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Abstract

A new method for testing linear restrictions in linear regression models is sug-
gested. It allows to validate the linear restriction, up to a specified approximation
error and with a specified error probability. The test relies on asymptotic normality
of the test statistic, and therefore normality of the errors in the regression model is
not required. In a simulation study the performance of the suggested method for
model selection purposes, as compared to standard model selection criteria and the
t-test, is examined. As an illustration we analyze the US college spending data from

1994.
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1 Introduction

The choice of the relevant covariates in a linear regression model is an important and
much studied problem. For this purpose, various methods have been suggested in the
literature. One approach is via model selection criteria. Here one chooses the sub-model
which minimizes a certain criterion function, e.g. the AIC (AKAIKE, 1974) or the BIC
(SCHWARZ, 1978). Another approach is to specify the sub-model by testing the relevant
linear restrictions. TORO-VIZCARRONDO and WALLACE (1968), see also WALLACE (1972),
observed that the sub-model may be superior to the complete model in terms of mean
square error (MSE) even if the sub-model is incorrect. Therefore they suggested to test
in which model the least squares estimator has smaller MSE. In this paper we suggest a
related test which focuses on validating the sub-model. More precisely, the test allows to
validate the sub-model up to a certain specified approximation error, and with a specified
error probability. The test is based on asymptotic normality of the test statistic and
therefore does not require normality of the errors in the regression model.

This paper is organized as follows. In Section 2 we introduce the model and the testing
problem. Section 3 presents the test statistics and its asymptotic distribution. Further
we discuss how to perform the test. In Section 4 we investigate the performance of our
method, as compared to the t-test and some model selection criteria in a simulation study.
Finally, in Section 5, we illustrate the practical usefulness of our method by analyzing the

US college spending data from 1994.



2 Testing problem

Consider the homoscedastic linear regression model
Y =XB+e, (1)

where Y € R” is the response vector, X € R™*®+9) is the design matrix, which is assumed
to be non-random, and B € RP™? denotes the unknown regression parameter vector of
interest. The errors € = (e1,...,¢€,) are assumed to be independent identically distributed
(i.i.d.) random variables with E(e;) = 0 and Var(e;) = o

Suppose that we want to check the validity of the sub-model
Y = X108 + ¢, (2)

where X = [X1, X5] and X; € R™P) X, € R and B = [B!, B8], where 3, € R?,

B, € R?. Classically one verifies model (2) by testing the hypothesis

Let B denote the least squares (LS) estimator in the full model (1), and let B, be the
restricted LS estimator in the submodel (2), which we also consider as a (p+¢)-dimensional
vector by filling the last ¢ entries by 0. Suppose for the moment that in addition the errors
are normally distributed, and let SSE(b) denote the error sum of squares of an estimator

b of 3. A popular statistic for testing Hy is via the F-statistic

A A

_ SSE(B,) — SSE(B)

qo?

T : (3)

where 62 is the LS estimator of ¢? in the full model (1). TORO-VIZCARRONDO and
WALLACE (1968) show that 7" has a F' distribution with degrees of freedom ¢ and (n —

(p+ ¢)) and non-centrality parameter (in the notation of KoTz and JOHNSSON, 1970),

dn(Bs)

o2

A=n

1
L dal(B) = SBAXEMx X,
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where My, = I,, — Px,, Px, = X1(X!1X,)7' X! and I, is the identity matrix of dimension
n. Thus, under Hy, T is central F' distributed with ¢ and (n — (p+ ¢)) degrees of freedom.
For many purposes it is not adequate to base a decision for or against the sub-model (2)
on testing the hypothesis Hy. For example, TORO—VIZCARRONDO and WALLACE (1968)
pointed out that the estimator Br can have a smaller MSE (mean square error) than B,

even if the model (2) is incorrect. Therefore they suggested to test the hypothesis

Hyse : MSE(B,) < MSE(B),

A ~

where MSE(b) = E(b— 8)(b — B)!, and MSE(B,) < MSE(B) means that MSE(3) —
MSE(B,) is positive semidefinite. TORO-VIZCARRONDO and WALLACE (1968) showed
that the hypothesis H,;sg is equivalent to A < 1, which they used to construct a uniformly
most powerful test for Hy;gr based on T'. Hypotheses related to Hy;sp were investigated
by WALLACE (1972) and by YANCEY, JUDGE and BOCK (1973).

