to the estimates based on the
data from the t copula. This is a serious drawback of these estimators. Moreover, in all
cases with theoretically zero tail dependence, the estimates, especially for the observations
from the Gaussian copula and less for those from the Frank copula, get worse as Kendall’s
T increases.

To investigate these problems further, we consider an alternative tail dependence es-
timator, namely the estimator proposed by Kliippelberg et al. (2007). This estimator is
constructed for elliptical distributions and therefore should be particularly useful for the
comparison of observations from Gaussian and t copulas. For a definition of the estimator
we refer to the paper (since elliptical distributions are symmetric and hence lower and
upper tail dependence coincide, we only need one estimator). Here we report the results
of a Monte Carlo study with the same setting as before, but only for the Gaussian and the
t copula (the consideration of Archimedean copulas such as the Clayton or Gumbel is of
course not sensible). Furthermore, we considered the parameter k, which determines the
number of observations used in the estimation, for values between 25 and 100 (= 10% of all
observations). The results are displayed in Figure 3.1. Our usual choice of k = [/n] = 31
is marked. It seems that it is a good choice in this setting as well.

Apparently, the estimator of Kliippelberg et al. (2007) gives a good estimate for ob-
servations generated by a t copula. However, even if it is designed especially for elliptical
distributions, it does not reflect the zero tail dependence induced by the Gaussian copula
either. As this estimator also exhibits this problem and it is not universally applicable, it
is no reasonable alternative to our estimators S\fff,;’er and S\Zp e

Dobri¢ and Schmid (2005) confirm our results. In a Monte Carlo study they show
that S\ff};e’” is biased in finite samples. But the authors also state that there are currently

no unbiased estimators available for omnibus use. Therefore we will use Xﬁg‘,ﬁj” and \"PPer
because of their intuitively appealing form, but have to keep in mind their potential bias
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and the problems with distinguishing clearly between observations from a Gaussian and
a t copula with significantly different theoretical tail behavior.

3.1.3 Exceedance dependence

As the estimation of tail dependence is rather difficult and prone to bias due to the small
proportion of observation which can be used for estimation (e.g., for n = 1000 and the
”square root of n rule”, only 31 observations are used!), we propose an alternative method
to determine the tail behavior of pairs of random variables.
Ang and Chen (2002) use the measure of exceedance correlation with certain thresholds
01 and ds
COTT’(Xl,X2|X1 S 51,X2 S (52) (34)

This measure is however not independent of the margins of X; and Xs, since it is based
on Pearson’s product-moment correlation coefficient (2.20). Therefore we slightly modify
definition (3.4) and use the common dependence measures Kendall’s 7 and Spearman’s p
(cp. Section 2.2.1) instead of the Pearson correlation. Furthermore we define a lower and
an upper version of exceedance dependence to consider both types of joint tail behavior.
We thus obtain the lower and upper exceedance Kendall’s T, respectively, which are defined
as follows:

v (U, Us|Uy < 61, Uy < 63),
Tupper(Ub UQ‘Ul > (51,U2 > 52)

The definition is stated in terms of the pseudo-variables U; and U, so that we can choose
9 and Jy in [0, 1]. (Otherwise we obtain the same results if we consider the thresholds
F1(61) and Fy(d2) instead.) The lower and upper exceedance Spearman’s p are given in the
same way.

Similarly to Theorem 2.9 (cp. Theorems 5.1.1 and 5.1.3 in Nelsen (2006)) theoretical
expressions of lower and upper exceedance Kendall’s 7 for continuous random variables
with copula C' can be obtained by

4 8o 61
lower (17, Uy|Uy < 6y, Uy < & :—/ /c dC —1
T (Ur, Us|Uy < 61,Us < 62) co ) ) (u1, u2)dC(ur, us) — 1,

4 1 1 3
TP (U, Us|Uy > 61, Uy > 0y) = ——2/ / C (u1, up) dC(ur, ug) — 1 (3.5)
C ((51,52) 62 J o1

Sl
= [1 — UL — U + C(Ul, ’LLQ)] dC(Ul, 'LLQ) — 1,
(1 —wuy —ug + C(61,8)] Js, Js,
where C is the corresponding joint survival function as defined in (2.1). Similar expressions
can also be derived for the lower and upper exceedance Spearman’s p. In most cases,
explicit solutions of the integrals in (3.5) are though hard to obtain. An exception is the
lower exceedance Kendall’s 7 of the Clayton copula with parameter 6 (cp. Section 2.1.3):

4 (14 0)(67° +6,° — 1)~
loweTU’UU<6,U <) = . 1 2 —1
T (U1, Us|Uy < 61,Us < 09) (61_0_'_52—9_1)75 2(246)
4(1+40 2
_ ( _>— ——:T(UlaUQ)‘

)

- 2(2+0) 2+
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lower exceedance dependence
T N t C G F J

0.1{0.023 0.162 0.100 0.014 0.005 0.001
0.2 10.053 0.189 0.200 0.033 0.013 0.003
0.310.091 0.223 0.300 0.058 0.026 0.006
0.41]0.141 0.266 0.400 0.092 0.043 0.010
0.510.206 0.321 0.500 0.139 0.069 0.018
0.6 | 0.290 0.392 0.600 0.204 0.110 0.033
0.7 1 0.400 0.483 0.700 0.298 0.177 0.063
0.8 | 0.547 0.604 0.800 0.438 0.302 0.132
0.91]0.743 0.769 0.900 0.656 0.558 0.326

upper exceedance dependence

T N t C G F J

0.1{0.023 0.162 0.001 0.138 0.005 0.191
0.2 ]0.053 0.189 0.002 0.211 0.013 0.282
0.310.091 0.223 0.006 0.273 0.026 0.361
0.41]0.141 0.266 0.010 0.337 0.043 0.439
0.510.206 0.321 0.019 0.407 0.069 0.523
0.6 { 0.290 0.392 0.035 0.487 0.110 0.612
0.7 10400 0483 0.066 0.582 0.177 0.702
0.8 1 0.547 0.604 0.136 0.695 0.302 0.800
0910743 0.769 0.342 0.832 0.558 0.896

Table 3.2: Theoretical lower and upper exceedance Kendall’s 7’s (710" and 7%PP¢") with
thresholds 6; = d, = 0.2 for lower and d; = d, = 0.8 for upper dependence, respectively.
Copula parameters are chosen according to Kendall’s 7's between 0.1 and 0.9 (cp. Table
2.1).

This result (7/°““r = 1) is however an exception as shown in Table 3.2 which displays
theoretical lower and upper exceedance Kendall’s 7’s (mainly obtained by numerical inte-
gration) for some common bivariate copula families (Gaussian (N), t with four degrees of
freedom, Clayton (C), Gumbel (G), Frank (F), Joe (J)) and §; = §, = 0.2 for lower and
01 = 02 = 0.8 for upper dependence, respectively. Parameters of the copulas are chosen
according to eight different choices of Kendall’s 7.

Obviously, exceedance Kendall’'s 7 is able to discriminate between pairs of random
variables that exhibit strong joint tail behavior and those that do not. E.g., the Clay-
ton copula with lower tail dependence has high lower exceedance dependence, while the
Gumbel and the Joe copula have high upper exceedance dependence. The symmetric tail
dependence of t copulas is also clearly reflected in the corresponding exceedance depen-
dence. However, there are again some problems in discriminating Gaussian and t copulas,
but, as we will see in the following, in contrast to tail dependence, the theoretical and
empirical values agree when working with exceedance dependence.
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Figure 3.2: Estimated lower and upper exceedance Kendall’s 7 720%¢" (left column) and
THPPET (right column), respectively, for different thresholds and with three different choices
of Kendall’s 7 to determine the copula parameters (cp. Table 2.1; 7 = 0.25 in the top row,
7 = 0.5 in the middle row, 7 = 0.75 in the bottom row). The thresholds of §; = J, = 0.2
for lower and d; = 9, = 0.8 for upper dependence are indicated by vertical lines.
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7 | Gaussian t (df =4) Clayton Gumbel Frank

0.25 | 7.44% 8.00% 9.37% 6.68%  7.22%
0.5 | 11.40% 11.78% 14.29%  10.27% 10.95%
0.75 | 15.63% 15.83% 17.82%  14.75%  15.30%

Table 3.3: Theoretical number of observations used in the estimation of lower exceedance
dependence with threshold §; = 9, = 0.2 and with copula parameters given according to
three choices of Kendall’s 7 (cp. Table 2.1).

Estimators are easily obtained by using the empirical versions 7, and p,, of Kendall’s 7
and Spearman’s p, respectively (see (3.1)). Note that these exceedance measures critically
depend on the thresholds §; and d,, because they determine how many observations are
used in the estimation. In our applications we always choose d; = d,, since other choices
require some specific a priori knowledge about the data which we do not have in general.

To investigate the empirical versions of exceedance dependence, we performed a Monte
Carlo study as before: we simulated n = 1000 observations from five bivariate copula
families with three different choices of Kendall’'s 7 and computed the lower and upper
exceedance Kendall’s 7. The results of R = 1000 simulations are shown in Figure 3.2.

Obviously, the empirical exceedance Kendall’s 7’s agree with the theoretical values
at 61 = d = 0.2 for lower and §; = J, = 0.8 for upper dependence (cp. Table 3.2).
Moreover, these thresholds of 20% for the lower tail and 80% for the upper tail seem to be a
good compromise between distinguishable results and a reasonable number of observations
that are used in the estimation. These (theoretical) numbers of observations used in the
estimation of the lower exceedance dependence with threshold 20% are displayed in the
Table 3.3.

3.1.4 Tail cumulation

This dependence measure is graphically motivated. As before we concentrate on those
variable pairs that show a strong comovement in the tails, i.e., in the lower-left and upper-
right quadrants of [0, 1]>. When we consider scatter plots of the data, we are therefore
mainly interested in the bottom left and right upper corner of the plot. Hence, we can
determine dependence by simply comparing the observed data with data from independent
observations. If two random variables U; and U, are independent and uniformly on [0, 1]
distributed, we can easily compute ¢; = ¢;(«) such that P(U; < ¢,Us < ¢) = a € [0, 1],
i.e., the boundaries of a box in the bottom left corner of the scatter plot which contains,
e.g., a = 10% of all observations.

a=PU <qUs<¢)=PU <a)PU:<a)=c¢ & a=a,

and similarly ¢, = ¢,(a) = 1 — \/a so that P(U; > ¢,,U; > ¢,) = a. If variables are
dependent in the tails, we expect that more than o x 100% of the observations lie within
the boxes determined by ¢; and ¢,, i.e., the observations are cumulated in this box. As
an illustration consider Figure 3.3 which shows how dependence in the tails is measured.
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Figure 3.3: Illustration of tail cumulation.

Based on these considerations we define lower and upper tail cumulation as a graphically
motivated extension of tail dependence which we considered in Section 3.1.2:

#{observations in [0, ¢;(a)]*}

2 lower
" n
1 n
— E Z 1{Uil§Cl(a),Ui2§cl(a)} —a,
=1
upper _ #{observations in [c,(a), 1]?} .
" n
1 n
— ﬁ Z 1{Ui1>Cu(a),Ui2>cu(a)} — .
i=1
2 lower

Positive values of 4,°“¢" and 4/PP*" indicate that the random variables exhibit a certain
comovement in their tails. The maximum sensible value of « is 0.25 because this means
that we divide the scatter plot into four equally sized squares which, under independence,
contain 25% of all observations each.

To assess the measure of tail cumulation we performed a Monte Carlo study with
the same setting as for the measures of tail and exceedance dependence (see Figure 3.4).
Apparently, tail cumulation is not able to clearly distinguish between variable pairs with
or without strong joint tail behavior, except for the asymmetric tail dependence induced
by the observations from the Clayton copula and, partly, those from the Gumbel copula
for v € [0.05,0.15]. However the observations generated from the t copula can barely be
distinguished from those of the Gaussian copula. These results can also be inferred from
the theoretical copula distribution functions C(c,c¢) = P(U; < ¢,U; < ¢) as displayed in
Figure 3.5. As a result, the measure of tail cumulation should be used carefully. It might
be useful in situations when one is particularly interested in asymmetric tail dependence,
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Figure 3.4: Estimated lower and upper tail cumulation 4/%¢" (left column) and 4“PPer

(right column), respectively, for different o’s and with three different choices of Kendall’s
7 to determine the copula parameters (cp. Table 2.1; 7 = 0.25 in the top row, 7 = 0.5 in
the middle row, 7 = 0.75 in the bottom row).
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Figure 3.5: Theoretical copula distribution functions C'(c,c) = P(U; < ¢, U, < ¢) for five
different families and three choices of Kendall’s 7 which determine the copula parameters
(cp. Table 2.1; 7 = 0.25 in the left column, 7 = 0.5 in the middle column, 7 = 0.75 in the
right column).

especially in lower tail dependence (as induced by the Clayton copula) which is often
important in financial application. Furthermore it represents an alternative to Kendall’s
7 which may be insightful in certain applications due to the clear graphical interpretation.
As for all measures discussed here, but for tail cumulation in particular, a high number
of available observations is desirable to obtain good estimates.

3.1.5 Fréchet dependence

For every copula we know that the Fréchet-Hoeffding bounds hold (see Theorem 2.3).
In the bivariate case both bounds W (ui,us) = max(u; + ug — 1,0) and M (uy,uz) =
min(uy, ug) are copulas themselves. As the Fréchet-Hoeffding bounds of course also apply
to the independence copula II(u1,us) = ujus, it is a reasonable idea to define the finite
mixture

Caplur,ug) = aW(ug,ug) + (1 — a — B)(uy, ug) + BM (uy, usz), (3.6)

where o, f > 0 and a + 8 < 1 (Nelsen 2006), i.e., Cy, g is a convex combination of W,
IT and M. Moreover, C, s is again a copula and was originally considered by Fréchet
(1958). It defines the most natural comprehensive copula family, where a family is called
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Figure 3.6: Empirical contour plots (based on 10,000 samples) of the copula C, s for
different choices of v and S.

comprehensive when it includes W Il and M. Contour plots for standard normal margins
and different choices of a and g are shown in Figure 3.6. The lower and upper tail
dependence of C, g is a.

Equation (3.6) motivates our definition of negative and positive Fréchet dependence
ar and g, respectively, as the solution of the following optimization problem which is
based on a least squares approach and can be formulated as a quadratic program (see
Appendix 3.3.1 of this chapter).

n

miﬁn [O{W(Uil, UiQ) + (1 - — ﬁ)H(UZl, UZ'Q)
=1

+ BM (uin, wiz) — Cp(wir, Ui2)]2 (3.7)

subject toa+ 3 <1, >0, g >0.

Obviously ar is a measure of negative dependence as it reflects the "amount” of W (the
copula representing perfect negative dependence, cp. Theorem 2.5) that is incorporated
in the unknown copula C'. Similarly, Sr measures the positive dependence.

Note that, amongst others, the Gaussian, t and Frank copula families are comprehen-
sive, while the (rotated) Clayton and Gumbel families are not (cp. the special (limiting)



CHAPTER 3. CONSTRUCTION OF REGULAR VINES 47

7 | Gaussian ¢t (df =4) Clayton Gumbel Frank

0.25 | 0.33 (.071) 0.33 (.069) 0.32 (.072) 0.32 (.066) 0.33 (.073)
0.5 | 0.62 (.072) 0.62 (.070) 0.62 (.080) 0.61 (.067) 0.63 (.071)
0.75 | 0.86 (.064) 0.85 (.067) 0.86 (.069) 0.85 (.063) 0.86 (.063)

Table 3.4: Estimated positive Fréchet dependence BF for R = 1000 repetitions and three
choices of Kendall’s 7 which determine the copula parameters (cp. Table 2.1). Standard
errors are displayed in brackets.

cases of the bivariate copula families as described in Section 2.1.3). Nevertheless, even if
data comes from the latter families, Fréchet dependence is an intuitive dependence mea-
sure. Table 3.4 displays the results of a Monte Carlo study with R = 1000 repetitions and
n = 1000 observations from five different copula families with three choices of Kendall’s
T to determine the copula parameters. Only the estimates of the positive Fréchet depen-
dence BF are displayed as we only consider positive Kendall’s 7’s (the estimates of the
negative Fréchet dependence ap were 0 except for some very small values).

Even if the (rotated) Clayton and Gumbel families are not comprehensive and not
symmetric in contrast to the quite restrictive definition of C, 4 in (3.6) which only allows
to capture a limited amount of dependence properties (cp. Figure 3.6), the table shows
that Fréchet dependence is consistently estimated across copula families. However, its
values do not permit any statement about tail behavior (which is clear from the definition
of C, ), but Fréchet dependence is still an alternative to Kendall’s 7 as its interpretation
is different and very intuitive. Since its values are higher than those of Kendall’s 7, high
dependence is more pronounced which may be interesting in certain applications.

3.1.6 Hu dependence

The derivation of Fréchet dependence is quite appealing, but the definition of the copula
family C, 3 in (3.6) is rather restrictive with regard to dependence properties such as
tail dependence. Pursuing the idea of determining dependence measures by comparing
characteristics of the observed data to those of a theoretical copula family, we define an
alternative mixed copula family by

Cw(ul, Ug) = wlcéglG(Ul, Ug) + (1 — W — OJQ)CF])V(Ul, Ug) + (JJQC@C; (Ul, UQ), (38)

where C’/])V denotes a Gaussian copula with parameter p, 0002 a Gumbel copula with pa-
rameter #, and Céglc a Gumbel survival copula with parameter #;, which is defined as

nglG(ul,UQ) ZU1+U2—1+09G1(1—U1,1—U2), (39)

and exhibits lower tail dependence A“¢" = 2 — 21/% hut no upper tail dependence (cp.
Table 2.1). Moreover, wy,ws > 0 and w; +wp < 1, i.e., C,(uq,uz) is a convex combination
of C’aslG, C’/ﬁv and C’HG2 . This copula family has been considered by Hu (2006) to model the
dependence structure of financial markets which usually show asymmetric tail dependen-
cies. Contour plots for standard normal margins and different choices of w; and wy as well
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Figure 3.7: Empirical contour plots (based on 10,000 samples) of the copula C,, for different
choices of w; and wy as well as Kendall’s 7 to determine the copula parameters (cp. Table
2.1; 7 = 0.3 in the top row and 7 = 0.7 in the bottom row).

as Kendall’s 7 to determine the copula parameters 6, 6 and p according to Table 2.1 are
shown in Figure 3.7 and illustrate the possible dependence properties of C,,. (Note that
copula parameters according to different choices of Kendall’s 7 are of course also possible
but not sensible in our opinion.)

The idea is now to find the weights w; and w, under the assumption that our observa-
tions come from the underlying copula C,. Then w; reflects how close the unknown copula
C' is to the Gumbel survival copula, and wsy the corresponding closeness to the Gumbel
copula, where these copulas are chosen as proxies for lower and upper tail dependence.
What remains, i.e., 1 —w; —wsy, expresses the "normality” of the data. However, in contrast
to the family C, g as defined in (3.6), C,, also requires the estimation of the dependence
parameters 01, 6y and p. To keep the computational effort rather low, we choose these
parameters according to the empirical Kendall’s 7 and the well-known inversion formu-
las (cp. Table 2.1), where for the Gumbel survival copula the same inversion formula as
for the Gumbel copula holds, i.e., 6, = 6, (also cp. Section 4.1.2). Then we define the
lower and upper Hu dependence w; and ws, respectively, as the solution of the following
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7 | Hudep. | Gaussian t (df =4) Clayton Gumbel Frank
0.25 o1 0.033 (.12) 0.504 (.13) 0.932 (.04) 0.037 (.05) 0.108 (.13)
1 —w —we | 0.836 0.000 0.000 0.052 0.787

@y 0.081 (.11) 0.496 (.13) 0.066 (.04) 0.911 (.10) 0.105 (.13)

0.5 ) 0.050 (.07) 0.489 (.08) 0.930 (.04) 0.033 (.04) 0.267 (.11)
1 —w; —we | 0.898 0.010 0.000 0.028 0.472

s 0.052 (.08) 0.501 (.08) 0.070 (.04) 0.939 (.06) 0.261 (.11)

0.75 ) 0.028 (.04) 0.458 (.09) 1.000 (.00) 0.023 (.03) 0.487 (.05)
1 —w; —we | 0.946 0.084 0.000 0.022 0.025

@y 0.026 (.04) 0.458 (.08) 0.000 (.00) 0.955 (.05) 0.488 (.05)

Table 3.5: Estimated lower and upper Hu dependence w; and w, for R = 1000 repetitions
and three choices of Kendall’s 7 to determine the copula parameters (cp. Table 2.1).
Standard errors are displayed in brackets.

constraint optimization problem:

n
max E log [wlch
w1,w2 4 7 1
1=

subject to wy; +we <1, wy >0, wy >0,

(wir, win) + (1 — w1 — wa)eh (i, uin) + W2Cgi(ui1>ui2)]

i.e., we choose w; and W, so that the log likelihood of the copula density corresponding to
C,, is maximized with respect to w; and ws. The problem can be solved using an adaptive
barrier method for non-linear objective functions as described in Section 14.4 of Lange
(1999), where the linear inequality constraint can be written similar to (3.13). Results
of a Monte Carlo study with R = 1000 repetitions and n = 1000 observations from
five different copula families with three choices of Kendall’s 7 to determine the copula
parameters are shown in Table 3.5.

Evidently, Hu dependence of Gaussian, Clayton and Gumbel copulas is well estimated
with increasing accuracy when dependence increases. Moreover, the estimates for the
t copula are sensible, since it exhibits lower and upper tail dependence and hence is
best approximated by a 50:50 mixture of a Gumbel and a Gumbel survival copula. The
symmetry of the Frank copula is also reflected in the estimates, but these increase with
higher dependency which does not correspond to the zero tail dependence of the Frank
copula. The reason is that observations from Frank copulas with high dependence do
not resemble the more scattered observations of Gaussian copulas (cp. Section 5.4), i.e.,
w1 4+ Wy can also be seen as a measure of non-normality of the observations.

An alternative measure for detecting asymmetric tail dependence could be based on
the family N

Coo(ur, uz) = wCH (ur, uz) + (1 — w)CF (ur, us),

which corresponds to family C,, as defined in (3.8) with w; + ws = 1. However, the single
parameter w only allows a statement regarding symmetric or asymmetric tail dependence
but not regarding the size of tail dependence. If w; + wy < 1 in family C,,, then the
tail dependence of the observed data is not as strong as implied by the Gumbel (survival)
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Figure 3.8: Four types of tail dependence with data generated from Clayton copulas
(rotated and non-rotated) by way of illustration.

copulas, since the Gaussian copula does not exhibit tail dependence. Hence, we concentrate
on the copula family C,, which is more flexible than C,,.

3.1.7 Rotated measures

Clearly tail dependence, exceedance dependence and tail cumulation, which investigate the
tail behavior of variable pairs, only give sensible values for positively dependent variables.
Strong joint tail behavior of negatively dependent variables, e.g., observations generated
by rotated Clayton or Gumbel copulas (see Section 2.1.3), is not considered. However, the
measures discussed here can easily be extended to capture these dependencies as well. We
will refer to these measures as rotated measures correspondingly to the notation of the
rotated copulas. This implies that rotated upper tail dependence, even if it may appear
counterintuitive, is the potential comovement of variables which can be observed in the
bottom right corner of the corresponding scatter plots, while rotated lower tail dependence
is related to the upper left corner (see Figure 3.8). With this at hand, we can define the
rotated versions of the measures discussed above.

o Rotated tail dependence: We define the rotated lower tail dependence estimator as

n
Xrotated—lower _ l 1 | |
n,k Tk E {Ri <"k, Ria>nt+1- "0k}
=1

and the estimator of rotated upper tail dependence accordingly.
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e Rotated exceedance dependence: The definition of an estimator for rotated lower
exceedance Kendall’s 7 is also straightforward:
7A_77L'otatedflower(U*17 U2|U1 S 917 U2 > 02)’
and similarly for Spearman’s p and the corresponding upper versions.

e Rotated tail cumulation: In essentially the same way we define rotated lower tail
cumulation as

1 n
~rotated—lower __
n o E Z 1{Ui1§Cl(a),Ui2>cu(a)} - Q,
=1
and Arotated=uprer accordingly.

Moreover, Hu dependence can also be extended to consider negative joint tail behavior as
well. Instead of the Gumbel and the Gumbel survival copulas in Equation (3.8), we can
choose the rotated Gumbel copula and an appropriately defined rotated Gumbel survival
copula, i.e., the Gumbel copula rotated by 270°.

Now, the question arises how to incorporate this additional information. Rotated and
non-rotated measures cannot be summarized easily, since the rotation is not unique but
can be performed both clockwise and counterclockwise. Furthermore, if observations are
positively dependent, there may be only a few observations in the right bottom corner
and upper left corner which may lead to misleading large estimates such as —1 or 1. It is
therefore unclear how to incorporate the information of rotated measures appropriately,
i.e., they should be considered separately to gain additional information.

3.1.8 Implementation issues

The measures defined above allow various possible choices for the weight of a variable
pair. For exceedance dependence the threshold can be chosen between 0% and 50% for
lower dependence and between 50% and 100% for upper dependence, respectively, while
tail cumulation permits choices of a between 0% and 25%. Sensible values can be inferred
from Figures 3.2 and 3.4. Note that also the choice of k for tail dependence estimation
is arbitrary as long as k = k(n) 2%, 50 and % 7%, 0. Nevertheless, we think the the
choice of k = |y/n] is reasonable due to its theoretic justification in Dobri¢ and Schmid
(2005).

Measures based on Kendall’s 7 and Spearman’s p should be taken as absolute values as
only the absolute dependence is of interest in most cases and weights have to be positive.
However, positive and negative values might also be weighted differently depending on
the specific application.

Moreover, for those measures with different values for lower and upper dependence
(i.e., all apart from Kendall’s 7, Spearman’s p and Fréchet dependence), one can choose,

e.g.,
e cither lower or upper dependence,

e the maximum of both values,
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number of tuning negative | asymmetric
values parameter dep. dep.
Kendall’s 7/Spearman’s p 1 - v -
Tail dependence 2 v - v
Exceedance dependence 2 v - v
Tail cumulation 2 v - v
Fréchet dependence 2 - v -
Hu dependence 2 - - v

Table 3.6: Overview of the weight measures discussed in Sections 3.1.1 to 3.1.6. As noted
in Section 3.1.7, all measures can be extended to capture negative dependence as well.

e the difference of both values to pronounce asymmetric behavior, or
e a weighted sum of both values (e.g., 50 : 50).

Additionally, rotated versions of these measures are available and can be considered as
weights, too.

In the end, the choice always depends on the particular application and the preferences
of the user. If tail behavior is considered, exceedance dependence is probably the best
choice, since theoretical and empirical values usually agree — quite the contrary to tail
dependence. The different weight measures are summarized in Table 3.6. Also note that
the computation of the measures discussed here (except for Hu dependence) is faster than
or equally fast as the computation of Kendall’s 7’s or Spearman’s p’s. This is even true for
the quadratic optimization problem in the computation of Fréchet dependence, which can
be solved explicitly using linear algebra (see Section 3.3.1). Hu dependence, on the other
hand, does not lead to a quadratic optimization problem and therefore is computationally
more complicated.

3.2 Construction methods

To construct an R-vine we are now free to choose one of the measures discussed in Section
3.1 (or any other suitable weight). The setting for the construction of the first tree 7} is
always a complete undirected graph (see Section 2.3; undirected because all dependence
measures are symmetric) with the d variables as nodes and the weights w;; attached
to the corresponding edges e;; which represent the corresponding value of the chosen
measure for the variables X; and X;. Subsequent trees then have to be constructed under
restrictions imposed from all previous trees — especially when constructing D-vines, the
first tree determines all remaining trees. In the following we act under the presumption
that we want to maximize the sum of weights in each tree, i.e., we want to capture as
much "dependency” as possible, where "dependency” refers to the respective weights.
Furthermore, we assume that w;; € [0,1] which is true for the (absolute values of the)
measures defined in Section 3.1.
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Figure 3.9: Construction of the first tree of an R-vine (left panel), a C-vine with root node
2 (middle panel) and a D-vine with path 2 —6 —5 — 1 — 3 — 4 (right panel).

We start considering general R-vines and then turn to the special sub-problems of C-
and D-vine construction, which correspond to finding a spanning star and a Hamiltonian
path in complete graphs, respectively (see Figure 3.9), where the construction of C- and
in particular R-vines has already been considered in Difmann (2010).

3.2.1 Regular vines

As mentioned in the introduction to this chapter, we rely on a sequential method when
constructing an R-vine. This means that we construct one tree per step and start with the
first tree 1. To construct this first tree, we have to find a tree that visits all nodes and
maximizes the sum of the edge weights (cp. the left panel in Figure 3.9). Such a tree is
called a mazimum spanning tree (cp. Section 2.3). Usually in the literature minimization
rather than maximization problems are considered and therefore we redefine our edge
weights to wj; = 1 — w;; for weights w;; € [0, 1], since

min Z (1 —w;;) © max Z Wi, (3.10)

edges e;; in edges e;; in
spanning tree spanning tree

which is due to the fact that spanning trees always have the same number of edges, namely
d — 1 for a graph on d nodes.

Hence we want to find a minimum spanning tree in terms of the edge weights w;;. For
this problem, there are several exact algorithms available. Here we choose the well-known
algorithm of Prim (1957) which is presented in Algorithm 1 (cp., e.g., Papadimitriou and
Steiglitz (1998)).

Further trees are constructed similarly. First, we construct a graph with the edges of
the previous tree as nodes and edges according to the proximity condition in Definition
2.15. In general, this is not a tree (except for D-vines). Therefore we have to find a
maximum spanning tree in terms of weights calculated for the respective transformed
observations (2.19) and can apply Algorithm 1.

Even for simple implementations, Prim’s Algorithm 1 has a time complexity of only
O(|N|?) (Papadimitriou and Steiglitz 1998), where N is the set of nodes. As we have to
apply the algorithm at most d — 2 times (the graph obtained from T, 5 is always a tree)
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Algorithm 1 Minimum spanning tree (Prim).
Input: Connected graph G = (N, E, w).
1: Choose starting point v* € N. Define N := {v*} and E = .
2. while N # N do
3:  Choose an edge e = {u,v} with minimal weight w such that u € N and v is not.
4 Set N:= NU{v}and E := EU {e}.
5: end while
Output: Minimum spanning tree G = (N, E)

Algorithm 2 Root node search.

Input: Complete graph G' = (N, E,w) with |[N| = m and weight matrix w = (w;;).
1: for i =1tom do
2:  Compute w; = ZT:1 W;j.
3: end for

Output: Root node v* = argmax{w;, i =1,...,m}.

and the number of nodes is bounded by the number of variables d, the time complexity
of R-vine construction with given weights is O(d?).

3.2.2 Canonical vines

C-vine trees T; are characterized by a unique root node of degree d — i (see Definition
2.16). A special feature of C-vines is thus that the graph constructed from the previous
tree is always complete. Hence we have to determine the root node of each tree by finding
a spanning star (cp. Section 2.3), which maximizes the edge weights, in a complete graph
(cp. the middle panel of Figure 3.9). This can be established by Algorithm 2 which is
straightforward to implement. As before the first tree 17 takes the observed data as input
variables, while the subsequent trees are based on the transformed observations obtained
from the previous trees (cp. (2.19)). Weights have to be calculated in each step.

The time complexity of a root node search using Algorithm 2 is obviously O(|N|?) (one
loop over the rows of the weight matrix and one sum over the columns). Following the
same arguments as for general R-vine construction, we therefore have a time complexity
of O(d?) for the construction of a C-vine with given weights.

3.2.3 D-vines

In a D-vine the first tree 7 uniquely determines all remaining trees. We are therefore
only interested in the construction of this first tree and do not have to worry about all
subsequent trees. However, it turns out that this construction is much harder than in the
previous cases.

The problem of constructing the first D-vine tree is in fact the problem of finding a
path (see Section 2.3), since in a D-vine each node in 7} has by definition a degree of at
most 2 (see Definition 2.16). We have to find the longest (in terms of the edge weights
wij, 4,J = 1,...,d, i # j) sequence of the variables in which each variable occurs only
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Figure 3.10: Left panel: complete graph with dummy node 7 and Hamiltonian cycle, which
yields the Hamiltonian path 5 —4 — 1 —2 — 3 — 6 (left panel). Right panel: two disjoint
cycles ("subtours”).

once, i.e., the longest Hamiltonian path (cp. Section 2.3; e.g., 2 —6 —5—1—3 — 4 as
in the right panel of Figure 3.9). Usually, in the literature such problems are considered
as minimization rather than maximization problems. Therefore we proceed as before and
redefine our edge weights as wj; = 1 — w;;, which is justified in (3.10), where we now
consider the edges on a Hamiltonian path instead of a spanning tree. (Here, the same
reasoning as before holds, since Hamiltonian paths always have the same number of edges.)

We are then looking for the shortest Hamiltonian path in terms of the edge weights
wj; and can transform the problem into a Traveling Salesman Problem (TSP), i.e., the
search for the shortest cycle ("tour”) that visits each node exactly once (the shortest
Hamiltonian cycle), by adding a ”dummy node” d + 1 with weight zero on all edges to
other nodes (w; 4,, =0 Vi =1,...,d) as described in Garfinkel (1986). When deleting this
dummy node from a tour, we obtain the shortest Hamiltonian path without changing the
length of the solution (cp. left panel of Figure 3.10).

We can formulate this extended problem as the following optimization problem (cp.,
e.g., Garfinkel (1986)):

d+1 d+1
. /
m)%n E E wijxij
i=1 j=1
d+1
subject to E vy =1, 1=1..,d+1,
i=1
d+1

ay=1j=1..,d+1,
j=1

Lij c {0, 1}

(3.11)

The first two constraints ensure that each node occurs in the cycle only once. Additionally
so-called subtour elimination constraints are necessary so that we do not obtain a solution
with disjoint cycles such as 1 —3 —6 — 1 and 2 — 4 — 5 — 2 in the right panel of Figure
3.10. The solution matrix X = (x;;);j=1,..4+1 represents a tour and can be read as follows:
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Figure 3.11: A 2-Opt step: complete graph with Hamiltonian cycle (left panel) and flipped
edges (right panel).

x;; = 1 if and only if edge e;; is included in the cycle, i.e., variables X; and X; are directly
connected.

The TSP formulated in (3.11) is symmetric (wj; = w};) and non-metric, since, in
contrast to the classical TSP where the weights are Fuclidean distances between cities,
the triangle inequality (wj; < wj, +wy; for k # i, j) does not hold for the edge weights (the
dependency between variables X; and X, does not allow such a statement regarding the
dependencies between X; and X, and X and X, respectively). Unfortunately, solving
the TSP is an NP-equivalent problem (cp., e.g., Reinelt (1994)), i.e., no fast solution is
known. Just computing all possible Hamiltonian paths and then choosing the best one is
not feasible as there are % different D-vines in d dimensions. E.g., for d = 10 there are
already 1, 814,400 possible D-vines!

As a result, we rely on heuristics to find a solution. There is a wide range of algo-
rithms in the literature (see, e.g., Reinelt (1994)), and broadly, there are a two different
types: constructive heuristics such as the Nearest-Neighbor algorithm (a greedy algo-
rithm) and improvement heuristics such as the k-Opt heuristic (see below). However,
because our problem (3.11) is non-metric, no statement about the approximation quality
of the heuristics is possible.

In the following we will use the intuitively appealing Chained-Lin-Kernighan heuristic
which is one of the best heuristics currently available (Applegate et al. 2006). This heuris-
tic is based on the work by Lin and Kernighan (1973) who proposed a variable k-Opt
heuristic in order to efficiently obtain near-optimal tours. Relaxing the TSP challenge by
searching for tours, which are perhaps not optimal, increases the efficiency and is rea-
sonable for D-vine construction, since the construction approach itself by maximizing the
sum of weights is an approximation. Moreover, Lin and Kernighan (1973) state that ”the
procedure produces optimum solutions for all problems tested [...] up to 110 cities” and
"the probability of obtaining optimum solutions in a single trial is close to 1 for small-
to-medium problems, say up to the 42-city problem” which is certainly also true for the
number of variables considered in D-vine construction so far.

A k-Opt heuristic iteratively exchanges ("flips”) k edges of a given tour to search for a
possible improvement (see Figure 3.11). Instead of choosing a fixed k (typically & = 2 or
3; k much larger than 3 is impractical), Lin and Kernighan (1973) described an efficient
algorithm to tentatively perform a (possibly very large) number of flips. If this leads to an
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improvement of the given tour, the flips are performed. Otherwise they are discarded and
not considered again in any sequence. This procedure is then repeated for each possible
starting point. As described above this is in fact an improvement method, but random
tours can also be used for initialization of the algorithm. Other choices for the initial tour
are considered, e.g., in Applegate et al. (2006) who also state that for smaller problems
(which applies to our D-vine construction problem) "random tours perform nearly as well
as any other choice”.

This algorithm however means iteratively restarting from scratch on new tours. Martin
et al. (1991) therefore proposed a chained version of the algorithm — the Chained-Lin-
Kernighan heuristic — which slightly perturbs ("kicks”) a previously optimized tour to
leave local optima. We perform the kick if it improves the tour, otherwise we discard
it and try another kick. This approach can improve the performance significantly and
conveniently solve problems of dimension up to 200 (Applegate et al. 2006).

