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Abstract

We propose a parametric model for a bivariate stable Lévy process based on a

Lévy copula as a dependence model. We estimate the parameters of the full bivariate

model by maximum likelihood estimation. As an observation scheme we assume that

we observe all jumps larger than some ε > 0 and base our statistical analysis on the

resulting compound Poisson process. We derive the Fisher information matrix and

prove asymptotic normality of all estimates, when the truncation point ε tends to

0. A simulation study investigates the loss of efficiency because of the truncation.

AMS 2000 Subject Classifications: 62F10, 62F12, 62M05.

Keywords: Lévy copula, maximum likelihood estimation, dependence structure, Fisher

information matrix, multivariate stable process, parameter estimation.

∗Center for Mathematical Sciences, Technische Universität München, D-85748 Garching, Germany,

Email: esmaeili@ma.tum.de, URL: http://www-m4.ma.tum.de/pers/esmaeili/
†Center for Mathematical Sciences, and Institute for Advanced Study, Technische Universität

München, D-85748 Garching, Germany, Email: cklu@ma.tum.de, URL: http://www-m4.ma.tum.de

1



1 Introduction

The problem of parameter estimation of one-dimensional stable Lévy processes has been

investigated already in the seventies of the last century by Basawa and Brockwell [3, 4].

Starting with a subordinator model, they assumed that it is possible to observe n(ε) jumps

in a time interval [0, t], all larger than a certain small ε > 0. Based on this observation

scheme, they estimated the parameters by a maximum likelihood procedure, and investi-

gated the distributional limits of the MLEs for n(ε) → ∞, which in this model if either

t→ ∞ and/or ε→ 0.

The task of estimating multivariate stable processes is usually solved by estimating

the parameters of the marginal processes and the spectral measure separately; cf. Nolan,

Panorska and McCulloch [14] and Höpfner [10] and references therein.

The rather recent modelling of multivariate Lévy processes by their marginal processes

and a Lévy copula for the dependence structure (cf. Cont and Tankov [6], Kallsen and

Tankov [12], and Eder and Klüppelberg [7]) allows for the construction of new paramet-

ric models. This approach is similar to the representation of a multivariate distribution

function by its marginal distributions and a copula and is valid for all multivariate Lévy

processes.

Moreover, various estimation methods of the parameters of the marginal processes

and the dependence structure either together or separately can be applied. Obviously, it

is more efficient to estimate all parameters of a model in one go, but often the attempt fails.

Problems may occur because of the complexity of the numerical optimization involved to

obtain the MLEs of the parameters or, given the estimates, their asymptotic properties

are not clear concerning their asymptotic covariance structure.

This is an important point in the context of Lévy processes, since these properties

may depend on the observation scheme. In reality it is usually not possible to observe

the continuous-time sample path, but it may be possible to observe all jumps larger than

ε as in the one-dimensional problem studied by Basawa and Brockwell [4]. For a stable

subordinator we obtain asymptotic normality for such an observation scheme, provided

that n(ε) → ∞, equivalently ε → 0. In a general multivariate model this is not clear at

all, in particular, for the dependence parameters.

With this paper we want to start an investigation concerning statistical estimation

of multivariate Lévy processes in a parametric framework. In a certain sense the present

paper is a follow-up of Esmaeili and Klüppelberg [8], where we concentrated on parametric

estimation of multivariate compound Poisson processes.

Since our observation scheme involves only jumps larger than ε, the observed process

is a multivariate compound Poisson process. But in contrast to [8], we now assume that

the Lévy process has infinite Lévy measure and we investigate asymptotic normality also

2



for ε→ 0.

Our paper is organised as follows. In Section 2 we present some basic facts about Lévy

copulas and recall the estimation procedure as presented in Basawa and Brockwell [3, 4]

for one-dimensional α-stable subordinators in Section 3. Section 4 contains the theoretical

body of our new results. In Section 4.1 we present the small jumps truncation and its

consequences for the Lévy copula; Section 4.2 presents the maximum likelihood estimation

for the α-stable Clayton subordinator, including an explicit calculation of the Fisher

information matrix, which ensures joint asymptotic normality of all estimates. Section 5

presents a simulation study and Section 6 concludes and gives an outlook to further work.

2 Lévy processes and Lévy copulas

Let S = (S(t))t≥0 be a Lévy process with values in R
d defined on a filtered probability

space (Ω, (Ft)t≥0,F ,P); i.e S has independent and stationary increments, and we assume

that it has cádlág sample paths. For each t > 0, the random variable S(t) has an infinitely

divisible distribution, whose characteristic function has a Lévy-Khintchine representation:

E[ei(z,Xt)] = exp

{
t

(
i(γ, z) − 1

2
z⊤Az +

∫

Rd

(
ei(z,x) − 1 − i(z, x)1|x|≤1

)
Π(dx)

)}
, z ∈ R

d ,

where (·, ·) denotes the inner product in R
d, γ ∈ R

d and A is a symmetric nonnegative

definite d × d matrix. The Lévy measure Π is a measure on R
d satisfying Π({0}) = 0

and
∫

Rd\{0}
min{1, |x|2}Π(dx) < ∞. For every Lévy process its distribution is defined by

(γ,A,Π), which is called the characteristic triplet. It is worth mentioning that the Lévy

measure Π(B) for B ∈ B(Rd) is the expected number of jumps per unit time with size in

B.

Brownian motion is characterised by (0, A, 0) and Brownian motion with drift by

(γ,A, 0). Poisson processes and compound Poisson processes have characteristic triplet

(γ1, 0,Π). The class of Lévy processes is very rich including prominent examples like sta-

ble processes, gamma processes, variance gamma processes, inverse Gaussian and normal

inverse Gaussian processes. Their applications reach from finance and insurance applica-

tions to the natural sciences and engineering. A particular role is played by subordinators,

which are Lévy processes with increasing sample paths. Other important classes are spec-

trally one-sided Lévy processes, which have only positive or only negative jumps.