The hypothesis Hjssg still has some drawbacks. Instead of comparing models, it compares
the performance of certain estimators. This is a somewhat arbitrary choice since there are
other estimators (e.g. the ridge estimator, cf. FARBROTHER, 1975), which have smaller
MSE than the LS estimator. Further, and more importantly, even if the hypothesis Hysg
(or Hp) cannot be rejected with a large p-value, this does not imply that the sub-model (2)
is actually true. Therefore, we suggest to test a hypothesis which focuses on validating the

sub-model (2). A related approach to validating parametric functional forms of regression
models (against nonparametric alternatives) was suggested by DETTE and MUNK (1998).
To this end, note that d,(B,) is the normalized length (with factor n=!) of the n vec-
tor X,3,, when projected onto the orthogonal complement of the space spanned by the
columns of X;. Thus it provides a natural measure of distance between the restricted

model (2) and the full model (1), and we propose to validate sub-model (2) by testing the

4



hypothesis that
Hp, oo do(By) > A against Ka, 0 d,(8,) < A,

for some A > 0. Under normality we have that Ha , is equivalent to Hy, : A > nA/o?.

2

Since ¢ is unknown we cannot construct even under normality an exact test of Ha .

Therefore we give a condition under which d,(8,) converges as n — oo, say to d(3,), and
consider testing Ha : d(B3,) > A against Kan : d(3,) < A. For this testing problem we

will construct an asymptotic test which does not require normality of the errors.

3 An asymptotic test

In order to formulate an asymptotic version of the hypotheses Ha ,, we need the following

assumption.

Assumption 1. The regressors X are non-random and we have X'X/n — G as n — oo,

where G € RP+9x(P+9) i5 a symmetric positive definite matrix.

Split G into blocks as follows

G G
G =

GZl G22

Then the asymptotic version of the distance d,,(3) is defined as

d(B,) = B5(Ga — GGy G12) By,

and the corresponding version of Ha ,, as

Hp @ d(By) > A against Ka @ d(B,) < A.



In fact, under assumption 1 one can show that d,(8,) — d(3,) as n — oo. Note that the
matrix Gay — Go1G1 Ga, used in the definition of d([3,), is the Schur complement of the
block matrix GG1; and is positive definite since G is assumed to be positive definite.

Let Px = X(X'X) ' X" and consider the test statistic
1 - - 1,
R, = E(SSE(BT) — SSE(B)) = ~Y (Px — Px,)Y,
which estimates d,,(8,).

Theorem 1. Under assumptions 1 - 4 (cf. the appendiz), if d(B,) > 0 we have that

Vn(R, — d(B,)) £, N(0,40°d(B,)) as n — oc.

The proof of theorem 1 is given in the appendix. Using theorem 1, we construct an
asymptotic test for Ha as follows. Given A > 0, reject Ha with level a > 0 if

R, — A
26/ A

where u,, denotes the a-quantile of the standard normal distribution. Thus, the choice of

vn

< Ugq, (4)

A is evidently critical for the test decision. Note that for a given level a (e.g. o = 0.05),

one can determine the threshold At o for which Ha can be rejected at level o, while

crita
Ha cannot be rejected for A < Agit o
Agite = ((Rn + &QUi/n) vz _ &ua/\/ﬁ)2.
Now A is a threshold for d(3,), the limit of the distance d,(3,), which as mentioned
above measures the normalized (with factor n=!) distance of the projected vector X»03,.
Therefore, we suggest to normalize A, by an estimate of the total normalized length
B X' X3/n:
_ Aaie

Da,n = <t -
B Xt XB/n



The quantity D, , can be nicely interpreted as the estimated maximal relative error one
makes (with level «) if one uses sub-model (2) instead of the full model (1). In fact, one
has D,, — d(B,)/(8'GB) in probability as n — oo. Model validation now proceeds in
terms of D, ,: If D,, is less than some fixed value which we allow as maximal relative

error (say 0.1 or 0.05), then we use the smaller sub-model.