For the construction of the first D-vine tree we use the Chained-Lin-Kernighan im-
plementation of the Concorde TSP code which has been applied for the record-breaking
solutions of very large problems in recent years (cp. Applegate et al. (2006)).

3.3 Appendix: Quadratic programming

A quadratic program is a specific optimization problem with quadratic objective function,
which is to be optimized, and linear constraints. It can be formulated as follows (cp.
Nocedal and Wright (2006)):

1
mwin éaz’Gaz +x'd (3.12)
subject to A'x > b,

where G € R"™" symmetric and d € R™ determine the objective function in terms of
x € R”, while A € R™™ and b € R™ define the constraints. Maximization problems can
be considered as well. If G = 0, then we have a linear program.

Such quadratic programs can always be solved in a finite number of iterations (or are
infeasible), but the efficiency depends of course on the structure of G and the number of
constraints. If G is positive definite, then (3.12) is called strictly conver and is rather easy
to solve (Nocedal and Wright 2006), e.g., using the efficient dual algorithm by Goldfarb
and Idnani (1983). If G is however indefinite, the problem can be much more challenging.

3.3.1 Fréchet dependence

We now want to write the optimization problem (3.7), which we need to solve to determine
the negative and positive Fréchet dependence, as a quadratic optimization problem (3.12)
so that we can apply a suitable algorithm. First, we start with the constraints which can
easily be transformed in the appropriate form.

atf=<l, a -1 110
a>0, @A’(/B)zbwithb: 0 andAz( X ) (3.13)
B>0 0
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Next, we turn to the formulation of the objective function, which is more complicated.
The objective function is given in (3.7) as

g(a, B) = Z[QW(Uu,Um) + (1 — a = B) (w1, uiz) + BM (i, uin) — Cr(wir, uin))?,
i=1

and we want to write it as g(«, §) = %ac’Gac+m’d+c with suitably chosen G, d and ¢, where
x = (o, )" and ¢ is a constant independent of  that can be ignored in the optimization.
In the following we will write W; := W (w1, use), IL; := (w1, use), M; := M (u;,u;2) and
C; = Cp(us, ) to simplify notation.

The first step consists of expanding the quadratic formula and arranging all terms
with respect to o2, a, 3%, 8 and the mixed term «3. We then obtain

g(e, ) =Y [0 (WP + 112 — 2WiIL,) + 203 (I — WIL, + W;M; — T1;M,)
=1
+ 2 (17 + M7 — 2ILM;) + 2a (113 + WiII; — W;C; + I1,CY)
+ 268 (I} + ILM; — M;C; + 1L,C;) + CF — 2ILCY]

Hence we define G = (gi;j)i j=12, d = (d1,d2)" and c as
gi1 = 2Z(Hi _VVi)27
i=1

g22 = 22 (Hi - Mi>27

=1

912:!]21:22(1_11'—”@)(1_[1'—]\/[1')7

i=1

d1:2zn:(ﬂi—Wi)(C,~—Hi),

i=1

dy =2 (I, = M;) (C; — 1L,)
=1

=1

Then we can write g(a, ) = %w’ Gx + x'd + ¢ and solve the minimization problem given
in (3.7) with respect to = («, 3)" using quadratic programming techniques. In order
to apply efficient algorithms such as the one by Goldfarb and Idnani (1983) we have to
show that G is positive definite. According to Sylvester’s criterion, this is the case if and
only if all of the leading principal minors are positive. Obviously, g1; > 0, since W; # II;
for for copula data u;;,u; € (0,1). Moreover, |G| = g11go2 — g5 > 0 follows by the
Cauchy-Schwarz inequality:

> (- Wi)2]

i=1

n 2

> @ - Wh) (IL = M) |

i=1

i (I1; — Mz)zl >

i=1
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where the inequality is strict, since (W; —1I1;),_,  and (II; = M;),_, . are not linearly
dependent (W; # M; for copula data w;1,u;z € (0,1)). Thus, G is positive definite and we
can apply efficient algorithms to solve (3.7).



Chapter 4

Goodness-of-fit tests

Recently, attention is being increasingly paid to goodness-of-fit tests of copulas. When
estimating copula parameters one assumes that the unknown copula C' belongs to a specific
parametric copula family C = {Cy : @ € O}, where O is an open subset of R? for some
integer p > 1. Goodness-of-fit tests allow to assess whether C' actually belongs to this
chosen copula family or not, i.e., we want to test

Hy:CeC against H, :C¢C. (4.1)

There are however only few general guidelines of how to conduct this test. Here we will
concentrate on a testing procedure based on the empirical copula process as suggested by
Fermanian (2005), Quessy (2005) and Genest and Rémillard (2008) and which has turned
out to be one of the most powerful goodness-of-fit tests in simulation studies (Berg (2009),
Genest et al. (2009)). In the special case of testing the multivariate Gaussian copula
against heavy tails, this test though performs rather weakly and hence we present an
alternative test based on the Rosenblatt transformation which performs very well in this
particular case (Berg 2009).

Before presenting these tests, we briefly review univariate goodness-of-fit tests based
on the Kolmogorov-Smirnov and Cramér-von Mises statistics, since we will reduce the
multivariate problem of copula goodness-of-fit testing to a univariate problem which is the
fundamental approach taken in most of the copula goodness-of-fit literature. Further, we
consider the most common estimation methods of copula parameters because testing (4.1)
involves the estimation of @ and the asymptotic behavior of our test statistics relies on the
chosen parameter estimation method. Then we describe the above mentioned goodness-
of-fit tests and show how to calculate p-values for the test based on the empirical copula
process using the only recently proposed multiplier approach by Kojadinovic et al. (2010)
and Kojadinovic and Yan (2010a). Finally, we also discuss multivariate, and in particular
bivariate, tests of independence, where the general multivariate tests are also based on
the empirical copula process as proposed by Genest and Rémillard (2004) and Schmid
and Schmidt (2007).

60
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4.1 Preliminaries

4.1.1 Univariate goodness-of-fit tests

In this section we mainly follow Chapter 14 of Lehmann and Romano (2004). Suppose
that we want to test whether a set of observations z, ..., z, is an i.i.d. sample of a specific
distribution with cdf Fy. By the Glivenko-Cantelli theorem we know that the empirical
cdf ), uniformly tends to F' almost surely, where I is the cdf of the unknown underlying
distribution. A common approach to testing the null hypothesis Hy : F' = Fj is therefore
to consider some kind of distance d between F, and Fj, leading to a test statistic d(Fm Fo).
Popular choices are the Kolmogorov-Smirnov and the Cramér-von Mises statistics.

The Kolmogorov-Smirnov statistic is deduced directly from the Glivenko-Cantelli the-
orem and hence defined as

D, = v/nsup |E,(z) — Fy(x)|. (4.2)

zeR

An alternative test which is often more powerful (see Durbin and Knott (1972) and
Stephens (1974)) is based on the Cramér-von Mises statistic

W, =n /_ h [F(x) — Fo(a) S dFy(z). (4.3)

o0

If D,, or W, are too large, the null hypothesis that the data comes from Fj can be rejected.
Critical values are tabulated.

4.1.2 Estimation of copula parameters

Before we turn to the problem of copula goodness-of-fit testing, we consider different
parameter estimation methods as we have to estimate @ for testing (4.1). The chosen
estimation method decisively influences the asymptotic behavior of the goodness-of-fit
test statistic.

Parameter estimation methods for copulas have already been discussed extensively
(see, e.g., Genest et al. (1995), Joe (1997) and Genest and Favre (2007)). The main dif-
ference of these methods is whether parametric assumptions about the unknown margins
are made or not.

(i) Inversion of Kendall’s T or Spearman’s p: For many common parametric bivariate
copula families closed-form expressions of Kendall’s 7 or Spearman’s p in terms of the
unknown parameter(s) are available (cp. Table 2.1). These can be inverted to obtain
a simple estimate, which is consistent under suitable regularity conditions (Genest
and Favre 2007). For elliptical copulas in higher dimensions pairwise Kendall’s 7’s or
Spearman’s p’s can be used to efficiently estimate the parameters of the correlation
matrix.

(ii) Maximum likelihood (ML): When the margins are known to belong to a specific
parametric family, ie., F; € F; = {F,, : 75 € I';}, j = 1,...,d, we can simply
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(i)

proceed by using standard maximum likelihood estimation and maximize
gML(Ha 7) = Z log [09(F71 (Xil)v " F’Yd (de))] )
i=1

where v = (71, ...,7q4)" and X; = (X1, ..., Xu), ¢ = 1,...,n, are samples of the
random vector X = (X7, ..., Xy).

Since closed form estimators are not available in general, numerical techniques are
needed. However, as the number of parameters increases with dimension, numerical
maximization becomes increasingly difficult in higher dimensions.

Inference functions from margins (IFM): Joe (1997) therefore suggests a computa-
tionally more convenient method which proceeds by first separately estimating the
margins and then plugging these estimates into the log likelihood

EIFM(O) = Z log [CO(F% (Xi1)7 S F':fd (X’Ld))] )

which is subsequently maximized. Although computationally more convenient, this
two-stage procedure lacks efficiency in some cases (Joe 2005). Moreover, Kim et al.
(2007) show that IFM and ML estimation are not robust against extreme misspec-
ification of the margins.

Mazimum pseudo likelihood (MPL): Since margins are practically always unknown
in practice, the most natural estimation method is therefore the nonparametric
pseudo likelihood maximization (see Genest et al. (1995)). The idea is to replace
the unknown distribution functions F}’s by their empirical versions

. 1 &
P}(t) = n Z l{XijSt}'
=1

Then we can define the so-called pseudo-observations

Rij . n ~

foralli =1,...,n and j = 1,...,d, where R;; is the rank of Xj;;. The scaling factor

7 is used to avoid numerical problems in the boundaries of [0, 1]¢. Using these

pseudo-observations we define the pseudo likelihood as
(MPL(B) = "log [co (Ui, ..., Uia)]
i=1

and maximize it with respect to 8. The asymptotic normality of the resulting esti-
mate @ was shown by Genest et al. (1995), but this method is not asymptotically
semi-parametric efficient (Genest and Werker 2002). However, Kim et al. (2007)
show that an estimate obtained by MPL maximization is better than IFM and ML
estimates in most practical situations and due to its nonparametric structure robust
against misspecification of the margins.
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4.2 Copula goodness-of-fit tests

According to Genest et al. (2009) copula goodness-of-fit tests in the literature can be
divided into three groups:

(i) Procedures for testing specific parametric copula families such as the Normal or
Clayton families.

(ii) General tests for any copula family but which involve some kind of parameter tuning
or other strategic choices of smoothing parameter, weight function or kernel.

(iii) So-called blanket tests which are applicable to all copula structures and do not
involve any preliminary strategic choices as in (ii).

Here we will concentrate on the last group and, in particular, on two blanket tests based on
the empirical copula process and on Rosenblatt’s transformation, since we are interested
in general procedures without any limitations in its use.

4.2.1 Blanket test based on the empirical copula process

As we have seen in Section 4.1.2 estimation of copula parameters is sensitive to the choice
of margins. In copula goodness-of-fit testing we are interested in the copula alone and
therefore do not want to make any assumptions with respect to the marginal distribu-
tions. Hence, it is most sensible to base goodness-of-fit tests on the ranks which are the
maximally invariant statistic under continuous, strictly-increasing transformations of cop-
ula components (Nelsen 2006). This implies working with the pseudo-samples Uy, ..., U,
as defined in (4.4). These can be considered as samples from the underlying copula C.
In contrast to the sample X4, ..., X,, they are however no longer independent because the
rank transformation induces dependence. This dependence of pseudo-observations has to
be taken into account, otherwise testing procedures lack power and do not hold their
nominal levels (Genest et al. 2009).

The information contained in pseudo-observations Uy, ..., U,, is naturally summarized
in the corresponding empirical copula

1 n
On(U'l? cey ud) - E Z ]—{Uilgul,...,UidSud}a (45)
=1

where uy, ..., uq € [0, 1] and where the bivariate version was already considered in Section
3.1.2. The empirical copula is the empirical distribution of the observed sample and was
introduced by Deheuvels (1979). It is however only asymptotically a copula. Nevertheless,
it is certainly the "most objective benchmark for testing (4.1)” (Genest et al. 2009) because
it is entirely non-parametric. As we have seen in Section 4.1.1, natural univariate goodness-
of-fit tests are based on a distance between between the empirical and the hypothesized
distribution function. Therefore it is intuitively appealing to base a copula goodness-of-fit
test on a distance between the empirical copula and an estimate Cy,, of the copula C' under
the null hypothesis, where 8,, is an estimator of @ based on the pseudo-observations.



CHAPTER 4. GOODNESS-OF-FIT TESTS 64

Large-scale Monte Carlo studies of various copula goodness-of-fit procedures in Berg
(2009) and Genest et al. (2009) show that the test based on the Cramér-von Mises test
statistic (cp. (4.3))

n

Su=n /[ o [On(1) = Co, (W] G () = D _[CuU) = Co, (U (46)

=1

performs very well (and in particular better than the corresponding Kolmogorov-Smirnov-
based test statistic). It is among the most powerful procedures and has well known asymp-
totics.

As defined in (4.6) the test can be performed in arbitrary dimensions. However, the
computational complexity increases quickly. Genest et al. (2009) therefore study bivariate
copulas exclusively, while Berg (2009) and Kojadinovic and Yan (2010a) also consider
dimensions d = 4,8 (except for the Student copula "due to the extreme computational
load”) and d = 3, 4, respectively. Both use MPL parameter estimation (see (iv) in Section
4.1.2) in the bivariate case, but Berg (2009) limits himself by using inversion of pairwise
Kendall’s 7’s (see (i) in Section 4.1.2) for the correlation matrix of the multivariate Gaus-
sian copula and inversion of the average of all pairwise Kendall’s 7’s for Archimedean
copulas in dimension d > 2 to reduce the computational complexity.

Before turning to an alternative goodness-of-fit test, which is based on the Rosenblatt
transformation and which performs better than the test described above in certain circum-
stances, we turn to the computation of p-values for test (4.6). This issue is computationally
quite demanding and hence we discuss an alternative to the parametric bootstrap, the
so-called multiplier approach.

4.2.2 Computation of p-values

The limiting distribution of \S,, as defined in (4.6) is unknown in practice and depends on
the hypothesized copula family and its unknown parameter. P-values therefore have to
be calculated using a parametric bootstrap procedure (see Algorithm 3) as described in
Genest et al. (2009) under the assumption that the analytical expression of Cy is known
which is the case for those copulas we are working with, otherwise a more complicated
double bootstrap procedure is necessary. Its validity was established under appropriate
regularity conditions by Genest and Rémillard (2008). The authors also show that esti-
mators of @ based on MPL or inversion of Kendall’s 7 as described in in Section 4.1.2 are
usually adequate to be used for testing (4.1).

However, this approach comes along with a high computational cost because each
iteration step requires generation of random numbers and parameter estimation. Therefore
Kojadinovic et al. (2010) and Kojadinovic and Yan (2010a) propose a computationally
faster approach which is based on multiplier central limit theorems.

We follow here the exposition of Kojadinovic and Yan (2010a). For this let 8,, be the
MPL estimator of @ which is a sensible choice in arbitrary dimension as seen in Section
4.1.2. Further define ©,, = \/n(0,, — 0) and V,; = (F1(X;1), ..., F4(Xi4)), i = 1,...,n (in
contrast to the pseudo-observations which are computed using the empirical distribution
functions Fj as in (4.4)). From the work of Genest et al. (1995) we have the following
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Algorithm 3 Computation of p-values for test (4.6) (Parametric bootstrap).
1: Compute C,, as defined in (4.5) and estimate 8 with 6, = 7,(Uy, ..., U,).
2: Choose N large (typically N = 1000).
3: for k=1to N do
4: Generate a random sample Y7, ..., Y ; from distribution Cp, and compute their
associated rank vectors Ry, ..., R} ..
5. Compute Uy, = R, /(n+1) Vi=1,...,n and let

x RS
Coi(u) = n Z Lius,<uy;, v E [0, 1]
i=1

6:  Estimate 6 by 0, , = T,(U7,, ..., U} ;).
7. Compute

n

= [CanlUL) = Co, (U})

i=1

2

8: end for
Output: An approximate p-value is then given by % Z,]CVZI 1{s* >85,}-

asymptotic representation under regularity conditions similar to those for ML estimation:
1 n

where X,, = 0,(1) for a set of random variables (X,,),en means lim, o, P(|X,| >¢) =0
Ve > 0. Moreover, Jg : [0,1]? — R is a suitable score function and Jo(V;), i = 1,...,n,
are i.i.d. with expectation 0 and finite covariance.

Now suppose that the unknown copula C' belongs to the family C as in (4.1) and that
all members of C have partial derivatives with respect to each component v;. Further let ©
denote the weak limit of @,, and Cy = Cy/00. Then by Quessy (2005) the goodness-of-fit
process 1/n(C,, — Cp, ), which is the basis of the test statistic defined in (4.6), converges
weakly in £°°([0,1]?), the space of bounded, real-valued function on [0, 1]¢, to the tight
centered Gaussian process

We(v) = Cy(v) — Co'(v)®, v € [0,1]%, (4.8)

where Cg(v) = ap(v) — Z;l:l Céj)(’v)()ée(l, .. 1v;,1,...,1) with ag being a tight centered
Gaussian process on [0, 1]¢ and C’(gj ) the partial derivatives of Cy with respect to v;, j =
1,..,n.

Using results from Rémillard and Scaillet (2009), Kojadinovic et al. (2010) show how to
simulate Cq using the asymptotic representation (4.7). As the random vectors Vi, ..., V,,
cannot be observed directly (Fj, j = 1,...,n, are unknown), we have to replace them by
the pseudo-observations Uy, ..., U,,. When proceeding as in Genest et al. (1995) for the
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Algorithm 4 Computation of p-values for test (4.6) (Multiplier approach).

: Compute C,, as defined in (4.5) and estimate 6 with 8,, = 7,(Uy, ..., U,).

: Choose N large (typically N = 1000).

: for k=1to N do

Generate i.i.d. random variables Z; g, ..., Z,  with expectation 0 and variance 1.
Compute

:L,k :/ [Cn’k(’U,) — an/(u)én7k] ’ d(]n(u)
[0,1]4
_ % ; [Co(U:) = Co, (U4 C

6: end for
Output: An approximate p-value is then given by % fo:l 1(s* >5,}-

asymptotic variance of the MPL estimator, we obtain

. 0,(Us) 1 o= cg. (Ui)éo, (Ui
J U’L = Zil —Cen( v _ ]_ . . On - ;
o) - 571 |20 EY St

where ¥, is the sample covariance matrix of ¢q, (U;)/cg, (Usi), i = 1,...,n, (¢o, = 0c/06,,)
and cgz = Jcg, (u)/0u;, j=1,...,d, and can define

. 1 <& .
Onr=—F1 Zi kJo(U;),

with Z, 5, 1 =1,...,n, k=1,..., N,ii.d. random variables with expectation 0 and variance
1. Under suitable regularity conditions, it follows for a large integer N that

(\/E(Cn - Cen)a (Cn,l - Cenlén,ly ceey Cn,N - C‘(Bn/én,N>

converges weakly to (WQ,WS), ...,WéN)) in £°([0, 1])2W+D " where Wél), ...,ng) are
independent copies of the process Wy as defined in (4.8), while C,,, & = 1,..., N, are
constructed as approximations to y/n(C,, — Cy), where 6 is the true parameter, and hence
the C, x’s need to be corrected, since 6 is unknown and estimated by 6,, (see Kojadinovic
and Yan (2010a) for more details and the precise definition of C, 5, k = 1,...,N). This
asymptotic result evidently motivates the name "multiplier approach” and directly leads
to the procedure to compute the p-value of test (4.6) which is presented in Algorithm 4.

Compared to Algorithm 3 the procedure defined in Algorithm 4 is computationally
more efficient because line 5 only consists of simple arithmetic operations. A simulation
study confirmed this and showed that the p-value computation using Algorithm 4 is
much faster than the bootstrap procedure, especially when using MPL estimation as
presented above (Kojadinovic and Yan 2010a). Furthermore, a sample size of n = 300
was determined as being sufficient for an omnibus use of the approach.
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4.2.3 Blanket test based on Rosenblatt’s transformation

The test discussed in Section 4.2.1 has a serious drawback: Berg (2009) found that this
test performs rather poorly when testing the multivariate Gaussian copula against heavy
tails, while it works quite well for testing against Archimedean alternatives such as obser-
vations from Clayton or Gumbel copulas. Testing the Gaussian copula against different
alternatives, especially against heavy tailed alternatives as they often occur in financial
applications, will however be quite important in the following (see Section 8.1). There-
fore we also consider the goodness-of-fit test proposed by Breymann et al. (2003) which
performs particularly well in this special case (Berg 2009).

In order to introduce this alternative test, we have to consider Rosenblatt’s trans-
formation. Given a set of dependent variables with known distribution, the Rosenblatt
transformation transforms them into independent uniform variables. More formally, the
transformation proceeds as follows: let X = (X7, ..., X;) be a random vector with marginal
distribution functions Fi, ..., F; and conditional distributions Fj.;—1)(X;| X1, ..., Xi—1) =
P(X; <uai| Xy <zy,.0, Xiog < jq) fori =2,...,d. Then

Vi = Fi(X1),

Vo = Fop(X2|X1), (49)

Vi = Fapua—1)(Xa| X1, ..s Xa-1),

are i.i.d. U(0,1). Note however that the F;’s and the conditional distributions are usu-
ally unknown in practice and therefore have to be estimated. But this means that V =
(V4, ..., Vy) is not exactly i.i.d., but only close to it. Hence, tests based on the Rosenblatt
transformation (4.9) also require bootstrapping to determine p-values. Moreover, (4.9)
is not invariant under permutations of the variables, since there are d! permutations of
the d-dimensional data. Though, Berg (2009) states that ”as long as the permutation is
decided randomly, the results will not be influenced in any particular direction”.

Breymann et al. (2003) use this Rosenblatt transformation (4.9) to construct a copula
goodness-of-fit test. By applying (4.9) to the pseudo-observations U; = (U1, ..., Uig), @ =
1,...,m, (4.4) under the assumptions of a hypothesized copula Cy, , we obtain samples V;
from the independence copula II and can define:

xi=Y_ [0V’ (4.10)

which approximately follows a x% distribution. Hence, we consider G(u) = P(F(x) < u),
u € [0,1], where F is the cdf of the x2 distribution and Y is the theoretical value of (4.10).
Under the null hypothesis G(u) = u, and the corresponding empirical version is given by

1 n
Gu(u) = = > Loz
=1
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The corresponding Cramér-von Mises statistic (4.3) can then be constructed as

T, = n/o [G(u) — G(u)]? dG(u)

n . 2 n .
n n i n i
— = ) " NT(2i4+1
3+n+1ZGn(n+1> (n—l—l)?Z(ZjL >Gn(n+1)’

i=1 i=1

(4.11)

as shown in Berg (2009). P-values can be computed using a parametric bootstrap approach
as in Section 4.2.2, which is however computationally much more efficient than the test
based on the empirical copula process (4.6). Moreover, Berg (2009) shows that this test
performs very well for testing the multivariate Gaussian copula against heavy tails and
that the permutation of the Rosenblatt transformation (4.9) adds no variance in this case.
However, the power for testing against other alternatives such as Archimedean copulas
is lower than for the test discussed in Section 4.2.1, but it is improving with increasing
sample size and increasing dependency.

4.3 Tests of independence

Apart from goodness-of-fit testing for specific parametric copulas it is of substantial inter-
est to test for independence because this obviously simplifies model construction, estima-
tion and simulation a lot. Independence tests can also be considered as copula goodness-
of-fit tests where the null hypothesis is that the unknown copula C' is the independence
copula II, since random variables Xj, ..., X; are independent if and only if the copula
which characterizes the joint behavior of X7, ..., X, is the independence copula (cp. The-
orem 2.5), i.e., we can formulate the test of independence as

Hy:C =114 against H,: C #TI4 (4.12)

Therefore we present two different multivariate testing procedures which are based on the
empirical copula as defined in (4.5) and which we already used to construct the test in
(4.6). However, we start with the bivariate case because there is a simple test available
which is based on Kendall’s 7.

4.3.1 Bivariate test based on Kendall’s 7

As seen in Section 2.2.1 Kendall’s 7 is a concordance-based measure for dependence
between two random variables. If random variables X; and X, are independent, then
7(X1, X2) = 0. This motivates the following test of bivariate independence that is based
on the empirical version of Kendall’s 7 as defined in (3.1).

According to Genest and Favre (2007) a test of independence can now be constructed
using the fact that 7, is asymptotically normal with zero mean and variance 2(2n +
5)/(9n(n—1)) under Hy (Kendall 1962). Hence we can reject Hy at the approximate level
a if

n(n —1 o
% 760, )| > 07 (125, (4.13)

A similar test is also available for the empirical version of Spearman’s p.
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4.3.2 Multivariate test based on the empirical copula process

The formulation of the test in (4.12) directly leads to the idea to base a test on the process

Calu) =vn

Ch(u) — Huj] ,w e 0,1 (4.14)

which is a special case of the general copula goodness-of-fit process /n(C,, — Cp,) using
the empirical copula as defined in (4.5) and choosing Cp, = I1%.

This test was initially suggested by Deheuvels (1981) and studied in Genest and
Rémillard (2004). The idea is to use the so-called Mébius-transform in order to decompose
the process (4.14) into 2¢ —d — 1 subprocesses G 4, = M(C?), where A C {1, ...,d} with
|A| > 1, and which are defined as

Gan(u) =Y (-1)MIC)@?) ] w

BCA JEA\B
1 n
= % Z H(l{Rijg(nH)uj} — uy),
i=1 jEA

where u? = (uf, ..., u) € [0,1]? is given for j = 1,...,d by
B _ U lf] S B,
|1 ifjé¢B.

Under H, the G4,’s converge jointly to a continuous centered Gaussian process G4
with the essential property that the random variables X, ..., X, are independent if and
only if G4(u) = 0 Vu € [0,1]¢ and all A as defined above. This amounts to the con-
sideration of 24 — d — 1 test statistics instead of only one based on (4.14). As before we
concentrate on the respective Cramér-von Mises statistic which was introduced in Section
4.1.1 and obtain

%, =n / (Goan(w)]? dus, (4.15)
[0,1]¢

with A C {1,...,d}, |A| > 1. Genest and Rémillard (2004) show how to combine these
29 — d — 1 test statistics to obtain a combined p-value using Fisher’s approach and how
to conduct the test in practice (see Algorithm 5). In a simulation study the authors also
find that this procedure leads to a powerful test.

Alternatively, we can base the test directly on C as defined in (4.14) and consider
the Cramér-von Mises statistic

S0 /[0 e (4.16)

The validity of this test, as well as the validity of the test defined in (4.15), were shown
in Genest et al. (2007) and p-values can be computed using Algorithm 3, which can be
simplified significantly, since Cp, = I1¢ and hence no estimation of the copula parameter(s)
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Algorithm 5 Computation of p-values for test (4.15).

1: Choose N large (typically N = 1000).
2: for k=1to N do
3:  Generate random variables Uy 4, ..., U, x from a uniform distribution on [0, 1]%.
4: Compute the test statistics S ,,,, A C {1,...,d}, |[A] > 1 as defined in (4.15) from
the sample U, 4, ..., Uy .

5: end for
6: Set

R 1 &

Fan(t) =D (g, <0

k=1

7. for k=1to N do
8:  Compute

Wik = —2 Z log [1 — FA,H(SBM?,C)] .

AC{1,..d} A1

9: end for .
10: Compute Wy, = =23 41 g a1 108 [1 - FA,n<S,()4,n):|-

Output: An approximate p-value is then given by % Zgﬂ Liw, o>wil-

is necessary. In our applications, we will use this approach for testing (4.12), because it
is computationally faster (we do not have to consider 2¢ — d — 1 different test statistics
which is not feasible in large dimensions d).

An alternative multivariate test, which is rather simple and easy to implement, is
discussed in the following section.

4.3.3 Multivariate test based on Spearman’s p

Quessy (2009) studied the theoretical efficiency of tests based on multivariate extensions
of Spearman’s p (2.22) as proposed by Schmid and Schmidt (2007). These considerations
are motivated by the fact that p(X;, X2) = 0 when two random variables X; and X, are
independent and by a bivariate test similar to the one based on Kendall’s 7 and discussed
in Section 4.3.1, i.e., the null hypothesis of independence between X; and X, can be
rejected if p,, (X1, X) as defined in (3.1) is too large.

According to Schmid and Schmidt (2007) a simple multivariate extension of Spear-
man’s p is given by )

Pa = —d(d ) ZPz(Cjk)a (4.17)
i<k

where Cjy, is the copula of the random variables X; and X, j,k=1,...,d, j # k, and as
in Theorem 2.10

pg(f) =12 f(ul,UQ)duld'U,Q — 3.

[0,1]2

The dependence measure py as defined in (4.17) is then simply the mean of Spearman’s
p’s between all possible variable pairs and reduces to the well-known bivariate form if
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d = 2. An estimator of py is easily obtained by plugging in the bivariate empirical copulas
as defined in (4.5), i.e.,

2
1= > pa(C ).
i<k
where C,, j; is the empirical copula of the pseudo-samples (Uyj, ..., Upj) and (Usg, .., Ung).
This motivates the construction of the following test statistic which is based on the
empirical copula process for independence (4.14):

T2 = 2y 2 Vi a(Ch) = (1)
j<k
. (4.18)
6 1
T dd-1)n ; ; A=

where II denotes the bivariate independence copula as usual and U;;, @ = 1,...,n, j =
1, ...,d, the pseudo-observations as defined in (4.4). The second equality has been shown by
Quessy (2009) who recommends this test statistic for multivariate independence testing,
since it exhibits a very good asymptotic efficiency in contrast to alternative tests and
locally yields more powerful results than the test considered in the previous section.
Since this to some extent contradicts the performance results of Genest et al. (2007), we
will investigate the performance of both tests for our purposes in Chapter 10. P-values
for testing the independence hypothesis (4.12) can easily be obtained by a bootstrap
procedure.

4.4 Overview

Table 4.1 gives an overview of the tests discussed in this chapter, their purpose in the
following and their software implementation.

‘ test ‘ purpose ‘ software impl.
copula based on empirical pair copula selection, Kojadinovic and
goodness-of-fit | copula process (test for multivariate Yan (2010b)

normality)
based on Rosenblatt’s | test for multivariate Berg (2009)
transformation normality
bivariate based on Kendall’s 7 pre-test for independence | own
independence in pair copula selection
multivariate based on empirical (test for multivariate Kojadinovic and
independence | copula process independence) Yan (2010b)
based on Spearman’s p | test for multivariate own
independence

Table 4.1: Copula goodness-of-fit and independence tests with purpose (in brackets if
subordinated) and software implementation.



Chapter 5

Model selection

When having constructed different models based on the same data, the question arises
which model is "better” in some sense. In this chapter we investigate this question in
detail and show different methods to approach the problem.

First, we define the fundamental Kullback-Leibler information criterion (KLIC) which
is the basis of many model selection methods. Then, we turn to two simple measures which
allow an easy model comparison, namely the popular Akaike and Bayesian information
criteria (AIC and BIC). Subsequently, we discuss the Vuong test, which directly compares
two given models and assigns a significance level to its decision. The similarities to AIC
and BIC when correcting for model complexity, i.e., the number of parameters, are also
pointed out.

Finally, we consider the question of copula selection for bivariate data. This problem
arises in R-vine specification when having decided which variable pairs are being modeled,
i.e., after having constructed a tree as described in Chapter 3. Hence, we need efficient
and reliable criteria to decide which pair copula reproduces the dependence characteristics
most accurately. First, we therefore analyze the problem by considering KLIC’s between
bivariate copula families and the limiting cases of the BB1 and BB7 copulas. Then, from a
theoretical point of view, our selection method of choice will be goodness-of-fit testing as
discussed in Section 4.2, in particular the goodness-of-fit test based on the empirical copula
process (Section 4.2.1). However, even in the bivariate case, this is computationally quite
demanding due to the intricate p-value computation. Therefore, we develop alternative
copula selection criteria and evaluate them in a simulation study.

5.1 The Kullback-Leibler information criterion

The Kullback-Leibler information criterion (KLIC) (Kullback and Leibler 1951) is based
on the same principle as the univariate goodness-of-fit tests discussed in Section 4.1.1:
it measures the distance between the true but unknown distribution and a specified,
approximating model with estimate 0 of the pseudo true value @ (note that this is not
the parameter of the true distribution). We follow here the exposition of Vuong (1989)

72
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who defines the KLIC as

ho({)
f(z|6)

KLIC(ho, f,0) := /ho(x) log [ ] dr = Epllog ho(X)] — Eo [log f(X|9)] . (5.1)

where X is a random variable following the true distribution with density hq(-) and FEjy
denotes the expectation with respect to this true distribution which is approximated by
£(19).

If we are given a collection of models, it is now natural to choose the model which
minimizes the KLIC. However, since the true model hq(+) is in general unknown, we usually
settle for choosing the model which maximizes Ey[log f(X|0)] with respect to 8 reflecting
the classical maximum likelihood principle.

5.2 Akaike and Bayesian information criteria

By consideration of a risk function in terms of the KLIC (5.1) and an extension of the
maximum likelihood principle, Akaike (1973) developed a convenient model selection cri-

terion. Given observations x;, i = 1,...,n, the Akaike information criterion (AIC) is
defined as

AIC == =2 "log f(x:|0) + 2k, (5.2)
i=1

where 8 denotes the maximum likelihood estimate of @ and k is the number of parameters
0 = (01, ..., 0x)" in the model which penalizes the log likelihood in order to avoid overfitting.
E.g., the AIC of an R-vine copula model is given by

n d—1

AIC = —QZlogH H Cjite)ke(e)| D) (F(Zije) [T, De) ) F(Zinie) | Ti,0(e))) + 2k
i=1 (=1 ecE,
n d—1

= =23 > > "log [cje) ket (F (@i |Tine) F (x| 2ine))] + 2k,

i=1 =1 ecE,

(5.3)

with the density of an R-vine given in (2.27) and k denoting the number of parameters
in the model.

An alternative penalty term was proposed by Schwarz (1978) in a Bayesian setting.
Nevertheless, the Bayesian information criterion (BIC), which is defined as

BIC := —QZlog F(x:)0) + log(n)k, (5.4)
i=1

is mostly used in a non-Bayesian context. Its penalty term is stronger than in the AIC
and therefore leads to more parsimonious models.

Model selection using the AIC or BIC can now proceed by choosing the model which
minimizes the respective criterion. Often AIC and BIC are only used when comparing
nested models, where nestedness of models means that we have a ”full” model that is
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specified in terms of certain parameters, while the "reduced” model is a special case of
this ”full” model and parametrized in a subset of these parameters. However, Ripley (2008,
pp- 34, 35) states that AIC comparisons are also feasible for non-nested models but at the
expense of an increased variability of the estimated AIC difference for pairs of non-nested
models (O,(y/n) instead of O,(1), where X,, = O,(g(n)) for a set of random variables
(Xn)nen means given € > 0 there is a constant B such that P(|X,,/g(n)| > B) < € ¥n).

5.3 The Vuong test

An alternative method for directly comparing two models is the test proposed by Vuong
(1989) which exhibits similarities to the information criteria considered above. As it is
a statistical test, it also assigns a significance level to its decision (or does not make a
decision at all at the pre-specified level).

Suppose we are given two competing models f;(- 16,) and f»(-|@5) with maximum
likelihood estimates 6, and 02, respectively, to consistently estimate the pseudo true
value. Then the Vuong test investigates the null hypothesis that

KLIC(hg, f1,01) = KLIC(hg, fa,05)

. . (5.5)
S [10gf1(X|91)} = Eo [long(X|02)} ;

i.e., that one cannot distinguish between both models. Obviously, when Ep[log fi (X 16,)] >
Eylog f2(X|62)], model 1 is better, and vice versa. However, the question arises whether
one of the models is significantly better than the other. Thus we have to consider asymp-
totic results to construct an appropriate test statistic.

For observations z;, i = 1,...,n, define m; := log [fl(:c—llzg} t = 1,...,n. Under the

true distribution hg, m = (my,...,m,)" is a random vector with mean pg* = (ui*, ..., ')’
Since pg* is unknown (hg is unknown), we cannot directly test whether both models are
equally good in terms of their approximation of the true distribution. However, using the
law of large numbers Vuong (1989) shows under reasonable assumptions that

n—oo

1 A 1 «
ﬁLRn(Ol,eg) = ﬁlzlm —>M0 .

Defining the sample variance of LR,, as

Vuong (1989) further obtains the asymptotical distribution of LR,,:

g Ln(60,02) o N(0,1). (5.6)

N2 n—00

This readily yields an asymptotic test for model selection among nested as well as non-
nested models:
Hy:pg' =0 against H;:pg" #0, (5.7)
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and reject Hy at level avif |v| > @7 (1 — ). In particular, if v > &' (1 — &), we prefer
model 1 to model 2, since the test indicates that the KLIC with regard to model 1 is
significantly smaller than the KLIC of model 2 (cp. (5.5)). Similarly, we choose model 2
ifv<—o1(1-9%).