We are concerned with dependence in the jump behaviour S, which we model by an

appropriate functional of the marginals of the Lévy measure Π. Since, with the exception

of a compound Poisson model, all Lévy measures have a singularity in 0, we follow Cont

and Tankov [6] and introduce a (survival) copula on the tail integral, which is called Lévy

copula and, because of the singularity in 0, is defined for each quadrant separately; for
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details we refer to Kallsen and Tankov [12] and to Eder and Klüppelberg [7] for a different

approach.

Throughout this paper we restrict the presentation to the positive cone R
d
+, where

only common positive jumps in all component processes happen. To extend this theory

to general Lévy processes is not difficult, but notationally involved.

We present the definition of the tail integral on the positive cone R
d
+. For a spectrally

positive Lévy process this characterises the jump behaviour completely.

Definition 2.1. Let Π be a Lévy measure on R
d
+. The tail integral is a function Π :

[0,∞]d → [0,∞] defined by

Π(x1, . . . , xd) =





Π([x1,∞) × · · · × [xd,∞)) , (x1, . . . , xd) ∈ [0,∞)d \ {0}
0 , xi = ∞ for at least one i

∞ , (x1, . . . , xd) = 0.

The marginal tail integrals are defined analogously for i = 1, . . . , d as Πi(x) = Πi([x,∞))

for x ≥ 0.

Also the Lévy copula is defined quadrantwise and characterises the dependence struc-

ture of a spectrally positive Lévy process completely.

Definition 2.2. A d-dimensional positive Lévy copula is a measure defining function

C : [0,∞]d → [0,∞] with margins Ck(u) = u for all u ∈ [0,∞] and k = 1, . . . , d.

The following theorem is a version of Sklar’s theorem for Lévy processes with positive

jumps, proved in Tankov [17], Theorem 3.1; for the corresponding result for general Lévy

processs we refer again to Kallsen and Tankov [12].

Theorem 2.3 (Sklar’s Theorem for Lévy copulas). Let Π denote the tail integral of a

spectrally positive d-dimensional Lévy process, whose components have Lévy measures

Π1, . . . ,Πd. Then there exists a Lévy copula C : [0,∞]d → [0,∞] such that for all

x1, x2, . . . , xd ∈ [0,∞]

Π(x1, . . . , xd) = C(Π1(x1), . . . ,Πd(xd)). (2.1)

If the marginal tail integrals are continuous, then this Lévy copula is unique. Otherwise,

it is unique on RanΠ1 × · · · ×RanΠd.

Conversely, if C is a Lévy copula and Π1, . . . ,Πd are marginal tail integrals of a spectrally

positive Lévy process, then the relation (2.1) defines the tail integral of a d-dimensional

spectrally positive Lévy process and Π1, . . . ,Πd are tail integrals of its components.
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Remark 2.4. In the case of multivariate stable Lévy processes the Lévy copula carries the

same information as the spectral measure. By choosing a slightly different approach this

was shown in Eder and Klüppelberg [7]. Note, however, that the spectral measure restricts

to stable processes, whereas the Lévy copula models the dependence for all Lévy processes.

We are concerned with the estimation of the parameters of a multivariate Lévy process

and assume for simplicity that we observe all jumps larger than ε > 0 of a subordinator.

This results in a compound Poisson process and we recall the following well-known results;

see e.g. Sato [16], Theorem 21.2 and Corollary 8.8.

Proposition 2.5. (a) A Lévy process S in R
d is compound Poisson if and only if it has

a finite Lévy measure Π with limx→0 Π(x) = λ, the intensity of the d-dimensional Poisson

process, and jump distribution F (dx) = λ−1Π(dx) for x ∈ R
d.

(b) Every Lévy process is the limit of a sequence of compound Poisson processes.

3 Maximum likelihood estimation of the parameters

of a one-dimensional Lévy process

3.1 Small jump truncation

With the understanding that the Lévy measure can be decomposed in positive and neg-

ative jumps we restrict ourselves to subordinators.

Let S be a one-dimensional subordinator with unbounded Lévy measure Π, without

drift or Gaussian part. For all t ≥ 0 its characteristic function has the representation

EeiuS(t) = etψ(u) for u ∈ R with

ψ(u) =

∫

0<x<ε

(
eiux − 1

)
Π(dx) +

∫

x≥ε

(
eiux − 1

)
Π(dx), u ∈ R , (3.1)

for arbitrary ε > 0. The last integral in (3.1) is the characteristic exponent of a compound

Poisson process with Poisson intensity λ(ε) ∈ (0,∞) and jump distribution function F (ε)

λ(ε) =

∫ ∞

ε

Π(dx) and F (ε)(dx) = Π(dx)/λ(ε) on [ε,∞).

As an observation scheme we assume that we observe the whole sample path of S

over a time interval [0, t], but that we only observe jumps of size larger than ε. Then

our observation scheme is equivalent to observing a compound Poisson process, say S(ε),

given in its marked point process representation as {(T (ε)
k , X

(ε)
k ), k = 1, . . . , n(ε)}, where

n(ε) = n(ε)(t) = card{T (ε)
k ∈ [0, t] : k ∈ N}. We also assume that Π(dx) = ν(x; θ)dx

where θ is a vector of parameters of the Lévy measure so that the density of X
(ε)
k is given
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by f (ε)(x; θ) = ν(x, θ)/λ(ε) for x ≥ ε. The likelihood function of this compound Poisson

process is well-known, see e.g. Basawa and Prakasa Rao [5], and is given by

L(ε)(θ) = (λ(ε))n
(ε)

e−λ
(ε)t ×

n(ε)∏

i=1

f (ε)(xi, θ) = e−λ
(ε)t ×

n(ε)∏

i=1

ν(xi; θ)1{xi≥ε}. (3.2)

3.2 Asymptotic behaviour of the MLEs

MLE is a well established estimation procedure and the asymptotic properties of the

estimators is well-known for iid data, but also for continuous-time stochastic processes,

see e.g. Küchler and Sorensen [13] and references therein. However, this theory is usually

concerned about letting the observation time, i.e. t tends to infinity. We are more interested

in the case of fixed t and ε ↓ 0, and here there exist to our knowledge only some specific

results in the literature; see e.g. Basawa and Brockwell [3, 4] and Höpfner and Jacod [11].