4 Simulation study

In this section we conduct a small simulation study in which we investigate the performance
of our method for model selection as compared to the AIC, the BIC and the t-test. Here,
for the computation of the AIC and the BIC we use the residual sum of squares (with
appropriate penalty term), in spite of the fact that for non-normally distributed errors, it
is not the maximized log-likelihood function. This is because we do not want to assume a

specific distributional structure of the errors to be known in advance.

We use a linear regression model with 7 covariates and the intercept, where the covariates

are drawn uniformly from [—1,1]. The vector of true regressions coefficients is chosen as

/8 = (ﬁOaﬂlaﬂ%ﬂ&ﬁ%ﬁfmﬁ&ﬁ?)t = (2727017017017270172)t

Evidently, the relevant covariates that we want to identify are the 1st, 5th and 7th co-
variate and the intercept (which corresponds to 3, and in the following is assumed to be

contained in all submodels).

The distinct methods are applied in a backward selection procedure. More specifically, con-
sider the method suggested in section 3. In the first step, we compute D, , with a = 0.05
for all submodels of the full model with 6 covariates and the intercept. Let M; be the

submodel with minimal D, ,, denoted D} . If D} is smaller than some threshold, which



we take as 0.05, then we continue with model M;, otherwise we select the full model. In the
next step, consider all submodels of M; with 5 covariates and the intercept, and compute
D, for all these models, relative to M; (i.e. the denominator is computed in model M;).
Let M, denote the submodel with minimal D, denoted D7 ,,. If D7 is smaller than 0.05,
then we continue with model M,, otherwise we select M;. We proceed in this way until
a model is selected or all covariates are discarded (and only the intercept remains). The
other methods are applied in a similar fashion. For the information criteria, we iteratively
discard covariates as long as the AIC and the BIC decreases in a submodel, and continue
with the submodel with the smallest AIC or BIC. Finally, for the t-test, in the first step for
each submodel with 6 covariates and the intercept we compute the p-value for the t-test
that the coefficient (3; of the missing covariate is zero. Let M; be the submodel for which
the corresponding t-test has maximal p-value p;. If p; > 0.05, we continue with model
My, otherwise we choose the full model. In the next step for each submodel of M; with
5 covariates and the intercept we compute the p-value for the t-test that the coefficient
B; of the covariate missing from M, is zero. If M, denotes the submodel for which the
corresponding t-test has maximal p-value p,, we continue with M, if ps > 0.05, otherwise
we choose M;. We refer to Miller (2002) for other selection methods than backward selec-
tion. For example, one may modify our method in order to construct a forward selection

procedure by considering Ka as the null hypothesis and Ha as the alternative.

The simulation is conducted as follows. After drawing the covariates once, these remain
fixed subsequently, and we generate responses on model (1) for 1000 iterations, and for
sample sizes n = 100 and n = 200. In each case, we apply the backward selection proce-

dures described above.

Further, we use two kinds of error distributions, namely a t distribution with 6 degrees of



Table 1: Results of a single backward selection procedure for n = 100

step i | submodel discarded cov. | D}, | BIC | AIC | p; of t-test
1 o, X1, X2, Ty, L5, Tg, T7 T3 0.027 | 363.02 | 395.05 0.736
2 To, X1, Ta, T, Tg, L7 Ty 0.030 | 359.26 | 338.98 0.377
3 To, X1, Ts, Tg, L7 T 0.030 | 355.57 | 339.94 0.354
4 g, T1,Ts5, L7 Tg 0.031 | 352.01 | 341.02 0.320
5 To, L1, T7 x5 0.264 | 405.47 | 342.18 0.000

freedom and an exponential distribution. For each distribution we consider two distinct
scaling parameters. For the t distribution, we use scaling factors of 7 = 1 and of 7 = 1/1.33,
which gives for the error variance 1.5 for 72 = 1, and 1.995 for 72 = 1.33, respectively. For
the exponential distribution, we use A = 1 and A = 1//2, giving variances of 1 (A = 1)
and 2 (A = 1/v/2). Further, we center the errors by their expectation. For the scaled t
distribution with 7 = 1 (7 = v/1.33) we observe that 50% of the regression data have a
signal to noise ratio (mean divided by standard error) larger than 1.65 (1.44) . For expo-
nentially distributed errors, the signal to noise ratio for 50% of the regression data with
A =1 (\=1/y?2) is larger than 2.17 (1.54).