5.3.1 Correction factors in the Vuong test

The test defined in (5.7) does however not take into account the possibly different number
of parameters of both models. Hence the test is called unadjusted and Vuong (1989) gives
the definition of an adjusted statistic

ﬁ%n<él7 é?) = LRn<ély 92) — K (f1, f2)

where K, (f1, f2) is the correction factor which depends on the characteristics of the
competing models 1 and 2 and is assumed to satisfy

nV2K, (fi, f2) = 0p(1),

where X,, = 0,(1) for a set of random variables (X, )nen means lim, o, P(|X,| >¢) =0
Ve > 0. Then the asymptotic result (5.6) also holds for LR, and we can redefine test (5.7)
in terms of [Tj%n

Corresponding to the definitions of AIC (5.2) and BIC (5.4), we consider the following
two corrections suggested by Vuong (1989):

o Akaike correction: K2 (f1, f2) = ki — ko,
e Schwarz correction: K2 (f1, f2) = (&) log(n) — (%) log(n),

where k; and ks denote the number of parameters of models 1 and 2, respectively. The
Schwarz correction again leads to more parsimonious models. Note however that these
choices were made out of convenience and other choices might be more appropriate de-
pending on the specific setting, since there is a wide range of possible correction factors!

Moreover, the Vuong test, as well as the AIC and BIC, only allows for a model selection
among a set of possible models. If this model set is chosen badly, the selected ”best” model
can still be far off from the true model. The set of possible models therefore has to be
carefully chosen.

5.4 Bivariate copula selection

Now, we turn to the problem of finding an appropriate copula for given bivariate data.
When specifying R-vines, these are the (pseudo-)observations as input for tree 77 and
transformed observations (2.19) for all subsequent trees. Here, we will present and evaluate
different methods to select an adequate copula, where we exclusively study formal tests,
since graphical tests such as K-plots (see, e.g., Genest and Favre (2007)) are impractical
in high dimensions as one has to check these plots for d(d — 1)/2 different variable pairs.

Before considering different criteria, we study the problem of bivariate copula selection
in more detail: for certain parameter choices copula families are ”close” to each other.
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We will quantify the closeness by the KLIC as described in Section 5.1. In particular,
we investigate the limiting cases of the BB1 and BB7 copulas (see Section 2.1.3) in a
simulation study.

5.4.1 Kullback-Leibler information criteria of bivariate copula
families

As noted above, the main problem of pair copula selection is that some families are ” close”
to other families for certain parameter choices (cp. the limiting cases in Section 2.1.3).
This " closeness” can be measured by the KLIC (5.1) between the families, since the copula
densities are known, i.e., the KLIC between the true copula Cy and the alternative copula
(1 is given by

Co(Uh U2)
C1 (Uh Uz)

KL[C(CU, Cl) = /

[0,1]?

co(uy, us)log [ } duydus (5.8)
where ¢y and c¢; denote the copula densities corresponding to the copulas Cy and Cf,
respectively, where both copulas might depend on parameters.

Based on three choices of Kendall’s 7 to compute the copula parameters (cp. Table
2.1), we computed the KLIC’s (5.8) for the parametric copula families presented in Section
2.1.3 by numerical integration (see Tables 5.1, 5.2 and 5.3). For the t copula we consider
two different numbers of degrees of freedom, and for the BB1 and BB7 copulas we choose
the parameters according to three different values of upper tail dependence depending
on Kendall’'s 7. Furthermore, KLIC’s with respect to the Clayton and Gumbel survival
copulas are computed, where the latter is given in (3.9) and the first is defined accordingly
as

C’esc(ul,uQ) =u; +uy—1+ Cgc(l —uy, 1 — us),

for a Clayton copula C§ with parameter 6.

The KLIC’s of pair copula families shown in Tables 5.1, 5.2 and 5.3 underline the
theoretical background (cp. Section 2.1.3 and the scatter and contour plots in Appendix
A) as well as empirical observations in Section 3.1. The main findings are:

(i) KLIC’s between copula families are increasing with increasing dependence, i.e., dif-
ferences become more distinct.

(ii) As expected the Gaussian copula is close to the t copula, especially for higher degrees
of freedom.

(iii) The Clayton copula which exhibits lower tail dependence can clearly be distin-
guished from the Gumbel and Joe copulas with upper tail dependence. The latter
copulas themselves are similar to each other.

(iv) The KLIC’s of the Clayton and Gumbel copulas and their respective survival ver-
sions are obviously the same with respect to symmetric copulas because survival
copulas are the mirror images of the original copulas. The Clayton survival copula
with upper tail dependence is quite close to the Gumbel and Joe copulas, while the
Gumbel survival copula with lower tail dependence is similar to the Clayton copula.
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1=0.25

BB1(.1)

BB1(2) —

BB1(.3)

BB7(.1)

BB7(.2)

BB7(:3) —
| | | | | | |
N 1(4) 1(8) c sc G sG F J BB1(1) BBI(2) BBL(3) BB7(1) BB7(2) BBY(3)

alternative copula

Figure 5.1: Illustration of Table 5.1. Light colors indicate small values, dark colors larger
values (same scale as in Figures 5.2 and 5.3). Rows correspond to the respective true
model. Degrees of freedom of the t copula family and upper tail dependence parameters
of the BB1 and BB7 copula families are denoted in brackets.

(v)

(vi)

(vii)

For small Kendall’s 7, the Frank copula is close to the Gaussian copula, but this
similarity reduces in higher dependence, where the Frank copula is even closer to
the t copula which corresponds to the empirical results of Hu dependence in Section
3.1.6 and shows that the Frank copula is increasingly non-normal with increasing
Kendall’s 7.

The limiting cases of the BB1 and BB7 copulas are well reproduced by the KLIC’s:
Gumbel and Clayton copulas can hardly be distinguished from BB1 and BB7 copulas
in the respective cases. The Joe copula is however less close to the BB7 copula
than the Gumbel copula. This is due to the specific parameter choices, since, e.g.,
Kendall’'s 7 = 0.75 and upper tail dependence A*PP¢" = (.8 correspond to parameters
6 = 3.80 and 0 = 4.81 which are clearly not the limiting cases leading to the Joe
copula. These limiting cases are investigated in more detail below.

Due to their flexibility, the BB1 and BB7 copulas are quite close to many copula
families, in particular to the t copula. It is therefore a delicate issue of copula
selection criteria to distinguish the true copula from a BB1 or BB7 copula with
appropriate parameters.

Figures 5.1 to 5.3 illustrate the values in Tables 5.1 to 5.3. Light colors indicate small
values, dark colors larger values.
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1=0.5

N —
t(4)

t(8) —
c
sc
G
SG
F
J
BB1(.25)
BB1(.40)
BB1(.55)
BB7(.25)
BB7(.4)

BB7(.55)

| | | |
N 1(4) 1(8) c sc G SG F J BB1(.25) BBL(40) BBI(55) BB7(25) BB7(.4) BB7(.55)

alternative copula

Figure 5.2: Illustration of Table 5.2. Light colors indicate small values, dark colors larger
values (same scale as in Figures 5.1 and 5.3). Rows correspond to the respective true
model. Degrees of freedom of the t copula family and upper tail dependence parameters
of the BB1 and BB7 copula families are denoted in brackets.

N —
(4)

Y8) —

1=0.75

Cc

sC

G

SG

F

J

BB1(.4)

BB1(.6)

BB1(.8)

BB7(.4)

BB7(.6)

BB7(.8)

|
N 1(4) 1(8) c sc G sG F J BBL(4) BBL(6) BBL(8) BB7(4) BBI(6) BB(8)

alternative copula

Figure 5.3: Illustration of Table 5.3. Light colors indicate small values, dark colors larger
values (same scale as in Figures 5.1 and 5.2). Rows correspond to the respective true
model. Degrees of freedom of the t copula family and upper tail dependence parameters
of the BB1 and BB7 copula families are denoted in brackets.
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5.4.2 Limiting cases of the BB1 and BB7 copulas

As seen by the theoretical KLIC’s of bivariate copula families, the BB1 and BB7 copulas
are close to some other families. This is due to their flexible two-parameter structure
and their limiting cases (cp. Section 2.1.3): the Clayton copula is a subfamily of the BB1
copula with 0 = 1 and of the BB7 copula with # = 1. Furthermore, the limiting case of
the BB1 copula when 6 — 0 is the Gumbel copula, while the Joe copula is obtained from
the BB7 copula for 6 — 0.

Hence, we are interested in the thresholds of parameter values, where the BB1 and
BB7 copulas become statistically indistinguishable from their limiting cases. To investigate
this issue, we used Vuong tests without correction (this is not a question of numbers of
parameters) as described in Section 5.3. According to the Vuong test with significance level
5%, the null hypothesis that two models are indistinguishable cannot be rejected if the
test statistic in absolute terms is smaller than the 97.5%-quantile of the standard normal
distribution. We exploit this by repeatedly simulating from the BB1 and BB7 copulas for
different parameter choices close to the respective parameter limit and for three choices
of Kendall’s 7 (0.25, 0.5, 0.75) to determine the other parameter and then performing a
Vuong test between the true copula and the respective limiting copula. E.g., in Table 5.4
(left panel) we simulated n = 1000 observations from a BB1 copula with 6 = 1.05,...,1.3
and Kendall’'s 7 € {0.25,0.5,0.75}. Then a Vuong test is performed for the given simulated
data between the BB1 copula and a Clayton copula with parameter chosen according
to the given Kendall’s 7 (cp. Table 2.1)). The percentage of non-rejections (of the null
hypothesis that the respective two copulas are indistinguishable) for R = 1000 repetitions
is displayed in the last column. All results are shown in Tables 5.4 and 5.5.

Note that results for the BB7 copula with Kendall’s 7 = 0.75 and small parameters ¢
close to the limit 0 have not been computed due to numerical problems in the simulation
for this extreme parameter choice (cp. Table C.29 in Schepsmeier (2010)). The overall
results can be summarized as follows:

(i) The closeness to the limiting copulas increases with increasing dependence.

(ii)) The limiting one-parameter copula families exhibit either lower or upper tail de-
pendence. The tail dependence parameter of the BB1/BB7 copula corresponding to
the respective zero tail dependence parameter of the one-parameter copula family
approaches 0 for values close to the limiting case.

(iii) The respective non-zero tail dependence parameters closely agree for parameter close
to the respective limit. The difference decreases with increasing Kendall’s 7.

In all four studies, the null hypothesis that both copula models are indistinguishable
cannot be rejected in more than 50% of the repetitions when the respective parameter is
accurate to 0.1 to the limiting case. Even if Tables 5.4 (right table) and 5.5 (right table)
indicate that we could even choose 0.15 or 0.2 in these cases, we think that an accuracy
of 0.1 to the limiting case is certainly reasonable for all limiting cases due to the unknown
simulation error and the limited number of different cases considered. We will exploit this
in the simulation study in Section 5.4.4 and in Chapters 10 and 11.
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5.4.3 Selection criteria

After having analyzed the problem of bivariate copula selection from a theoretical point
of view, we now consider different selection criteria and critically evaluate them in a
simulation study.

(i)

(i)

Goodness-of-fit testing:

From a theoretical point of view, the method of choice for copula selection is
goodness-of-fit testing because it not only allows to choose among different fam-
ilies of copulas, but also attaches a significance level to this choice. As described in
Section 4.2, the most natural choice of a copula goodness-of-fit test is the blanket
test defined in (4.6). This test can be performed for several copula families and then
the copula with the highest p-value is chosen, but only if this p-value is larger than
the pre-specified significance level «, because it means that the null hypothesis that
the unknown copula belongs to the respective family cannot be rejected at level a.
If however the maximum p-value is smaller than «, no copula can be selected based
on goodness-of-fit tests and we have to refer to another method (see below for three
possible choices).

This selection criterion can also be interpreted as a two-step approach: first, deter-
mine which pair copulas are eligible at all and, second, among these copulas select
the copula with the smallest test statistic of the chosen goodness-of-fit test. E.g., the
Cramér-von Mises test statistic of the blanket test (4.6) can be regarded as a dis-
tance measure between the respective hypothesized copula family and the unknown
copula represented by the empirical copula (also cp. Section 4.1.1).

Note that other goodness-of-fit tests than the blanket test based on the empirical
copula could be used as well. We however believe that our choice is adequate, since

it is the most objective and most natural approach and has shown good performance
results for bivariate data in the studies by Genest et al. (2009) and Berg (2009).

Copula selection based on data characteristics:

If one is not willing to conduct goodness-of-fit tests because they are computation-
ally too demanding (p-value computation of the test based on the empirical copula
process is demanding even if the multiplier approach (Section 4.2.2) is used) or
the goodness-of-fit tests rejected each copula family, we can take the following sim-
ple approach to copula selection which is based on empirical characteristics of the
observations.

For this, calculate the empirical Kendall’s 7 as well as the empirical upper and
lower exeedance Kendall’s 7’s as described in Section 3.1.3. Next fit bivariate cop-
ulas for all families that are considered. Then calculate theoretical Kendall’s 7 and
exceedance dependence based on the estimated coefficients and choose the family
which minimizes

2 2 2
~l l A A upper
Z | plower _ TAoweri| + [Tn _ Té] + = [T#pper _ Tépp :| ,
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(iii)

where 6 denotes the estimated parameter(s) of the respective copula family, and
Té"w”, Tgp P’ and 1, are the theoretical exceedance dependence and Kendall’s 7
with respect to 6 and the corresponding copula family, where we usually choose the
thresholds 0; = 9, = 0.2 for lower and d; = d, = 0.8 for upper dependence. The
weights of 1/2 are chosen in order to obtain a balanced criterion which does not

overemphasizes tail behavior. Different weightings are of course possible as well.

The idea is that we not only capture the dependence in the center by Kendall’'s
7, but also the exceedance dependence, i.e., the joint tail behavior, which is char-
acteristic for copula families as investigated in Section 3.1.3. Different weightings
could pronounce an adequate modeling of, e.g., lower tail behavior more strongly.
A copula selection based on only one of the measures (e.g., Kendall’s 7) is of course
also feasible but less accurate and should only be used in exceptional cases, since it
contains only few information about the data. Note that, in contrast to goodness-
of-fit tests, this approach cannot report some kind of confidence level with which a
family is chosen, i.e., we do not know whether the chosen family is a good choice in
absolute terms but only in relative terms compared to the other families considered.

Information criteria:

An alternative copula selection approach is based on the AIC as defined in (5.2)
and given for a specific copula with density ¢ by

AIC = =2 Z log c(u;1, u12|9) + 2k,

=1

where 6 = (él, ey ék)' and either & =1 or k = 2 for the bivariate copula families
discussed in Section 2.1.3, e.g., k =1 and 0 = p for the bivariate Gaussian copula.

The use of the AIC for model selection is proposed, e.g., in Section 10.3 in Joe (1997).
Manner (2007) investigates its performance in bivariate copula selection and shows
that it performs quite well in identifying the correct copula family, especially when
sample sizes and dependence increase. For weak dependence the performance of the
AIC as selection criterion is unsatisfactory. Therefore the AIC is an ad-hoc approach
to copula selection and we also have to keep in mind the increased uncertainty in
AIC comparisons due to the fact that copula families are not nested in general
(cp. Section 5.2). Given this increased uncertainty, it may not be an alternative to
copula goodness-of-fit testing when enough time and resources are available, but it
is certainly an alternative to copula selection based on exceedance dependence and
Kendall’s 7 and we will examine its performance in detail in the simulation study
below (Section 5.4.4). Of course, the BIC can be used as well. Its use obviously
penalizes two-parameter copula families compared to one-parameter families, since
log(n) > 2 for n > 8.

Grgnneberg and Hjort (2008) also investigate the use of the AIC in copula model
selection and find that when using maximum pseudo likelihood estimation (cp. Sec-
tion 4.1.2) the derivation of the AIC formula is incorrect. Therefore they extend the
formula and develop the so-called copula information criterion (CIC). As we use



CHAPTER 5. MODEL SELECTION 87

MPL estimation as well, it would be sensible to use the CIC instead of the AIC,
but there are some issues that prevent the practical use of the CIC: Grgnneberg
and Hjort (2008) state that the CIC often does not exist, e.g., for the Gumbel and
Joe families and moreover it lacks the advantage of AIC and BIC that it is easy to
compute. As a result, we will not consider the CIC in copula selection.

(iv) Scoring method using Vuong tests:

Since the AIC may possibly be only an ad-hoc approach to accurate copula selection
as discussed above, we consider an alternative copula selection method based on
Vuong tests which we discussed in Section 5.3 (cp. Belgorodski (2010))

In contrast to copula goodness-of-fit tests, Vuong tests cannot test the hypothesis
(4.1) directly. Therefore we lower our sights and consider the hypotheses

Hy:CelcC against H,:Ce€C, (5.9)

where C is a parametric copula family other than C. As it would be quite inappro-
priate to perform this test only for one single alternative hypothesis, we consider
different families C which are adequate for the given data characteristics (e.g., if
observations are negatively dependent, non-rotated Clayton and Gumbel as well as
Joe, BB1 and BB7 families are no possibilities). These tests can be performed us-
ing Vuong tests based on the fitted bivariate copulas that are considered. Hence,
we obtain a series of tests which tell us whether a specific model, say A, is better,
equally good or worse than other models.

The final copula selection is then made by the following scoring method: each time
model A is preferred to another model the score of model A is increased by 1. If
model A cannot be significantly distinguished from another model, the score is left
unchanged. If however, another model is preferred to model A, we subtract 1 from
the score of model A. This procedure is repeated for each model under consideration
and we choose the model with the highest score. Unfortunately, two models can have
the same score. Then no copula selection based on the scoring approach is possible
and we have to use another method.

5.4.4 Simulation study

Having different copula selection methods at hand, we evaluate the performance of the
methods in a Monte Carlo study. In each of the R = 1000 repetitions, we simulated
n € {500,1000} observations from six different pair copula families (Gaussian (N), t with
four degrees of freedom, Clayton (C), Gumbel (G), Frank (F), Joe (J)) for three choices
of Kendall’s 7 € {0.25,0.5,0.75} to determine the copula parameters (cp. Table 2.1) and
then performed the three selection methods discussed above as well as copula selection
using goodness-of-fit testing. The latter is mainly considered for comparison only and
the set of copulas to choose from is restricted to the five copula families N, t, G, C and
F as denoted above, while the other three methods also consider the Joe, BB1 and BB7
copulas. The performance of the blanket goodness-of-fit test based on the empirical copula
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Figure 5.4: Illustration of Table 5.6: percentages of correctly selected copula families of
R = 1000 repetitions with n = 500 simulated observations each.
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process has already been discussed in the detailed studies by Genest et al. (2009) and Berg
(2009).

The results of our simulation study are shown in Tables 5.6 and 5.7 and illustrated in
Figures 5.4 and 5.5. t copulas with more than 30 degrees of freedom are not considered
further, since they are too close to the Gaussian. Similarly, BB1 copulas with § < 0.1 or
0 < 1.1 are too close to Clayton and Gumbel copulas, respectively, while BB7 copulas are
too close to Clayton and Joe copulas if § < 1.1 and § < 0.1, respectively (cp. Sections 2.1.3
and, in particular, 5.4.2). Possible differences of the sum of percentages to 100% result
from the fact that the scoring method cannot select among families with equal score and
that goodness-of-fit testing can show that no family is significant (e.g., in the Joe copula
case quite often no copula is selected in accordance to the fact that Joe copulas are not
considered in goodness-of-fit testing). The results can be summarized as follows:

(i) The accuracy of all selection procedures increases with increasing Kendall’s 7, i.e.,
with increasing dependency, and with increasing number of observations, unless
observations come from a t copula or, to some extent, from a Clayton copula.

(ii) Observations simulated from t and Clayton copulas are repeatedly selected as BB1
and BB7 copulas, while in some cases Gaussian observations are confounded with
the Frank copula as well as Gumbel observations with the Joe copula and vice versa.
These confusions are due to similar copula characteristics (see Table 2.1) which is
underlined by the KLIC’s between bivariate copula families as discussed above.

(iii) The correct identification of observations from the t copula is the hardest task in
most cases. Even the goodness-of-fit tests fail rather often. This has also been shown
in the numerical studies by Berg (2009) and corresponds to the KLIC’s which are
rather small compared to alternative copula families (see Tables 5.1, 5.2 and 5.3).

(iv) Copula selection based on the AIC has the highest accuracy in the majority of
cases. Mostly it is even superior to the blanket goodness-of-fit test, although this
test considers less alternatives!

Even if the different copula families are not nested and thus AIC comparisons are subject
to an increased uncertainty, the AIC turns out to be the best criterion for copula selection.
Moreover, selection based on data characteristics (empirical Kendall’s 7 and exceedance
dependence) performs surprisingly well and similarly good to the scoring method based
on the Vuong test whose performance is not satisfying given that it is based on statistical
tests (also cp. the results in Belgorodski (2010) who considers slightly different alternatives
but obtains similar results). The scoring approach apparently requires some adjustments
to be an adequate selection method. One idea might be to combine goodness-of-fit testing
and the scoring approach in a two-step procedure similar to the one discussed above: use
goodness-of-fit tests to determine which copulas are eligible and then select among these
copulas using the scoring approach.

To sum it up, copula selection using the AIC is not just an ad-hoc approach which
is computationally more efficient than goodness-of-fit testing, but also a reliable and
mostly superior method for omnibus use. Moreover our study confirmed the results of
Manner (2007) that the performance of selection using the AIC improves considerably
when dependence and sample sizes increase.
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Figure 5.6: Histograms of n = 1000 observations simulated from a Gaussian copula with
p = 0.5 and corresponding pseudo-observations.

Remark: Goodness-of-fit tests for simulated data

The p-value computation of the goodness-of-fit test based on the empirical copula process,
which we discussed in Section 4.2.2 and which we use here, relies on the assumption
that the data is rank-based. This is the case when working with pseudo-observations as
defined in (4.4). However, when we simulate copula data, it exhibits different properties,
although its margins are also approximately uniformly distributed on [0, 1]. Figure 5.6
illustrates the problem: the histogram of n = 1000 observations simulated from a Gaussian
copula with p = 0.5 is rather "bumpy”, while the histogram of the corresponding pseudo-
observations is even which reflects the marginal uniformity. Of course, by the law of
large numbers, the simulated copula data will behave like their corresponding pseudo-
observations, but for finite sample sizes there is a simulation error induced by the intrinsic
randomness of simulation. Hence, simulated copula data cannot be used directly for p-
value computations. Otherwise, the results are wrong and misleading (p-values equal to 0
even for the true underlying copula). Therefore, we calculated pseudo-observations of the
simulated data in the simulation study above.



Chapter 6

Truncation of regular vines

After having discussed various issues of model building in the previous chapters, we are
now ready to establish procedures that facilitate the construction of R-vine models which
is essential in high dimensional applications and under time or resource restrictions. In
a first step, we therefore consider the issue of truncation of R-vines which corresponds
to setting copulas in higher order trees to the independence copula, i.e., assuming inde-
pendence after a certain R-vine tree. The notation of truncation will be discussed and
defined in the first part of this chapter. Subsequently, we develop two truncation proce-
dures based on the information criteria and the Vuong test which we described in Chapter
5. These procedures then also motivate the simplification procedures, which are discussed
in Chapter 7, and where simplification refers to a more general way of facilitating R-vine
construction, of which truncation is an important special case.

6.1 Motivation

The idea of R-vine truncation is to simplify all higher order trees after a certain tree K,
where K is called the truncation level, by setting all pair copula terms which involve a
conditioning set of size larger or equal to K to independence copulas. This means that
we simplify the model to the greatest possible extent and facilitate maximum likelihood
estimation and simulation for larger dimensions.

Note that this definition of truncation of R-vines differs from the notation of ”trun-
cation” in Valdesogo (2009) which corresponds to our definition of simplification (see
Section 7.1). We however believe that our distinction of simplification and truncation
(where the latter is not explicitly discussed in Valdesogo (2009)) is less ambiguous and
clearly highlights the different purposes.

Before we move on to formal definitions of the points discussed above, we present a
simple example.

Example 4 (Truncation.) Let us consider a D-vine on five variables (cp. Figure 2.5),
i.e., we have to specify ten pair copulas within four trees (see Figure 6.1).

Now assume that we have sequentially specified the first two trees Ty and Ty with
appropriate pair copulas and then detect that we can truncate our D-vine after tree K = 2,
since all important dependencies were already captured in the first trees and we can neglect

93
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Ty : cr2 C23 C34 C45
Ty : C13)2 C24/3 C35)4

T3 : C14/23 C25|34

Ty : C15(234

Figure 6.1: Pair copula terms of a five-dimensional D-vine (cp. Figure 6.1).

Ty : c12 Ca23 C34 C45
Ty : C13]2 C24/3 C35)4

T3 : 1423 25|34

Ty : T15/234

Figure 6.2: Pair copula terms of a five-dimensional D-vine truncated after the second tree
T5, where m;;p denote independence copulas.

the remaining dependencies. Then all copulas in trees Ty and Ty can be set to independence
copulas m;;p as illustrated in Figure 6.2 (of course, mjp = 1, but we will always write
Tijip in the following in order to clarify that we are dealing with copulas).

Note that for time-ordered nodes 1,...,5 truncation corresponds to a second order
Markov process, since Xy is independent of X; given Xio and X;11 (i = 1,2; cp.
Section 6.1.1).

These considerations motivate the following notations. An R-vine which has been trun-
cated after tree T will be called a pairwisely truncated R-vine at level K. The additional
notation ”pairwisely” refers to the fact that we simplify pair copulas in contrast to a joint
multivariate copula which we will consider later on for C-vines in Chapter 8.

Obviously, truncation facilitates maximum likelihood estimation in larger dimensions,
since independence copulas have no parameters at all and thus, using the R-vine density
given in (2.27), the parametrized density of a truncated R-vine at level K is given for

u € [0,1] by
B (u|0r(K H H Cj(e),k(e)|D(e (6.1)

1=1eck;

where the arguments of the copulas have been omitted for simplicity (cp. densities in
Section 2.4) and @7(K) is the parameter set of ¢, i.e.,

OT(K) = {Hj(e),k:(e)\D(e) L ec Ei, 1= 1, ...7K},

with 6;(e) k()| p(e) denoting the parameter(s) of the copula ¢;j(e) k() n(e)- As stated above,
truncation then evidently simplifies models to the greatest possible extent, especially when
K<d-1.

In the following we want to determine if an R-vine can be truncated and detect the
appropriate truncation level. Before we turn to the discussion of appropriate procedures,
we briefly consider truncated D-vines and their relationship to Markov processes.
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”SMALL” MODEL "FULL” MODEL
T : cio Ca23 C34 C45 Ty : cro C23 C34 C45
Ty : C13)2 C24(3 C35/4 Ty : C13)2 C243 C35/4
T3 : T14)23 25|34 Ty : C14)23 C25)34
Ty : T15]234 Ty : T15|234

Figure 6.3: Pair copula terms of five-dimensional D-vines truncated after the second tree
T, ("small” model) and after the third tree T3 ("full” model), respectively, where m;;p
denote independence copulas.

6.1.1 Truncated D-vines as Markov processes

In Example 4 we saw that a pairwisely truncated D-vine at level K = 2 with five time
ordered nodes corresponds to a second order Markov process on time points 1 to 5.
This result obviously also holds in general. According to Equations (2.29) and (6.1), the
parametrized density of a pairwisely truncated D-vine at level K can be written as

d—j

K
cf (ul0r(K)) = T[T cicntirnsain-
j=11:=1

This means that X;, k. is independent of X; given X, g, ..., Xjuq fore=1,...,d— K —1,
i.e., a pairwisely truncated D-vine at level K with time ordered nodes corresponds to a
K-th order Markov process on time points 1 to d, since

P(Xi+K+1’Xi+K7 "'7Xi+17Xi7 "'7X1) = P(Xi+K+1’Xi+K7 "'7Xi+1)7

foralli=1,...d — K — 1.

6.2 Iterative pairwise truncation based on the Vuong
test

The first truncation procedure we consider is based on the Vuong test described in Section
5.3. To give an understanding of our iterative approach, we first consider an illustrative
example.

Example 5 (Stepwise truncation based on the Vuong test.) Let us consider again
the five-dimensional D-vine of Example 4 and assume again that we have already appropri-
ately specified the pair copulas of the first two trees Ty and Ty. We now want to determine
whether the D-vine can be truncated at this level.

Our truncation procedure directly exploits the concept that usually most dependencies
are captured in the first trees. The idea is to specify the next tree, in this case Ty, with
appropriate pair copulas and then compare the ”full” model on three trees to the “small”
model on two trees, where higher order trees are truncated (cp. Figure 6.3).

Note that the “full” model is not exactly ”full” as tree T, has also been modeled as
independent. Hence this is not an exact model comparison between a truncated and a fully
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Algorithm 6 Truncation of R-vines based on the Vuong test.
Input: (Pseudo-)observations of d variables, significance level a.
1: for 7=0,...,d — 2 do
2:  Specify model My(j+ 1) by constructing tree 71 and specifying appropriate pair
copulas (refer to Section 7.4 for more details on this issue).
3:  Perform a Vuong test for comparing models M (j) (model 1) and My (j+1) (model
2), i.e., determine test statistic v as in (5.6).

4:  ifv> -1 (1 — %) then

5: Truncate the R-vine at level K = j, i.e., exit the loop with model Mr(7).
6: end if

7: end for

Output: Pairwisely truncated R-vine at level K, or fully specified R-vine, if no truncation
is possible.

specified D-vine, but only an approximation to the truth. However, under the assumption
that most dependencies are captured in the first trees, this should be a reasonable approz-
imation. In other words, the pair copula terms in tree T3 quantify the possible gain if we
fit this additional tree. If this marginal gain is too "small”, we decide that we have already
captured the most important dependencies in the first trees and truncate at level K = 2.

This model comparison can now be established by the Vuong test with or without one of
the corrections proposed in Section 5.3.1. If the “full” model is preferred, it is apparently
still too early to truncate the D-vine, i.e., the gain of the additional tree is still too large. If,
on the other hand, the "small” model is preferred, we can truncate the D-vine at truncation
level K = 2. However, the question remains what happens if the null hypothesis that one
cannot distinguish between the models is not rejected. In this case, we also truncate at
level K = 2, since according to the Vuong test both models are equally good and we are
interested in the simplest model possible.

Truncation in five dimensions may seem rather silly, but as soon as we move on to
higher dimensions, things look quite different. Hence, we now state the simplification
procedure at level j in general form. For this, let M7 (K') be the statistical model for
an i.i.d. sample v = (uy,...,u,”) with density c&(u|@7(K)) as given in (6.1), where
w; = (W1, ..., uiq)’, @ = 1,...,n. This corresponds to modeling the dependence in the first
K trees and then truncating. Mr(0) therefore denotes the statistical model where all
variables are jointly independent.

Using this notation we can formulate Algorithm 6. For 7 = 0 a pre-test is performed,
which tests whether the R-vine can be truncated after tree 70", i.e., whether the variables
are jointly independent. « is the significance level used in all tests.

Note that line 2 is stated rather informally. A more detailed description is given in
Section 7.4 which brings together all the methods discussed in the chapters up to that
point to establish a general framework for R-vine model building.

In the next section, we refine the truncation procedure discussed above and exploit
the fact that Mr(j) and Mp(j + 1) are nested models.
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Algorithm 7 Truncation of R-vines using information criteria.

Input: (Pseudo-)observations of d variables.
1: for 7=0,...,d — 2 do
2:  Specify model My(j+ 1) by constructing tree 71 and specifying appropriate pair
copulas (refer to Section 7.4 for more details on this issue).

3:  Compute the AIC (5.3) for models Mr(j) (model 1) and My (5 + 1) (model 2).
4: if A]Cl < A_[CQ then

5: Truncate the R-vine at level K = j, i.e., exit the loop with model Mr(j).

6: end if

7: end for

Output: Pairwisely truncated R-vine at level K, or fully specified R-vine, if no truncation
is possible.

6.3 Iterative pairwise truncation using information
criteria

In this section we propose an alternative sequential truncation procedure which is sim-
pler than the one discussed in the previous section. Primarily the determination whether
truncation is possible or not is very similar to the procedure based on the Vuong test.
Given already specified trees 17, ..., T, we want to compare the "small” model Mr(j) on
Jj trees to the "full” model Mz(j + 1) on j + 1 trees. Higher order trees are truncated in
both models (cp. Example 5). In contrast to the procedure based on the Vuong test, we
then exploit that Mz (j 4+ 1) and My (j) are obviously nested, since 07(j) C 0r(j + 1).
Thus we can simply compare AIC’s or BIC’s of both models and chose the model with
the respective smaller criterion without having to worry about an increased variability as
discussed in Section 5.2. If the "small” model My (j) is preferred, we can hence truncate
the R-vine.

Similar to Algorithm 6 we now state the truncation procedure using information crite-
ria in general form in Algorithm 7. For reasons of readability the algorithm is formulated
using the AIC. Of course, the BIC can be used instead.

The AIC/BIC comparison is of course slightly faster than performing a Vuong test.
Nevertheless, this approach also motivates a corresponding simplification procedure, which
crucially takes advantage of the AIC/BIC and some additional assumptions to increase
the computational efficiency. The issue of simplification will be discussed in the following
Chapter 7.



Chapter 7

Simplification of regular vines

Since truncation as discussed in Chapter 6 may be a rather strong assumption in many
cases, we will now concentrate on an alternative way to ”simplify” the construction of R-
vines. Hence, we begin by defining what exactly we mean when dealing with simplification
in the context of R-vines and show that truncation is a special case of this concept.
Motivated by the R-vine truncation procedures discussed on Sections 6.2 and 6.3, we
then develop procedures for the determination of appropriate simplification levels.

Finally, we discuss some implementation issues to see how these simplification pro-
cedures can be applied to practical problems and state an algorithm for general R-vine
specification which proceeds hierarchically and which incorporates all aspects of model
building discussed up to this point. The algorithms will then be studied in the following
Chapters 10 and 11.

7.1 Simplification versus truncation

In contrast to R-vine truncation, the idea of R-vine simplification is to replace all pair
copulas in higher order trees by bivariate Gaussian copulas (see Section 2.1.3), i.e., after
a certain tree K, where K is called the simplification level, all pair copula terms with
conditioning set of size larger or equal to K are replaced by Gaussian copulas. Obviously,
truncation is then a special case of simplification, since it corresponds to bivariate Gaus-
sian copulas with parameter 0. There are several reasons why we have chosen Gaussian
copulas instead of any other copula family:

(i) Gaussian copulas are symmetric. The use of an asymmetric copula family such
as the Clayton or Gumbel with lower and upper tail dependence, respectively, is
not sensible, since it imposes a rather restrictive structure on all pair copulas in
higher order trees. Of course, we could consider families with parameters to specify
different tail dependence such as the BB1 and BB7 families, but these families are
computationally more demanding to specify and therefore contradict the idea of
simplification.

(ii) Gaussian copulas are easy to specify. Compared to other symmetric copula families
such as the t or Frank, Gaussian copulas are rather easy to specify and to interpret in

98
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Figure 7.1: Pair copula terms of a five-dimensional D-vine simplified after the second tree
Ts, where c’fﬂ p denote Gaussian pair copulas.

terms of the correlation parameter. Moreover, when considering t copulas, despite
the increased computational effort for estimating the degrees of freedom (which
again contradicts the idea of simplification), one may frequently obtain large degrees
of freedom so that one ends up with an almost-Gaussian copula anyway. (Usually
we consider t copulas with more than 30 degrees of freedom as Gaussian copulas.)

(ili) Simulation from large numbers of Gaussian copulas is fast. After having specified
a model, one often wants to simulate observations, e.g., to obtain Value-at-risk
estimates. This is much easier if the model consists of a considerable number of
bivariate Gaussian copulas.

As noted in Section 6.1, our notations of simplification and truncation should not be
mixed up with what Valdesogo (2009) denotes as ”truncation”, since this corresponds
to our definition of simplification. Moreover, our notation of simplification is not to be
confounded with ”simplified pair copula constructions” as considered in Hobaek Haff et al.
(2010). As mentioned in Section 2.1.4, such simplified pair copula constructions refer to
the fact that inference from pair copula constructions relies on the simplifying assumption
that all the pair copulas do not directly depend on the conditioning variables, but only
through the two conditional distribution functions as arguments.

As for truncation, we will first consider a simple example before we move on to formal
definitions of the points discussed above.

Example 6 (Simplification.) We consider the same D-vine on five variables as in Ex-
ample 4 (cp. Figure 2.5) which amounts to investigating ten pair copulas within four trees.
Let us assume that the first two trees Ty and Ty have already been sequentially specified
with appropriate pair copulas and we now detect that we can specify the remaining trees
T5 and Ty with Gaussian copulas, i.e., simple Gaussian copulas are sufficient to capture
the remaining dependencies, while the “more complicated” dependencies are modeled in
the first two trees. Thus we can simplify our D-vine after tree K = 2 and obtain the model
tllustrated in Figure 7.1.