We start with a general Lévy process S and base the maximum likelihood estimation

on the jumps ∆Sv > ε for v ∈ [0, t]. The MLEs are, in fact, those obtained from the CPP

S(ε) as described in Section 3.1 above. Therefore, under some regularity conditions (see e.g.

Prakasa Rao [15], Section 3.11) the MLEs are consistent and asymptotically normal. In the

context of a compound Poisson process the asymptotic behavior of estimators is considered

for t → ∞. In our set-up, however, it is also relevant to consider the performance of

estimators as ε→ 0 with t fixed.

We investigate the asymptotic behavior of estimators for a stable Lévy process as

n(ε) → ∞ and shall show that this covers the cases of t → ∞ as well as ε → 0. Asymp-

totic normality of the estimators has been derived in Basawa and Brockwell [3, 4]. For

comparison and later reference we summarize these results in some detail.

Example 3.1. [α-stable subordinator]

Let (S(t))t≥0 be a one dimensional α-stable subordinator with parameters c > 0 and

0 < α < 1, such that the tail integral Π(x) = cx−α for x > 0. Observing all jumps larger

than some ε > 0, the resulting CPP has intensity and jump size density

λ(ε) =

∫ ∞

ε

Π(dx) = cε−α , f (ε)(x) =
Π(dx)/dx

λ(ε)
= αεαx−1−α, x > ε.

If we observe n(ε) jumps larger than ε in [0, t], we estimate the intensity by λ̂(ε) = n(ε)

t
.

Moreover, by (3.2) the loglikelihood function for θ = (α, log c) is given by

ℓ(α, c) = n(ε)(logα+ log c) − elog cε−αt− (1 + α)
n(ε)∑

i=1

log xi .
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We calculate the score functions as

∂ℓ

∂α
=

n(ε)

α
+ telog cε−α log ε−

n(ε)∑

i=1

log xi ,

∂ℓ

∂ log c
= n(ε) − elog cε−αt

To obtain candidates for maxima we calculate

elog c =
n(ε)

tε−α
=
λ̂(ε)

ε−α
,

1

α
= − t

n(ε)
cε−α log ε+

1

n(ε)

n(ε)∑

i=1

log xi

=
1

n(ε)

n(ε)∑

i=1

(log xi − log ε) + log ε
(
1 − λ(ε)

λ̂(ε)

)
.

Consequently, we have the maximum likelihood estimators

α̂ =


 1

n(ε)

n(ε)∑

i=1

(
logX

(ε)
i − log ε

)
+ log ε

(
1 − λ(ε)

λ̂(ε)

)


−1

,

l̂og c = log λ̂(ε) + α̂ log ε .

Next we calculate the second derivatives as

∂2ℓ

∂α2
= −n(ε) 1

α2
− ctε−α(log ε)2 = −tcε−α

(
λ̂(ε)

λ(ε)

1

α2
+ (log ε)2

)

∂2ℓ

∂α ∂ log c
= ctε−α log ε =

∂2ℓ

∂ log c∂α

∂2ℓ

∂(log c)2
= −tcε−α .

Consequently, the Fisher information matrix is given by

I
(ε)
α,log c = tcε−α

(
1
α2 + (log ε)2 − log ε

− log ε 1

)
.

We calculate the determinant as det(I
(ε)
α,log c) = c2t2α−2ε−2α. Using Cramer’s rule of inver-

sion easily gives

(I
(ε)
α,log c)

−1 = (ct)−1εαα2

(
1 log ε

log ε 1
α2 + (log ε)2

)
.
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We are interested in the asymptotic behaviour of the MLEs α̂ and l̂og c based on a fixed

time interval [0, t] and letting ε → 0. Note that we have to get the variance-covariance

matrix asymptotically independent of ε. Division of l̂og c by log ε changes the matrix

I
(ε)−1

α,log c into

(Ĩ
(ε)

α, log c
log ε

)−1 = t−1c−1εαα2

(
1 1

1 1
α2(log ε)2

+ 1

)
.

Since

√
n(ε)

(
λ̂(ε)

λ(ε)
− 1

)
=

√
n(ε)

(
n(ε)

tcε−α
− 1

)
d→ N(0, 1) , n(ε) → ∞ , (3.3)

and the regularity conditions of Section 3.11 of Prakasa Rao [15] are satisfied, classical

likelihood theory ensures that

√
n(ε)




α̂− α
log ĉ− log c

log ε


 ∼ AN

(
0, α2

(
1 1

1 1
α2

1
(log ε)2

+ 1

))
, n(ε) → ∞ .

Consistency of λ̂(ε), obtained from (3.3), and a Taylor expansion of log x around c ensures

with Slutzky’s theorem that for ε→ 0,

√
ctε−α/2




α̂

α
− 1

1
α log ε

(
ĉ

c
− 1

)


 d→ N

(
0,

(
1 1

1 1

))
=

(
N1

N2

)
,

where N1, N2 are standard normal random variables with Cov(N1, N2) = 1, which implies

that N1 = N2 = N . So the limit law is degenerate.