Table 1 shows the results for one simulation with t distributed errors (with 7 = 1) and
n = 100. Since all methods depend monotonically on the statistic SSE(3,) — SSE(8),
they proceed in the same steps. The desired model appears in step 4, which is selected
by all methods except for the AIC (which includes too many covariates). Tables 2 and 3
show, for scaled t distributed and exponentially distributed errors, respectively, how often
among 1000 iterations the desired model was selected. Here different rows correspond to

different random covariates, whereas within the rows these covariates are fixed.

For n = 100 and 7 = 1 or A = 1 (yielding higher signal to noise ratios), the D,



Table 2: Number of iterations in which the desired submodel consisting of xg, x1, x5, x7 is
selected; errors are scaled t distributed with 6 df. For D,,, we choose ae = 0.05 and the

threshold value also equal to 0.05.

sample size | scenario | D, | BIC | AIC | t test 72

n = 100 1 981 | 793 | 382 | 739 1
910 | 808 | 406 | 760 | 1.33
2 952 | 769 | 380 | 713 1
856 | 791 | 405 | 731 | 1.33
3 917 | 778 | 381 | 722 1
823 | 767 | 353 | 693 | 1.33
4 968 | 731 | 326 | 664 1
838 | 797 | 389 | 747 | 1.33
3 962 | 774 | 363 | 716 1

836 | 789 | 396 | 744 | 1.33

n = 200 1 1000 | 810 | 320 | 649 1
1000 | 835 | 349 | 691 | 1.33
2 1000 | 781 | 310 | 635 1
1000 | 807 | 346 | 675 | 1.33
3 1000 | 819 | 320 | 674 1
1000 | 846 | 362 | 703 | 1.33
4 999 | 801 | 309 | 638 1
994 | 826 | 340 | 676 | 1.33

3 1000 | 810 | 308 | 658 1

998 | 833 | 342 | 695 | 1.33
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Table 3: Number of iterations in which the desired submodel consisting of xq, x1, x5, x7 is
selected; errors are centered exponentially distributed with A\ = 1 and A\ = 1/v/2. For D,

we choose a = 0.05 and the threshold value also equal to 0.05.

sample size | scenario | D, | BIC | AIC | t test A

n =100 1 998 | 769 | 362 | 698 1
850 | 831 | 423 | 753 | 1/4/2
2 994 | 756 | 337 | 696 1
773 | 807 | 383 | 754 | 1/4/2
3 996 | 764 | 352 | 716 1
803 | 808 | 413 | 753 | 1/4/2
4 996 | 712 | 313 | 647 1
820 | 780 | 373 | 724 | 1/V/2
5 999 | 777 | 351 | 714 1

916 | 825 | 410 | 769 | 1/y/2

n = 200 1 1000 | 817 | 330 | 658 1
999 | 864 | 394 | 741 | 1/V/2
2 1000 | 754 | 259 | 607 1
1000 | 834 | 364 | 704 | 1/v/2
3 1000 | 798 | 303 | 645 1
999 | 861 | 390 | 738 |1/V2
4 1000 | 770 | 263 | 608 1
1000 | 853 | 357 | 706 |1/v/2