Similarly to a pairwisely truncated R-vine, an R-vine which has been simplified with
Gaussian pair copulas after tree Tk will be called a pairwisely simplified K level R-vine.
Obviously, simplification also facilitates maximum likelihood estimation in larger dimen-
sions, since Gaussian copulas have only one parameter, which is easy to estimate. Hence,
considering the R-vine density given in (2.27), the parametrized density of a simplified K
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level R-vine is given by

cg (ul@s(K [H IT cicerkeenn e>] [ H I Zorone! - (7.1)

i=1eck; i=K+1e€ekE;

where u € [0, 1]? and the arguments of the copulas have again been omitted for simplicity.
Further, c (€)k(e)|Dle denote Gaussian pair copulas with correlation parameter pj(e) k(e) p(e)

and OS(K) is the parameter set of c& | ie.,

GS(K) = {Oj(e),k(e)|D(e) ceeE, =1, ,K}

. 7.2
U {pj(e),k(e)|D(e) cee b, i=K+1,..,d— 1}, ( )

with 6;(c)k(e)p(e) denoting the parameter( ) of the copula ¢j(e) k()| p(e). Here we do not
denote Gaussmn pair copulas by ¢ as before in order to avoid confusion with the simpli-
fied /truncated density cX.

Note that in the special case of C-vines we will see that the second part of Equation
(7.1) collapses to the density of a multivariate Gaussian copula (see Section 8.1).

Since truncation allows the greatest possible simplification, we usually consider it first.
Either by running a truncation procedure for the full R-vine first or by a sequential ap-
proach which considers truncation before simplification with Gaussian pair copulas in each
step — this will be referred to as hierarchical in the following and discussed in Section 7.4,
where we combine the procedures proposed in this and the previous chapters to obtain a
hierarchical R-vine specification algorithm for omnibus use. Firstly, we concentrate on the
first option, i.e., we want to determine whether an R-vine can be simplified irrespectively
of possible truncation and, if yes, find an adequate simplification level. Therefore we de-
velop appropriate procedures which are motivated by the respective truncation methods
discussed in Sections 6.2 and 6.3

7.2 Iterative pairwise simplification based on the
Vuong test

As before, our first simplification procedure is based on the Vuong test which we discussed
in Section 5.3. The idea of the stepwise procedure is very similar to the one of the cor-
responding truncation procedure described in Section 6.2 and illustrated in the following
example.

Example 7 (Stepwise simplification based on the Vuong test.) Asin FEzamples 5
and 6, we consider again a five-dimensional D-vine with adequately specified pair copulas
in the first two trees Ty and T,. We are now interested in determining whether the D-vine
can be simplified at this level, i.e., modeled with Gaussian pair copulas for trees Ts and
T4.

The approach here proceeds on the same lines as for truncation (cp. Section 6.2): we
exploit the concept that usually most dependencies are captured in the first trees and only
specify the next tree Ty with appropriate pair copulas (not necessarily Gaussian). Then we
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Figure 7.2: Pair copula terms of five-dimensional D-vines simplified after the second tree
Ty ("small” model) and after the third tree T3 (”full” model), respectively, where Cfﬂ D

~p . .
and Cijlp denote Gaussian pair copulas.

compare the “full” model on three trees to the “small” model on two trees, where higher
order trees are modeled with Gaussian pair copulas (cp. Figure 7.2).

It is important to note that, in general, for the correlation parameters of the Gaussian
pair copulas in the fourth tree Ty of the "small” model, c’1’5‘234, and the ”full” model, 6f5|234,
it holds that pisjasa 7 Pisjasa, since the specification of tree T3 is different in both models
and hence the transformed observations based on tree T3 are different, too.

As for truncation, we now compare both models with the Vuong test and simplify the
D-vine at level K = 2 if the "full” model is not preferred, i.e., if the additional gain of a
fully specified third tree in contrast to a simplified third tree with Gaussian copulas is not
too large.

In order to state the simplification procedure at level j in general form, we need some
additional notations. Corresponding to Mr(K), we define Mg (K) as the statistical model
for an i.i.d. sample u = (uy/, ..., u,’) with density 5 (u|@s(K)) as given in (7.1), where
w; = (Uip, -y wig), 1 =1,...,n, i.e., Mg(K) is the model with fully modeled dependence
in the first K trees and then simplified higher order trees. Accordingly, Mg (0) denotes
the statistical model where all variables are jointly normally distributed. Note however
that for two models Mg(j) and Mg(j + 1) in general pjce)i(e)De) 7 Pje).k(e)D(e) for
all e € E;, @ > 5+ 1, Pj(e)k(e)|D(e) € Os(j) and ﬁj(e),k(e)|D(e) € 95(j + 1) if the trees
T;, © > j + 1, are constructed in exactly the same way, which does not necessarily hold,
since the transformed observations from trees 7)1, in both models are different due to the
different copula choices in 7}, i.e., trees may contain different edges and thus different
pair copula terms.

Similarly to Algorithm 6 the simplification procedure based on the Vuong test can then
be formulated in Algorithm 8 with a pre-test for 7 = 0, i.e., a test whether the variables
are jointly normal and thus all pair copulas can be set to bivariate Gaussian copulas
corresponding to a multivariate Gaussian copula for all variables (cp. Section 8.1.1). A
more detailed description of the pair copula specification in lines 2 and 3 of Algorithm 8
is given in Section 7.4. The significance level is chosen as « in all tests.
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Algorithm 8 Simplification of R-vines based on the Vuong test.
Input: (Pseudo-)observations of d variables, significance level a.

1: for 7=0,...,d — 2 do

2:  Specify model Mg(j) by constructing higher order trees 7)., ..., Ty_1 with bivariate
Gaussian copulas.

3:  Specify model Mg(j + 1) by additionally constructing tree Tj;; and specifying
appropriate pair copulas (refer to Section 7.4 for more details on this issue), and
by constructing higher order trees Tj.o, ..., Ty—1 with bivariate Gaussian copulas.

4:  Perform a Vuong test for models Mg(j) (model 1) and Mg(j + 1) (model 2), i.e
determine test statistic v as in (5.6).

5. if v> -0 (1— %) then

6: Simplify the R-vine at level K = j, i.e., exit the loop with model Mg(7).
7. end if

8: end for

Output: Pairwisely simplified K level R-vine, or fully specified R-vine, if no simplifica-
tion is possible.

7.3 Iterative pairwise simplification using informa-
tion criteria

Motivated by the truncation approach in Section 6.3, we propose an alternative sequential
simplification procedure. Using information criteria such as the AIC and BIC, which we
described in Section 5.2, we obtain a simple procedure which however relies on some addi-
tional approximations compared to the approach based on the Vuong test. This procedure
can therefore be regarded as a ”quick and dirty” approach to the simplification issue for
applications in very high dimensions and/or under strict time and resource restrictions.

In contrast to the case of truncation models are not nested anymore when testing for
potential simplification (05(j) € 0s(j + 1)), which means that we have to deal with an
increased variability in AIC comparisons (see Section 5.2). The following considerations
show that it might however be suitable to use information criteria for model selection.

The main assumption that motivates the consideration of simplification and truncation
is, as already stressed before, that most dependency is captured in the first trees while
higher order trees only account for small remaining dependencies. Hence we can assume
that, if we consider models Mg(j) and Mg(j + 1), then the bivariate Gaussian copulas
of the simplified trees have very similar parameters, i.e., we can ignore trees Tjo, ..., Ty_1
in a likelihood ratio-based approach such as the Vuong test or the difference of AIC’s or
BIC’s, since

AICMmg(j) — AIC pg(j+1)

= IQZlog (u;]0s(4)) + 2k;

[—2 > log i (wil0s(j + 1)) + 2k

=1

I P RN

cs (uil0s(j + 1))
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where the density of a simplified j level R-vine, 6{9, is given in (7.1) and k; and kjiq
denote the number of parameters of models Mg(j) and Mg(j+1), respectively. A similar
derivation holds for the Vuong test and the BIC. Note that in the case of truncation, the
last approximate equality is exact and the numerator of the last fraction reduces to 1, i.e.,

e - Tite),k(e)|D(e
AICwpy) — AIC iy a1y = 221 [ €E;11 "i(e)k(e)|D(e) + 2k — k)

[Lecs,., Cite k@D

(7.3)
=9 Z log [HeeEm Cj(e),k(e)|D(e):| + 2(kj — kjy1).
i—1

Model Mg(j+ 1) with the same Gaussian copulas as in Mg(j) for trees Tjto, ..., Ty—1

will be denoted by ./T/l\s(j + 1) as it is only an approximation to model Mg(j+1), i.e., we
assume that 7T;, i > j+1, are constructed in exactly the same way in both models Mg(j)
and Ms(j+1) and p](e Jk(e)|D(e) = pj(e) k(e)|D(e fOI‘ alle € F;, 1 > j+1, Pije) k(e )ID(e) € 95( )
and pj(e) k()| D(e) € 05(]-1—1) where 05(]+1) denotes the parameter set of model M5<j—|-1)
Furthermore we know that the likelihood of the first j trees is equal, so that the
comparison of likelihoods reduces to comparing the likelihoods of tree 7}, in models
Ms(j) and Mg(j+ 1) as shown above. In contrast to the procedure based on the Vuong
test, primarily we do not even have to specify the bivariate Gaussian copulas of trees
Tji2, ..., Ty—1, unless we decide to simplify the R-vine. Hence, from a heuristical point of
view we have achieved ”as much nestedness as possible” and obtained a very simple model
comparison based on the likelihood of only one tree, namely 7). The use of the AIC
or BIC for this comparison is an ad-hoc approach which involves an increased variability
regarding the model selection accuracy. Nevertheless it is often done by practitioners
and at least incorporates a correction for the number of parameters used (which is not
the case in direct likelihood ratio comparisons). Thus, we will thoroughly investigate the
performance of this procedure in our simulation studies in Chapter 10.
Before stating the corresponding algorithm, we briefly get back to Examples 6 and 7
for an illustration of the approach.

Example 8 (Stepwise simplification using AIC/BIC.) Suppose that we have already
specified the first two trees of the five-dimensional D-vine of Example 6 and now want to
determine whether simplification is feasible. As described above we specify trees Tz and Ty
of the "small” model Mg(2) with Gaussian pair copulas and assume that these are also a
good approximation of tree Ty in the ”full” model ./T/t\s(3> (cp. Figure 7.3).

In contrast to the setting of the approach based on the Vuong test, we now assume
that the correlation parameter of the Gaussian pair copula in the fourth tree Ty of both
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Figure 7.3: Pair copula terms of five-dimensional D-vines simplified after the second tree
Ty ("small” model) and approximately simplified after the third tree T3 (”full” model),
respectively, where cfj| p denote Gaussian pair copulas.

models, pisja34, 15 the same. Newt, we calculate the likelihoods of Ts in both models and
determine the number of parameters used in this tree. A straightforward comparison of
AIC’s or BIC’s then gives the desired result.

Similar to Algorithms 7 and 8 the simplification procedure using information criteria
is stated in Algorithm 9. Instead of the AIC, the BIC can of course be used as well and
will lead to more parsimonious models.

As stated above, the main computational advantage lies in the fact that in line 2 of
Algorithm 9 we only have to specify one additional tree (in excess of tree T ) in contrast
to[(d=1)—j]+[(d=1)—(j+1)] = 2(d — j) — 3 additional trees in lines 2 and 3 of
Algorithm 8 for the simplification procedure based on the Vuong test. Furthermore, the
AIC/BIC comparison is somewhat faster than performing a Vuong test.

Algorithm 9 Simplification of R-vines using information criteria.
Input: (Pseudo-)observations of d variables.
1: for j=0,....d—2do
2:  Specify model Mg(j) by constructing tree T;4; with bivariate Gaussian copulas
(the remaining trees can be ignored primarily).

. Specify model Mg(j + 1) by constructing tree T, with appropriate pair copulas.
4: Compute the AIC (5.3) for models Mg(j) (model 1) and Mg(j + 1) (model 2)
based on tree 7).
if AIC, < AIC, then
Simplify the R-vine at level K = j by specifying the remaining Gaussian pair
copulas for trees Tjyo, ..., Ty_1, i.e., exit the loop with model Mg(j).
7. end if
8: end for
Output: Pairwisely simplified K level R-vine, or fully specified R-vine, if no simplifica-
tion is possible.
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7.4 Implementation

With the truncation and simplification methods discussed in Sections 6.2, 6.3, 7.2 and
7.3 at hand, we can now formulate a model specification procedure for omnibus use. The
sequential procedure consists of three fundamental tasks in each step.

(i) Tree construction: Given (pseudo-)observations for tree 77 or transformed observa-
tions (2.19) for higher order trees Tj, j > 2, we want to construct an appropriate
R-vine tree according to the already mentioned paradigm that we try to capture as
much dependency as possible in each tree so that hopefully most of it is explained
in the first trees and higher order trees can be simplified or even truncated. Suitable
construction heuristics were discussed in Chapter 3 and are available for R-, C- and
D-vines.

(ii) Copula selection: Given a tree structure, we have to specify adequate pair copulas.
In Section 5.4 we have discussed and evaluated appropriate selection methods for
bivariate copulas. Note that we usually test for bivariate independence first (using
the test based on Kendall’s 7 described in Section 4.3.1) to obtain the simplest
possible model which is crucial in high dimensions. In order to obtain simple mod-
els, this independence test is also performed if we want to specify remaining trees
with Gaussian copulas in one of our simplification procedures (cp. lines 2 and 3 in
Algorithm 8, and lines 2 and 6 in Algorithm 9). If a t copula has more than 30
degrees of freedom, we do not consider it further as it is too close to the Gaussian.
Moreover, if # < 0.1 or 6 < 1.1, the BB1 copula is too close to a Clayton and a
Gumbel copula, respectively. Similarly, the BB7 copula is too close to a Clayton
and a Joe copula if # < 1.1 and § < 0.1, respectively (cp. Sections 2.1.3 and, in
particular, 5.4.2). After having selected and fitted appropriate copulas, we generate
transformed observations according to (2.19).

(iii) Truncation and simplification: Apply one (or an adequate combination) of the pro-
cedures discussed in Sections 6.2, 6.3, 7.2 and 7.3 to determine whether the R-vine
can be simplified or even truncated. We usually investigate the issue of truncation
first, because it allows for the greatest possible simplification. A pre-test is also
performed before the first tree is constructed to determine whether the data can
possibly be modeled completely Gaussian or independent.

The parts of Algorithms 6 (line 2), 7 (line 2), 8 (lines 2 and 3) and 9 (lines 2, 3 and 6),
which were stated in rather general terms, obviously refer to tasks (i) and (ii) of the list
above. If the copula family is given (usually Gaussian), of course no copula selection but
only fitting has to be performed. Nevertheless, we also test for bivariate independence
which is a (limiting) special case of all copula families (e.g., p = 0 in a bivariate Gaussian
copula) so that our model is as simple as possible.

7.4.1 Hierarchical algorithm

We will now bring together all concepts discussed so far and state a general algorithm for
R-vine specification using stepwise truncation and simplification procedures. It is however
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Figure 7.4: Flow chart of the hierarchical Algorithm 10.

important to note that the algorithm we propose proceeds sequentially — tree by tree —
and only the likelihood of each tree separately is maximized each step in contrast to a full
maximum likelihood estimation, which is not feasible especially in higher dimensions and
can only be performed after having sequentially specified a complete R-vine. However,
the Vuong test as well as the AIC and BIC require a full maximum likelihood estimation,
i.e., we make another approximation at this point. Empirical applications showed that
parameter estimates and value of the likelihood obtained by sequential estimation do
not change to a great extent when performing a full maximum likelihood estimation (see
Appendix B and Diimann (2010)), so that we believe that this additional approximation
is reasonable.

Algorithm 10 now combines all methods and concepts discussed so far in the way
that we stepwisely test for truncation first and then for simplification if truncation is not
possible after tree T} (also cp. the corresponding flow chart in Figure 7.4). Therefore, we
call this procedure hierarchical.

Again for j = 0 a pre-test is included and the transformed observations are simply the
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Algorithm 10 Hierarchical specification of R-vines.

Input: (Pseudo-)observations of d variables, significance level a.
1: for j=0,....d—2do

2:  Compute pairwise weights for the transformed observations from the previous step
(using one of the methods described in Section 3.1) and use them to construct tree
T;41 with the appropriate method from Section 3.2.

3:  Select copulas as described in Section 5.4, estimate parameters using maximum
likelihood estimation (cp. Section 4.1.2) and compute transformed observations ac-
cording to (2.19).

4:  if Simplification based on Vuong test (cp. Section 7.2) then

5: Perform a Vuong test for models Mz(j) (model 1) and Mr(j + 1) (model 2),

i.e., determine test statistic v as in (5.6).
6: if v>—-®7'(1-¢) then
7 Truncate the R-vine at level K = j, i.e., exit the loop with model Mr(5).
8: else
9: Specify model Mg(7): sequentially construct higher order trees Tji1, ..., Ty—1
with bivariate Gaussian copulas.

10: Specify model Mg(j+1): sequentially construct higher order trees T} o, ..., Ty_1
with bivariate Gaussian copulas.

11: Perform a Vuong test for models Mg(j) (model 1) and Mg(j + 1) (model 2),
i.e., determine test statistic v as in (5.6).

12: if v> -1 (1 — %) then

13: Simplify the R-vine at level K = j, i.e., exit the loop with model Mg(j).

14: end if

15: end if

16:  else if Simplification based on AIC (cp. Section 7.3) then

17: Compute the AIC (5.3) for tree T4, , i.e., for model Mrp(j + 1).

18: if 0 < AIC then

19: Truncate the R-vine at level K = j, i.e., exit the loop with model Mr(5).

20: else

21: Specify (reduced) model Mg(j): construct tree T4, with bivariate Gaussian
copulas (the remaining trees can be ignored primarily).

22: Compute the AIC (5.3) for model Mg(j) (model 1) based on tree Tjq. (AIC of
M\s(j +1) (model 2) based on tree T4 is the same as the AIC of My(j+1).)

23: if A[Cl < AIOQ then

24: Specify (full) model Mg(j): sequentially construct higher order trees

Ti+a, ..., Ty—1 with bivariate Gaussian copulas.

25: Simplify the R-vine at level K = j, i.e., exit the loop with model Mg(7).

26: end if

27 end if

28:  end if

29: end for

Output: Pairwisely simplified K level R-vine, pairwisely truncated R-vine at level K, or

fully specified R-vine if neither simplification nor truncation are possible (or required).
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original observations. When using the Vuong test, a correction factor can be chosen as
described in Section 5.3.1 (or it can be performed without correction). And for reasons of
readability Algorithm 10 is formulated using the AIC, but the BIC can of course be used
instead.

In lines 17 to 19 we use the fact that the models Mr(j) and My (j + 1) are nested
and therefore the AIC comparison reduces to the comparison of tree 7T}, where the AIC
of Mr(7) is obviously 0 for this tree (cp. (7.3)). Also note that the Vuong test in lines
5 to 7 can be performed using only the information of tree T}, since the Vuong test
is likelihood ratio-based and hence the likelihoods of the first trees 71, ..., T} cancel each
other out as discussed above. This facilitates the test significantly.



Chapter 8

Joint simplification

C-vines constitute a special structure when considering simplification. Besides pairwise
simplification, they allow for another very appealing simplification approach based on
multivariate copulas. As we will see, unfortunately this does not work for D-vines, and
only for some special R-vines. Detailed theoretical results are stated in the last part of this
chapter. However, this method is rather impractical anyway as it requires computationally
quite demanding multivariate copula goodness-of-fit tests (cp. Section 4.2).

8.1 Joint simplification of canonical vines

In Section 7.1, we have seen how to write the parametrized density of a simplified K level
R-vine. If we consider the special case of a C-vine (cp. Section 2.4), this density is given

by
K d -1 d
cs (ulfs(K)) = [H H Cz‘,j|1:(z‘—1)] X [ H H Cip,jllz(i—l)] : (8.1)
i=1 j=it1 i=K+1 j=i+1
where u € (0,14, ¢/ JeGi—1) denote bivariate Gaussian copulas and @g(K) is the parameter

set of the density.

The special structure of the conditioning set of a C-vine now allows to rewrite the
second part of the above equation. Valdesogo (2009) showed in Theorem 2.3.1 that in
a C-vine all pair copulas with a conditioning set larger than K (i.e., the second part of
Equation (8.1)) can be modeled jointly involving a (d — K)-dimensional copula. We will
establish this result in more detail in Section 8.2 and can then rewrite Equation (8.1) to

K d
C?(U‘HJ(K)) = [H H ci,j|1:(z'1)] X C€K+1):d|1:K7 (8.2)

i=1 j=i+1

where ¢/ denotes a (d — K)-dimensional Gaussian copula (cp. (2.7)) and where

(K+1):d|1:K
we write ¢ instead of c& to highlight the different simplification method. The parameter
set 0 ;(K) is defined similar to (7.2) as

9J<K) = {9173‘1(1,1) . j :Z—|— 1,,d, Z: 1,,K}
U{pij|l:K : Za] =K + 17"'7d7 Z%j}a

109
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where 0; j1.;—1) are the parameters of the pair copulas ¢; jj1.(i—1), while p;;j1.x denote the
entries of the correlation matrix of the multivariate Gaussian copula cf K1) K

Similarly to Mg(K) we also define M ;(K) as the statistical model corresponding
to the density in Equation (8.2) and we speak of a jointly simplified K level C-vine —
in contrast to a stepwisely simplified C-vine corresponding to (8.1). In the case of a
multivariate independence copula instead (p;jj1.x =0Vi,j = K+1,...,d, i # j), we speak
of a jointly truncated C-vine at level K and denote the density by ¢ (u|@s(K)) as before.
Following similar arguments as in Section 7.1, we will not consider other multivariate
copulas such as the multivariate t copula or multivariate Archimedean copulas. While
the first is more difficult to estimate and hence to validate in a goodness-of-fit test,
multivariate Archimedean copulas are too restrictive in their structure (the multivariate
t copula is also restrictive in the sense that it has only one joint degrees of freedom
parameter). The multivariate Gaussian copula however is intuitively appealing, easy to
estimate and well studied, but we have to keep in mind its drawbacks such as symmetry
and zero tail dependence for all variables pairs.

The corresponding hierarchical model building procedure is then straightforward to
obtain and described in Algorithm 11 using one of the multivariate independence tests
described in Sections 4.3.2 and 4.3.3 as well as one of the two multivariate copula goodness-
of-fit tests of Section 4.2 with significance level a. The procedure combines truncation
and simplification by always considering truncation first to obtain the simplest possible
model in each step, i.e., it is hierarchical. Of course, Algorithm 11 can also be split into
two procedures: one which considers truncation only and the other one concentrating on
simplification as we did in Chapters 6 and 7.

Line 11 in Algorithm 11 is stated in rather general terms and refers to the tasks (i)
and (ii) in Section 7.4 (cp. Algoritm 10).

The following example explains the procedures of lines 2 and 6 in more detail.

Example 9 (Joint simplification of C-vines.) We consider a five-dimensional C-vine
similar to the D-vine discussed in Examples 4 to 8 (also cp. Figure 2.4). This means we
have to specify four trees with ten pair copulas in total. Again assume that we have already
appropriately specified the first two trees Ty and Ty and now want to investigate whether
we can truncate or simplify at level K = 2, i.e., if one of the two models illustrated in
Figure 8.1 is appropriate.

As we start with truncation first, we take the transformed observations from tree Ty
and test whether they are jointly independent using one of the tests described in Sections
4.3.2 and 4.3.3. If the p-value of the chosen test is larger than the pre-specfied significance

TRUNCATED MODEL SIMPLIFIED MODEL
Ty: cio C13 C14 C15 Ty: o C13 Ci4 C15
15 : Co31 Co41 Cos|1 T : Ca3|1 Co41 C25|1
T3/4 : T'345]12 T3/4 : C§45|12

Figure 8.1: Pair and multivariate copula terms of five-dimensional C-vines jointly trun-
cated and jointly simplified after the second tree T5, respectively, where ms45)12 denotes a
three-dimensional independence copula and ¢} 1512 @ three-dimensional Gaussian copula.
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Algorithm 11 Joint simplification of C-vines.
Input: (Pseudo-)observations of d variables, significance level a.
1: for 7=0,...,d — 2 do
2:  Perform a multivariate independence test for model Mr(7), i.e., for the transformed
observations from tree T3, e.g., using the test statistics defined in (4.16) or in (4.18).

3:  if p-value > a then

4: Truncate the C-vine at level K = j, i.e., exit the loop with model M (j).

5. else

6: Perform a multivariate copula goodness-of-fit test for model M ;(j), i.e., test if
the transformed observations from tree 7; can be appropriately modeled with a
(d— j)-dimensional Gaussian copula, e.g., using the test statistics defined in (4.6)
or in (4.11).

7: if p-value > o then

8: Simplify the C-vine at level K = j, i.e., exit the loop with model M (7).

9: end if

10:  end if

11:  Construct tree T;;; and specify appropriate pair copulas (refer to Section 7.4 for
more details on this issue).
12: end for
Output: Jointly simplified K level C-vine, jointly truncated C-vine at level K, or fully
specified C-vine, if neither simplification nor truncation are possible.

level a, then the null hypothesis that the transformed observations are jointly independent
cannot be rejected and hence we truncate the C-vine at level K = 2.

If no truncation has been detected (or we are not interested in truncation), we examine
if at least simplification is possible. Therefore we take the transformed observations from
tree Ty and test whether they follow a multivariate (here: trivariate) Gaussian copula
c§45|12 using one of the tests described in Section 4.2. Again, if the p-value is larger than
a, we simplify the C-vine at level K = 2, otherwise we continue with the next tree.

In contrast to the procedures discussed in Sections 6.2, 6.3, 7.2 and 7.3, this procedure
is an exact procedure without any approximations or further assumptions. In each step
J it also does not require the specification of tree Tj,; (or any other higher order trees)
in advance. For 7 = 0 a pre-test whether the variables are jointly independent or follow a
d-dimensional Gaussian copula is performed.

The use of a multivariate goodness-of-fit test in line 6 of Algorithm 11 is not trivial
though: on the one hand, even if the multiplier approach described in Section 4.2.2 is
used, multivariate goodness-of-fit testing based on the empirical copula process is com-
putationally extremely demanding in high dimensions. On the other hand, the test based
on Rosenblatt’s transformation (Section 4.2.3) has a lower power in most cases except for
testing against heavy tails. Its performance however increases with increasing sample size
and increasing dependency (Berg 2009). Moreover, multivariate goodness-of-fit testing
has not been extensively studied in the literature so far. As noted earlier, Genest et al.
(2009) study only bivariate copulas, while Berg (2009) and Kojadinovic and Yan (2010a)
consider dimensions d = 4,8 and d = 3,4, respectively. The multivariate independence
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test based on the empirical copula process proposed by Genest and Rémillard (2004) was
also considered only for dimensions up to d = 5. Such dimensions are still rather small
for extensive practical applications (cp. the 52-dimensional application in Section 11.3).

A possible cure to these issues might be to use one (or an appropriate combination)
of the procedures discussed in Sections 7.2 and 7.3 as an approximation to the exact
joint simplification of C-vines and, if the C-vine is simplified, reconstruct the multivariate
Gaussian copula from the Gaussian pair copulas. (Regarding truncation, it is clear that
stepwisely truncated C-vines are equivalent to jointly truncated C-vines.) We will discuss
this in the following section and investigate it in detail in the simulation studies in Chapter
10. There, we will also examine whether the goodness-of-fit test based on the Rosenblatt
transformation can generally be used for our purposes, since it is computationally more
efficient than the test based on the empirical copula process.

8.1.1 Computing the correlation matrix from partial correla-
tions

If the chosen simplification method (either based on the Vuong test or on AIC/BIC) de-
termines a significant simplification of the higher order trees Tk 1, ..., T;_1 with bivariate
Gaussian copulas in a C-vine as in (8.1), we want to compute the correlation matrix of
the multivariate Gaussian copula which corresponds to this simplification as in (8.2).

In the case of normally distributed random variables, we know that the following two
statements are equivalent (see, e.g., Lanzendorfer (2009, p. 20) using a C-vine instead of
a D-vine):

(i) Xi,..., Xq ~ N4(0, R) with correlation matrix R € [—1, 1]¢

(ii)) X; ~ N(0,1) Vi =1,...,d, with joint density

d d—1d—j
f@) =TT o) [TTL im0 @i wing-vlpsging-), (8.3)
k=1 j=1i=1

where ¢(-) denotes the density of the standard normal distribution, w;j.j—1) =
F(zjla, . 2jo1), Wigin—1) = F(xj4]21, ..., ¢j-1), and Cgp,jﬂ'u;(jq)(" -|p) is the den-
sity of a bivariate Gaussian copula with parameter p = p; ;1i1.;—1) Which denotes
the partial correlation between X; and X, ; given Xi,..., X, ;. Note that (8.3) is

the density of a C-vine (cp. (2.28)) with standard normal margins.

With statement (i) it follows that

Fl@) = (@) 4 R| L exp(—sa' R )

= [H o(xr)

k=1

1 1
|R| ™2 exp(§az’([d - R’l)w), (8.4)

where = (21, ..., z4)" and the second part of Equation (8.4) is the density of a multivariate
Gaussian copula (cp. (2.8)). With Equation (8.3) from statement 2 above, this yields that
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for normally distributed random variables we can write the density of a multivariate
Gaussian copula as a C-vine density with bivariate Gaussian copulas:

d—1d—j
1 1 _
B2 exp(5a'(Ia — R @) = T o (@G0 Wi -nlojssing-n)-

j=1i=1

However, usually we cannot assume that our data comes from a normal distribution.
Therefore we assume that we already have copula data, i.e., data which comes from
uniformly on [0,1] distributed random variables Uy, ...,U; (otherwise we can transform
our data by the empirical distribution function to obtain pseudo-observations as defined
in (4.4)). Then Z; = @ 1(U;), i = 1, ..., d, are known to be normally distributed. Moreover,
we know that copulas are invariant under strictly increasing transformations of random
variables (cp. Theorem 2.6). Thus the joint distribution of 71, ..., Z; is determined by the
same multivariate copula as the joint distribution of Uy, ..., U, and vice versa.

We now exploit this fact to determine the correlation matrix of the multivariate Gaus-
sian copula which we use to simplify our C-vine on observed data coming from the random
variables Uy, ..., Uy. Assume in the following that our C-vine has been determined to be
simplified at level K and hence to be adequately modeled with bivariate Gaussian copulas
for trees T 11, ..., T;_1. Partial correlations have been estimated for all pair copulas. Then
Vi1 := F(Ug1|Uy, ..., Uk), ..., Vg := F(Uy|Uy, ..., U ) are again uniformly distributed on
[0,1], where F(-|Uy, ..., Uk) is determined by the pair copula construction in 77, ..., Tk (cp.
(2.19)). Using the fact above and that Z; = ®~4(V;), i = K + 1, ...,d, are normally dis-
tributed, we can conclude that the joint distribution of Zx .4, ..., Z; is described by the
bivariate Gaussian pair copula construction given by the trees Tk 1,...,T; 1. As shown
earlier this is equivalent to a multivariate Gaussian copula, and using the fact above again,
it follows that the joint distribution of Vi1, ...,V is determined by the same multivariate
Gaussian copula.

Note that this one-to-one correspondence only works because Vi1, ..., Vg are uniquely
determined by the first K trees. In the case of a general R-vine this is not the case (except
for K = 0, see Lanzendorfer (2009) for the D-vine case) because we cannot choose such
transformed variables so that we obtain a valid density. E.g., in D-vines, there are 2d — 4
different transformed variables in the second tree instead of d — 1 when we consider a
C-vine! The problem is that there is no common conditioning set in each tree (cp. Section
8.1.2). There is however a special case where R-vines can be jointly simplified as well (see
below).

For C-vines, now the question remains how we can compute the correlation matrix of
this multivariate Gaussian copula, when we know the partial correlations of the bivariate
Gaussian copulas. This can be done using the following recursive formula (see, e.g., p. 290
in Yule and Kendall (1965)):

_ Pij|D_y = Piv|D_y Pjv|D_,
Pij|D = 5 5 )
\/1 ~ Piv|D_, \/1 ~ Piv|D_,

where D is a set of indices with v € D, D_,, := D\ {v} and, if D = @, p;jjo = pij. If
|D| = k, this equation expresses the k-th order partial correlation of two random variables

(8.5)
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Algorithm 12 Computation of unconditional from conditional correlations in a C-vine.
Input: Dimension d > 2, partial correlations pj jii.(j—1) adapted to a C-vine.
1: Create empty matrix R = (R; ;)i j=1,. 4.

diag(R) == (1,...,1)
for i =2 to d do

Ru = P1,i
end for
for k=d—2to1do

for j=k+1tod—1do

fort=j7+1toddo

Pid1:(k=1) = PikfL:(k=1)Pik{1:(k—1) +Pij|1:k\/1 = Pk 1)\/1 Pkl k-1)
if k =1 then
Ri,j = Pijl1:(k—1) = Pij
end if
end for
14:  end for
15: end for
Output: Correlation matrix R.

[ S S
A el

as a function of three (k—1)-th order partial correlations. Solving Equation (8.5) for p;jip_,
gives

Pij|D—, = Piv|D_, Pjv|D—, T Pij|D \/1 - p?v\D_v \/1 - P?U\D_w

which, together with the fact that conditional and partial correlations are equal for nor-
mally distributed random variables (Yule and Kendall 1965), yields Algorithm 12 to com-
pute the unconditional correlations from partial correlations in a C-vine. The algorithm
is stated without reference to the simplification level K. However, it is easy to see that
we can apply Algorithm 12 directly to Vi1, ..., Vg which are taken from the stepwisely
simplified K level C-vine.

The procedure of Algorithm 12 can be summarized as follows: first, we store all avail-
able unconditional correlations. Then we proceed by reducing the order of the conditional
correlations by 1 in each step of the first loop. The second and third loops run over all
(k — 1)-th order conditional correlations. When conditional correlations of order 0, i.e.,
unconditional correlations, are obtained, they are stored.

When implementing Algorithm 12, we can start with the matrix R having the condi-
tional correlations as entries. Then line 10 simplifies to

Rij = pirin:(k—1)Pik:(e—1) + Ri,j\/l zk\l (k—1 \/1 jk|1 (k—1)

Note that the output of the algorithm is a lower triangular matrix. As correlations matrices
are, of course, symmetric, the upper triangle of the matrix is readily given.

We also adapted Algorithm 12 to the structure of RVM’s (cp. Section 2.4.1), since
we consider C-vines as a special case of R-vines. Because an RVM is not unique for a
given C-vine (Difimann 2010), the algorithmic formulation is more tricky but similar to
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cro(F(w1), Fzg))  coa(F(x2), Fw3))  caa(F(x3), Fl(wa))  cas(F(2a), F(25))
cizp(F(z1|z2), F(x3]72))  coaz(F(2|w3), F(walw3))  ezspa(F(w3]74), F(75]74))
C14|23(F(931|332, 13), F(24]72, 3)) 625\34(F(£E2\$3, r4), F (25|73, 24))

Cisj23a(F (21|22, 3, 24), F (5], T3, 24))
Figure 8.2: Pair copulas with arguments of a five-dimensional D-vine.

Algorithm 12. The main difference is that we have to attach labels to each conditional
correlation so that we can identify the necessary lower order conditional correlations in
line 9 of Algorithm 12.

To sum it up, if our chosen specification procedure now determines that we can step-
wisely simplify our C-vine with Gaussian pair copulas for all remaining trees, it is equiv-
alent to state that the C-vine is jointly simplified by a multivariate Gaussian copula and
the correlation matrix of this copula can then be computed by Algorithm 12 using the
estimated conditional correlation parameters of the Gaussian pair copulas.

8.1.2 Joint simplification of regular vines

Despite its obvious computational drawbacks, the idea of simplifying an R-vine by a mul-
tivariate copula is intuitively very appealing. However, we will consider a small example
to see why this is not feasible in general. In the example we consider a D-vine which can
be regarded as the exact contrary to C-vines, while general R-vines are models between
these boundary cases.

Example 10 (Infeasibility of joint simplification of D-vines.) Once again we con-
sider the five-dimensional D-vine of Examples 4 to 8. For reasons of readability, we have
always omitted the arguments of the copulas so far. As these are fundamental in the un-
derstanding of joint simplification, we state the ten copulas with their respective arguments
in Figure 8.2.

Now suppose that we want to jointly simplify the D-vine at level K = 1, i.e., we
want to specify trees Ty, T3 and Ty with a multivariate Gaussian copula. The input ar-
guments of tree Ty, and therefore the input arguments of a possible multivariate copula,
are F(xq|z2), F(xs|za), F(xo|zs), F(x4lzs), F(xs|zy) and F(xs|xy). It is not obvious,
and in fact not feasible, to combine these transformed observations so that we get a valid
probability density similar to (8.2) (apart from multivariate independence). In particular,
we have crosswise relationships such as F(xo|xs) and F(xs|xs) which complicate the situ-
ation. The same problem occurs for the input arguments of tree Tz, while it does not make
sense to simplify tree Ty. As will be shown in Section 8.2, there are no such crossing overs
in C-vines.

Of course, for general R-vines the above is also true. However, there is one very special
case where joint simplification of higher order trees is possible: if an R-vine reduces to a C-
vine structure in higher order trees (cp. Figure 8.3 for the simplest possible example which
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45123
&

Figure 8.3: Example of an R-vine which can be jointly simplified at level K = 2 with a
trivariate copula.

is the five-dimensional R-vine considered in Example 2), then this sub-C-vine can of course
be simplified with a multivariate copula, since the arguments have the same conditioning
set. This result will be established as a general theorem in Section 8.2. However, due to the
computational issues of joint simplification and since this is a rather special case, we will
not investigate this possibility further in the following chapters. But if one is interested in
jointly simplifying an R-vine after some higher order tree, one should look for first trees
that are ”star-shaped” so that they reduce to C-vine structures in higher order trees.