It has been shown in Jacod and Höpfner [11] that the natural parameterization is not

(c, α), but (λ(ε), α), which leads to asymptotically independent normal limits. Indeed, we

have

√
n(ε)




α̂

α
− 1

λ̂(ε)

λ(ε)
− 1


 d→ N

(
0,

(
1 0

0 1

))
, n(ε) → ∞ ,

where n(ε) can again be replaced by tcε−α and the same result holds for t → ∞, equiva-

lently, ε→ 0. �
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ε x

y

Figure 1: Illustration of the support of the bivariate tail integral Π
(ε)

(x, y) and the marginal tail integrals

Π
(ε)

1 (x) and Π
(ε)

2 (x).

4 Maximum likelihood estimation of the parameters

of a bivariate Lévy processes

4.1 Small jump truncation

Let S be a bivariate Lévy process with unbounded Lévy measure Π in both components

and marginal Lévy measures Π1 and Π2 corresponding to the components S1 and S2,

respectively. It has an infinite number of jumps in the observation interval [0, t]. Several

observation schemes are possible here concerning the truncation of the small jumps.

We consider only jumps (x, y), where both x ≥ ε and y ≥ ε at the same time. This

leads to a bivariate compound Poisson model with joint jumps larger than ε.

Consider the truncated process S(ε) with total Lévy measure

Π(ε)(R2
+) = Π{(x, y) ∈ R

2
+ : x ≥ ε, y ≥ ε} =: λ(ε) <∞ .

Then there exists a representation

S(ε)(t) =

∫ t

0

∫

x≥ε

xM(ds× dx) =

N(t)∑

i=1

Xi , t ≥ 0 ,

where ≥ is taken componentwise and M is a Poisson random measure, which has support

[0,∞) × [ε,∞)2 with intensity measure dsΠ(ε)(dx) on its support; cf. Sato [16], Theo-

rem 19.2. This means that S(ε) is a compound Poisson process with intensity λ(ε) and

leads to the observation scheme as described in Section 4 of Esmaeili and Klüppelberg [8]

in detail, where now all jumps are larger than ε in both components. We now investigate

the influence of the truncation on the Lévy copula.
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Lemma 4.1. Let S be a bivariate Lévy process with unbounded Lévy measure Π concen-

trated on R
2
+ and Lévy copula C, which is different from the independent Lévy copula.

Consider only those jumps, which are larger than ε in both component processes. Then

the Lévy copula of the resulting CPP is given by

C̃
(ε)(u, v) = C(C←1 (u, λ

(ε)
2 ),C←2 (λ

(ε)
1 , v)), 0 < u, v ≤ λ(ε). (4.1)

where C
←
k , k = 1, 2 is the inverse of C with respect to the k-th argument, λ

(ε)
k = Πk(ε), k =

1, 2, and λ(ε) = Π(ε, ε).

Proof. The marginal tail integrals of the CPP are given by

Π
(ε)

1 (x) = Π(x, ε) = C(Π1(x),Π2(ε)) = C(Π1(x), λ
(ε)
2 ), x > ε,

Π
(ε)

2 (y) = Π(ε, y) = C(Π1(ε),Π2(y)) = C(λ
(ε)
1 ,Π2(y)), y > ε,

(4.2)

whereas the bivariate tail integral is

Π
(ε)

(x, y) = Π(x, y) = C(Π1(x),Π2(y)), x, y > ε. (4.3)

Denote by C̃
(ε) the Lévy copula of the CPP, and from (4.3) we have

C̃
(ε)(Π

(ε)

1 (x),Π
(ε)

2 (y)) = C(Π1(x),Π2(y)), x, y > ε.

Together with (4.2) this implies that

C̃
(ε)(C(Π1(x), λ

(ε)
2 ),C(λ

(ε)
1 ,Π2(y))) = C(Π1(x),Π2(y)), x, y > ε.

Setting u := C(Π1(x), λ
(ε)
2 ) and v := C(λ

(ε)
1 ,Π2(y)), we see that for x, y > ε

Π1(x) = C
←
1 (u, λ

(ε)
2 ) and Π2(y) = C

←
2 (λ

(ε)
1 , v),

and, hence, for 0 < u, v ≤ λ(ε)

C̃
(ε)(u, v) = C

(
C
←
1 (u, λ

(ε)
2 ),C←2 (λ

(ε)
1 , v)

)
.

�

Proposition 4.2. Assume that the conditions of Lemma 4.1 hold. Then

lim
ε→0

C̃
(ε)(u, v) = C(u, v) , u, v > 0 .
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Proof. Take arbitrary u, v > 0. Then there exists some ε > 0 such that 0 < u, v ≤ λ(ε).

Invoking the Lipschitz condition for Lévy copula (Theorem 2.1, Barndorff-Nielsen and

Lindner [2])and (4.1), we have

|C̃(ε)(u, v) − C(u, v)| =
∣∣∣C
(
C
←
1 (u, λ

(ε)
2 ),C←2 (λ

(ε)
1 , v)

)
− C(u, v)

∣∣∣

≤
∣∣∣C←1 (u, λ

(ε)
2 ) − u

∣∣∣+
∣∣∣C←2 (λ

(ε)
1 , v) − v

∣∣∣ .

Since the Lévy copula C has Lebesgue margins, i.e. C(u,∞) = u and C(∞, v) = v, we

have C
←
1 (u,∞) = u and C

←
2 (∞, v) = v. This implies that

|C̃(ε)(u, v) − C(u, v)| ≤
∣∣∣C←1 (u, λ

(ε)
2 ) − C

←
1 (u,∞)

∣∣∣+
∣∣∣C←2 (λ

(ε)
1 , v) − C

←
2 (∞, v)

∣∣∣ .