3 1000 | 747 | 246 | 574 1

1000 | 843 | 340 | 704 | 1/v2
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method selects the desired model in more than 90% of the simulations, and for n = 200
it does so almost always. In contrast, the BIC, the AIC and the t-test more often select
larger models. This is mainly due to the thresholding used for the D,,. Only if the
D, ,, increases significantly (namely becomes larger than 0.05) we stop the model selection
procedure. Observing Table 1, for the first four covariates the values of AIC and BIC
change little, although they might increase slightly, which leads to the choice of a larger
model. A huge increase only occurs if the 5th covariate is discarded. Therefore, if one used
a threshold (say 350 for the BIC), one would get similarly precise results as for the D,
method. However, for the D, , method such a threshold has a natural interpretation as
maximal relative error, whereas there is no such interpretation for the values of the BIC
and the AIC. The t-test also uses a threshold, i.e. for the p value. If we chose it much
smaller (e.g. 0.005) we would also recover the relevant model almost always. However,
such a high precision is unnatural for a sample size n = 100 or n = 200. Furthermore, if
we do not reject with a p-value of 0.04, this does not say anything about how good the
smaller model still is.

Finally, we investigate the quality of the normal approximation in Theorem 1. We have to
consider a testing situation where the hypothesis Ha—_q o5 is true, and where the complete
model is included under this hypothesis. Therefore, we test the complete model against
the model where the covariate z7 is excluded, and simulate the statistic R,, 10000 times
for sample sizes n = 30,50 and 100 and centered exponentially distributed errors. For
visualization in Figure 1 we use P-P plots, which show for each a € [0, 1] the empirical
probability of the event {\/n[R, — d,(8B5)] < Q.}, where Q, is the a-quantile of the
asymptotic normal distribution with consistently estimated variance. From the top row
of Figure 1 we see that the asymptotic approximation is quite good already for rather

small sample sizes. Note that for the test decision (4), the approximation for small a’s is
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Figure 1: P-P plots for /n[R,, — d,(3,)] based on 10000 replications (top row a € (0, 1),

bottom row a € (0,0.1))
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relevant, which can be assessed using the bottom row.
Summarizing the results of the simulation study we see that the performance of our
method depends to some extend on the signal to noise ratio, especially for small sample
sizes. In such cases (n = 100), it performs well for signal to noise ratios larger than 1.5.

For large n, the dependence on the signal to noise ratio becomes weaker.

5 College spending data

To illustrate our method in a practical application we analyze the college spending data
from U.S. News and World Report 1994 College Guide. The complete data can be found
in DIELMAN (1996) and its short description is given in Table 4. The variable of interest is

educational spending per full-time equivalent (SPEND) given for 147 US colleges. A simple
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Table 4: Variables of college spending data in USA from 1994

Notation | Short description

SAT | average SAT score

TOP10 | freshmen in the top 10% of their

high school class (in percentage)

ACCRATE | acceptance rate (in percentage)

PHD | faculty with PhD (in percentage)

RATIO | student faculty ratio

SPEND | educational spending per full-time

equivalent student (in dollars)

GRADRATE | graduation rate (in percentage)

ALUMNI | alumni giving rate (in percentage)

explorative data analysis shows that there is a presence of variance heterogeneity and a
log transformation of the response SPEND is needed. Further, for numerical stability, all
variables including the response SPEND are centered and normalized by their sample mean

and sample standard deviation. In Table 5, the results of a backward selection procedure
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for the D, , method, the BIC, AIC and the t-test, applied to the college spending data,
are given. Here, we always keep the intercept in the submodels. Further, for the D, , we
use a level of a = 0.05 and a threshold of 0.05.

The BIC, the t-test and the D, ,, method choose a submodel consisting of the three covari-
ables SAT, TOP10 and RATIO, and only the AIC prefers a model with 4 covariates. This
is in agreement with the simulation results in Section 4. Let us stress that in contrast to
the BIC and the t-test (with a p-value of 0.89 in the final step), the D, ,-method allows for
a clear interpretation of the quality of the resulting submodel, namely that the maximal

relative error we make when using this smaller submodel is less than 0.05, with probability

0.95.