8.2 Theoretical results

8.2.1 Canonical vines

Jointly simplified C-vines were first applied in Heinen and Valdesogo (2009) and con-
structed more generally in Chapter 2 of Valdesogo (2009). In this section, we present the
results of the latter author which we already used in Section 8.1. The work of Heinen and
Valdesogo (2009) will be reviewed and critically evaluated in Chapter 11.

To illustrate the idea of Valdesogo (2009), we begin with a five-dimensional example
(cp. Example 9).

Example 11 (Joint simplification of C-vines.) Let X = (Xi,...,X5) be a five-di-
mensional random vector with joint density function f(x1,...,zs5). Using the conditional
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T : C12 C13 C14 C15

T2/3/4 : C2345|1

Figure 8.4: Pair and multivariate copula terms of a five-dimensional C-vine jointly sim-
plified after the first tree T7.

versiton of Sklar’s Theorem 2.4 we know that

f(za, ..y xs|z1) = [H f(a:k]xl)] cosp (F(z2|21), ..., F(5|21))

& flzy,..yxs) = fi(xy) [H f(xk|x1)] o (F(22]21), -y F(25]21)), (8.6)

k=2

where cy.51 15 a four-dimensional copula. As in the pair copula construction in Section
2.1.4, we also know that

fajley) = fi(x5)er;(u, uy) (8.7)
forall j =2,...,5 and pair copulas c;, where wy, == F(xy) Yk =1, ...,5. Substituting (8.7)
into (8.6), we obtain

5

Flay, o as) = [H fk(xk)] [H clj(ul,uj)] Cosp (F(xa|21), ooy F(25]71)). (8.8)

Jj=2

Of course, we also know according to Sklar (1959) that

flzy, .. x5) = [H fk(xk)] cr5(ug, .y us),
k=1

where c1.5 1 a five-dimensional copula, and hence the copula density corresponding to
Equation (8.8) is

5

crs(u, ...y Us) = [H clj<u1,uj)] Cos (F (o)1), ..., Fas|21)),

Jj=2

i.e., we expressed a five-dimensional copula as the product of the pair copulas of a first
C-vine tree with root node 1 and a four-dimensional copula. Using the notation of copula
terms as in previous examples, this corresponds to the jointly simplified K = 1 level C-vine
shown in Figure 8.4. _

Figure 8.5 illustrates this C-vine. The dashed lines in graph Ts indicate that this is not a
tree anymore, since trees are a convenient method to model bivariate dependence, but they
are not appropriate to display multivariate dependency relationships. Joint simplification
can be more appropriately displayed by complete graphs (here: complete graph on four
nodes; cp. Section 2.3), since the multivariate copula corresponding to the simplification
directly links all (conditioned) variables. The indices of this copula are denoted in the

middle of graph TQ.
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Ty

Figure 8.5: Jointly simplified C-vine at level K = 1.

From the derivation, it is clear why this joint simplification does not work for R-vines
in general. In order to be able to jointly simplify an R-vine, we also need a common
conditioning set (here: variable X;) which is only given for C-vines and special cases of
R-vines (cp. Figure 8.3 and Section 8.2.2), but never for D-vines (except in tree Ty 1, but
there is nothing left to be simplified as there is only one pair copula to be specified).

Valdesogo (2009) generalizes this result and shows how to decompose d-dimensional
copulas into the product of the pair copulas of the first K C-vine trees and a (d — K)-
dimensional copula.

Theorem 8.1 (Joint simplification of C-vines.) Let X = (X1, ..., X;) be a d-dimen-
sional random vector with joint copula density function cy.q(uq, ..., uq), where u; == F(z;)
Vi=1,...,d. Further let K € {0,...,n — 2}, then the copula density can be written as

K d
C1:d(U17---,Ud) = H H Ci,j\l:(i—l)(F(xAIl’---7$i—1)7F(xj|xlu-‘-wri—l))

i=1 j=i+1

X C(K-l—l):d\l:K(F(xK—i-l‘xla ...7$K>, ...,F(l’d‘l’l, 7IK>)

The proof can be found in Valdesogo (2009). It uses the conditional Sklar’s Theorem in
higher dimension and crucially relies on the C-vine structure with common conditioning
sets. Any other permutation of the variables is obviously also possible. The order 1...d is
chosen only for illustrative reasons.
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8.2.2 Regular vines

As we have seen in Section 8.1.2, under certain conditions it is possible to simplify R-vines
as well. We state these conditions in the following theorem.

Theorem 8.2 (Joint simplification of R-vines.) Let X = (X7, ..., X4) be a d-dimen-
sional random vector with joint copula density function cy.q(uq, ..., uq), where u; == F(z;)
Vi=1,....d. Further let K € {0,....,n—2} and D C {1,...,d} with |D| = K. If

D(e) =D Vee EK+1,

then the copula density can be written as

K
cra(ur, ua) = | [T 1] cieipe (F@jolTne), F(rre T oe))

=1 eEEi

X cpeip(F (@, |XD), s F(T0,|D)),
where D¢ ={1,...,d} \ D and D° := {vk41,...,v4}.

Theorem 8.1 is then a special case of Theorem 8.2 with additional restrictions regarding
the conditioning set, namely

Vi=1,..,K: D(e)={1,....,i — 1} Ve € E;.

The proof of Theorem 8.2 follows along the same lines as the proof of Theorem 8.1 (Valdes-
ogo 2009) and is stated in the following. Subsequently an informal explanation and an
example are presented.

Proof of Theorem 8.2: Set D := {v, ..., vk} similar to the definition of D¢. Using the
definition of conditional densities we know that

f(d?l, ...,J,’d) = f(JJD)f(ch I.BD). (89)

By assumption D(e) = D Ve € Ek.1. According to the R-vine construction principles
(cp. Section 2.4) it must therefore hold that

Vi=1,..,K: D(e) C DVe € E,. (8.10)

Then the first part of Equation (8.9) can be decomposed using the R-vine density as given
in (2.27):

K K-1
flxp) = [vaj(xvj)] 1T 11 ¢@mewe(F@iol®ne), Flael®ne) | (8.11)

i=1 ceEK

where EX denotes the respective edge sets of this R-vine on K variables. Applying Sklar’s
Theorem 2.4 for conditional distributions we get for the second part of Equation (8.9):

f(fL'Dc

zp) = LH f(asvjm)] oD (F (@, |TD), oy F(,]2)). (8.12)

=K+1
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Now let v; € D°. We claim that Vi = 1,..., K Elng) : vj,ng)|Dij € E;, where D;; is the
corresponding conditioning set. To prove this statement, it suffices to show that Elwgl) ;

vj,ng) € E;. Then the existence of wV

principles.

To show this, we assume that the statement is not true. Since trees are connected by
definition, 3w € {1,...,d} \ D = D°: e; := v;,w € E;. Using one more time that trees
are connected we further know that

(FJae{l,....,d} e, :=a,v; € )V (Ibe{l, .., d}:e :=b0 € Ey).

1 = 2,..., K, follows by R-vine construction

1 7

We consider both cases separately.
(i) Ja € {1,...,d} : e, := a,v; € Ey: By R-vine construction principles, this yields that
e;,eq € Vi1 are joined by the edge a,w|D, € E,, where
vj = D, :={a,v;} N{v;, 0}
But v; € D¢ by assumption and therefore D, ¢ D in contradiction to (8.10).
(ii) b e {1,...,d} : e, := b, w € Ey: Similarly to (i), we get @ = Dy, := {b,w} N {v;, 0},
and hence D, € D in contradiction to (8.10).

This proves the above claim, which basically states that in each tree, each variable, which
is not in the common conditioning set D, is linked by a pair copula to a variable of this
set D. We can exploit this fact by considering the following R-vine decomposition for
je{K+1,..d}:

K - K
f(xp,xy,) = vak(%k) fo; () H H Cj(e),k(e)|D(e) (F(Tje) | D(e))s F(Tr(ey|TD(e)))
=

=1 66E<7 LK)

. ]
- vak(%k) H H Cj(e)k(e)|D(e) (F(Tj(e) [T D(ey) s F(Th(e) [T D(e)))
k=1 1

=1 eEEK
K
X f”j(xvj) [H Cvj,w(j)\Dij (F<xvj|mDij)7F(xw§j>’mDij)) ) (813)
i=1
where EZ-(j ) are the corresponding edge sets with EX C EZ-(j ) and which depend on K
and j.
Combining Equations (8.11) and (8.13), we obtain
f(a:D7 x’l}j) s
f(xvj‘mD) = W = f'Uj (xvj) HCvj7w§j)|Dij(F($Uj|wDij>7F<xw§j)‘mDij)) ) (814>
i=1

for all j = K +1,...,d, which we can directly plug into Equation (8.12):

f(zpe|lzp) = LH fo; (0 Hcv w1y, wvj|wnij),F(:vwgn\wDij))]

=K+1

(8.15)

X ch|D(F(xUK+1|a:D), oy Fxy,|xp)).
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Taking Equations (8.11) and (8.15) and plugging them into Equation (8.9), then yields
the joint density as

d
f(z1, . 2a) = [H oy (@) ] H 11 ¢ meine (F@ie|Ene), Flawel@e))
j=1

=1 €EEK

K d
x [H H Cuj,w(j>|Dij<F<xvj’wDij)’F(:Cw(j)|wDij))]

i=1 j=K+1

X CDC|D(F(mUK+1|mD) F(:Evd|£l:D))

= [H fr(zy) ] [H H Cj(e)k(e) D) (F( j(e)|$D(e)),F(ivk(e)|fl3p(e)))]

i=1 e€FE;

X Cpe|p(F(Tysy|ZD)s oy F(20,|TD)),

where the last equality follows from the statement of the auxiliary claim above. This con-
cludes the proof of Theorem 8.2. O

The idea of the proof can be summarized as follows: We want to show that R-vines
with C-vine structure in higher order trees can be jointly simplified. To do so, we start
by decomposing the joint density of X = (Xp, Xpc) into the density of the variables of
the common conditioning set D and the density of the remaining conditioned variables
in Equation (8.9). The variables of the common conditioning set can be modeled as an
R-vine because their dependencies are ”self-contained” by (8.10). By an application of
the conditional Sklar’s Theorem we further obtain a (d — K)-dimensional copula and
univariate densities conditioned on D in Equation (8.11). By an auxiliary claim, these
conditional densities can be decomposed into the unconditional densities and pair copulas
linking the variables to the R-vine structure of the variables in D in each tree (Equation
(8.14), cp. Example 12). These pair copulas then complement the R-vine structure of the
variables in D so that we finally obtain an R-vine on K trees and a (d — K')-dimensional
copula.

Example 12 (Joint simplification of R-vines.) In this example, we consider the R-
vine given in Figure 8.3 and formally link it to Theorem 8.2. Figure 8.6 shows the same
R-vine which has now been simplified at level K = 2. As in Figure 8.5, the dashed lines
i graph T3 indicate that this is not a tree anymore but a complete graph on three nodes
to illustrate that the conditioned variables are jointly linked by the trivariate copula whose
indices are denoted in the middle of the graph Ts.

Obviously, the common conditioning set is D = {1,2}. Simplification at level K =
1 is not possible, since, e.g., D({1,3|2}) = 2 # 1 = D({2,4|1}). However, note that
D({1,3|2}) € D and D({2,4|1}) C D. The modeling of the variables in D as an R-vine
1s not very exciting in this example, because a simple bivariate copula is of course an
R-vine.

What is more interesting here, is the statement of the auxiliary claim in the proof: in
each tree we see that the pair copulas are linked to the set D, e.g., 1,5 in tree 1 or 2,4|1 in
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T

T

T3

Figure 8.6: Jointly simplified R-vine at level K = 2 (cp. Figure 8.3).

tree 2. These pair copulas make up the trees around D, i.e., Theorem 8.2 can be thought
of as a C-vine structure built around a "root set” which itself is modeled as an arbitrary
R-vine.



Chapter 9

Model evaluation

Having fully specified an R-vine (e.g., using Algorithm 10), one is usually interested in
evaluating the model with respect to different criteria, especially such that are important
for the intended use of the model. If alternative models are also proposed, one can easily
use one of the model selection criteria discussed in Chapter 5 for a relative comparison.
In this chapter, we will concentrate on the problem that we are given only one model
(since model specification is costly in terms of time and resources) and now want to
assess whether it is reliable and adequate for future use, i.e., evaluate it in absolute terms.
Model evaluation therefore proceeds by comparing characteristics of the observed data,
which was used for model specification, with simulated observations from the specified
R-vine model (cp. Difimann (2010) for details on simulation from R-vines).

With regard to our fundamental issues of truncation and simplification, we consider a
model Mr(K), Mg(K) or M ;(K) with density given in (6.1), (7.1) or (8.2), respectively,
obtained from the respective chosen truncation or simplification procedure (see Chapters
6, 7 and 8) and now want to figure out whether the model has been reasonably simplified
or truncated, i.e., the possible loss compared to a fully specified model should be small.
If there are problems in the model specification, especially in higher order trees that have
been simplified or truncated, we hope to detect them in the model evaluation. Hence, we
assume in the following that we examine a model M(K') which has been stepwisely or
jointly simplified or even truncated at a certain level K. Simulations from this model are
denoted by (uff, ..., uX), where ulf = (uf,..,ull), i =1,...,m, with m > n depending
on the chosen criterion. Note that simulations are of course particularly easy to obtain
for truncated models.

Model evaluation criteria can be divided into two groups: on the one hand, there is
graphical model evaluation which is usually considered in two dimension, most notably
using scatter plots. On the other hand, there is a wide range of summarizing criteria
such as the comparison of dependence measures. Summarizing model evaluation is also
more suitable in larger dimensions, since graphical methods then often become rather
impractical. Nevertheless, we will first discuss graphical evaluation criteria, since they
often motivate or directly lead to summarizing measures which are appropriate for higher
dimensions. Finally, we consider the Value-at-Risk of a portfolio which is of particular
interest in financial applications and can be used to test the forecasting accuracy of a
model.

123
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9.1 Graphical model evaluation

As noted above, graphical model evaluation concentrates on bivariate comparisons, since
these are easier to work with and to interpret. The most natural method are bivariate
scatter plots, while contour plots of variables with standard normal margins are often an
interesting alternative. Depending on the specific application, special areas of bivariate
plots should get attention, e.g., the bottom left and right upper corners to assess tail
behavior when modeling financial risk. The comparison of empirical copula distribution
functions and copula Q-Q plots are other insightful diagnostic tools.

9.1.1 Bivariate scatter plots

As stated above, the most natural graphical evaluation criterion is the comparison of
bivariate scatter plots of {(uff,uX), i = 1,...,m} to the observed ones {(u;,u;s), i =
1,...,n} for some r,s € {1,...,d} (cp. Panel A of Figure 9.1). Often m = n is used for
direct comparability. However choices of m larger than n are also possible to get a better
impression of the underlying distribution.

Special consideration should by given to those pairs which are not modeled uncon-
ditionally in the corresponding parametrized density (e.g., variables 1 and 3 in a D-vine
with pair copula terms cia, co3 and ci312) and, in particular, to those which are affected
by simplification or truncation, since obviously conditional normality or independence are
not equivalent to the respective unconditional property. For jointly simplified C-vines,
this corresponds to the consideration of scatter plots for r,s € {K +1,...,d}.

9.1.2 Contour plots

Often it might be easier to interpret plots of variables with standard normal margins.
Therefore we propose to consider the bivariate scatter plots of {(zX,25), i = 1,....,m}
versus {(2i, 2is), © = 1,...,n} for some r, s € {1,...,d}, where z& := &1 (u&) and z;, :=
®~1(uy.). Interpretation becomes even easier, when contour plots are used rather than
simple scatter plots (cp. Panels B and C of Figure 9.1). To compute the contour lines, it
might in particular be sensible to choose m > n to obtain more accurate results. Again,

one should especially focus on variable pairs affected by simplification or truncation.

9.1.3 Empirical copula distribution functions

If one is particularly interested in an accurate modeling of the joint tail behavior of
variables, it might be interesting to consider the empirical copula distribution functions
in the tails, i.e., compute C,(a,«) (lower tail) and C,(1 — a,1 — «) (upper tail) for
a € [0,0.1] based on the empirical copula defined in (4.5) (also see Figure 3.5). Similarly
compute the empirical copula based on the simulated observations and evaluate it in the
lower and upper tails. The comparison of both observed and simulated empirical copulas
gives an indication whether comovement in the tails is reproduced appropriately by model
M(K). An example is shown in Panel D of Figure 9.1.
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Figure 9.1: Graphical model evaluation criteria: superimposed scatter plots of copula data
(Panel A) and data transformed with standard normal margins (Panel B), the correspond-
ing contour plot (Panel C), a plot of the empirical copula distribution functions (Panel D)
and the copula Q-Q plot of the data (Panel E). The observations are obtained from Gaus-
sian copulas with parameter 0.8 (representing the ”observed” data; black circles/lines)
and 0.5 (representing the ”"simulated” data from model M(K); gray triangles/lines), re-
spectively.

9.1.4 Copula Q-Q plots

An alternative diagnostic tool are Q-Q plots as proposed in Wilk and Gnanadesikan
(1968). Such plots allow to compare two empirical cdf’s, in our case the empirical cdf’s of
the observed and simulated data, where the observed data comes from the unknown true
distribution and we want to investigate if the distribution induced by M(K) is close to
this true distribution. Hence we compute

n
1 Z
E 1{ujr§uir7ujsguis}7

1 n
K _ + o
wp = E 1{u§§§u{§,u§ggufg}’ and w; =
Jj=1 Jj=1

for some r,s € {1,...,d}. Then plot the order statistics {(w(i),w(]f)), i =1,...,n}, where
necessarily m = n. If both cdf’s are close to each other, the plot is similar to the line
y = x. An example is shown in Panel E of Figure 9.1.
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9.2 Summarizing evaluation criteria

While graphical diagnostic tools as discussed in the previous section are usually restricted
to the bivariate case, summarizing criteria are, by their name, suitable to summarize
information in arbitrary dimension. However, they are mostly based on bivariate measures
that are aggregated in some sense. This approach corresponds to R-vine modeling where
variables are also considered pairwisely.

When we discussed the appropriate choice of edge weights for the construction of R-
vine trees in Section 3.1, we already introduced measures that detect different types of
dependence in bivariate data. Obviously, it is important that the specified R-vine model
M(K) can reproduce such dependencies and hence we also consider these measures in
the context of model evaluation.

Instead of examining each of the d(d — 1)/2 bivariate scatter or Q-Q plots separately,
we can compute a summary measure for both the observed and the simulated observations
and then consider the (absolute) differences. Recalling the weights discussed in Section
3.1, we can compute, e.g., Kendall’s 7, lower and/or upper tail or exceedance dependence
as well as tail cumulation which all have a graphical motivation. Note that for those
pairs which are modeled explicitly (unconditionally) in the R-vine, we can even calculate
theoretical values for some of the measures above based on the respective parameter
estimates (cp. Table 2.1). Again, special attention should be paid to those pairs of variables
that are influenced by simplification or truncation.

9.2.1 Portfolio evaluation of copula data

In certain circumstances, it might not only be too tedious to examine bivariate graph-
ical diagnostics but also to consider each summarizing criterion individually. Then the
information has to be aggregated in some way to obtain an overall performance measure.
Such a measure can also be directly used for model comparison if more than one model
is available.

The most obvious way of aggregation is certainly to consider the sum or the mean
of the differences in the empirical bivariate summary measures based on observed versus
simulated observations. However, we do not always want to rely on bivariate data char-
acteristics and therefore we need alternative quantities. The most commonly used one is
given by the mean of the copula data over its d components,

d d
Zuff, and S; 1= éZuir, (9.1)
r=1 r=1

for alli = 1, ...,n. The appropriateness of model M(K) can then be assessed by comparing
histograms and empirical quantiles based on {S¥, i = 1,...n} and {S;, i = 1,...,n}.
Moreover, in financial applications we can easily extend the defintion of SX and S; in
(9.1) to incorporate different portfolio weights:

IS

d d
§ZK = Zwm{f, and 51 = Zwrum (9.2)
r=1 r=1
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where w, > 0 Vr = 1,...,d, and Zle w, = 1. Note that the weights are of course the
same for observed and simulated observations. The definitions in (9.1) then correspond
to a portfolio with equal weights w, = é Vr =1, ...,d. These portfolios of copula data are
however not to be confounded with financial portfolios, where the marginal models also
have to be taken into account in the portfolio evaluation (see Section 11.3.6).

9.2.2 Simplification based on data characteristics

The summary measures discussed in the previous sections cannot only be used for model
evaluation, but they also directly motivate the construction of alternative simplification
procedures based on data characteristics in contrast to the procedures based on statistical
methods discussed in Chapters 6, 7 and 8. As in the pairwise simplification procedures
based on the Vuong test and on AIC/BIC, we have to proceed iteratively and investigate
whether additionally specified R-vine trees significantly increase the model fit. In partic-
ular, we work in the same setting as the methods based on the Vuong test as described in
Section 7.2 because we need completely specified models when simulating from simplified
R-vines, i.e., we cannot simply omit trees T}, o,...,T4—; when we simulate to determine
whether simplification is possible in step j. This is not the case in the AIC/BIC-based
procedure (cp. Section 7.3), where only tree T}, is considered in each step.

As we proceed iteratively, we always specify one additional tree 7}, in each step j. In
a hierarchical approach, we then investigate whether the marginal ”gain” of the extra tree
is ”large enough” compared to a truncated tree. If not, truncate, but otherwise specify
models Mg(j) and Mg(j+ 1) as described in Section 7.2 and compare again whether the
additional "gain” of the extra tree is "large enough”. Here, ”gain” refers to an appropriate
summarizing criterion, e.g., a specific quantile of the weighted sum of copula data as
defined in (9.2), where the number of simulated observations should be chosen sufficiently
large to ensure that the influence of the simulation error is negligible. In the following,
assume that we are interested in large values of the chosen summarizing criterion, i.e.,
the criterion increases when the fit becomes more accurate. Finally, a threshold has to
be defined in order to determine what "large enough” means. Such a threshold can also
depend on step j, e.g., if the threshold is lower in higher order trees, the R-vine is more
likely to be simplified.

However, this approach involves simulation from the R-vine specified up to a certain
tree and is therefore computationally more demanding than the use of Vuong tests or
AIC/BIC. Nevertheless, such a procedure is an interesting alternative due to its motivation
based on data characteristics. Algorithm 13 summarizes the procedure using the same
notation as in Algorithm 10. S denotes the chosen summarizing criterion and M; is the
threshold in step j. Alternatively tests such as S, / S <1+ e; with relative thresholds ¢;
are, of course, also possible.
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Algorithm 13 Simplification of R-vines based on data characteristics.

Input: (Pseudo-)observations of d variables, summarizing criterion S, thresholds M;.

1: for j=0,....d—2do

2:  Compute pairwise weights for the transformed observations from the previous step
(using one of the methods described in Section 3.1) and use them to construct tree
T;4+1 with the appropriate method from Section 3.2.

3:  Select copulas as described in Section 5.4, estimate parameters using maximum
likelihood estimation (cp. Section 4.1.2) and compute transformed observations ac-
cording to (2.19).

4:  Compute S for models Mr(j) (model 1) and Mr(j + 1) (model 2).

5. if S; + M; > S, then

6: Truncate the R-vine at level K = j, i.e., exit the loop with model Mr(5).

7. else

8: Specify model Mg(j): sequentially construct higher order trees 741, ..., Ty with
bivariate Gaussian copulas.

9: Specify model Mg(j + 1): sequentially construct higher order trees T, ..., Ty_1
with bivariate Gaussian copulas.

10: Compute S for models Mg(j) (model 1) and Mg(j + 1) (model 2).

11: if S; + M, > S, then

12: Simplify the R-vine at level K = j, i.e., exit the loop with model Mg(j).

13: end if

14:  end if

15: end for

Output: Pairwisely simplified K level R-vine, pairwisely truncated R-vine at level K, or
fully specified R-vine, if neither simplification nor truncation are possible.

9.3 Value-at-Risk

In finance the Value-at-Risk (VaR) is the most popular risk measure and often used to
backtest models for market risk management. According to McNeil et al. (2005) for a
confidence level « the (1 — «)-VaR of a portfolio of assets with return R is defined as
the smallest number ¢ such that the probability of the portfolio loss exceeding ¢ is not
larger than «, or, equivalently, as minus the largest value s such that the probability of
the portfolio return dropping below s is not larger than «, i.e.,

VaR(1 —a) =inf{l: P(—R > () < a} = —sup{s: P(R <s) < a}. (9.3)

If the (unknown) return distribution is continuous, this definition corresponds to minus
the a-quantile of the return distribution.

In applications we are interested in evaluating a time series of ex-ante VaR forecasts,
VaR;(1—a«), t = 1,...,n, corresponding to a time series of portfolio returns, Ry, t = 1, ..., n,
where the forecasts are obtained from the model under consideration (see Section 11.3.6
for more details regarding VaR forecasting from R-vine models). In order to do so, we
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define the hit sequence I;, t = 1, ..., n, of ex-post loss exceedances as

=

{1, if R, < —VaRy(1 — )

0, else

Christoffersen (1998) then investigates the null hypothesis that the exceedances (I;)i=1,. »
are i.i.d. Bernoulli distributed with probability a according to the definition of the VaR
in (9.3) and refers to this as the test of correct conditional coverage.

The test is split into two sub-tests: since the proportion of exceedances should ap-
proximately equal the confidence level o of the VaR forecasts, the hypothesis of correct
unconditional coverage,

Hy:E(l;) =« against H,: E(L;) # a, (9.4)

is investigated. This test implicitly assumes independent exceedances, which are tested ex-
plicitly by considering (I;)¢—1,. » as a first order Markov chain with transition probability

matrix
_ 1 —mor o1
P_ )
l—mn ™

where m;; = P(I; = j|lI;_1 = i). As exceedances should occur independently without
clustering, we then examine the hypothesis of independence,

HO LMol = 711 against Hl L To1 7& 11 (95)

Combining tests (9.4) and (9.5) then gives the joint test of coverage and independence to
investigate the hypothesis of conditional coverage,

Hy:m=m1 =« against H, : not H,. (9.6)

For the unconditional coverage test we have to consider the likelihood function of a
sample of n i.i.d. Bernoulli distributed random variables with unknown probability 7,
which is

L(m) =77 (1 —m)" ™,

where n; is the number of ones in the sample. The maximum likelihood estimate of 7y is
71 = ny/n and hence the likelihood ratio test statistic of the unconditional coverage test
is given by

LR,. = 2(log L(7,) — log L(«)). (9.7)

If n;; denotes the number of observations with value ¢ followed by j, the likelihood
under the alternative hypothesis of the independence test is

L(mo1, m11) = mot (1 — mop) "0t (1 — g )™ 7ML

with maximum likelihood estimates 7o, = n01/ng and 717 = ny1/n;1. Then the likelihood
ratio test statistic of the independence test is given by

LRind = Q(IOg L(ﬁ-Obﬁ-ll) — IOg L(ﬁ‘l)) (98)



CHAPTER 9. MODEL EVALUATION 130

Combining both test statistics (9.7) and (9.8) we obtain the likelihood ratio test statis-
tic of the conditional coverage test as

LRCC = LRuc + LRznd = 2(10g L(ﬁ'gl, 7%11) — log L(Oé))

Christoffersen (1998) shows that the test statistics LR,. and LR;,q are both asymptoti-
cally x? with 1 degree of freedom and hence the test statistic of the conditional coverage
is also asymptotically x? but with 2 degrees of freedom.

To sum it up, we can evaluate a model with respect to the accuracy of its VaR forecasts
by checking whether the proportion of VaR exceedances approximately equals the VaR
confidence level and whether exceedances do not occur in clusters. This leads to the
likelihood ratio test of conditional coverage for which we know the asymptotic distribution
to obtain approximate p-values.



Chapter 10

Simulation study

In Chapters 6, 7 and 8 we developed R-vine simplification and truncation procedures
which rely on a couple of assumptions and approximations. In particular, the methods we
developed in Sections 6.2, 6.3, 7.2 and 7.3 are heuristics to ensure that the computational
complexity is limited to a reasonable amount. Hence, we will investigate in different set-
tings whether these procedures are adequate to determine simplification and truncation
levels. Special attention is paid to the simplification procedure based on AIC/BIC, since
it relies on more approximations than the one based on the Vuong test. For the latter
procedure, we consider the Akaike and Schwarz corrections as well as no correction at all
(cp. Section 5.3.1). In the following, let V.Akaike and V.Schwarz denote model selection
using the Vuong test with the Akaike and Schwarz corrections, respectively.

Another important issue discussed in this chapter is the joint simplification of C-
vines as presented in Section 8.1. Besides investigating whether joint simplification works
correctly, we compare the resulting correlation matrix of the multivariate Gaussian copula
when using the ”correct” procedure to the correlation matrix computed from Gaussian
pair copulas when using one of our stepwise simplification methods.

Each time we also specify the non-truncated and non-simplified full model as bench-
mark model in order to investigate the loss involved by simplification or truncation and to
distinguish shortcomings of the procedures from randomness due to simulation and from
problems in the model reconstruction due to finite sample sizes and heuristic construction
methods (cp. Chapter 3). Estimates are obtained by sequential estimation, since up to
eight different models (one for each procedure under consideration) have to be specified
in each simulation and hence the computational effort is quite high. The procedures are
then evaluated with regard to a range of criteria.

(i) Simplification/truncation level: First of all, we are of course interested in the ability
of a procedure to identify the correct simplification or truncation level Kj. As the
procedure might simplify or truncate too early or too late at level K € {0,...,d—1},
we use a scoring method: each time K is identified correctly, the score is increased
by 1; if however K # K, but K is close to Kj, the score is increased by a value
smaller than 1, which depends on the specific scenario (if d = 100 and K, = 20,
K = 25 might be close, while K = 25 is not quite good if d = 30 and K, = 20).

(ii) Mean KLIC: We also compute empirical KLIC’s (5.1) to compare the models ob-
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tained by the different procedures (note that we know the true model that we
simulate from) and then take the mean over all simulations:

KLIC(h(] ZKLIC h(bfr; 7")7

where R is the number of repeated simulations and A the density of the true vine
model, while the density of the approximating vine model in the r-th repetition is
given by f, with estimated parameter 0, (cp. the general R-vine density as given
by (2.27) and the truncated and simplified R-vine densities as defined in (6.1) and
n (7.1)). The empirical KLIC for r = 1,..., R is defined as

RTIC(hy, f..0,) = %Z log [ (") — % S log [£,u?19,)]
=1 i=1

where n is the sample size and u?(r) the i-th simulated observation from the true
vine model with density hg.

(iii) Vuwong tests: Furthermore, we perform Vuong tests with and without correction
(see Section 5.3) between the true model and the respective fitted model to examine
whether the model is at least close to the true model if K is not correctly identified.
Thus, we count how often the simplified /truncated model cannot be distinguished
from (or is superior to) the true model at significance level o = 0.05, i.e., how
often the null hypothesis that both models are equivalent cannot be rejected or the
simplified /truncated model is better than the true model.

(iv) T-matriz and quartile differences: In consideration of the model evaluation criteria

discussed in Chapter 9, we simulate data from all models, uiK(T), i1=1,..,n,1r=

., R, and compute two different summarizing criteria (cp. Section 9.2): the sum of

absolute differences between empirical Kendall’s 7’s and between empirical quartiles

of the equally weighted copula data portfolios SZ»K(T) and S?(T), i=1,..,n1r =

., R, as defined in (9.1), where 5’? ™ denotes the portfolio value with respect to

the simulated data from the true model. The mean results of all repetitions are
reported:

_ 1 ~ ' T ~ T T

R = 2N YT R () g = Fa(ugs )i (ugy 7)),

y A (10.1)
QO,K = E Z Z ‘F,STO%T)( ) FgK(v ( )|

pe{0,0.25,0.5,0.75,1}

where ({1’ ’d}) {{s,t} : s # 1, s,t 6 { d}} is the set of unordered pairs in
{ d} ( ) = (uzsr))l 1,..m ( ) : ( zs )1 1,..,m5 and FSO(T) and FSK(T)7
r= 1, ..., R, are the empirical cdf’s of Si ) and Si , 1 =1,...,n, respectively.

Table 10.1 summarizes the evaluation criteria. Simulation results are shown at the end of
each section.
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evaluation criterion ‘ range ‘ target value
truncation/simplification level 0, 100] 100
mean KLIC R —00
Vuong tests [0, 100] 100
T-matrix differences R 0
quartile differences R 0

Table 10.1: Evaluation criteria for vine models in simulation studies.

10.1 Regular vine in seven dimensions

This first study is based on the seven-dimensional R-vine which was given as an example in
Section 2.4 (Figure 2.3). As a reminder it is shown again on a smaller scale in Figure 10.1
with the pair copulas according to the third truncation scenario below. Using this R-vine
structure, we investigate first the truncation procedures given in Algorithms 6 and 7 and
then simplification as described in Algorithms 8 and 9. For each problem, we developed
four different scenarios to examine the performance of the respective procedures. Within
each scenario we simulated n € {500, 1000} observations from the respective specification.
Trees are constructed using Kendall’s 7 as weights (cp. Chapter 3). Copulas are selected
using the AIC (cp. Section 5.4). In consideration of the dimension being d = 7, a score of
0.5 is assigned if
|K — Ko| = 1.

10.1.1 Truncation

In each of the following four scenarios, the truncation level is Ky = 2, i.e., trees T3, ..., Tj
are specified with independence copulas. Hence, the scenarios only differ in the first two
trees T and T5. Copula parameters are chosen with respect to Kendall’s 7 (cp. Table 2.1).

e Scenario 1: Clayton copulas in 7} and T, with Kendall’s 7’s 0.6 (73) and 0.3 (73).

e Scenario 2: t copulas in T} and T, with Kendall’s 7’s 0.6 (7}) and 0.3 (7%) and
degrees of freedom 3 (71) and 7 (T3).

e Scenario 3: Mixed copulas (t, Clayton, Gumbel) in 7} and T, with Kendall’s 7’s
0.6 (T1) and 0.3 (73) and degrees of freedom 3 (7}) and 7 (T3). t copulas are chosen
for the ”central” pairs 2,3 and 3,6 as well as 2, 6|3. For all other pairs, Clayton or
Gumbel copulas are chosen (cp. Figure 10.1).

e Scenario 4: t copulas in 77 and 15 with mixed Kendall’s 7’s between 0.6 and 0.8
in T} and between 0.2 and 0.4 in T5. Degrees of freedom are chosen between 3 and
5in 77 and between 7 and 9 in T5. The first two trees of this scenario are shown in
Figure 10.2.
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Figure 10.1: Seven-dimensional R-vine structure for simulation studies with copulas ac-
cording to the third truncation scenario. C denotes the Clayton, G the Gumbel and II
the independence copula. Degrees of freedom of the t copulas are denoted in brackets.

T

Ty

Figure 10.2: First two trees of the seven-dimensional R-vine structure for simulation stud-
ies with copulas according to the fourth truncation scenario. The indices give Kendall’s 7’s
to determine the parameters of the t copulas, degrees of freedom are denoted in brackets.
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Results for R = 100 repetitions are shown in Table 10.2 and can be summarized as follows:

(i)

Truncation based on the Vuong test always identifies the truncation level more
accurately than the AIC/BIC based procedures. Using the parsimonious Schwarz
correction and the BIC work best within the respective class of procedures.

There is a trade-off between increased truncation level identification accuracy and
small KLIC. Closeness to the true model determined by Vuong tests confirms this
(there is a close relationship between KLIC’s and Vuong tests as discussed in Section

5.3).

The truncated models exhibit slightly increased differences of Kendall’s 7’s and
quartiles of S and S?, but they are evidently still quite close to the fully specified
model.

The effect of an increasing number of observations is heterogeneous. In terms of
the differences of Kendall’s 7’s and quartiles of SX and S?, the performance always
increases, which is partly due to larger sample sizes.

Models with t copulas in the first trees are well reconstructed as indicated by the
mean KLIC’s and the results of Vuong tests in scenarios 2 and 4. This is probably due
to the use of Kendall’s 7 as weight measure for R-vine construction, which cannot
account for asymmetric tail dependence such as in Clayton or Gumbel copulas in
scenarios 1 and 3.

All procedures work best in scenario 4. This suggests that model identification is
facilitated when different dependencies are present in the first trees and hence im-
portant dependencies are easier to detect.

The method based on AIC/BIC is certainly an alternative to the one using Vuong
tests, since truncation levels are almost equally well identified in scenarios 1, 2 and
3, and if the truncation level is not correctly identified, the chosen model is at least
close to the full model.

10.1.2 Simplification

Again we examine four different scenarios with simplification level Ky = 2. But now trees

Ty, ...