The terms on the rhs tend to zero because the Lévy measure is unbounded and limε→0 λ
(ε)
1 =

limε→0 λ
(ε)
2 = ∞. �

Now we proceed as in Esmaeili and Klüppelberg [8] and use the same notation. Denote

by (x1, y1), . . . , (xn(ε) , yn(ε)) the observed jumps larger than ε in both components, i.e.

occurring at the same time during the observation interval [0, t]. Assume further that

the dependence structure of the process S = (S1, S2) is defined by a Lévy copula C with

a parameter vector δ. We also assume that γ1 and γ2 are the parameter vectors of the

marginal Lévy measures Π1 and Π2.

Using the notation νk(·) = λ
(ε)
k f

(ε)
k (·) for the marginal Lévy densities on (ε,∞) for

k = 1, 2 we can reformulate Theorem 4.1 of Esmaeili and Klüppelberg [8] as follows.

Theorem 4.3. Assume an observation scheme as above for a bivariate Lévy process with

only non-negative jumps. Assume that γ1 and γ2 are the parameters of the marginal Lévy

measures Π1 and Π2 with Lévy densities ν1 and ν2, respectively, and a Lévy copula C

with parameter vector δ. Assume further that ∂2

∂u∂v
C(u, v; δ) exists for all (u, v) ∈ (0,∞)2,

which is the domain of C. Then the full likelihood of the bivariate CPP is given by

L(ε)(γ1, γ2, δ) = e−λ
(ε)t

n(ε)∏

i=1


ν1(xi; γ1)ν2(yi; γ2)

∂2

∂u∂v
C(u, v; δ)

∣∣∣∣
u=Π1(xi;γ1),

v=Π2(yi;γ2)


 (4.4)

where

λ(ε) =

∫ ∞

ε

∫ ∞

ε

Π(dx, dy) = C(Π1(ε; γ1),Π2(ε; γ2); δ).

4.2 Asymptotic behaviour of the MLEs of a bivariate stable

Clayton model

A spectrally positive Lévy process is an α-stable subordinator if and only if 0 < α < 1

and there exists a finite measure ρ̃ on the unit sphere Sd−1 := {x ∈ R
d
+ | ‖x‖ = 1} in R

d
+
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(for an arbitrary norm ‖ · ‖) such that the Lévy measure

Π(B) =

∫

Sd−1

ρ̃(dξ)

∫ ∞

0

1B(rξ)
dr

r1+α
, B ∈ B(Rd

+) ,

(cf. Theorem 14.3(ii) and Example 21.7 in Sato [16]).

From Kallsen and Tankov [12], Theorem 4.6, it is known that a bivariate process is

α-stable if and only if it has α-stable marginal processes and a homogeneous Lévy copula

of order 1; i.e. C(tu, tv) = t C(u, v). The Clayton Lévy copula

C(u, v) =
(
u−δ + v−δ

)−1/δ

, u, v > 0 ,

is homogeneous of order 1. Hence it is a valid model to define a bivariate α-stable process.

Suppose S1 and S2 are two α-stable subordinators with same tail integrals

Πk(x) = cx−α , x > 0 , for k = 1, 2.

Assume further that S = (S1, S2) is a bivariate α-stable process with dependence structure

modeled by a Clayton Lévy copula. The joint tail integral is then given by

Π(x, y) = C(Π1(x),Π2(y)) = c
(
xαδ + yαδ

)− 1
δ , x, y > 0 . (4.5)

The bivariate Lévy density is given by

ν(x, y) = c(1 + δ)α2(xy)αδ−1
(
xαδ + yαδ

)− 1
δ
−2
, x, y > 0 , (4.6)

We assume the observation scheme as in Section 4.1. The Lévy measure Π will be consid-

ered on the set [ε,∞) × [ε,∞) with jump intensity

λ(ε) = Π(ε, ε) = c
(
εαδ + εαδ

)− 1
δ = c2−1/δε−α. (4.7)

and marginal tail integrals

Π
(ε)

k (x) = c(xαδ + εαδ)−1/δ , k = 1, 2. (4.8)

Moreover, for k = 1, 2,

Π
(ε)

k (ε) = c2−1/δε−α = λ(ε) ,

and

G
(ε)

k (x) = P (X > x) = P (Y > x) =
Π

(ε)

k (x)

λ(ε)

=
[1
2

(
1 +

(x
ε

)αδ)]−1/δ

, x > ε . (4.9)

12



The Lévy copula of the CPP is by Lemma 4.1 given by

C̃
(ε)(u, v) = C

(
C
←
1 (u, λ

(ε)
2 ),C←2 (λ

(ε)
1 , v)

)

= C

((
u−δ − λ

(ε)
2

−δ
)−1/δ

,
(
v−δ − λ

(ε)
1

−δ
)−1/δ

)

=
(
u−δ + v−δ − 2c−δεαδ

)−1/δ

From the Lévy density in (4.6) and the intensity in (4.7) the joint probability density of

the bivariate jumps is given by

g(ε)(x, y) = α2(1 + δ)εα2
1
δ (xy)αδ−1(xαδ + yαδ)−

1
δ
−2 , x, y > ε . (4.10)

We note that our model is a bivariate generalized Pareto distribution (GPD); cf. Model I

of Section 5.4 in Arnold et al. [1]. They present some properties of the model, and in our

case X,Y are positively correlated.

We now turn to the MLE procedure. Noting that the parameterisation (c, α, δ) creates

various problems taking derivatives, we propose a different choice of parameters. First

we set αδ = θ. Furthermore, recalling from the one-dimensional case that λ(ε) is a more

natural choice than c, we decided to use the parameters (λ(ε), α, θ). Recall from (3.2) for

the bivariate CPP based on observations (xi, yi) > ε for i = 1, . . . , n(ε),

L(ε)(λ(ε), α, θ) = e−λ
(ε)t

n(ε)∏

i=1

ν(xi, yi)

= e−λ
(ε)t(λ(ε))n

(ε)

(α(α+ θ))n
(ε)

εαn
(ε)

2
n(ε)α

θ

n(ε)∏

i=1

[
(xiyi)

θ−1
(
xθi + yθi

)−α
θ
−2
]
.