Table 5: Results of a backward selection procedure for college spending data

step ¢ | submodel discarded cov. | D7, | BIC | AIC Di

of t-test

1 | SAT, TOP10, ACCRATE,
PHD, RATIO, GRADRATE | ALUMNI | 0.025 | 253.7 | 229.8 | 0.789
2 | SAT, TOP10, ACCRATE,
PHD, RATIO GRADRATE | 0.026 | 248.8 | 227.9 | 0.808
3 | SAT, TOP10, PHD.RATIO | ACCRATE | 0.037 | 245.5 | 227.5 | 0.211

4 SAT, TOP10, RATIO PHD 0.042 | 243.5 | 228.5 | 0.089

D TOP10, RATIO SAT 0.110 | 247.0 | 235.1 | 0.004
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6 Conclusions

In this paper we introduced a new method for testing linear restrictions in linear regression
models. It allows to test the validity of the linear restriction, up to a specified approxima-
tion error and with a specified error probability. The method can also be used to estimate
a quantity D, ,, which can be interpreted as the estimated maximal relative error (with
level «v) that one makes when using the smaller submodel. This quantity D, , can be con-
veniently used for model-selection purposes. In contrast to classical model selection criteria
such as the AIC and the BIC, the value D, , has a clear interpretation (as maximal relative
error), and therefore allows for model selection strategies based on a threshold value for
D, . As illustrated in a simulation study as well as a real data example, this might lead

to good results in the model selection process.
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Appendix
Assumption 2. The errors €y, .. .¢€, are i.i.d. with E(e;) = 0, Var(e;) = 0? and E(e]) <
00.
Assumption 3. We have that

Vn(nT'X'X - G) — 0. (5)
Assumption 4. The entries of the covariate matrix X5 lie in a compact set K C R for all
n.

Note that from Assumptions 3 and 4 it follows that

\/ﬁ[(%xtx)‘l -G =0 (6)

since taking the inverse of a matrix is a Lipschitz continuous mapping on compact sets.
Proof of Theorem 1. First note that from (5) and (6) it follows that

\/ﬁ(dn(ﬁﬂ - d(,@2)) — 0.

Since by assumption, d(3,) > 0, d,(83,) will be bounded away from 0 and we get
Y (Px = Px))Y — du(Bs)

R, — d(/@2) - /n
vr -V 20/d,,(B,)

20y dn(B2)

;From Theil (1973), p. 146,

+o(1) (7)

Px — Px, = My, Xo(XsMx, X5) 7' Xo My, =: Q,

where Mx, = I,, — Px,. The matrix () is symmetric and idempotent and satisfies (). X; = 0.

Therefore
1 1 2 1
—Y!'(Px — Px,)Y = —€Qe+ —B5X;Qec+ —B5X5QX>03,
n n n n
= S1+ 52+ du(Bs). (8)
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Now ES; =tr Q/n < q/n, and from Seber and Lee (2003, Theorem 1.6),
1
Var (S;) = — [(pa — 30" )R'h + 20 tr(Q)] |

where yy = E(e!) and h is the vector of diagonal elements of the matrix @, for which

hih < ¢*. Thus
Sl == Op(|ESl| + |Sl - E51|) == Op(n_l).

Furthermore, ES; = 0 and

Var (Ss) = % : O'an(ﬁg) ~ % : UQd(BQ)a

and therefore the term Sy dominates the asymptotics in (8). It remains to show asymptotic

normality of S5. To this end we check the Lyapounov condition

IS s Ela ¢ 3
WE Elbie|” = E |b;|” — 0 as n — oo,
n

=1 i=1

n3/2

where b := 285X:Q = (b,...,b,). It will be enough to show that the entries b; are

uniformly bounded. To this end, from assumption 4,

e N
< max {Z (@ |[X2,62]k|}
.....
< Cirrllaxn{ZHQ]m!}a
""" k=1

where C' > 0 and | - |;x denotes the (7, k)-th entry of the corresponding matrix. Since @ is

symmetric and positive semi-definite, |[Q]i]| < (Qu + Qkr)/2, and thus

_max b;] < C max {%Z[Q]”—l—[Q]kk}

..... n i=1,...,n
k=1
- 1 y 1t
- Zgll?‘}fn E[Q]m + 5 T(Q)
< C-q
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This finishes the proof of theorem 1.
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