, Ty are specified with Gaussian copulas with decreasing correlations: 0.25 in T3, 0.20

in Ty, 0.15 in 75 and 0.10 in 7§, corresponding to Kendall’'s 7’s smaller than 0.16. The
scenarios only differ in the specification of the first two trees T} and 75 which are chosen
as in Section 10.1.1.

e Scenario 1: Clayton copulas in 77 and T, with Kendall’s 7’s 0.6 (77) and 0.3 (73).

e Scenario 2: t copulas in T} and T, with Kendall’s 7’s 0.6 (7}) and 0.3 (7%) and

degrees of freedom 3 (71) and 7 (T3).

e Scenario 3: Mixed copulas (t, Clayton, Gumbel) in 77 and 7, with Kendall’s 7’s

0.6 (T1) and 0.3 (T5) and degrees of freedom 3 (T}) and 7 (T5) (cp. Figure 10.1).
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e Scenario 4: t copulas in 77 and 75 with mixed Kendall’s 7’s between 0.6 and 0.8

in 77 and between 0.2 and 0.4 in T5. Degrees of freedom are chosen between 3 and
5 in T} and between 7 and 9 in Ty (cp. Figure 10.2).

Results for R = 100 repetitions are shown in Table 10.3. The main findings are:

(i)

Again the procedure based on the Vuong test performs better than the AIC/BIC
based approach. This is due to the additional approximations made in the latter
simplification method. The more parsimonious selection criteria are also superior to
the respective alternative criteria.

The trade-off between increased accuracy of simplification level identification and
small mean KLIC’s is most pronounced in scenarios 1 and 2. In scenario 3, the
specified models are not quite close to the true model.

As before, the differences of Kendall’s 7’s and quartiles of SF and S? are slightly
increased for the simplified models, which are however still quite accurate compared
to the non-simplified full model.

General performance increases with increasing sample sizes only in scenario 2 and
3, but always for the differences of Kendall’s 7’s and quartiles of S and S?.

Scenarios 2 and 4 with t copulas in the first trees again give the best results for
all models. Especially, in scenario 4, the results are quite good. Even the AIC/BIC
based procedure works well here.

Although the method based on AIC/BIC performs rather poorly with respect to
the identification of the simplification level in scenarios 1, 2 and 3, it can be seen
as a valid alternative to the procedure based on the Vuong test, since models are
again close to the full model, if the simplification level is not identified correctly.
Moreover, in scenario 4, the method performs fairly well.
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TRUNCATION PROCEDURE

scenario n eval. crit. full [ Vuong  V.Akaike V.Schwarz [ AIC BIC
1 500 truncation level - 22.5 23.5 26.0 19.0 21.0
mean KLIC 11.09 15.15 16.35 17.67 12.90 13.02
Vuong test 70 64 63 61 67 67
V. test (Akaike) 52 51 50 48 51 51
V. test (Schwarz) 29 29 29 29 29 29
T-matrix diff. 0.495 0.515 0.522 0.475 0.472 0.482
quartile diff. 0.078 0.080 0.079 0.074 0.078 0.079
1000 truncation level - 15.5 15.5 17.5 13.0 15.0
mean KLIC 28.79 37.43 37.43 40.74 35.77 36.72
Vuong test 32 31 31 31 32 31
V. test (Akaike) 25 24 24 24 25 24
V. test (Schwarz) 17 17 17 17 17 17
T-matrix diff. 0.327 0.343 0.345 0.360 0.353 0.356
quartile diff. 0.058 0.054 0.058 0.056 0.059 0.051
2 500 truncation level - 32.5 33.5 35.0 30.0 30.5
mean KLIC -1.38 2.40 3.13 4.81 0.66 0.73
Vuong test 98 92 91 88 95 95
V. test (Akaike) 92 87 86 83 89 89
V. test (Schwarz) 67 66 65 64 66 66
T-matrix diff. 0.452 0.489 0.476 0.475 0.464 0.488
quartile diff. 0.067 0.065 0.067 0.062 0.067 0.068
1000 truncation level - 31.0 31.5 33.0 26.0 30.5
mean KLIC 10.29 11.94 12.03 16.45 11.51 11.88
Vuong test 80 79 79 76 79 79
V. test (Akaike) 58 54 54 53 56 55
V. test (Schwarz) 32 32 32 32 32 32
T-matrix diff. 0.326 0.312 0.324 0.319 0.313 0.300
quartile diff. 0.044 0.047 0.047 0.044 0.046 0.045
3 500 truncation level - 42.0 42.5 43.5 34.5 38.5
mean KLIC 63.40 65.11 65.21 65.66 64.57 64.80
Vuong test 26 25 25 25 26 25
V. test (Akaike) 11 10 10 10 10 10
V. test (Schwarz) 7 7 7 7 7 7
T-matrix diff. 0.463 0.484 0.493 0.472 0.480 0.484
quartile diff. 0.078 0.072 0.078 0.073 0.073 0.076
1000 truncation level - 48.5 48.5 49.0 39.5 43.5
mean KLIC 110.56 | 111.45 111.45 112.17 110.66  110.99
Vuong test 16 15 15 15 16 15
V. test (Akaike) 14 14 14 14 14 14
V. test (Schwarz) 9 9 9 9 9 9
T-matrix diff. 0.342 0.342 0.359 0.361 0.378 0.358
quartile diff. 0.054 0.057 0.051 0.054 0.057 0.054
4 500 truncation level - 61.5 74.0 95.5 49.5 53.5
mean KLIC -0.74 2.56 5.43 13.28 0.75 1.27
Vuong test 99 96 91 74 99 97
V. test (Akaike) 99 98 96 85 99 98
V. test (Schwarz) 99 99 99 96 99 99
T-matrix diff. 0.397 0.389 0.419 0.417 0.418 0.377
quartile diff. 0.071 0.069 0.069 0.072 0.072 0.074
1000 truncation level - 49.5 50.5 68.5 42.5 47.5
mean KLIC 7.39 8.89 9.11 16.74 7.97 8.64
Vuong test 85 79 78 63 82 80
V. test (Akaike) 80 7 7 64 78 7
V. test (Schwarz) 67 65 65 58 67 66
T-matrix diff. 0.271 0.260 0.280 0.286 0.281 0.267
quartile diff. 0.050 0.046 0.046 0.046 0.042 0.044
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Table 10.2: Simulation results of the four stepwise truncation scenarios described in Sec-
tion 10.1.1. Each column corresponds to a different truncation procedure.
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SIMPLIFICATION PROCEDURE

scenario n eval. crit. full [ Vuong  V.Akaike V.Schwarz [ AIC BIC
1 500 simplification level - 41.5 42.0 45.5 0.5 1.0
mean KLIC 7.91 17.96 18.62 22.00 8.12 8.73
Vuong test 91 70 68 62 90 89
V. test (Akaike) 87 59 57 52 85 85
V. test (Schwarz) 68 46 44 41 67 67
T-matrix diff. 0.431 0.442 0.429 0.433 0.462 0.440
quartile diff. 0.076 0.076 0.071 0.075 0.080 0.075
1000 | simplification level - 23.5 23.0 28.5 2.0 4.5
mean KLIC 33.04 43.27 43.10 46.31 33.48 34.07
Vuong test 28 20 20 16 28 27
V. test (Akaike) 22 15 15 12 22 21
V. test (Schwarz) 11 8 8 7 10 10
T-matrix diff. 0.330 0.309 0.345 0.316 0.318 0.325
quartile diff. 0.054 0.055 0.055 0.056 0.056 0.052
2 500 simplification level - 64.0 68.0 72.5 3.5 13.5
mean KLIC -2.72 10.81 14.67 29.16 -2.53 -0.26
Vuong test 97 79 72 51 97 93
V. test (Akaike) 97 81 75 54 97 94
V. test (Schwarz) 93 81 79 64 93 91
T-matrix diff. 0.444 0.445 0.415 0.456 0.428 0.434
quartile diff. 0.069 0.072 0.064 0.070 0.070 0.071
1000 | simplification level - 41.5 52.0 68.5 8.5 16.0
mean KLIC 4.03 11.08 16.62 26.29 4.59 6.75
Vuong test 87 78 67 55 86 84
V. test (Akaike) 82 72 64 54 81 79
V. test (Schwarz) 68 62 59 53 68 67
T-matrix diff. 0.304 0.308 0.303 0.304 0.326 0.281
quartile diff. 0.048 0.048 0.049 0.045 0.045 0.047
3 500 simplification level - 64.5 66.0 70.5 5.5 11.5
mean KLIC 87.05 97.59 97.91 103.34 87.24 87.83
Vuong test 7 7 7 7 7 7
V. test (Akaike) 7 7 7 7 7 7
V. test (Schwarz) 8 8 8 7 8 8
tau-matrix diff. 0.461 0.470 0.473 0.457 0.463 0.456
quartile diff. 0.074 0.077 0.076 0.076 0.078 0.073
1000 | simplification level - 52.5 56.0 62.0 15.5 17.0
mean KLIC 117.03 | 123.74 124.69 128.59 117.42  117.70
Vuong test 16 16 16 16 16 16
V. test (Akaike) 16 15 15 15 16 15
V. test (Schwarz) 15 15 15 15 15 15
T-matrix diff. 0.331 0.345 0.335 0.336 0.354 0.329
quartile diff. 0.051 0.053 0.053 0.054 0.052 0.055
4 500 simplification level - 93.5 96.0 81.5 50.5 56.0
mean KLIC -1.93 3.20 4.10 11.16 -1.53 -1.22
Vuong test 99 93 93 75 97 97
V. test (Akaike) 100 100 100 99 100 100
V.Schwarz 100 100 100 100 100 100
T-matrix diff. 0.370 0.372 0.401 0.409 0.378 0.357
quartile diff. 0.071 0.068 0.067 0.066 0.068 0.067
1000 | simplification level - 70.0 78.5 95.5 46.0 50.5
mean KLIC 4.90 7.71 9.78 15.04 5.00 5.24
Vuong test 90 87 81 66 90 90
V. test (Akaike) 100 99 98 91 100 100
V.Schwarz 100 100 100 100 100 100
T-matrix diff. 0.292 0.275 0.271 0.260 0.285 0.259
quartile diff. 0.048 0.050 0.053 0.048 0.053 0.048
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Table 10.3: Simulation results of the four stepwise simplification scenarios described in
Section 10.1.2. Each column corresponds to a different simplification procedure.
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10.2 Joint truncation and simplification of canonical
vines

This simulation study is devoted to the investigation whether joint truncation and sim-
plification of C-vines work well. In particular, we examine whether stepwise procedures
(either based on the Vuong test or on AIC/BIC) are capable of accurately reproducing
the correlation matrix of the simplifying multivariate Gaussian copula (cp. Section 8.1.1).
Moreover, in the simplification scenarios, we compare the results of joint C-vine simplifi-
cation based on the two different goodness-of-fit tests presented in Section 4.2 (based on
the empirical copula process or on Rosenblatt’s transformation), while the performance of
the multivariate independence tests based on the empirical copula process and on Spear-
man’s p (see Section 4.3) is compared in the truncation scenarios. To do this, we examine
four scenarios of differently specified truncated and simplified ten-dimensional C-vines,
respectively. In each scenario the truncation/simplification level is Ky = 2 and a score of
0.5 is assigned if
|K — Ko| =1,

as in Section 10.1.
For each scenario we simulate n € {500,1000} observations. Trees are constructed
with Kendall’s 7 as weights. Bivariate copulas are chosen according to the AIC.

10.2.1 Truncation

As noted above, we are primarily interested in the performance of the joint truncation
procedures using the multivariate independence tests based on the empirical copula pro-
cess and on Spearman’s p as discussed in Sections 4.3.2 and 4.3.3, respectively. Their
results are compared to the results of the pairwise truncation methods in order to obtain
a complete view of adequate procedures.

The four scenarios under consideration are chosen similar to the scenarios in Section
10.1.1 with the difference that we consider a ten-dimensional C-vine now. Given that the
truncation level is 2, all remaining trees T3, ..., Ty are specified with independence copulas,
while the first two trees T7 and T are specified as follows with parameters chosen according
to Table 2.1:

e Scenario 1: Clayton copulas in 7} and T, with Kendall’s 7’s 0.6 (77) and 0.3 (7%).

e Scenario 2: t copulas in T} and T, with Kendall’s 7’s 0.6 (7}) and 0.3 (7%) and
degrees of freedom 3 (71) and 7 (T3).

e Scenario 3: Mixed copulas (t, Clayton, Gumbel) in 7} and 7T, with Kendall’s 7’s
0.6 (T1) and 0.3 (Ty) and degrees of freedom 3 (71) and 7 (T3).!

1Pairs with t copulas: 1,4; 1,7; 1,10; 2,5|1; 2,8|1. Pairs with Clayton copulas: 1,3; 1,6; 1,9; 2,4|1; 2,7|1;
2,10|1. Pairs with Gumbel copulas: 1,2; 1,5; 1,8; 2,3|1; 2,6[1; 2,9|1.
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e Scenario 4: t copulas in 77 and 75 with mixed Kendall’s 7’s between 0.6 and 0.8
in 77 and between 0.2 and 0.4 in T5. Degrees of freedom are chosen between 3 and
5in T} and between 7 and 9 in 5.2

In Tables 10.4 and 10.5, the results for R = 100 repetitions are shown. They can be
summarized as follows:

(i) As before, there is a trade-off between accuracy of truncation level identification
and KLIC’s: the better the identification accuracy the higher the KLIC’s. However,
given the fully specified model as benchmark model, all truncated models are still
rather good approximations. Note that negative KLIC’s indicate that the respective
model provides a better fit than the actual true model which is possible due to the
simulation error.

(ii) Accuracy in terms of 7-matrix and quartile differences increases with increasing
number of observations. This is not necessarily true for the other criteria. Especially
the results in scenario 4 get worse.

(iii) The parsimonious procedures based on the Schwarz correction and on the BIC iden-
tify the truncation level more accurately than alternative procedures. Altogether,
the performance of the methods based on the AIC/BIC is inferior to the methods
based on the Vuong test and on independence tests, which both show similar results.

(iv) Both procedures based on independence tests perform equally well, where the test
based on the Spearman’s p is slightly more accurate. Hence, both methods are
adequate to identify jointly truncated C-vine models.

10.2.2 Simplification

After having discussed joint C-vine truncation we now turn to the issue of joint simpli-
fication. In doing so, we consider another evaluation criterion in addition to the criteria
considered before: in each step of a simplification scenario we also compute the correlation
matrices obtained from the respective stepwise procedure and compare it to the correlation
matrices determined by the goodness-of-fit tests based on the empirical copula test and
on the Rosenblatt transformation. Note that for the stepwise simplification procedures no
bivariate independence tests are performed in order to reconstruct the correlation matrix
most accurately which also takes into account small (conditional) correlations.

The four scenarios are again very similar to the scenarios in Section 10.1, in particular
to the simplification scenarios in Section 10.1.2. Since Ky = 2, higher order trees T3, ..., Ty
are specified with Gaussian copulas with decreasing correlations: 0.25 in T3, 0.20 in T; and
T5, 0.15 in Ty and 77, and 0.10 in T3 and Ty, corresponding to Kendall’s 7’s smaller than
0.16. As in Section 10.2.1, the first two trees are chosen as follows (copula parameters are
chosen according to Table 2.1):

2Degrees of freedom: tree Ty : (v1.2,...,v1.10) = (3,4,5,3,4,5,3,4,5), tree Ty : (V2,315 s V2,1011) =
(9,8,7,9,8,7,9,8). Kendall’s 7’s: tree T1 : (71,2,...,71,10) = (0.8,0.7,0.6,0.8,0.7,0.6,0.8,0.7,0.6), tree
T2 : (T273‘1, ...,T2710|1) = (04,03,02,04,03,02,04703)
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Scenario 1: Clayton copulas in 77 and T with Kendall’s 7’s 0.6 (77) and 0.3 (73).

Scenario 2: t copulas in 7} and T, with Kendall’s 7’s 0.6 (77) and 0.3 (73) and
degrees of freedom 3 (71) and 7 (T3).

Scenario 3: Mixed copulas (t, Clayton, Gumbel) in 77 and 75 with Kendall’s 7’s
0.6 (77) and 0.3 (T3) and degrees of freedom 3 (71) and 7 (7%).

Scenario 4: t copulas in T} and 75 with mixed Kendall’s 7’s between 0.6 and 0.8
in 77 and between 0.2 and 0.4 in T5. Degrees of freedom are chosen between 3 and
5 in 17 and between 7 and 9 in T5.

Results for R = 100 repetitions are displayed in Tables 10.6 and 10.7, where "mean abs.
R diff. 1/2” denotes the mean absolute difference of the correlation matrices obtained
from the respective stepwise procedure and the joint procedure using the goodness-of-fit
test based on the empirical copula test (1) or on the Rosenblatt transformation (2). The
results can be summarized as follows:

(i)

(i)

(iii)

Joint simplification using the goodness-of-fit test based on the Rosenblatt transfor-
mation is always superior to the one based on the empirical copula process even
if we expected this only for scenarios 2 and 4 according to Berg (2009) who found
that the test based on Rosenblatt’s transformation is suitable for testing the Gaus-
sian copula against heavy tails induced by the t copula. Especially in scenarios 2
and 4, the test based on the empirical copula process fails completely as shown in
particular by the mean KLIC’s. This corresponds to the results of Berg (2009).

Even if joint simplification requires less assumptions and approximations in order
to determine simplification levels, the performance of the stepwise methods based
on the Vuong test is stronger. This is probably due to the fact that we also fit an
additional tree Tj;; in step j and hence have additional information in order to
decide whether or not the C-vine can be simplified. Moreover, copula goodness-of-
fit testing in high dimensions has not yet been investigated very thoroughly in the
literature.

The procedures based on AIC/BIC again perform rather poorly (cp. Section 10.1.2).
The performance increases with increasing number of observations and the identified
models are usually at least close to the true model, since they are simplified very
late or not at all.

The correlation matrices are well approximated by the procedures based on the
Vuong test in most cases. The accuracy increases with increasing number of obser-
vations. Since the models obtained by the test based on the empirical copula process
are not quite good, the approximation is obviously also rather bad in most cases.
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10.3 Large scale simulation

In order to examine the performance of our truncation and simplification methods in larger
dimensions, we consider a 19-dimensional example which is based on the R-vine models
specified for the financial data set from Norway considered in Section 11.2. In particular,
we investigate truncation by simulating from the pairwisely truncated R-vine at level 4
Mr(4), while simplification is considered using the pairwisely simplified 2 level R-vine
M (2). The corresponding RVM’s can be found in Appendix B.2, where the specification
of Mr(4) is obtained from the corresponding matrices of the full R-vine model by simply
replacing all entries of rows after the truncation level Ky = 4 with zeros.

From the models we simulated n € {500,1000} observations each and then applied
our different procedures. The R-vine trees are constructed using Kendall’s 7 as weights
and bivariate copulas are selected using the AIC. Evaluation criteria as in Section 10.1
are reported in Table 10.8, where we assign a score of 0.5 if

K — Ko| =1,

since the truncation/simplification level Kj is either 2 or 4.
The main findings of R = 100 repetitions for both the truncation and the simplification
scenarios are:

(i) Again the procedures based on the Vuong test are superior to those based on
AIC/BIC. While the parsimonious BIC based method here performs better than the
respective AIC based procedure, in particular in smaller sample sizes of n = 500,
using the Vuong test with Schwarz correction gives weaker results compared to the
Vuong test with and without Akaike correction.

(ii) The results improve with increasing sample size: truncation /simplification level iden-
tification accuracy, mean KLIC’s as well as 7-matrix and quartile differences indicate
that the models are more accurate for larger sample sizes.

(iii) While the performance of the AIC/BIC based method is fairly well for truncation,
it performs rather poorly with respect to simplification which is probably due to the
additional simplifying assumptions made here. This is underlined by increased -
matrix differences, while these are smaller for truncated models, since the AIC/BIC
based procedures tend to truncate too late and therefore model additional trees
which increase the model accuracy.

(iv) The mean KLIC’s and the Vuong tests indicate that all model are quite good com-
pared to the true model. This is however due to the simulation error and the fact
that the specified models can adjust to this error, since they are re-estimated in
each repetition, while the true model is fixed in advance.
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10.4 Summary
Considering the above simulation studies, we arrive at the conclusion that...

(i) the procedure based on the Vuong test with or without correction for the number
of parameters should be used in most cases and identifies the correlation matrix of
a jointly simplifying Gaussian copula quite accurately,

(ii) the procedure based on AIC/BIC can be regarded as a ”quick and dirty” alternative,
which often fails to identify the correct simplification or truncation level, but is fast
and usually at least close to the true model,

(iii) more parsimonious models can be selected using the methods based on the Vuong
test with Schwarz correction or on the BIC, i.e., under strict time and/or resource
constraints these procedures should be used as they tend to truncate/simplify models
earlier,

(iv) both multivariate independence tests under consideration for joint truncation per-
form well, where the test based on Spearman’s p is slightly more accurate in iden-
tifying the true truncation level and also computationally faster, and

(v) using the goodness-of-fit test based on Rosenblatt’s transformation for joint C-vine
simplification is superior to the test based on the empirical copula process.

Reasons for the rather poor results of the AIC/BIC based procedure with respect to
identification of truncation and simplification are, one the one hand, the additional as-
sumptions and approximations, which are made when applying the procedure, and, on the
other hand, the different selection threshold: as the Vuong test attaches a significance level
to its decision, we can also choose the "small” model when the ”full” model is slightly,
but not significantly, better (—®~'(1 — $) < v < 0). If however the AIC or BIC are used
for selection, we only select the ”small” model if its respective criterion is smaller, i.e.,
this corresponds to a Vuong test which neglects the asymptotics and chooses a model
according to the test statistic being positive or negative.

Remark: Computation time

The term ”quick and dirty” for the procedure based on AIC/BIC is in fact warranted.
In a 52-dimensional example (cp. the data set considered in Section 11.3), truncation at
the same level was identified between 40 and 44% faster than using the procedure based
on the Vuong test. Regarding simplification, the AIC/BIC based method simplified at a
much higher level than the alternative procedure ("dirty”), but nevertheless it was 70 to
80% faster (”quick”).



Chapter 11

Applications

After having described and analyzed different simplification and truncation procedures,
we will now investigate the benefit of these procedures in three different applications.
We begin with a nine-dimensional data set of exchange rates to the US Dollar which has
already been examined in Schepsmeier (2010) and Difimann (2010). In this application, we
are particularly interested in joint C-vine truncation, since the observations of this data
set have already been shown to be adequately modeled with a C-vine and the dependencies
in higher order trees to be rather small.

In a second application, we analyze a 19-dimensional data set of Norwegian and in-
ternational financial variables. Here, simplification as well as truncation are important in
order to minimize the computational demand of specifying an appropriate R-vine. Hence
we will investigate the different results of simplification, truncation and hierarchical spec-
ification.

Thirdly, we review the work of Heinen and Valdesogo (2009) and investigate their
assumptions. In order to construct an extended Capital Asset Pricing Model, they simplify
a C-vine at a specific level and make crucial independence assumptions. We will check
these assumptions in an application to 46 stocks of the Euro Stoxx 50 and the respective
national leading stock indices. Moreover, we develop an alternative model based on the
more flexible structure of R-vines, the so-called regular vine market sector model, and
compare all models to R- and C-vine specifications of the data which do not require any
restricting assumptions.

In all models, we work with transformed residuals of marginal time series models.
Pair copulas will be selected using AIC, since it turned out to be the best bivariate
copula selection criterion (see Section 5.4). Furthermore, it is computationally faster than
goodness-of-fit testing. The models are sequentially fitted first before performing full max-
imum likelihood estimation using the sequential estimates as starting values.

11.1 Exchange rates

Schepsmeier (2010) analyzed a data set of nine exchange rates to the US Dollar with 1007
observations from 7/22/2005 to 7/17/2009 (see Table 11.1 and Figure 11.1). ARMA(1,1)-
GARCH(1,1)-models were fitted to each time series and standardized residuals trans-
formed by their respective empirical cdf’s in order to obtain pseudo-observations that are
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Figure 11.1: Time series of exchange rates to the US Dollar.

ID ‘ code ‘ currency

V1
V2
V3
V4
V5
V6
V7
V8
V9

EUR
GBP
CAD
AUD
BRL
CNY
JPY
CHF
INR

Euro

British Pound
Canadian Dollar
Australian Dollar
Brazilian Real
Chinese Yuan
Japanese Yen
Swiss Franc
Indian Rupee

Table 11.1: Exchange rates to the US Dollar.
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approximately uniformly distributed. For more details on the transformations and on the
data set itself see Schepsmeier (2010).

Difimann (2010) also analyzed this data set in order to investigate whether an R-vine
specification instead of a C-vine as in Schepsmeier (2010) improves the model. Using the
Vuong test, he concluded that an R-vine structure is not significantly superior to a C-vine.
Moreover, he found that an R-vine with t copulas for every pair is inferior to mixed copula
modeling where the bivariate copulas were determined using goodness-of-fit tests.

We take these results as starting point for a further analysis. Since a C-vine is appro-
priate to model the observations, we are interested in determining whether this C-vine
can be jointly simplified or even truncated. Hence, we apply the procedures discussed in
Chapters 6, 7 and 8 and compare the results in Table 11.2, where the first part corresponds
to modeling without testing for bivariate independence when choosing pair copula families
(" complete models”; c¢p. Section 7.4), which is done mainly for illustration of the benefit
of simplification and truncation. The second part of Table 11.2 then shows the results for
models obtained using such a bivariate independence test ("reduced models”). As weights
for tree construction we use Kendall’s 7. Log likelihoods, number of parameters as well as
AIC and BIC of all models are reported. Furthermore, we performed Vuong tests between
the respective full model and the simplified /truncated models, since we are interested in
the null hypothesis

Hj : full model and simplified /truncated model are equivalent. (11.1)

If both models are equivalently good (or the simplified /truncated model is even preferred
to the full model), we can conclude that the simplified/truncated model is an adequate
C-vine specification. Hence, Table 11.2 shows the test statistics of the Vuong tests with
Akaike and Schwarz correction as well as without correction for the number of param-
eters (the full model is chosen as "model 17 and hence small values indicate that the
simplified /truncated model is close to the full model or even better, if negative). For the
reduced models truncated at level 6, a Vuong test cannot be performed, since they are
equal to the full model, i.e., no real truncation is determined because the reduced full
model has independence copulas in its last trees 77 and Ty (also cp. Schepsmeier (2010)).
This corresponds to the results of the complete models: models truncated at level 6 are
significantly superior to the full model with fully specified trees T and T.

Note that we examine all procedures discussed in the previous chapters, but the results
of the AIC/BIC based methods have to be considered carefully, since it turned out that
these procedures are less accurate than the methods based on the Vuong test (cp. Section
10.2). In contrast to Diimann (2010) we use the AIC to select appropriate pair copulas,
so that our resulting full C-vine is slightly different to his model.

For comparison, models with t copulas for every pair are also fitted, where a t cop-
ula is set to a Gaussian copula, if the degrees of freedom are estimated as larger than
30. Especially the results from the parsimonious criterion using the Schwarz correction
for the number of parameters indicate that these models are no alternatives to appropri-
ately simplified and truncated models with accurately specified first trees. Models with
only t copulas simply require too many parameters and cannot account for asymmetric
dependence.
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order ‘ code ‘ currency
15¢ EUR Euro
ond AUD Australian Dollar
3rd CHF Swiss Franc
4th BRL Brazilian Real
5th INR Indian Rupee
6" CAD Canadian Dollar
7th GBP British Pound
gth/9th | CNY/JPY | Chinese Yuan/Japanese Yen

Table 11.3: Order of the conditioning set of the full C-vine model (reduced model selection
setting) for the exchange rates data set.

Apparently, simplification is already feasible after the first tree T} as consistently de-
termined by the simplification methods based on the Vuong test and confirmed by Vuong
tests, i.e., the first tree captures most asymmetric (tail) dependencies and only symmetric
dependencies without significant strong joint tail behavior remain in the higher order trees
T, ..., Tg. Alternatively, the goodness-of-fit test based on the Rosenblatt transformation
determines a simplification level of 2, which confirms the above results, but also models
the second tree T5 in order to get a more accurate model. The rather weak results with
respect to AIC/BIC and Vuong tests with correction are due to the fact that joint sim-
plification with a Gaussian copula involves the estimation of all entries of the correlation
matrix, even if they are small. Hence, more parameters are estimated compared to models
with independence copulas for some variable pairs, but compared to the full model with
completely specified trees still somewhat less parameters are estimated. The considera-
tion of the log likelihood therefore shows that the jointly simplified 2 level C-vine is a
quite good model. However, the goodness-of-fit test based on the empirical copula process
determines an entirely inadequate model: all criteria highlight that a simplification at
level 0 is inappropriate, i.e., the data is clearly not jointly normally distributed and the
procedure completely fails here.

The truncation results give a different perspective: a truncation level of 3 or 4 is deter-
mined which corresponds to the fact that conditioned on two or three variables, respec-
tively, all significant dependencies are explained. A truncation level of 6 is not adequate,
since there is apparently no dependence left in the last two trees as already mentioned
above. On the other hand, truncation after tree 75 as determined by the truncation pro-
cedure based on Spearman’s p is also inappropriate as indicated by AIC and BIC as well
as the Vuong test statistics. This definitely results in too parsimonious models here.

The order of the conditioning set of the C-vine is identified by the full model in
the reduced model selection setting as indicated in Table 11.3, where the order of the
last two variables is arbitrary (cp. the corresponding RVM in Appendix B.1). Note that
the truncation procedures based on the Vuong test with Akaike and Schwarz correction
identify the last three variables in a slightly different order: the seventh variable in the
conditioning set is the Japanese Yen instead of the British Pound.
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‘ full MT(4) Ms(l) MJ<2)
T-matrix diff. | 0.02029 0.02194 0.02063 0.02057
quartile diff. | 0.08779 0.09218 0.09582 0.08704

Table 11.4: Mean absolute difference of the empirical Kendall’s 7’s of all variable pairs
(" T-matrix diff.”) and sum of absolute differences between empirical quartiles of SX and
S; ("quartile diff.”) for C-vine models of the exchange rates data set.

11.1.1 Model evaluation

Given the results discussed above, we are now interested if the simplified /truncated models
adequately reproduce the data characteristics or if they are too simple. Therefore, we apply
model evaluation criteria as discussed in Chapter 9. In particular, we will concentrate on
the truncated C-vine at level 4, Mr(4), and the pairwisely simplified 1 level C-vine,
Mg(1), as well as the jointly simplified 2 level C-vine, M ;(2), since these models turned
out to be the most adequate models in terms of model selection criteria. We only consider
the models in the reduced model specification setting, since we are interested in the
simplest models possible. Chosen copula types and parameter estimates of the models are
given in Appendix B.1.

In a first step we investigate the dependencies of the first C-vine tree, i.e., the rela-
tionships of the Euro exchange rate to all other exchange rates in terms of their trans-
formed residuals. According to Section 9.1, we consider scatter plots with standard normal
margins, empirical copula distributions as well as copula Q-Q plots for the three simpli-
fied /truncated models as well as for the fully specified model. The results are shown in
Figure 11.2 for the truncated model Mr(4) as well as in Appendix B.1 for the other three
models.

Judging from the analytical plots, all models accurately reproduce the dependencies
of the Euro exchange rates to all other exchange rates, since there are no systematic
deviations. Moreover, existing deviations are partly due to the simulation error.

For a further analysis and comparison of the models, we consider summarizing model
evaluation criteria (see Section 9.2), namely the mean absolute difference of the empirical
Kendall’'s 7’s of all variable pairs as well as the sum of absolute differences between
empirical quartiles of SX and S; as defined in (9.1). The mean results of R = 100 repeated
simulations are shown in Table 11.4 (cp. (10.1)).

According to both criteria, the jointly simplified model M ;(2) is closer to the true
model than the pairwisely simplified model Mg(1). Moreover, the first model is also quite
close to the fully specified model. The truncated model M(4), on the other hand, exhibits
slightly weaker results which is certainly due to the neglected dependencies in the higher
order trees. Nevertheless, given the values of the evaluation criteria for the full model,
all three simplified/truncated models are quite good approximations to the full model.
This underlines the results from the model selection criteria as shown in Table 11.2. Both
simplified models provide an adequate fit of the exchange rates data set, where the jointly
simplified level 2 C-vine model M ;(2) is naturally slightly more accurate, since one more
tree is fully specified.
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Figure 11.2: Truncated model Mr(4) for the exchange rates data set: scatter plots with
standard normal margins, empirical copula distribution functions (lower tail) and copula
Q-Q plots for observed (gray triangles, solid lines) versus simulated data (black circles,
dashed lines).
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11.1.2 Conclusion

Based on the truncation results we can state that by structurally conditioning on the Euro,
Australian Dollar and Swiss Franc exchange rates to the US Dollar all significant depen-
dencies among transformed residuals of exchange rates can be explained. These results are
refined by simplification: the relationships to the Euro exchange rate are the most impor-
tant to construct accurate models for explaining interdependencies among exchange rates.
All other relationships conditioned on the Euro exchange rates can be modeled simply by
Gaussian copulas. However, to get somewhat more accurate results, the relationships to
the Australian Dollar exchange rate (conditioned on the Euro exchange rate) should also
be taken into account separately. For a more detailed economical interpretation we refer
to Schepsmeier (2010).

11.2 Financial data from Norway

The data set considered in this application consists of 19 Norwegian and international
financial variables, whose descriptions can be found in Table 11.5. The observed time
period is from 3/25/2003 to 3/26,/2008 resulting in 1107 daily observations. The corre-
sponding time series are shown in Figure 11.3 and descriptive statistics of the log returns
in Table 11.6.

ID ‘ variable name ‘ description

V1 FINX Norwegian Financial Index

V2 USDNOK USD-NOK exchange rate

V3 EURNOK EURO-NOK exchange rate

V4 Yen YEN-NOK exchange rate

V5 GBP GBP-NOK exchange rate

\%4 NIBOR3M | 3-month Norwegian Inter Bank Offered Rate

V8 NIBOR5Y Norwegian 5-year Swap Rate

V9 EUR3M 3-month Euro Interbank Offered Rate

V10 EURSY 5-year German Government Rate

V11 USD3M 3-month US Libor Rate

V12 USD5Y 5-year US Government Rate

V13 NoOblig Norwegian bond index (BRIX)

V14 IntOblig Citigroup World Government Bond Index (WGBI)

V15 | Anleggsoblig | Norwegian 6-year Swap Rate

V16 | Pengemarked | ST2X - Government Bond Index (fix modified du-
ration of 0.5 years)

V17 IntAksjer Morgan Stanley World Index (MSCI)

V18 NoAksjer OSEBX - Oslo Stock Exchange main index

V19 Eiendom Oslo Stock Exchange Real Estate Index

V20 | Hedgefond | S&P Hedge Fund Index

Table 11.5: Financial data set from Norway.
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| V1 V2 V3 V4 V5 Vi V8 V9 V10 VIl

mean 0.001 -0.000 0.000 -0.000 -0.000 0.001 -0.000 0.001 0.000 0.001
std. dev. | 0.012 0.007 0.004 0.008 0.005 0.010 0.011 0.004 0.013 0.008
skewness | -0.039 0.183 0.280 0.405 -0.028 -1.568 0.033 0.820 0.324 -2.464
kurotsis 1.709 0.614 1.277 1.364 0896 18.618 6.891 21.818 1.902 64.391

Vi2 V13 V14 V15 V16 V17 V18 V19 V20

mean -0.000 0.000 0.000 -0.000 0.000 0.000 0.001 0.001 0.000
std. dev. | 0.020 0.001 0.005 0.011  0.000 0.007 0.013 0.012 0.003
skewness | -0.013 0.433 -0.029 -0.032 1984 -0.360 -0.413 0.602 -1.087
kurtosis 4.638 7.089 0.839 6.569 11.151 2.038 2.494 4.727 3.901

Table 11.6: Descriptive statistics of the variables in the financial data set from Norway.

Before analyzing the dependence in the data set, we have to select appropriate models
for the univariate margins in order to obtain i.i.d. copula data by transforming standard-
ized residuals by their respective empirical cdf’s. Hence, we have to find adequate time
series models as presented in Section 2.5. To do this, we arranged the variables into groups
with similar characteristics (exchange rates, stock indices, short term interest rates,...) and
then fitted similar models to each class of variables, where we preliminarily decided to
use the flexible standardized NIG distribution for the errors if possible. The results are
shown in Table 11.7 alongside with p-values of Kolmogorov-Smirnov tests (4.2) for the
respective distributions of the errors.

While we were able to select the standardized NIG distribution for the errors of 17
time series, we selected standardized Student-t and skewed Student-t for the hedge fund
and real estate indices (V19, V20), respectively (cp. Section 2.5.3). As expected, the stock
indices (FINX (V1), IntAksjer (V17), NoAksjer (V18)) exhibit a slightly positive mean
corresponding to positive expected returns of stocks. These indices as well as the exchange
rates can be modeled by GARCH(1,1)-models. Bond indices, on the other hand, require
an additional autoregressive term (between 0.010 and 0.081) and no significant GARCH
terms have been found for the ST2X Government Bond Index (V16). Similarly, the short
term interest rates are modeled by ARMA(1,1)-models only, which exhibit rather high
coefficients. Note, that the Kolmogorov-Smirnov tests are clearly rejected for the variables
NIBOR3M (V7) and USD3M (V11). Nevertheless, we will use this model, since within
the given range of examined models, we did not find a better model and hence we chose
the same model as for EUR3M (V9). In contrast to these short term rates, long term rates
can be adequately modeled by AR(1)-GARCH(1,1)-models.