Then the log-likelihood is given by

ℓ(ε)(λ(ε), α, θ) = −λ(ε)t+ n(ε) log λ(ε) + n(ε)(logα+ log(α+ θ)) + αn(ε) log ε+ n(ε)α

θ
log 2

+(θ − 1)
n(ε)∑

i=1

(log xi + log yi) − (2 +
α

θ
)
n(ε)∑

i=1

log(xθi + yθi ) .

Note that the last term prevents the model to belong to an exponential family, so we have

to be very careful concerning exchanging differentiation and integration. For the score

13



functions we obtain

∂ℓ(ε)

∂λ(ε)
= −t+

n(ε)

λ(ε)

∂ℓ(ε)

∂α
=

n(ε)

α
+

n(ε)

α+ θ
+ n(ε) log ε+

n(ε) log 2

θ
− 1

θ

n(ε)∑

i=1

log(xθi + yθi )

∂ℓ(ε)

∂θ
=

n(ε)

α+ θ
− n(ε)α

θ2
log 2 +

n(ε)∑

i=1

(log xi + log yi) +
α

θ2

n(ε)∑

i=1

log(xθi + yθi )

−(2 +
α

θ
)
n(ε)∑

i=1

∂

∂θ
log(xθi + yθi ) .

From this we obtain the MLE λ̂(ε) = n(ε)

t
, whose asymptotic properties are well-known,

and note that λ̂(ε) is independent of α̂ and θ̂. So we concentrate on α̂ and θ̂.

Note first that, as a consequence of (4.9), the d.f. of X∗ = X
ε

is given by

P (X∗ > x) = P (X > εx) = 2α/θ(xθ + 1)−α/θ for x > 1 .

Since also the distributions of (X∗, Y ∗) = (X
ε
, Y
ε
) is independent of ε, the following quan-

tities are independent of ε.

Lemma 4.4. The following moments are finite.

E

[
log
(X
ε

)]
= 2

α
θ

∫ ∞

1

(1 + yθ)−
α
θ

y
dy

E

[
log

(
1

2

((X
ε

)θ
+
(Y
ε

)θ))]
=

θ

α
+

θ

α+ θ

E

[
∂

∂θ
log

((X
ε

)θ
+
(Y
ε

)θ)]
= (2 +

α

θ
) log ε+

2

θ
+ E

[
log
(X
ε

)
+ log

(Y
ε

)]

= (
2θ

2θ + α
)

(
1

θ
+ 2

α
θ

∫ ∞

1

(yθ + 1)−
α
θ

y
dy

)
.

Proof. The first equality is a consequence of the joint density (4.10) and marginal tail

distribution (4.9) with some standard analysis.

The second equality is calculated from the score function for α and (4.11).
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For the last identity we calculate

(2 +
α

θ
)E

[
∂

∂θ
log(Xθ + Y θ)

]

=
1

α+ θ
− α

θ2
log 2 + E [logX + log Y ] +

α

θ2
E
[
log(Xθ + Y θ)

]

=
1

α+ θ
− α

θ2
log 2 + E [logX + log Y ] +

α

θ2
(θ log ε+

θ

α
+

θ

α+ θ
+ log 2)

=
1

α+ θ
(1 +

α

θ
) + E [logX + log Y ] +

1

θ
+
α

θ
log ε

= E [logX + log Y ] +
2

θ
+
α

θ
log ε

= (2 +
α

θ
) log ε+

2

θ
+ 2

α
θ
+1

∫ ∞

1

(yθ + 1)−
α
θ

y
dy .

�

The following is a first step for calculating the Fisher information matrix.

Lemma 4.5. For all ε > 0,

E
[∂ℓ(ε)
∂α

]
= E

[∂ℓ(ε)
∂θ

]
= 0. (4.11)

Proof. We show the result for the partial derivative with respect to α, where we use a

dominated convergence argument. Since derivatives are local objects, it suffices to show

that for each α0 ∈ (0, 1) there exist a ξ > 0 such that for all α in a neighbourhood of α0,

given by Nξ(α0) := {α ∈ (0, 1) : 0 < α0 − ξ ≤ α ≤ α0 + ξ < 1} there exists a dominating

integrable function, independent of α. We obtain

∣∣∣∣
∂ℓ(ε)

∂α

∣∣∣∣ ≤ n(ε)

α0 − ξ
+

n(ε)

α0 − ξ + θ
+ n(ε) log ε+

n(ε) log 2

θ
+

1

θ

n(ε)∑

i=1

∣∣∣ log(xθi + yθi )
∣∣∣.

The right-hand side is integrable by Lemma 4.4, which can be seen by multiplying and

dividing the xi and yi by ε and using the second identity of Lemma 4.4.

The proof for the partial derivative with respect to θ is similar, invoking Lemma 4.4. �
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Next we calculate the second derivatives

∂2ℓ(ε)

∂α2
= n(ε)

(
− 1

α2
− 1

(α+ θ)2

)

∂2ℓ(ε)

∂α∂θ
= n(ε)

(
− 1

(α+ θ)2
− 1

θ2
log 2

)
− 1

θ

n(ε)∑

i=1

∂

∂θ
log(xθi + yθi ) +

1

θ2

n(ε)∑

i=1

log(xθi + yθi )

∂2ℓ(ε)

∂θ∂α
=

∂2ℓ(ε)

∂α∂θ

∂2ℓ(ε)

∂θ2
= −n(ε)

(
1

(α+ θ)2
− 2α

θ3
log 2

)
− 2α

θ3

n(ε)∑

i=1

log(xθi + yθi ) +
2α

θ2

n(ε)∑

i=1

∂

∂θ
log(xθi + yθi )

−(2 +
α

θ
)
n(ε)∑

i=1

∂2

∂θ2
log(xθi + yθi ).

In order to calculate the Fisher information matrix we invoke Lemma 4.4. The compo-

nents of the Fisher information matrix are then given by

ĩ11 = E

[
− ∂2

∂α2
ℓ(ε)
]

= λ(ε)t

[
1

α2
+

1

(α+ θ)2

]

=: λ(ε)i11 t

ĩ12 = ĩ21 = E

[
− ∂2

∂α∂θ
ℓ(ε)
]

= λ(ε)t

[
1

(α+ θ)2
− 1

αθ
− 1

θ(α+ θ)
+

1

θ
E

[
∂

∂θ
log

((X
ε

)θ
+
(Y
ε

)θ)]]

= λ(ε)t

[
1

(α+ θ)2
+

2

θ(2θ + α)
− 1

αθ
− 1

θ(α+ θ)
+

2α/θ+1

2θ + α

∫ ∞

1

(1 + uθ)−
α
θ

u
du

]

=: λ(ε)i12 t = λ
(ε)
21 i12 t

ĩ22 = E

[
− ∂2

∂θ2
ℓ(ε)
]

= λ(ε)t

[
1

(α+ θ)2
− 2α log 2

θ3
+

2α

θ3
E
(
log(Xθ + Y θ)

)

−2α

θ2
E

(
∂

∂θ
log(Xθ + Y θ)

)
+ (

α

θ
+ 2)E

(
∂2

∂θ2
log(Xθ + Y θ)

)]

= λ(ε)t

[
1

(α+ θ)2
+

2

θ2
+

2α

θ2(α+ θ)
− 4α

θ2(α+ 2θ)
− α2α/θ+2

θ(2θ + α)

∫ ∞

1

(uθ + 1)−α/θ

u
du

+(
α

θ
+ 2)g(α, θ)

]

=: λ(ε)i22 t ,

where

g(α, θ) := E

[
∂2

∂θ2
log(Xθ + Y θ)

]
= E

[
∂2

∂θ2
log

((X
ε

)θ
+
(Y
ε

)θ)]
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does not depend on ε. This implies in particular that all ikl are independent of ε. Conse-

quently, the Fisher information matrix is given by

I
(ε)
α,θ = λ(ε)t

(
i11 i12

i12 i22

)
.

Recall the asymptotic normality of the estimated parameters in the one-dimensional case

of Example 3.1. In our bivariate model we have additionally to those parameters the

dependence parameter θ. This means that we have to check the regularity conditions (A1)-

(A4) in Section 3.11 of Prakasa Rao [15] for this model. (A1) and (A2) are differentiability

conditions, which are satisfied. As a prerequisite for (A3) and (A4) we need to show

invertibility of the Fisher information matrix I
(ε)
α,θ, which we are not able to do analytically.

A numerical study for a large number of values for α and θ, however, always gave a positive

determinant, indicating that the inverse indeed exists. Since the Fisher information matrix

depends on t only by the common factor, it is not difficult to convince ourselves that also

(A3) and (A4) are satisfied. Hence, classical likelihood theory applies and ensures that

√
n(ε)

(
α̂− α

θ̂ − θ

)
∼ AN


0,

(
i11 i12

i12 i22

)−1

 , n(ε) → ∞ .

As in the one-dimensional case, we use the consistency result in (3.3) and Slutzky’s the-

orem, which gives for n(ε) → ∞, equivalently, ε→ 0,

√
c2−α/θε−αt

(
α̂− α

θ̂ − θ

)
d→ N


0,

(
i11 i12

i12 i22

)−1

 .

In reality the parameters are estimated from the data and plugged into the rate and the

ikl. Moreover, the unknown expectations in the Fisher information matrix have to be

either numerically calculated by the corresponding integrals or estimated by Monte Carlo

simulation. In Section 5 we shall perform a simulation study and also present an example

of the covariance matrix for some specific choice of parameters.

Before this we want to come back to our change of parameters and, in particular, want

to discuss estimation of the parameter c of the stable margins. From (3.3) and the fact

that λ̂(ε), α̂ and θ̂ are consistent, we know that for n(ε) → ∞,

ĉ := λ̂(ε)2bα/bθεbα

is a consistent estimator of c.

We calculate as follows

l̂og c = log λ̂(ε) +
α̂

θ̂
log 2 + α̂ log ε

= log
λ̂(ε)

λ(ε)
+ log c− α

θ
log 2 − α log ε+

α̂

θ̂
log 2 + α̂ log ε .
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Consistency of λ̂(ε) implies that

l̂og c− log c = oP (1) + (α̂− α) log ε+
( α̂
θ̂
− α

θ

)
log 2

= oP (1) + (α̂− α) log ε+
(1

θ̂
− 1

θ

)
α log 2 + (α̂− α)

log 2

θ̂

= oP (1) + (α̂− α) log ε+
(θ
θ̂
− 1
)α
θ

log 2

+(α̂− α)
log 2

θ
(1 + oP (1)) ,

where we have used the consistency of α̂ and θ̂. This implies for ε→ 0,

l̂og c− log c

log ε
= (α̂− α)(1 + oP (1)) .

Consequently, analogously to the one-dimensional case, we obtain the following result.

Theorem 4.6. Let (ĉ, α̂, θ̂) denote the MLEs of the bivariate α-stable Clayton subordina-

tor. Then as ε→ 0,

√
c2−α/θε−αt




l̂og c− log c

log ε
α̂− α

θ̂ − θ




d→




N1

N1

N2


 , ε→ 0 ,

where Cov(N1, N2) =

(
i11 i12

i12 i22

)−1

is independent of ε.

Obviously, we can do all again a Taylor expansion to obtain the limit law for ĉ instead

of l̂og c as in the one-dimensional case.