Note that we use a non-parametric two step estimation approach here, since the
marginal time series are preliminarily estimated and the standardized residuals then trans-
formed non-parametrically to approximately uniform data before the vine copula model is
specified. This is in contrast to the Bayesian joint estimation approach taken by Hofmann
and Czado (2010). Given the dimension of the data set, the two step approach is however
reasonable.
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11.2.1 Simplification and truncation

In order to investigate whether simplification or even truncation of the R-vine specification
corresponding to this data set are possible, we apply our different procedures and compare
them in Table 11.8. For tree construction we consider Kendall’s 7 and exceedance Kendall’s
T with 6; = d, = 0.2 for lower and §; = d = 0.8 for upper dependence (maximum of lower
and upper dependence; see Section 3.1) as weights, since we are particularly interested
in joint tail behavior. As before, we report log likelihoods, number of parameters, AIC,
BIC as well as the test statistics of Vuong tests with respect to the null hypothesis (11.1)
in order to investigate whether the simplified/truncated model is an adequate R-vine
specification. When selecting pair copulas, bivariate independence tests are performed.

We also specify models with t copulas for every pair as in Section 11.1. However, the
results show that these models are rather not an alternative to the respective full models
with mixed copulas, since the Vuong tests with Schwarz correction for the number of
parameters reject these models which are less parsimonious than the full models. Although
t copulas cannot account for asymmetric dependence, the log likelihood of the model using
exceedance dependence as weights is higher than the corresponding full model. This is
however achieved at the expense of an increased number of parameters and hence lower
AIC and BIC values as for the model constructed using Kendall’s 7 als weights.

The results of hierarchical model specification as presented in Algorithm 10 can be
deduced from Table 11.8 by comparing simplification and truncation levels of a partic-
ular procedure. The procedures based on the Vuong test always detected simplification
before truncation, while the AIC/BIC based procedures for models built with Kendall’s
7 as weights detected the same simplification and truncation levels, i.e., truncation is
determined by hierarchical specification.

We first discuss the results of the models which were constructed with Kendall’s 7 as
weights. As seen in the simulation studies in Chapter 10, the procedures based on the
Vuong test are more reliable to detect simplification and truncation than those based on
AIC/BIC. Hence, we concentrate on the results of the first mentioned methods. However,
note that the AIC/BIC based methods here identify the same truncation level as the
procedures based on the Vuong test with and without Akaike correction (no additional
assumptions are made here), while the simplification results do not indicate a significant
improvement in facilitating model building (simplification at level 6, which is also deter-
mined as truncation levell). Moreover, the parsimonious Vuong test using the Schwarz
correction indicates that the obtained R-vines are equivalent to the full model even if
we simplify at level 2! This is however not true for truncation. Apparently, there are still
considerable dependencies after tree Ty (and of course after the truncation level 4, which is
determined by the procedure based on the Vuong test with parsimonious Schwarz correc-
tion). Nevertheless, this can be seen as an approximation to the full model when looking
for rather parsimonious models. As indicated by the procedure based on the Vuong test
with Schwarz correction, a truncation level of 4 might even be an alternative, since the
BIC and Vuong test statistics are similar to the truncated R-vine at level 6.

R-vine construction using exceedance dependence as weights allows an alternative
perspective on the data: all models include more parameters and are truncated later than
the respective models built with Kendall’s 7 as weights, i.e., less overall dependence has
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been captured in the first trees. This corresponds to the different construction principles:
while exceedance dependence captures joint tail behavior and does not allow any statement
regarding independence of variable pairs, Kendall’s 7 measures the general dependence
which is used in the bivariate independence test that we use (see Section 4.3.1). Hence, the
models constructed using exceedance dependence as weights are less parsimonious, but
possibly capture asymmetric dependence more accurately, which we will investigate below.
Furthermore note that the simplification procedures based on the Vuong test indicate that
simplification is already feasible at level 1, since the model construction principle probably
captured more asymmetric dependence, which cannot be modeled by Gaussian copulas,
in the first tree. However, AIC/BIC and Vuong tests indicate that these models do not
provide a good fit. Hence, we will concentrate on the models constructed using Kendall’s
7 in the following (without explicit reference to the construction principle anymore).

The chosen copula types and estimated parameters in the full R-vine model as well as
in the pairwisely simplified 2 level R-vine model are shown in Appendix B.2, where the
copula types and estimated parameters of the truncated models can also be deduced.

Figure 11.4 displays the first trees T of the R-vine models constructed using Kendall’s
7 (left panel) and exceedance Kendall’s 7 (right panel) as weights, respectively. They are
the same for all model specifications, since the R-vines are simplified at level 1 at the
earliest. As already discussed above, tree construction using exceedance dependence as
weights of course captures less dependence in terms of Kendall’s 7 which is underlined by
the trees in Figure 11.4. Abbreviations as in Table 11.5 are used.

11.2.2 Model evaluation

As in Section 11.1 we now turn to the evaluation of the models considered above. In
doing so, we examine the pairwisely simplified 2 level R-vine Mg(2) and, in particular,
the pairwisely truncated R-vines at level 4 M7(4) and at level 6 M (6), since the model
selection criteria indicated that these models are possibly too parsimonious, i.e., truncated
too early (cp. Table 11.8). Therefore, we consider a variable pair which is directly affected
by truncation after tree Ty and by simplification after T5: the transformed variable pair
NIBOR3M-EURSY (conditioned on previous trees) exhibits an induced Kendall’s 7 of
—0.1 in tree Ty of the full R-vine model, i.e., it is explicitly modeled in Mz (6) but
truncated in Mr(4) and simplified in Mg(2). Hence, we simulated 1107 observations
from each model and compare scatter plots with standard normal margins, empirical
copula distributions as well as copula Q-Q plots with respect to the observed data (cp.
Section 9.1) in Figure 11.5.

While scatter plots and empirical copula distributions of the simulated data do not
show any systematic deviations from the observed data characteristics, the copula Q-Q
plots give a more detailed impression: on the one hand, M+(6), Mg(2) and the full model,
which model the variable NIBOR3M-EURSY explicitly (or at least in a simplified way),
quite accurately reproduce the observed data characteristics. On the other hand, the Q-Q
plot of Mr(4), which truncates this variable pair, shows a systematic deviation from the
line y = x and hence indicates that this model provides a slightly inferior fit. It is however
still rather close to the observed data.

Since it is not sensible to consider all 12x18

5— = 171 variable pairs, we now consider
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Figure 11.5: Scatter plots with standard normal margins (left column), empirical copula
distributions (middle column) and copula Q-Q plots (right column) of the variable pair
NIBOR3M-EURSY for observed and simulated data from the full R-vine model (first row)
as well as Mr(6) (second row), Mr(4) (third row) and Mg(2) (fourth row).
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Kendall’s 7 exceedance Kendall’s 7
full Mrp(6) Mp(4) Mg(2) full Ms(1)
T-matrix diff. 0.04056 0.04610 0.04863 0.03983 | 0.04369 0.04055
quartile diff. 0.05335 0.05587 0.05383 0.05499 | 0.05189 0.05288
rlower_matrix diff. | 0.23283 0.23219 0.22834 0.23413 | 0.22766 0.23038
TUPPeT_matrix diff. | 0.23197 0.23018 0.23132 0.23461 | 0.22739 0.22717

Table 11.9: Mean absolute differences of the empirical Kendall’s 7’s of all variable pairs
(" 7-matrix diff.”) as well as of the empirical upper and lower exceedance Kendall’s 7’s
(" rlewer_matrix diff.” and 7 7%PPer-matrix diff. 7, respectively) and sums of absolute differ-
ences between empirical quartiles of SX and S; (”quartile diff.”) for R-vine models of the
financial data set from Norway, which were constructed using Kendall’s 7 or exceedance
Kendall’s 7 as weights.

summarizing criteria to evaluate the models (cp. Section 9.2). As in Section 11.1.1, we
examine the mean absolute difference of the empirical Kendall’s 7’s of all variable pairs
as well as the sum of absolute differences between empirical quartiles of S and S; which
are defined in (9.1) and correspond to equally weighted portfolios of all variables (cp.
(10.1)). Furthermore, we consider the mean absolute differences of the empirical upper
and lower exceedance Kendall’s 7’s of all variable pairs in order to investigate whether the
models are able to reproduce the joint tail behavior of the data. We compare the results
to the full and simplified 1 level R-vine models constructed using exceedance dependence
as weights. The mean results of R = 100 repeated simulations are shown in Table 11.9.

Given that the models constructed using exceedance dependence as weights use more
parameters, it is not surprising that they perform quite well in terms of all criteria.
However, also the full model and Mg(2), which were constructed using Kendall’s 7 as
weights, exhibit good results with respect to the empirical Kendall’s 7’s and quartiles
of SK, but, as expected, the simplified model is weaker in reproducing the asymmetric
tail behavior as measured by the lower and upper exceedance dependence. The truncated
models Mr(6) and Mr(4) show some problems with respect to empirical Kendall’s 7’s,
but are superior to the simplified model when modeling asymmetric dependence, since
they model more trees explicitly. Altogether, corresponding to their construction principle,
the models obtained by construction with exceedance Kendall’s 7 as weights are best for
reproducing the asymmetric dependence of the data. However, this is apparently a rather
complicated issue as the deviations are substantial for all models. This result underlines
the problem of adequately estimating joint tail behavior of variables, since only a limited
number of observations can be used (cp. Section 3.1). In terms of the other criteria, the
models can be seen as adequate specifications for the data.

11.2.3 Interpretation

Model selection and evaluation criteria show that an adequate R-vine model for the fi-
nancial copula data set from Norway can be truncated at level 6 or even 4 depending
on the desired level of parsimonity (of course at the expense of accuracy), i.e., the most
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important dependencies in the transformed residuals are captured in the first four to six
trees. Moreover, simplification at level 2 is also appropriate indicating that all important
asymmetric dependencies are already captured in the first two trees.

In economical terms, this has an apparent interpretation: the first R-vine tree in the
left panel of Figure 11.4 shows that there are clusters of economically similar variables.
In the upper part of the tree, the dependencies among the exchange rates are modeled.
The link to the other variables is established by the USD-NOK exchange rate (V2) and
the WGBI (V14) which are internationally important variables. Then the relationships of
interest rates and (government) bonds are modeled, where the 5-year German Government
Rate (V10) and the BRIX (V13) play central roles due to their role for the European and
Norwegian market, respectively. The 5-year German Government Rate also establishes the
link to the bottom part of the tree which models the relationships among stock indices and
related markets, where the MSCI World (V17) obviously is fundamental for explaining
the dependencies in the residuals. Hence, the simplification and truncation results mean
that the most important (asymmetric) dependencies are mainly found within these three
groups of variables and modeling a few links is sufficient to establish a good model, e.g.,
it is not necessary to explicitly model the dependency between the YEN-NOK exchange
rate (V4) and the Norwegian 5-year Swap Rate (V8).

In terms of asymmetric dependencies, model construction using exceedance depen-
dence as weights allows a different perspective (see the right panel in Figure 11.4): while
there is also a cluster of stock indices (bottom left part of the tree) and the 5-year German
Government Rate (V10) plays a central role again, the short term interest rates (V7, V9,
V11) are now also clearly clustered in contrast to the exchange rates which are intermixed
with long term interest rates and (government) bonds, where the BRIX and ST2X indices
play central roles. Hence, if one is interested in modeling asymmetric dependencies among
variables more explicitly, one can choose the less parsimonious models obtained by this
alternative construction principle.

11.3 Extended CAPM

In this section we want to review and evaluate the work of Heinen and Valdesogo (2009).
Using a simplified C-vine structure, they construct an extended Capital Asset Pricing
Model (CAPM) with sectorial effects, which can capture non-linear and non-Gaussian
behavior of stock returns. They however make crucial (independence) assumptions in
order to specify their model. We therefore construct a similar model for the log returns of
46 stocks of the Euro Stoxx 50 as well as five national leading stock indices: the German
DAX, the French CAC 40, the Dutch AEX, the Spanish IBEX 35 and the Italian FTSE
MIB. Based on this data, we will investigate the assumptions of Heinen and Valdesogo
(2009) and compare appropriate models including R- and C-vine specifications as well as
a newly proposed dependency model for financial returns based on R-vines, the so-called
reqular vine market sector model.
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11.3.1 Canonical vine market sector model

Heinen and Valdesogo (2009) developed an extension of the CAPM (Sharpe 1964) which
can capture non-linear and non-Gaussian behavior of the cross-section of asset returns as
well as model their dependencies to the market and the respective sector return. Their
model is based on a simplified C-vine structure and therefore called canonical vine au-
toregressive model, where ”autoregressive” refers to the fact that the chosen bivariate
copulas are possibly time-varying. It is constructed based on the classical CAPM which
is the most famous and also simplest factor model for the cross-section of asset returns:
the classical CAPM assumes that at time ¢ the individual asset returns r;,;, the market
return 757, and the idiosyncratic error terms ¢;,, which are independent of €;,_; and of
€t Vj # 1, are jointly normally distributed and follow the linear relationship

Tiz = Birae + €it,

where [3; is usually called the sensitivity of asset 7.

Heinen and Valdesogo (2009) loosen these assumptions of normality and linearity by
using a variety of GARCH-models for the marginal time series of stock returns and by
modeling the dependence between assets and the market with bivariate copulas for the
transformed residuals (note that this is again a two step estimation approach in contrast
to the Bayesian joint estimation approach of Hofmann and Czado (2010) and justified
by the dimension of most financial data sets). The remaining (idiosyncratic) dependence
is captured with a multivariate Gaussian copula. This obviously corresponds to a jointly
simplified 1 level C-vine, where the root node of the first tree is chosen as the market.
Heinen and Valdesogo (2009) call this the market model.

As the market model can only capture a limited amount of dependencies in the residu-
als, Heinen and Valdesogo (2009) extend this model by adding additional factors, namely
a set of sectors, where each asset belongs to one sector (e.g., utilities or financial ser-
vices). Then each asset is assumed to depend on the market and on its sector. In terms
of a C-vine, this model induces independence assumptions: conditionally on the market,
sectorial returns are assumed to be independent and asset returns independent of sector
returns other than their own. The remaining dependence of asset returns conditioned on
the market and on the respective sectors is again modeled by a multivariate Gaussian cop-
ula. The model is then called the market sector model and, if p is the number of sectors,
it corresponds to a jointly simplified p + 1 level C-vine, where the first root node is the
market and the root nodes 2 to p+ 1 are the sectors. In the following, we will refer to it as
canonical vine market sector (CVMS) model in order to highlight the underlying model
structure. It is illustrated in the following example (cp. Heinen and Valdesogo (2009)).

Example 13 (CVMS model.) Letr{, r3t, r2 and r? be the returns of stocks belonging
to sectors A and B, respectively. Further, let r4 and rg be the returns of sectors A and B
as well as ryy the market return. According to the CVMS model, the following independence
assumptions hold:

(i) r4 is independent of rg conditioned on ry;, and

(ii) 2 and v are independent of rp conditioned on ryr, while r? and r? are independent
of ra conditioned on 7).
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Figure 11.6: Dependence structure of the CVMS model with two sectors A and B.

Then the joint density of the returns r{*, &, vB, v, ra, rg and ry; is given by

f(rf‘,r?,rf,rf,mrs,w) F ) frD) f () f(ra) f(re) fra)
X C1A,M ( 7”M)) CoA,M ( ) ( ))
><ClBM( TM))CzBM( )
x can (F(r ) ( m)) CB, (F(T) ( )) (11.2)

X C1A4,A|M ( (7”1 [rar), F(ralras) ) C2A,A|M ( |7“M) (TA|7“M))
X C1B,B|M ( (7‘1 ’TM)7 (TB‘TM)) C2B,B|M ( ( Ty |TM)7 (TB|7”M)>
X CfA,lB,zA,QB\M,A,B (F(TﬂTMﬂ”A)y e F(”’2B‘7"M77”B)) )

where CfA,lB,QA,QB\M,A,B denotes a four-dimensional Gaussian copula and Figure 11.6 il-
lustrates the dependence structure of the model.

We can rewrite this density as the density of a jointly simplified 3 level C-vine with
the market as the first root node and the sectors as second and third root nodes, where the
order is arbitrary due to the independence assumptions. Now, let sector A be the second
and B the third root node. The copula terms of the first C-vine tree T} are

cran (E(r), F(rar)) s coanr (F(r3), F(rar)) seipar (F(rP), F(rar))
cop (F(ry), F(rar)) s cans (F(ra), F(rar)) s coa (F(rs), F(rar))

as in lines 2 to 4 in (11.2). Since A is the second root node, the pair copulas of the second
tree Ty are given by

craan (F(rilran), F(ralrar)) s coaams (F(ra|rar), F(ralrar))

C1B,A|M (F(Tﬂ?“M), F(TA|7“M)),CQB,A\M (F(T2B|TM)7 F(TA|7"M)),

(i) (44)
2 =1
according to independence assumption (ii) (the density of the independence copula is of

course 1) and

capt (F(ralrar), F(rlran) © 1
because of the first independence assumption (cp. line 5 in (11.2)). Further, the copulas
of the third tree T3 are

C1A,B|M,A (F(TlA|7“M,7“A) (rlraesra)), coapa (F(T§4|7“M, ra), F(rglra,ra)),

v~ v~

(i, @,
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Figure 11.7: First three trees of the CVMS model in Example 13.

as well as

ClB,B|M,A<F(Tf|7“M,T‘AZ,F(TB|7“M7 TA)) = C1B,B|M (F(T1B|TM)> F(T‘B|TM)) )

g ~~

DpeBir)  LPEslra)

and similarly for cop pia,a using both independence assumptions (cp. line 6 in (11.2)).

Finally, the wnput arguments of the simplifying four-dimensional Gaussian copula
Cll)A,lB,ZA,ZB|M,A,B as in line 7 of (11.2) are given by F(TZA|TM,TA,’I"B) = F(TZA|TM,TA)
and F(rB|rar,ma,m8) = F(rB|rar, v5) fori = 1,2 due to independence assumption (ii).

Combining all equations, we then get the copulas in (11.2), i.e., Equation (11.2) is
the density of a jointly simplified 3 level C-vine under independence assumptions (i) and
(7i) and where the order of the second and third root node is obviously arbitrary. The first
three trees of the C-vine are shown in Figure 11.7. Dotted lines illustrate the independence
assumptions, i.e., independence copulas are chosen for the copulas corresponding to dotted
edges.
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indices ‘ Germany ‘ France ‘ Netherlands ‘ Spain ‘ Italy
“STOXX50E | ALV.DE | ACA.PA | AGN.AS BBVA.MC | ENEL.MI
~GDAXIP BAS.DE AILPA INGA.AS IBE.MC ENI.MI
“FCHI BAYN.DE | ALO.PA | PHIA.AS REP.MC G.MI
~AEX DAI.DE BN.PA UNA.AS SAN.MC ISP.MI
~IBEX DB1.DE | BNP.PA TEF.MC TIT.MI
FTSEMIB.MI | DBK.DE CA.PA UCG.MI

DTE.DE CS.PA

EOAN.DE | DG.PA

MUV2.DE | FP.PA

RWE.DE | FTE.PA

SAP.DE | GLE.PA

SIE.DE GSZ.PA

MC.PA

OR.PA

SAN.PA

SGO.PA

SU.PA

UL.PA

VIV.PA

Table 11.10: Ticker symbols of analyzed indices and stocks.

Obviously, the CVMS model makes some crucial independence assumptions in order
to fit the factor model to a C-vine structure. We will therefore construct such a model and
investigate these assumptions as well as compare the results to R- and C-vines specified
by our simplification procedures. In doing so, we will not consider consider dynamical
terms in order to limit the model complexity to a reasonable amount.

11.3.2 Euro Stoxx 50 and national stock indices

In order to critically evaluate the CVMS model discussed in the previous section, we now
consider the log returns of 46 stocks of the Euro Stoxx 50 (market variable) according
to its composition as of 2/8/2010 and adjusted for dividends and splits. As sectorial
variables we furthermore consider the five national leading stock indices corresponding
to the home countries of the chosen stocks: the German DAX, the French CAC 40, the
Dutch AEX, the Spanish IBEX 35 and the Italian FTSE MIB, where all indices are taken
as price indices (instead of performance indices). Four stocks of the Euro Stoxx 50 are
not considered, since they are the only ones from their country (Nokia, Anheuser-Busch
InBev, Cement Roadstone Holding) or listed in multiple indices (ArcelorMittal). These
four stocks correspond to 6.7% of the total index weight. All stocks and indices considered
in our analyses are shown in Table 11.10. Time series of the indices are shown in Figure
11.8 for the time period from 5/22/2006 to 4/29/2010.

As in the previous Sections 11.1 and 11.2 and according to Heinen and Valdesogo
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Figure 11.9: P-values of the Kolmogorov-Smirnov tests for the residuals of the time series
models presented in Table 11.11. The dashed line indicates the 5% level. The numbers
correspond to the rows in Table 11.11.
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Figure 11.10: P-values of the Ljung-Box tests with lag 30 for the residuals of the time series
models presented in Table 11.11. The dashed line indicates the 5% level. The numbers
correspond to the rows in Table 11.11.

(2009), appropriate models for the univariate time series have to be found to obtain i.i.d.
copula data which can then be used for analyzing the dependence. Here, time series models
(see Section 2.5) are selected according to a stepwise procedure:

(i)

(i)

(i)

We fit ARMA(1,1)-GARCH(1,1)-, AR(1)-GARCH(1,1)-, MA(1)-GARCH(1,1)- and
GARCH(1,1)-models with mean and Student-t error distribution to the univariate
time series and perform Kolmogorov-Smirnov goodness-of-fit tests (see Section 4.1.1)
for the standardized residuals. The model with the highest p-value is chosen if this
value is at least larger than 5%.

If the degrees of freedom of the Student-t error distribution are larger than ten, we
choose a standard normal distribution instead (if the p-value of the corresponding
Kolmogorov-Smirnov test is larger than 5%).

Since the Kolmogorov-Smirnov test sometimes lacks power, we also perform Ljung-
Box tests (see Section 2.5.4) with lag 30 for all residuals. If a p-value is smaller
than 5%, we stepwisely increase the corresponding ARMA(p,q) terms, so that the
model remains rather parsimonious, until both the Ljung-Box test and the respective
Kolmogorov-Smirnov test for the residuals have p-values larger than 5%.

The resulting marginal time series models are shown in Table 11.11, while Figures 11.9 and
11.10 display the p-values of the Kolmogorov-Smirnov and Ljung-Box tests, respectively.
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model i M 61 ) a1 b1 » | Ks | LB
“STOXX50E | GARCH(1,1) 0.001 - 0.000 0.104 0.891 | 8.586 | 0.317 | 0.615
~GDAXIP GARCH(1,1) 0.000 - - 0.000 0.087 0.906 | 8.665 | 0.103 | 0.589
~AEX GARCH(1,1) 0.001 - - 0.000 0.115 0.880 | - | 0.142 | 0.399
~FCHI GARCH(1,1) 0.001 - - 0.000 0.096 0.897 | 9.489 | 0.409 | 0.400
FTSEMIB.MI | GARCH(1,1) 0.000 - - 0.000 0.104 0.897 | 9.426 | 0.206 | 0.376
~IBEX GARCH(1,1) 0.000 - - 0.000 0.105 0.890 | 7.212 | 0.393 | 0.503
ACAPA GARCH(1,1) -0.000 - - 0.000 0.085 00915 | 6.611 | 0.921 | 0.749
AGN.AS GARCH(1,1) 0.000 - - 0.000 0.120 0.875 | 7.401 | 0.662 | 0.180
ALPA MA(1)-GARCH(1,1) 0.001 - -0.114 | 0.000 0.094 0.873 | 5.932 | 0.923 | 0.060
ALO.PA AR(1)-GARCH(1,1) 0.001  -0.065 - 0.000 0.058 0.935 | 6.732 | 0.810 | 0.602
ALV.DE ARMA(5,0)-GARCH(1,1)® | 0.001  0.012 - 0.000 0.092 0.903 | 6.538 | 0.240 | 0.078
BAS.DE ARMA(1,1)-GARCH(1,1) | 0.002 -0.684 0.668 | 0.000 0.097 0.900 | 5.518 | 0.760 | 0.612
BAYN.DE ARMA(1,1)-GARCH(1,1) | 0.000 0.522 -0.570 | 0.000 0.106 0.849 | 6.591 | 0.951 | 0.787
BBVA.MC GARCH(1,1) 0.000 - - 0.000 0.115 0.878 | 7.160 | 0.711 | 0.085
BN.PA ARMA(1,1)-GARCH(1,1) | 0.000 0.626 -0.699 | 0.000 0.089 0.893 | 8.381 | 0.958 | 0.640
BNP.PA GARCH(1,1) 0.000 - - 0.000 0.089 0.909 | 7.189 | 0.554 | 0.864
CAPA GARCH(L,1) 0.000 - N 0.000 0.069 0026 | 5.680 | 0.860 | 0.208
CS.PA MA(1)-GARCH(1,1) 0.000 - 0.019 | 0.000 0.106 0.890 | 9.658 | 0.486 | 0.171
DALDE AR(1)-GARCH(1,1) 0.001  0.011 - 0.000 0.102 0.896 | 5.319 | 0.552 | 0.251
DB1.DE GARCH(1,1) 0.001 - - 0.000 0.086 0.908 | 7.695 | 0.730 | 0.079
DBK.DE AR(1)-GARCH(1,1) 0.000  0.028 - 0.000 0.116 0.891 | 6.442 | 0.576 | 0.408
DG.PA GARCH(1,1) 0.001 - - 0.000 0.094 0.902 | 8.534 | 0.256 | 0.254
DTE.DE GARCH(1,1) 0.000 - - 0.000 0.075 0.918 | 5.197 | 0.647 | 0.956
ENEL.MI MA(1)-GARCH(1,1) 0.001 - -0.073 | 0.000 0.124 0.870 | 6.325 | 0.356 | 0.078
ENILMI ARMA(1,1)-GARCH(1,1) | 0.001 -0.580 0.526 | 0.000 0.112 0.874 | 8.328 | 0.470 | 0.484
EOAN.DE GARCH(1,1) 0.001 - - 0.000 0.100 0.881 | 4.809 | 0.179 | 0.781
FP.PA AR(1)-GARCH(L,1) 0.000  -0.001 N 0.000 0.080 0.893 | 8.904 | 0.944 | 0.161
FTE.PA MA(1)-GARCH(1,1) 0.000 - -0.021 | 0.000 0.037 0.954 | 5.802 | 0.936 | 0.274
G.MI GARCH(1,1) 0.000 - - 0.000 0.102 0.883 | 5.635 | 0.922 | 0.263
GLE.PA ARMA(1,1)-GARCH(1,1) | -0.000 -0.416 0.498 | 0.000 0.117 0.888 | 7.323 | 0.770 | 0.305
GSZ.PA AR(1)-GARCH(1,1) 0.001  -0.032 - 0.000 0.090 0.894 | 8.604 | 0.272 | 0.443
IBE.MC ARMA(1,1)-GARCH(1,1) | 0.000 -0.217 0.232 | 0.000 0.182 0.792 | 5.047 | 0.152 | 0.558
INGA.AS GARCH(1,1) 0.000 - - 0.000 0.166 0.846 | 5.952 | 0.746 | 0.137
ISP.MI ARMA(1,1)-GARCH(1,1) | -0.000 -0.133 0.166 | 0.000 0.103 0.893 | 6.325 | 0.398 | 0.250
MC.PA GARCH(1,1) 0.001 - - 0.000 0.060 0.933 | 7.057 | 0.990 | 0.581
MUV2.DE ARMA(1,1)-GARCH(1,1) | 0.001 -0.782 0.744 | 0.000 0.116 0.868 | 5.877 | 0.145 | 0.062
OR.PA MA(1)-GARCH(1,1) 0.001 N -0.087 | 0.000 0.082 0.893 | 8.200 | 0.983 | 0.405
PHIA.AS MA(1)-GARCH(1,1) 0.001 - -0.035 | 0.000 0.072 0.924 | 7.058 | 0.358 | 0.846
REP.MC ARMA(1,1)-GARCH(1,1) | 0.000 0.494 -0.502 | 0.000 0.111 0.871 | 5.994 | 0.792 | 0.223
RWE.DE GARCH(1,1) 0.001 - - 0.000 0.067 0.906 | 5.728 | 0.886 | 0.087
SAN.MC MA(1)-GARCH(1,1) 0.001 - -0.017 | 0.000 0.124 0.873 | 8.252 | 0.677 | 0.052
SAN.PA GARCH(1,1) 0.000 - - 0.000 0.040 0.946 | 5.068 | 0.975 | 0.586
SGO.PA ARMA(1,1)-GARCH(1,1) | 0.001 -0.693 0.639 | 0.000 0.094 0.907 | 7.899 | 0.375 | 0.779
SIE.DE GARCH(1,1) 0.001 - - 0.000 0.058 0.936 | 5.161 | 0.700 | 0.063
SU.PA ARMA(3,0)-GARCH(1,1)¢ | 0.001  -0.052 - 0.000 0.073 0.920 | 7.556 | 0.396 | 0.435
TEF.MC AR(1)-GARCH(1,1) 0.001  -0.006 - 0.000 0.094 0.882 | 7.507 | 0.714 | 0.451
TIT.MI ARMA(1,1)-GARCH(1,1) | -0.000 0.820 -0.867 | 0.000 0.111 0.869 | 8.506 | 0.256 | 0.217
UCG.MI AR(1)-GARCH(1,1) 0.000  -0.023 - 0.000 0.109 0.899 | 8.399 | 0.218 | 0.128
UL.PA GARCH(1,1) 0.001 - - 0.000 0.099 0.889 | 8.806 | 0.677 | 0.115
UNA.AS GARCH(1,1) 0.001 - - 0.000 0.083 0.902 | 5.791 | 0.922 | 0.064
VIV.PA GARCH(1,1) 0.001 - - 0.000 0.091 00902 | - | 0.250 | 0.544
SAP.DE MA(1)-GARCH(1,1) 0.000 - 0.010 | 0.000 0.027 0.961 | 3.970 | 0.898 | 0.251

Table 11.11: Marginal time series models for the log returns of the considered six indices
and 46 stocks.

%Normal error distribution.
bpy = —0.000, ¢35 = —0.036, ¢3 = 0.010 and ¢4 = —0.040.
Py = —0.017 and ¢35 = —0.092.
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Figure 11.11: Dependence structure of the CVMS model for the Euro Stoxx 50 data.

11.3.3 Validity of independence assumptions

The CVMS model considered in Section 11.3.1 crucially relies on independence assump-
tions to construct a jointly simplified C-vine structure. In order to specify a CVMS model
for the Euro Stoxx 50 data described above, these assumptions can be explicitly stated
as:

(i) the returns of the national indices conditioned on the market return, i.e., on the
return of the Euro Stoxx 50, are independent and

(ii) conditionally on the market return, the individual returns are independent of re-
turns of national indices other than their own, e.g., returns of German stocks are
independent of the French CAC 40 conditioned on the Euro Stoxx 50.

Figure 11.11 illustrates the dependence structure of the Euro Stoxx 50 data. This tree
should however not be confounded with R- or C-vine trees.

We now want to investigate whether the independence assumptions of the CVMS
model are appropriate for the Euro Stoxx 50 data. Here, the CVMS model corresponds
to a jointly simplified 6 level C-vine, where “STOXX50E is the first root node. As the
order of the root nodes 2 to 6 in the conditioning set of the C-vine is arbitrary (cp.
Example 13), we choose the order according to the number of stocks under consideration
(see Table 11.10), i.e., we choose "FCHI as second, “"GDAXIP as third, FTSEMIB.MI as
fourth, "IBEX as fifth and finally ~AEX as sixth root node. The stepwise construction of
the CVMS model for the transformed residuals of the Euro Stoxx 50 data is described in
the following.

(i) Appropriate (according to the AIC) pair copulas are fitted for the first tree 77 with
root node "STOXX50E, i.e., for all 51 variable pairs involving “STOXX50E, to
model the dependence on the market.

(ii) Second tree Ty with root node "FCHI: We specify appropriate pair copulas for all
19 returns of French stocks with respect to "FCHI conditionally on “STOXX50E.
According to the CVMS model, for all other stock returns and indices the respective
copulas with respect to “FCHI are set to independence copulas due to independence
assumptions (i) (for the indices) and (ii) (for the stocks). These assumptions are
investigated in the first column of Table 11.12 which displays p-values of the bivariate
independence test based on Kendall’s 7 (cp. Section 4.3.1) for variable pairs involving
“FCHI.
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| "FCHI | “"GDAXIP | FTSEMIB.MI | "IBEX | "AEX

~“FCHI - 0.26* 0.91% 0.00 0.00
~GDAXIP 0.26* - 0.00 0.00 0.86*
FTSEMIB.MI 0.91% 0.00 - 0.32%* 0.05*
“IBEX 0.00 0.00 0.82% - 0.00
~AEX 0.00 0.86* 0.05* 0.00 -
ACA.PA - 0.01 0.00 0.38%* 0.74*
ALPA - 0.00 0.94* 0.00 0.00
ALO.PA - 0.00 0.07* 0.82%* 0.00
BN.PA - 0.05* 0.02 0.64* 0.20*
BNP.PA - 0.00 0.01 0.56* 0.00
CA.PA - 0.02 0.04 0.68* 0.36*
CS.PA - 0.62% 0.00 0.38%* 0.29*
DG.PA - 0.55%* 0.15%* 0.01 0.01
FP.PA - 0.69* 0.84* 0.00 0.00
FTE.PA - 0.01 0.04 0.01 0.00
GLE.PA - 0.00 0.00 0.88* 0.13*
GSZ.PA - 0.37% 0.18%* 0.70* 0.47*
MC.PA - 0.09* 0.26* 0.73* 0.00
OR.PA - 0.12% 0.03 0.60%* 0.09*
SAN.PA - 0.10%* 0.05* 0.00 0.03
SGO.PA - 0.12* 0.79* 0.55% 0.01
SU.PA - 0.00 0.27% 0.60%* 0.00
UL.PA - 0.73* 0.02 0.00 0.00
VIV.PA - 0.32% 0.72* 0.06* 0.20*
ALV.DE 0.01 - 0.01 0.32%* 0.14*
BAS.DE 0.90* - 0.82% 0.00 0.01
BAYN.DE 0.69%* - 0.01 0.00 0.05*
DAIDE 0.08* - 0.47* 0.93* 0.04
DB1.DE 0.07* - 0.07* 0.90%* 0.37*
DBK.DE 0.00 - 0.00 0.88%* 0.29%
DTE.DE 0.00 - 0.17* 0.01 0.00
EOAN.DE 0.68%* - 0.02 0.24%* 0.02
MUV2.DE 0.01 - 0.44% 0.07* 0.50*
RWE.DE 0.27% - 0.70* 0.86* 0.30*
SAP.DE 0.06* - 0.50* 0.09* 0.19*
SIE.DE 0.18% - 0.01 0.00 0.07*
ENEL.MI 0.12% 0.08%* - 0.74%* 0.95*
ENI.MI 0.00 0.08* - 0.00 0.00
G.MI 0.02 0.02 - 0.52% 0.24*
ISP.MI 0.00 0.02 - 0.31% 0.05%*
TIT.MI 0.02 0.20* - 0.02 0.67*
UCG.MI 0.00 0.00 - 0.86* 0.01
BBVA.MC 0.00 0.00 0.01 - 0.12*
IBE.MC 0.00 0.00 0.00 - 0.03
REP.MC 0.78%* 0.00 0.51% - 0.09*
SAN.MC 0.00 0.00 0.15% - 0.00
TEF.MC 0.00 0.00 0.00 - 0.00
AGN.AS 0.42% 0.07* 0.00 0.24%* -
INGA.AS 0.04 0.01 0.00 0.26* -
PHIA.AS 0.00 0.05%* 0.48%* 0.01 -
UNA.AS 0.25% 0.18* 0.17* 0.03 -

Table 11.12: P-values of bivariate independence tests based on Kendall’'s 7 (cp. Section
4.3.1) for the Euro Stoxx 50 data conditioned on “STOXXS50E, e.g., the entry in row
6, column 2 corresponds to the independence test between F(raca.pal|rsroxxsor) and
F(rapaxip|rsroxxsor). P-values indicated by ”*” imply that the independence hypoth-
esis cannot be rejected at the 5% level in accordance with the assumptions of the CVMS
model.
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\”FCHI "GDAXIP FTSEMIB.MI ~IBEX ~AEX

French - 42% 47% 32% 58%
German | 33% - 42% 33% 33%
Ttalian 83% 50% - 33% 33%
Spanish | 80% 100% 60% - 60%
Dutch 50% 25% 50% 50% -

total 56% 50% 47% 34% 48%

Table 11.13: Percentages of rejection of the independence hypothesis for stocks from each
country versus indices of countries other than their own conditioned on “STOXX50E (see
Table 11.12).

(iii) Third tree T3 with root node ~“GDAXIP: As in the previous step, we choose appro-
priate pair copulas for all 12 returns of German stocks with respect to “GDAXIP
conditionally on “STOXX50E (no conditioning on ~"FCHI because of the indepen-
dence assumptions; cp. Example 13). All other copulas are set to independence
copulas even if the bivariate independence test rejects the null hypothesis of in-
dependence, where the corresponding p-values are shown in the second column of
Table 11.12.

(iv) Trees Ty, Ts and Tg are specified similarly. P-values of the corresponding bivariate
independence tests are shown in columns 3, 4 and 5 of Table 11.12.