5 Simulation study for a bivariate α-stable Clayton

subordinator

We start generating data from a bivariate α-stable Clayton subordinator over a time

span [0, t], where we choose t = 1 for simplicity. Recall that our observation scheme

introduced in Section 4.1. assumes that from the α-stable Clayton subordinator we only

observe bivariate jumps larger than ε. Obviously, we cannot simulate a trajectory of a

stable process, since we are restricted to the simulation of a finite number of jumps. For

simulation purpose we choose a threshold ξ (which should be much smaller than ε) and

simulate jumps larger than ξ in one component, and arbitrary in the second component.

To this end we invoke Algorithm 6.15 in Cont and Tankov [6].
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ε δ = 2 α = 0.5 c = 1

Mean 2.0861 (0.8245) 0.5323 (0.1233) 1.0642 (0.6848)

0.001
√
MSE 0.8290 (1.3074) 0.1275 (0.0340) 0.6878(0.9855)

MRB 0.0476 0.0658 0.0232

Mean 2.0180 (0.4333) 0.5110 (0.0637) 1.0531 (0.5174)

0.0001
√
MSE 0.4337 (0.2831) 0.0647 (0.0078) 0.5201(0.5170)

MRB 0.0108 0.0216 0.0423

Mean 2.0029 (0.2364) 0.5041 (0.0348) 1.0270 (0.3713)

0.00001
√
MSE 0.2364 (0.0781) 0.0350 (0.0021) 0.3722 (0.2730)

MRB 0.0015 0.0081 0.0240

Table 5.1: Estimation of the bivariate 1
2 -stable Clayton process with jumps truncated at different ε: the

mean of MLEs of the copula and the margins parameter δ, α and c with
√

MSE and standard deviations

(in brackets). This is based on a simulation of the process in a unit of time, 0 ≤ t < 1, for τ = 1000,

equivalent to truncation of small jumps at the cut-off point ξ = Π
←

(τ) = 10−6.

The simulation of a bivariate stable Clayton subordinator is explained in detail in

Example 6.18 of [6]. The algorithm starts by fixing a number τ determined by the required

precision. This number coincides with λ
(ξ)
1 and fixes the average number of terms in (5.1)

below.

We generate an iid sequence of standard exponential random numbers E1, E2, . . ..

Then we set Γ
(1)
0 = 0 and Γ

(1)
i = Γ

(1)
i−1 +Ei until Γ

(1)

n(ξ) ≤ τ and Γ
(1)

n(ξ)+1
> τ resulting in the

jump times of a standard Poisson process Γ
(1)
0 ,Γ

(1)
1 , . . . ,Γ

(1)

n(ξ) . Besides the marginal tail

integrals we also need to know for every i the conditional distribution function given for

Γ
(1)
i = u > 0 by

F2|1(v | u) =
(
1 + (u/v)δ

)−1/δ−1
, v > 0 .

We simulate Γ
(2)
i from the d.f. F2|1(v | u = Γ

(1)
i ). Finally, we simulate a sequence U1, U2, . . .

of iid uniform random numbers on (0, 1). The trajectory of the bivariate Clayton subor-

dinator has the following representation

(
S

(ξ)
1 (t)

S
(ξ)
2 (t)

)
=

( ∑n(ξ)

i=1 1{Ui≤t}Π
←

1 (Γ
(1)
i )

∑n(ξ)

i=1 1{Ui≤t}Π
←

2 (Γ
(2)
i )

)
, 0 < t < 1 , (5.1)

where (Γ
(1)
i ,Γ

(2)
i ) carry the dependence structure of the Lévy copula. Note that the jump

times in both components always coincide.

Table 5.1 summarizes the results of a simulation study based on 100 trajectories of

the bivariate α-stable Clayton subordinator with parameters α = 0.5, c = 1 and Clayton

dependence parameter δ = 2.
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Finally, we also want to give an idea about the theoretical properties of our MLE

procedure. To this end we calculate the theoretical asymptotic covariance matrix for the

same set of parameters (c, α, θ) = (1, 0.5, 1). Note that in this case we can calculate

the integral in the Fisher information matrix explicitly. The expectation of the second

derivative we obtain from a Monte Carlo simulation based on simulated (X,Y ).

We conclude this section with an example of the covariance matrix Cov(N1, N2) of

the normal limit vector of the parameter estimates as given in Theorem 4.6. We do this

for the model with parameters c = 1, α = 0.5 and θ = 1 as used for the simulation

with results summarized in Table 5.1. We present the matrix resulting from two different

methods. The left hand matrix has been calculated by numerical integration, whereas the

right hand matrix is the result of a Monte Carlo simulation based on 1000 observations

from the bivariate Pareto distribution (4.10).

Numerical integration Monte Carlo simulation
[

0.2492 −0.1885

−0.1885 1.4686

] [
0.2487 −0.1867

−0.1867 1.4700

]

6 Conclusion and outlook

For the specific bivariate α-stable Clayton subordinator with equal marginal Lévy processs

we have estimated all parameters in one go and proved asymptotic normality for n(ε) →
∞. Observation scheme were joint jumps larger than ε in both components and a fixed

observation interval [0, t]. This limit result holds for t→ ∞ or, equivalently, for ε→ 0.

Since this estimation procedure requires even for a bivariate model with the same

marginal processes a non-trivial numerical procedure to estimate the parameters, it seems

to be advisable to investigate also two-step procedures like IFM (inference functions for

margins), which we do in Esmaeili and Klüppelberg [9]. In such a procedure the pa-

rameters of the marginals may well be different, and the model of arbitrary dimension,

since marginal parameters are estimated first and then estimate in a second step only the

dependence structure parameters. This well-known estimation procedure in the copula

framework will be investigated in a follow-up paper.

Alternatively, one can apply non-parametric estimation procedures for Lévy measures

as e.g. in Ueltzhöfer and Klüppelberg [18].
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tion estimation of Lévy densities from high-frequency observations. Submitted for

publication.

22