(v) A 46-dimensional Gaussian copula is fitted to the transformed variables obtained
from tree Ty. (The parameters of the correlation matrix are estimated by the inver-
sion of Kendall’s 7 (see Table 2.1) due to the computational complexity of estimating
the entries of the 46-dimensional matrix.) We perform the copula goodness-of-fit test
based on Rosenblatt’s transformation (see Section 4.2.3), since this test is compu-
tationally very efficient and performed quite well in the simulation study in Section
10.2.1.

Table 11.13 summarizes the results of the bivariate independence tests to examine the
independence assumptions. It shows the percentages of rejected independence hypotheses
for stocks from each country (e.g., the null hypothesis of independence of German stocks
and "FCHI is rejected for 33% of the German stocks), where the CVMS model assumes
0%.

Apparently, the independence assumptions do not hold in general. In particular, con-
ditionally on the market, i.e., the Euro Stoxx 50, there is significant dependence of Italian
and Spanish stocks on the French CAC 40 as well as dependence of all Spanish stocks
on the German DAX, which contradicts independence assumption (ii). In total, the as-
sumption is wrong for about 50% of all variable pairs under consideration. Moreover, the
null hypothesis of independence is pairwisely rejected for the Spanish IBEX 35, the Dutch
AEX and the CAC 40 as well as for the Italian FTSE MIB and the IBEX 35 with respect
to the DAX in contradiction to independence assumption (i).
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As indicated by the problematic independence assumptions, there are important de-
pendencies which are neglected in the first trees. The CVMS model now aims at capturing
all remaining dependencies with a multivariate Gaussian copula. This however means that
the transformed variables obtained from tree Ty are jointly normal which is a rather strict
assumption given that the data might exhibit, e.g., asymmetric dependence. Hence, we
performed the copula goodness-of-fit test based on Rosenblatt’s transformation which
clearly rejected the null hypothesis of normality with a p-value of 0, i.e., a multivariate
Gaussian copula is not appropriate which again contradicts the assumptions of the CVMS
model.

11.3.4 Regular vine market sector model

As seen in the previous section, the assumptions of the CVMS model are not appropriate
for the given data set. Therefore, we construct an alternative model which exploits the
more general structure of R-vines. Clearly, we expect that there are strong relationships
between the returns of a stock and the sector it belongs to, here the respective national
stock index. In contrast to the CVMS model, we thus model these dependencies first
as well as the dependencies of the sectors to the market to take into account the joint
driver of dependencies among sectors. If all remaining dependencies are then captured by
Gaussian pair copulas in higher order trees (pairwise simplification at level 1), we speak of
the regular vine sector (RVS) model. If however the dependencies to the market, here the
Euro Stoxx 50, are also modeled conditionally on the respective sectors in the second R-
vine tree before setting all pair copulas of higher order trees to bivariate Gaussian copulas
(pairwise simplification at level 2), we call the model a regular vine market sector (RVMS)
model. As in the CVMS model, we furthermore assume that sectors are independent
conditioned on the market in the RVMS model. Moreover, note that the construction of
higher order trees is not uniquely determined by the first or second tree in a RVS or RVMS
model, respectively. We solve this problem by simply modeling the highest dependencies
in each tree as we did before (see Section 3.2) and where ”dependency” refers to a measure
as discussed in Section 3.1. Examples of both models are given in the following.

Example 14 (RVS and RVMS models.) Similar to Example 13 we consider returns
rid g rBorB ¢ and r$ of stocks belonging to sectors A, B and C with returns ra, rp
and ro, respectively. Furthermore, vy denotes the return of the market.

Then the first R-vine tree in the RVS as well as the RVMS model is specified with

appropriate pair copulas as

C1A.A (F(rf), F(TA)) 244 (F(Tg‘), F(TA)) C1B.B (F(rlB), F(T‘B))
X C2B.B (F(Tf), F(T’B)) Cic,c (F(Tlc), F(Tc)) Coc,C (F(TQC), F(Tc>)
X canm (F(ra), F(rar)) e (F(rg), F(rar)) com (F(re), F(re)) -

In the RVS model, all pair copulas of higher order trees are then set to bivariate Gaussian
copulas. The RVMS model, on the other hand, also models the second R-vine tree under
the independence assumption that sectors are independent conditionally on the market,
1.e.,

capiu (F(ralra), F(ralrar)) = 1,
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2C,M|C

1B,M|B
2B,MB

T

Figure 11.12: First and second tree of the RVMS model in Example 14.

and similarly for A and C' as well as for B and C. Hence, the pair copulas of the second
tree of the RVMS model are

crana (F(ritra), F(rarlra)) coanna (FE(ri|ra), F(rarlra))
X C1B,M|B (F(TlB|7’B), F(TM|?”B)) C2B M|B (F(TQB’TB)7 F(TM‘rB))

X Cio,M|C (F(rlc|7’c), F(TM|7’0)) Coc,M|C (F(rQC]rc), F(rM]rc)) .

Note that without the above independence assumptions, we would have to choose a tree
structure for the sector variables, since the pair copulas ca pm, cacim and cg v cannot
all be included in an R-vine at once. Due to the independence assumptions, the model s
independent of this choice. All higher order trees of the RVMS model are then specified
with Gaussian pair copulas.

Figure 11.12 shows the first tree of the RVS and the RVMS models as well as the second
tree of the RVMS model. The dotted lines in the second tree illustrate the independence
assumption for sectors conditionally on the market.

We now specify an RVS and an RVMS model for the Euro Stoxx 50 data. The first
tree of both models is shown in the left panel of Figure 11.13, while the second tree of the
RVMS model is illustrated in the right panel of Figure 11.13. To facilitate understanding
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order ‘ CVMS model ‘ full C-vine model

1 [ "STOXX50E ~STOXX50E
ond ~FCHI GLE.PA
3rd ~GDAXIP ~FCHI

gth | FTSEMIB.MI ~GDAXIP
5th ~IBEX ~IBEX

Gth ~AEX INGA.AS
Tth - FTSEMIB.MI
13th - ~AEX

Table 11.14: Order of the conditioning sets of the CVMS model and a full C-vine model
for the Euro Stoxx 50 data.

of the model we omitted the edges between the sectors conditioned on the market which
are modeled as independent anyway. Thus the second "tree” as displayed here is not a
tree, since it is not connected (see Section 2.3).

As in the CVMS model, we investigate these independence assumptions. In the first
five rows of Table 11.12, the p-values of bivariate independence tests between the national
indices conditionally on the Euro Stoxx 50 are displayed (same independence assumptions
regarding the sectors as in the CVMS model). Apparently, the assumption of pairwisely
independent sectors is not true here (the hypothesis is rejected for 50% of the pairs). How-
ever, in contrast to the CVMS model, we can circumvent the problem, since not all bivari-
ate copulas for two sectors conditioned on the market can be included in the model so that
it remains a valid R-vine (tree structure!). If we choose the pair copulas ~TAEX-"GDAXIP,
"GDAXIP-"FCHI, "FCHI-FTSEMIB.MI and FTSEMIB.MI-"IBEX (which happen to
be a D-vine structure with first tree ~AEX-"GDAXIP-"FCHI-FTSEMIB.MI-"IBEX),
we obtain a valid density and the independence assumptions are satisfied. Remaining
dependencies are captured by Gaussian pair copulas in higher order trees.

11.3.5 Comparison to regular and canonical vine specifications

In the following, we will now compare the CVMS model as well as the RVS and the RVMS
models to adequate R- and C-vine models for the Euro Stoxx data. With regard to the
latter, we are particularly interested in the order of the conditioning set identified by our
model construction methods (see Chapter 3) and the joint simplification level determined
by the procedures discussed in Chapters 7 and 8 and evaluated in Section 10.2.2. In R-vine
models we investigate how well the dependence of the Euro Stoxx 50 data is modeled in
comparison to the RVS, the RVMS and the C-vine models, i.e., we want to determine the
loss when imposing more restrictive structures than a general R-vine structure.

As mentioned above, the first issue is the order of the conditioning set of appropriate
C-vines for the Euro Stoxx 50 data. Hence, we specify a full C-vine model without sim-
plification or truncation. The order of root nodes is given in Table 11.14 alongside the
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UCG.MI
TIEMI IBE:MC
ISPYI ENELMI RER MC BBVA.MC FTE-PA
TERNIC DTE.DE
GMEETSEMIB.MI
NBEX
RWE.DE SAN.MC
AGN.AS
EOAN.DE
DB%.DE CSPA DBK.DE
PHIA.
SAP.DE ASTOXXS0E A'EGA.AS
SIEDE—"GDAXIP UNA.AS
. AAEX
BAYN.DE MG:.PA
BAS:DE VIVAPA UL-PA
DAF.DE \ CA:-PAX .
BNP.PA
ALO-PA
ALVDE ¥/ DG&.PA
GLE.PA SANPA OR.PA
FP-PA
MUV2.DE ACA.PA AlPA
BN:PA SGO.PA ENI-MI
SUPASSZ.PA

Figure 11.14: First tree of the full R-vine model for the Euro Stoxx 50 data.

corresponding order induced by our CVMS model, where the order of the variables 2 to
6 could also be chosen differently and no root nodes after tree Ty are determined due to
the joint simplification, since the modeling with the multivariate Gaussian copula does
not require the specification of additional tree structures.

In terms of the order of the conditioning set, the CVMS model is apparently a good
approximation, since the order identified by the full C-vine model is similar except for the
stocks of the financial companies Société Générale (GLE.PA) and ING Groep (INGA.AS)
which exhibit strong dependencies to other stock returns. Moreover, the AEX plays only
a minor role due to its small size.

In the next step, we compare this ”dependency ranking” to the dependencies deter-
mined by a full R-vine model for the Euro Stoxx 50 data. Using Kendall’s 7 as weights
for the tree construction, we obtain the first R-vine tree as shown in Figure 11.14.

Clearly, the Euro Stoxx 50 as well as the national leading stock indices are identified
as main dependency drivers, where the Euro Stoxx 50 can be identified as some kind of
"root node” of the R-vine. Moreover, the national indices are directly connected to this
root node, except for the Dutch AEX which is, probably due to its small size, linked to
the French CAC 40. Compared to the first tree of the RVS and RVMS models (cp. Figure
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11.13), there are also some connections and even clusters between stocks that deviate
from the assumptions of these models. These connections will be discussed in more detail
below. All in all, the dependence structure of this full R-vine confirms the assumptions of
the CVMS model and, in particular, of the RVS and RVMS models.

As both the CVMS model and the RVS and RVMS models are simplified at a pre-
specified level, we now investigate simplified R~ and C-vine models. Moreover, we use our
simplification procedures to determine the appropriate simplification level of a restricted
R-vine model, where the first tree corresponds to the first tree of the RVS and RVMS
models. Furthermore, we determine truncation levels for all models in order to evaluate
where most of the dependencies are captured. The resulting models are shown in Table
11.15 and compared using AIC/BIC as well as Vuong tests with respect to the most general
full R-vine model. Estimates are obtained by sequential estimation, since full maximum
likelihood estimation is computationally extremely demanding for these 52-dimensional
models and, as mentioned earlier and shown in Table 11.17 below as well as in Appendix
B for the models discussed in the previous two sections, sequential estimates are usually
rather close to those obtained by full maximum likelihood estimation, i.e., sufficient for
basic model comparisons. Trees are constructed with Kendall’s 7 as weights.

As simplification /truncation procedures we concentrate on those based on the Vuong
test, since they turned out to be the best-performing methods (see Chapter 10). We
specify models using the Vuong test without correction and with Schwarz correction in
order to obtain a rather parsimonious model on the one hand and a less parsimonious
but nevertheless adequately simplified /truncated model on the other hand. The results of
joint truncation and simplification are not reported, since a truncation level of 36 and a
simplification level of 42 do not indicate a significant facilitation in model specification,
where the levels are identified using the computationally faster tests based on Spearman’s
p and the Rosenblatt transformation, respectively (cp. Chapter 4). Finally, we also con-
sider an alternative specification of the CVMS model: instead of jointly simplifying at
level 6, we pairwisely simplify at this level and also perform bivariate independence tests
for the pairs of transformed variables in each tree, i.e., in this way we obtain a much more
parsimonious model. The resulting model is denoted as C'VMS-P to indicate the pairwise
simplification.

The main results of the different models shown in Table 11.15 can be summarized as
follows.

(i) The full R-vine with pre-specified first tree and the full C-vine are rather close to
the unrestricted full R-vine model. Considering the Vuong test without correction
for the number of parameters, the models are equivalent. However, the C-vine model
requires more parameters and therefore the null hypothesis of equivalent models is
rejected if the Vuong test is corrected for the number of parameters.

(ii) The simplification levels of R-vines as identified by the procedures based on the
Vuong test confirm the assumptions of the RVS and RVMS models. Note however
that the trees in the more general R-vines may look differently and therefore model
stronger dependencies than under the assumptions of the RVS and RVMS models.

(i) Though simplification of C-vine does not confirm the assumptions of the CVMS
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models, which assume a simplification level of 6. According to AIC/BIC and the
Vuong tests with regard to the full R-vine model, the CVMS models are inferior
to the pairwisely truncated C-vines as specified using the procedures based on the
Vuong test.

The CVMS model of Heinen and Valdesogo (2009) requires a lot of parameters, since
a 46-dimensional correlation matrix has to be fitted for the remaining dependency
after C-vine tree 6. The pairwisely simplified CVMS model, on the other hand, is
much more parsimonious and superior in terms of AIC/BIC as well as Vuong tests
with correction for the number of parameters.

As noted above, the CVMS model of Heinen and Valdesogo (2009) is specified
without pairwise independence tests and hence the likelihood is higher than for
the pairwisely simplified model. It is also higher than the likelihood of the RVS
and RVMS models. This is however only due to the large number of parameters
and therefore AIC/BIC as well as Vuong tests with correction for the number of
parameters show that the RVMS model and even the RVS model are superior to
the CVMS model of Heinen and Valdesogo (2009) and also slightly superior to the
CVMS-P model, since they impose less restrictive independence assumptions which
may not be satisfied.

Truncation of R~ or C-vines for the Euro Stoxx 50 is apparently not sensible as long
as we also test for bivariate independence for each pair of transformed variables. The
identified truncation levels are either rather high, i.e., do not indicate a significant
facilitation for inference, or rather low but do not perform well in terms of AIC/BIC
and Vuong tests.

11.3.6 Value-at-Risk backtesting

As the RVMS model apparently fits the data rather well even in comparison to the fully
specified R-vine model, we now examine both models more closely by checking their VaR
forecasting accuracy as discussed in Section 9.3. For this we consider a testing period
from 4/30/2010 to 9/16/2010 with 100 daily observations and simulate the VaR of the
portfolio of the 46 Euro Stoxx 50 stocks in our data set with weights according to the
index composition as of 2/8/2010. In order to do so, we proceed iteratively:

(i)

(i)

(iii)

We specify ARMA(1,1)-GARCH(1,1)-models for the marginal time series with a
moving window of 985 observations (corresponding to the above analysis).

Then we fit a fully specified R-vine and the RVMS model to the transformed stan-
dardized residuals.

Using the estimated copula parameters we simulate 100,000 samples from both mod-
els. The samples are then transformed back by the cdf’s of the standardized residuals
and the portfolio value is computed as the weighted sum of the one-step-ahead fore-
casts obtained by plugging residuals and estimated ARMA-GARCH parameters into
Equation (2.36).
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(iv) Finally, we compute the 90%-VaR of the portfolio.

Note that we preliminarily decide to fit ARMA(1,1)-GARCH(1,1)-models to all marginal
time series in contrast to the more detailed analysis before. This is done in order to
limit the complexity of the approach and also approximately accurate according to Table
11.11. Moreover, we only use sequential estimation because of the high computational
effort of fitting 100 R-vine models for the full model and the RVMS model, respectively.
A confidence level of 10% is chosen in accordance to the rather short testing period.

In our simulations, the fully specified R-vine and the RVMS model both produced
the same hit sequence with 13 VaR exceedances. At the 5% significance level the null
hypothesis of unconditional coverage (9.4) with o = 0.1 clearly cannot be rejected with
a p-value of 0.337, while the independence hypothesis (9.5) is marginally rejected with a
p-value of 0.047. The combined test of conditional coverage (9.6) however gives a p-value
of 0.088, so that we can conclude that both models produce sufficiently accurate VaR
forecasts. In particular, the RVMS model performs just as well as the fully specified R-
vine model, but at the same time VaR forecasts are computed approximately 40% faster,
i.e., the RVMS model is evidently more efficient.

11.3.7 Conclusion and interpretation

The CVMS model is not adequate for the data analyzed here, since the independence as-
sumptions are not entirely satisfied and the model is clearly inferior to alternative models.
In particular, the less restrictive RVMS model and even the simpler RVS model provide
a good fit to the data and correspond to the results of more general R-vine specifica-
tions. The problems in the fit of the CVMS model may be due to the specific structure of
the data (using national indices as sectors). We however think that the RVMS model is
more flexible, less restrictive and even easier to specify, since the fit of a high-dimensional
Gaussian copula with many correlation parameters is computationally demanding if we
want to use, e.g., maximum likelihood estimation instead of the inversion of Kendall’s 7
or Spearman’s p, and since it leads to over-specified models with too many parameters.

The dependence structure of the full R-vine model, which is similar to that of the RVS
and RVMS models, corresponds very well to the economical intuition. The tree construc-
tion method, which is based on Kendall’s 7 to capture the most important dependencies
in the transformed residuals (cp. Chapter 3), identifies the national indices as clusters of
dependent stocks, where all indices themselves are dependent on the Euro Stoxx 50 except
for the Dutch AEX, which is closely related to the French CAC 40 due to its small size
(cp. Figure 11.14). Moreover, there are some deviations from the first tree as assumed by
the RVS and RVMS models. These form interesting ”sub-clusters” of similarly behaving
stock returns:

(i) Financial companies are linked directly to the Euro Stoxx 50: AEGON (AGN.AS),
AXA (CS.PA), Deutsche Bank (DBK.DE) and BNP Parisbas (BNP.PA) with Société
Générale (GLE.PA) and Crédit Agricole (ACA.PA).

(ii) German insurance companies: Munich Re (MUV2.DE) more strongly depends on

Allianz (ALV.DE) than on the German DAX.
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model [tree [II N t C G F J BBl BB7 RC RG
R-vine| 1 [0 0 50 0 0 0 0 1 0 0 0
2 /2 2 283 0 120 0 0 1 2
312 3 1711 4 0 0 0 0 0
4 /24 4 101 2 5 0 0 0 0 2
513 3 3 00 6 0 0 0 2 2
RVMS| 1 [0 0 4 0 0 1 0 2 0 0 0
2 /26 2 14 0 1 5 0 0 0 2 0
310 49 0 0 0 0 0 0 0 0 0
4116 32 0 0 0 0 0 0 0 0 0
5122 25 0 0 0 0O 0 0 0 0

Table 11.16: Copula types of the first five trees of the full R-vine and RVMS models.
Notation of copula families: II = independence, N = Gaussian, C = Clayton, G = Gumbel,
F = Frank, J = Joe, RC = rotated Clayton, RG = rotated Gumbel.

(ili) German energy companies: RWE (RWE.DE) also more strongly depends on E.ON
(EOAN.DE) than on the German DAX.

(iv) Oil companies: Eni (ENI.MI) is closely related to Total (FP.PA).

(v) Unibail-Rodamco (UL.PA), which is a French-Dutch company, is more strongly
dependent on the Dutch AEX than on the French CAC 40.

(vi) Telecommunications companies are closely linked and more dependent on each other
than on the respective national indices: Telefénica (TEF.MC), France Télécom
(FTE.PA) and Deutsche Telekom (DTE.DE).

Due to this clustered first tree, the simplification results indicate that the more complex
dependencies among residuals are all covered within these clusters, since simplification at
levels 2, 3 or 4 seems to be appropriate and gives more parsimonious models compared to
full model specifications. The main dependency drivers are identified by the C-vine as the
Euro Stoxx 50 (as expected), Société Générale, the CAC 40, the DAX, the IBEX, ING
Groep and the FTSE MIB. The central role of the financial companies Société Générale
and ING Groep corresponds to the fact that 28.2% of the Euro Stoxx 50 are composed
of financial companies (including insurance companies). Moreover, the importance of the
CAC 40 and the DAX is due to the high number of French and German stocks represented
in the Euro Stoxx 50 (weights of 35.3% and 28.1%, respectively). Given theses clearly
identified dependencies, C-vine models can also be regarded as alternatives to R-vine
specifications but require more parameters, since dependencies are less flexibly identified
and modeled.

In contrast to simplification, truncation does not lead to a significant gain in the model
specifications. Apparently the dependencies among the stocks are too high to be neglected
after having modeled the most important relationships.

The copula types of the first five trees of the full R-vine model and the RVMS model
are shown in Table 11.16. Dependencies to the national indices and to the Euro Stoxx
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model log lik. log lik. number BIC Vuong V. stat.
(seq. est.) (full MLE) | of param. stat. (Schwarz)

R-vine | 30777.84  30880.57 596 -57653.12 - -

RVMS | 30126.28  30168.06 535 -56648.56 7.40 5.22

Table 11.17: Log likelihoods of the full R-vine and RVMS models obtained by sequential
("seq. est.”) and full maximum likelihood estimation (”full MLE”) as well as BIC’s and
test statistics of Vuong tests between both models (with and without Schwarz correction).

50 are mainly captured by heavy tailed t copulas, while higher order trees are modeled
with different copulas for different types of dependencies. Due to the pre-specified first
two trees in the RVMS model, there is more dependency left in the third tree and hence
no variable pair is determined to be independent in contrast to the full R-vine model,
where the number of chosen independence copulas is increasing after the first tree. This
is also true after the third tree in the RVMS model.

Table 11.17 compares the sequentially estimated log likelihoods of the full R-vine
and the RVMS model to those obtained by full maximum likelihood estimation. The
sequential estimates are evidently good starting values, since the log likelihoods only
change by clearly less than 1%. BIC and Vuong tests of the now fully estimated models
confirm the previous results that the RVMS model provides a reasonably good fit of the
data compared to the fully specified R-vine model. It also efficiently and rather accurately
forecasts the VaR of the Euro Stoxx 50 data as seen above.

All in all, the RVMS model illustrates the flexible and powerful structure of R-vines to
construct models for high-dimensional data. Its application to the Euro Stoxx 50 data gives
insightful information about dependency structures among important European stocks.



Chapter 12

Conclusion and outlook

In this thesis, we considered different aspects of the appropriate specification of R-vine
models. First, we discussed the construction of R-vine trees and proposed suitable graph
theoretical algorithms and dependence measures, such as the new measures of exceedance
Kendall’s 7 or Hu dependence, which are required for construction according to the
paradigm that most dependencies are captured in the first trees, where the identifica-
tion of the "best” construction method for specific circumstances is the subject of future
research; we usually use Kendall’s 7 as dependence measure. Then, we turned to the issue
of copula goodness-of-fit and independence testing — an area where much research is still
being conducted in. Furthermore, we considered model selection criteria such as the AIC
and BIC as well as the Vuong test. For a range of ten one- and two-parametric copula
families, we computed and compared Kullback-Leibler information criteria and evaluated
bivariate copula selection criteria such as the AIC, a scoring method based on the Vuong
test and copula goodness-of-fit tests, where we found that the AIC is the best-performing
criterion.

The main part of this thesis deals with the problem of accurately determining whether
R-vines can be pairwisely truncated or simplified with Gaussian pair copulas after a certain
tree. Different procedures were proposed and evaluated in extensive simulation studies,
which showed that in particular the procedures based on the Vuong test perform well.
However, it still has to be explored under which conditions truncated R-vines converge
to the true model. Composite likelihood methods might be useful to investigate this
consistency issue.

We also considered the special case of joint C-vine simplification, where remaining de-
pendencies are captured by a multivariate Gaussian copula. Here, simplification levels can
be determined using multivariate goodness-of-fit tests which are however computationally
quite demanding. In a simulation study, we therefore compared this method to the pro-
cedures discussed before for general R-vines and found that these can reasonably be used
instead. Moreover, we extended the results with regard to joint C-vine simplification to
special cases of R-vines and proved a corresponding theorem.

After having discussed appropriate model evaluation criteria, we considered three dif-
ferent applications of the procedures discussed in this thesis. First, we examined a data
set of nine exchange rates to the US Dollar and determined joint and pairwise truncation
and simplification levels of an adequate C-vine specification. Second, a 19-dimensional fi-
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nancial data set from Norway was analyzed with truncated and simplified R-vine models
and in particular with respect to tail behavior. Finally, we developed a flexible R-vine
model for stock market dependencies, the RVMS model, and compared it to alternative
models based on a 52-dimensional data set of national stock indices and 46 stocks of the
Euro Stoxx 50. Although the RVMS model showed quite good results, further research is
to be done on investigating the model more closely in different applications and improve
it by including time dependencies and possibly loosening independence assumptions. In
particular, VaR backtesting has to be performed for longer testing periods.

To sum it up, the methods discussed in this thesis allow to efficiently construct R-
vine models even in higher dimensions and under time or resource restrictions — not least
because the easily computed AIC turned out to be the best performing criterion for bi-
variate copula selection. As such, R-vine models constitute a flexible and powerful class of
high-dimensional dependency models, which is available for a wide range of applications.



Appendix A

Contour and scatter plots of
bivariate copula families

In the following, contour and scatter plots of the bivariate copula families discussed in
Section 2.1.3 are presented. Parameters are determined according to different choices of
Kendall’s 7 using the relationships shown in Table 2.1, where only the Gaussian, t and
Frank as well as the rotated Clayton and Gumbel copulas exhibit negative dependence.
The latter two copulas are shown in the respective figures of the Clayton and Gumbel
copulas for negative dependence.

The degrees of freedom of the t copula are chosen as four and eight. For the BB1 and
BB7 copulas, we choose different upper tail dependence values so that the two copula
parameters are uniquely determined.

1=-05 1=0.25 1=0.75

1)

Figure A.1: Contour and scatter plots of the Gaussian copula for three choices of Kendall’s
T.

190
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1=-05v=8 1=0.25,v=8 1=0.75,v=8

Figure A.2: Contour and scatter plots of the t copula for three choices of Kendall’s 7 and
eight degrees of freedom.

1=-05v=4 1=0.25,v=4 1=0.75,v=4

Figure A.3: Contour and scatter plots of the t copula for three choices of Kendall’s 7 and
four degrees of freedom.
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1=0.75

Figure A.4: Contour and scatter plots of the Clayton and rotated Clayton copulas for three
choices of Kendall’s 7 (left panel: rotated Clayton, middle and right panel: Clayton).

1=-05 1=0.25 1=0.75

Figure A.5: Contour and scatter plots of the Gumbel and rotated Gumbel copulas for three
choices of Kendall’s 7 (left panel: rotated Gumbel, middle and right panel: Gumbel).
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1=-05 1=0.25 1=0.75

Figure A.6: Contour and scatter plots of the Frank copula for three choices of Kendall’s
T.

1=0.25 1=0.75

1=0.75

Figure A.7: Contour and scatter plots of the Joe copula for two choices of Kendall’s 7.
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1=0.25\""=0.1 1=0.25\""=0.2 1=0.25\"""'=0.3

Figure A.8: Contour and scatter plots of the BB1 copula for Kendall’'s 7 = 0.25 and
different choices of upper tail dependence.

1=0.75\"""=0.4 1=0.75,\""""=0.6 1=0.75,\"""*"=0.8

001 00y
~ 0.05 o 005 ~ o
01

5

Figure A.9: Contour and scatter plots of the BB1 copula for Kendall’'s 7 = 0.75 and
different choices of upper tail dependence.
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1=0.25\""=0.1 1=0.25\""=0.2 1=0.25\"""'=0.3

Figure A.10: Contour and scatter plots of the BB7 copula for Kendall’s 7 = 0.25 and
different choices of upper tail dependence.

1=0.75\"""=0.4 1=0.75,\""""=0.6 1=0.75,\"""*"=0.8

Figure A.11: Contour and scatter plots of the BB7 copula for Kendall’s 7 = 0.75 and
different choices of upper tail dependence.



Appendix B

Additional information on
applications

B.1 Exchange rates

Here, R-vine copula type and parameter matrices of the C-vine models discussed in Section
11.1 (reduced model selection setting with bivariate independence tests) are presented. In
particular, we consider the fully specified C-vine model, the pairwisely simplified 1 level
C-vine model Mg(1) as well as the jointly simplified 2 level R-vine model M ;(2). The
matrices of the truncated model M (4) are not shown, since they can be obtained from
the copula type and parameter matrices of the full model by replacing all entries of rows
after the truncation level K = 4 with zeros.

In the following, M denotes the RVM of a model (cp. 2.4.1; entries as in Table 11.1),
T the copula type matrix and P, and P, the parameter matrices, where P; shows the
estimated parameters of all one-parameter copula families as well as the correlation pa-
rameters of the t copula and the parameters 6 of the BB1 and BB7 copulas, while P,
shows the degrees of freedom of the t copula as well as the parameters ¢ of the BB1 and
BB7 copulas. The copula types in T" are denoted as follows:

0 1 2 3 4 5
independence | Gaussian t Clayton Gumbel Frank
6 7 8 13 14
Joe BB1 BB7 rotated Clayton | rotated Gumbel

Furthermore, Kendall’s 7 matrices 7); are shown, i.e., matrices which display the
Kendall’s 7’s corresponding to the respective copula type and parameters (cp. Table 2.1).
However, these matrices should not be compared directly, since the models are built
differently!

The order of the conditioning sets of the C-vines can easily be obtained by reading
the first column of a copula type matrix bottom-up. E.g., the first column of the copula
type matrix of the full C-vine model corresponds to the order given in Table 11.3.

Correlation parameters of the multivariate Gaussian copula in the jointly simplified
model M ;(2) have been transformed to partial correlations similarly to Algorithm 12 but

196
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proc. | procedure | trunc./ log log

type simpl. | likelihood  likelihood

level | (full MLE) (seq. est.)
COMPLETE full model - 2243.73 2237.62
(no bivariate t copulas - 2240.73 2237.05
indep. tests) | trunc.| Vuong 6 2243.43 2237.29
V.Schwarz 3 2181.97 2176.36
AIC/BIC 6 2243.43 2237.29
simpl. |  Vuong 1 2204.50 2202.36
V.Schwarz 1 2204.50 2202.36
AIC/BIC - 2243.73 2237.62
REDUCED full model - 2220.51 2215.35
(bivariate t copulas - 2220.21 2216.72
indep. tests) | trunc.| Vuong 6 2220.51 2215.35
V.Schwarz 4 2199.87 2194.86
AIC/BIC 6 2220.51 2215.35
simpl. |  Vuong 1 2197.43 2195.24
V.Schwarz 1 2197.43 2195.24
AIC/BIC 6 2220.51 2215.35

Table B.1: Comparison of log likelihoods computed via sequential estimation (”seq. est.”)
and full maximum likelihood estimation ("full MLE”) for C-vine specifications of the
exchange rates data set obtained from different procedures.

the other way round and according to C-vine construction principles, i.e., after having
determined the correlation matrix at level 2 we also constructed C-vine trees T, ..., T
as discussed in Section 3.2 with Kendall’s 7 as weights and then set the pair copulas to
bivariate Gaussian and computed the corresponding partial correlation parameters from
the correlation matrix of the multivariate Gaussian copula.

Before now stating the copula type and parameter matrices, we briefly consider the
sequential estimates which are directly obtained from C-vine construction as starting
values for full maximum likelihood estimation. Table B.1 compares the estimated log
likelihoods of C-vine specifications and shows that sequential estimates are evidently quite
good starting values as also discussed in Difimann (2010).

After the copula type and parameter matrices, graphical model evaluation criteria of
the simplified /truncated C-vine models for the exchange rates data set are presented as
discussed in Section 11.1.1. Here, scatter plots with standard normal margins, empirical
copula distributions as well as copula Q-Q plots for the pairwisely simplified 1 level C-vine
M(1) and the jointly simplified 2 level C-vine M ;(2) as well as for the fully specified
model are shown.
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Full C-vine model

6
7 2 0
27 3 0 0
3 3 77 015
M=1999 95 , I'=]1 5 0 0 O
55 5 95 9 8 004 5 1
8 8 8 8 8 9 4 005 2 5 1
4 4444499 07 2 14 2 14 5
111111111 327 2 2 2 21
0.00
0.00 0.00

0.00 0.08 —0.76

0.85 0.00 0.00 0.00

0.00 0.00 1.11 —-0.95 0.08

0.00 0.00 —-0.78 049 -1.61 —-0.12

0.00 0.17 034 -1.10 037 -—-1.13 1.15
017 073 027 036 032 088 0.64 0.26

Py

0.00

0.00 0.00

0.00 0.00 0.00

P,= 1 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 11.57 0.00 0.00

0.00 1.10 12.69 0.00 14.04 0.00 0.00
0.00 9.27v 1.26 590 6.83 4.61 15.39 0.00

0.00

0.00 0.00

0.00 0.05 —0.08

™ = | 0.09 0.00 0.00 0.00

0.00 0.00 0.10 —-0.10 0.05

0.00 0.00 —-0.09 0.33 -0.17 —-0.08

0.00 0.16 0.22 -0.09 024 -0.12 0.13
0.08 052 030 024 020 0.69 044 0.17
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Pairwisely simplified level 1 C-vine model Mg(1)

6
7T 2 0
2 7 3 00
3 3 77 011
M=1999 95 , I'=1 10 0 O
55 5 5 9 8 00111
8 8 8 8 89 4 001111
4 4444499 0111111
111111111 32722221
0.00
0.00 0.00
0.00 0.09 —-0.12
P=1 012 0.00 0.00 0.00
0.00 0.00 0.15 —-0.14 0.08
0.00 0.00 —0.10 048 —-0.24 -0.12
0.00 026 0.35 —-0.21 038 —0.25 0.18
0.17 0.72 026 036 031 0.89 0.64 0.26
0.00
0.00 0.00
0.00 0.00 0.00
P, =1 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 878 1.26 5.76 7.01 4.71 13.73 0.00

0.00

0.00 0.00

0.00 0.06 —0.08

™™ = | 0.08 0.00 0.00 0.00

0.00 0.00 0.10 —-0.09 0.05

0.00 0.00 —-0.07 0.32 —-0.15 —-0.07

0.00 0.17 023 -0.14 0.25 -0.16 0.11
0.08 052 030 023 020 0.69 044 0.17
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Jointly simplified level 2 C-vine model M ;(2)

ot

I
= 00 1 W O NS
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Figure B.1: Full model for the exchange rates data set: scatter plots with standard normal
margins, empirical copula distribution functions (lower tail) and copula Q-Q plots for
observed (gray triangles, solid lines) versus simulated data (black circles, dashed lines).
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Figure B.2: Pairwisely simplified 1 level model Mg(1) for the exchange rates data
set: scatter plots with standard normal margins, empirical copula distribution functions
(lower tail) and copula Q-Q plots for observed (gray triangles, solid lines) versus simulated
data (black circles, dashed lines).
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Figure B.3: Jointly simplified 2 level model M ,(2) for the exchange rates data set:
scatter plots with standard normal margins, empirical copula distribution functions (lower
tail) and copula Q-Q plots for observed (gray triangles, solid lines) versus simulated data
(black circles, dashed lines).
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B.2 Financial data from Norway

As in the previous section, we report R-vine copula type and parameter matrices of the
models discussed in Section 11.2 and built using Kendall’'s 7 as weights. We consider
the fully specified R-vine model as well as the pairwisely simplified 2 level R-vine model
M(2), while matrices of the truncated models can be obtained by replacing all entries
of rows after the truncation level K in the matrices of the full model with zeros. All
notations are the same as above. Note that the entries of the RVM’s range from 1 to 19.
Since there is no variable V6, V7 corresponds to entry 6, V8 to 7, and so on.

The comparison of the log likelihoods obtained by sequential and by full maximum
likelihood estimation (see Table B.2) again shows that the sequential estimates are good
starting values for full maximum likelihood estimation if R-vines are built using Kendall’s
T as weights. If however exceedance Kendall’s 7 is used, the difference between estimated
log likelihoods is larger. This is probably due to the different focus of model building, i.e.,
the focus on tail behavior.

weights proc. | procedure | trunc./ log log

type simpl. | likelihood  likelihood

level | (full MLE) (seq. est.)

Kendall’s 7 full model - 6390.75 6387.39

t copulas - 6378.33 6374.92

trunc. Vuong 6 6274.47 6272.77

V.Schwarz 4 6234.05 6232.62

AIC/BIC 6 6274.47 6272.77

simpl.|  Vuong 2 6350.09 6348.76

V.Schwarz 2 6350.09 6348.76

AIC/BIC 6 6373.80 6371.74

exceedance full model - 6397.87 6359.46

Kendall’'s 7 t copulas - 6412.22 6388.59

(max.) trunc. | Vuong 13 6041.28 6014.28

V.Schwarz 9 5891.65 5866.84

AIC/BIC 15 6046.79 6019.59

simpl. |  Vuong 1 6237.48 6220.44

V.Schwarz 1 6237.48 6220.44

AIC/BIC 13 6373.80 6338.26

Table B.2: Comparison of log likelihoods computed via sequential estimation (”seq. est.”)
and full maximum likelihood estimation (”full MLE”) for R-vine specifications of the
Norwegian financial data set obtained from different procedures.
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Pairwisely simplified level 2 R-vine model Mg(2)
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