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Abstract

We propose a new default contagion model, where default may originate from the perfor-

mance of a specific firm itself, but can also be directly influenced by defaults of other firms.

The default intensities of our model depend on smoothly varying macroeconomic variables,

driven by a long range dependent process. In particular, we focus on the pricing of default-

able derivatives, whose default depends on the macroeconomic process and may be affected

by the contagion effect. In our approach we are able to provide explicit formulas for prices of

defaultable derivatives at any time t ∈ [0, T ]. Finally we calculate some examples explicitly,

where the macroeconomic factor process is given by a functional of the fractional Brownian

motion with Hurst index H > 1
2 .
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1 Introduction

The ongoing financial crisis has been triggered by the dramatic rise in mortgage delinquencies

and foreclosures in the United States. This crisis has not only manifested the weaknesses in

financial industry regulation, but also of the financial models used for pricing instruments of

mortgage pools like MBSs and CDOs. In particular, the systemic risk has been desastrously

underestimated. It has been industry standard to model contagion within a pool of credits by

an intensity model, where the intensities of surviving credits may increase at default of some

credit. This approach increases the probability for default of dependent credits, so has no direct

effect. In a static model, Davis and Lo [8] suggested a direct contagion model, which is able to

capture the immediate effect of one credit default to other credits in a pool.

We investigate a dynamic version of the direct contagion model of Davis and Lo [8], which is

based on interacting intensities. Each default indicator process may be influenced by the default

of other firms, which is modeled by an indicator variable representing the contagion possibility.

In addition, we allow the default intensities to depend on smoothly varying macroeconomic

variables (for example supply and demand, interest rates, the gross national product, or other

measures of economics activities), which are often modeled by a Markov state vector leading to

affine models; see e.g. Duffie [10] and Duffie, Filipovic and Schachermayer [11].

It is, however, well-known that many macroeconomic processes show a long-range depen-

dence effect; see e.g. Henry and Zaffaroni [17]. Consequently, in this paper we model the latent

macroeconomic process governing the default intensities by a long range dependent process, here

exemplified by a one-dimensional process, which stands for instance for a weighted mean of a

vector of macroeconomic variables.

In this paper we focus on the pricing of defaultable derivatives depending on the macroeco-

nomic process and affected by the contagion effect. We remark that we are not assuming that the

primary assets on the market are driven by a long range dependent process. Hence no arbitrage

problem arises in the use of our model. For a discussion on this topic we refer to Björk and

Hult [2] or Øksendal [18]. In our model the long range dependent macroeconomic process enters

as a progressively measurable process into the default intensity. By usual no-arbitrage arguments

the price of a contingent claim at time t is given by the conditional expectation under the pricing

measure, which we suppose to be given by the market.

In this not at all standard model we are able to provide explicit formulas for the derivative

price at any time t ∈ [0, T ]. We discuss suitable long range dependent models for the macroe-

conomic process and calculate some examples, where the macroeconomic factor is given by a

functional of the fractional Brownian motion with Hurst index H > 1
2 .

Our paper is organized as follows. In Section 2 we present our model and the contagion

mechanism for instantaneous contagion, modeling the intensity as a function of the macroeco-

nomic process. We explain the model in detail in Section 2 - it is an intensity-based model - and

we present all assumptions here. We present a specific example in Section 3 and calculate its

infinitesimal generators of the default indicator process and the default number process. After-
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wards, we calculate a defaultable derivatives price in Section 4 at first conditionally on the latent

process. We conclude the section with a specific example, calculating the prices of a defaultable

bond under contagion. Finally, in Section 5, we introduce a general long range dependent frac-

tional macroeconomic process as intensity process. We obtain an explicit formula, which can be

evaluated numerically. In Section 5 we discuss some specific macroeconomic models and give an

explicit financial example.

2 The credit model

2.1 The default model

We consider a portfolio of m firms indexed by i ∈ {1, . . . ,m}. Its default state is described by a

default indicator process

Zt = (Zt(1), . . . , Zt(m)) , t ≥ 0 ,

with values in the set {0, 1}m. For every i ∈ {1, . . . ,m} the random variable Zt(i) indicates, if

the firm i has defaulted or not by time t, i.e. Zt(i) = 1 if the firm i has defaulted by time t and

Zt(i) = 0 otherwise.

Aiming at an extension of the idea of Davis and Lo [7] as indicated in [8], Section 3, to a

dynamic setting we distinguish between default caused by itself and default caused by contagion,

based on the default of some other firms. To this purpose we introduce the self-default indicator

process

Yt = (Yt(1), . . . , Yt(m)) , t ≥ 0 ,

with values in {0, 1}m, where again Yt(i) = 1 if the firm i has defaulted by time t by itself and

Yt(i) = 0 otherwise. We denote by τi the default time of the i-th firm for i ∈ {1, . . . ,m} and by

I the indicator function, then

Yt(i) = I{τi≤t} , i = 1, . . . ,m.

Next we model contagion by using a contagion matrix indicator process: if firm i defaults by

itself at some time t, then Ct(i, j) determines whether infection of default from firm i to firm j

takes place or not at time t.

We assume that, if default of firm i causes default of firm j, then this happens instantaneously

resulting in Ct(i, j) = 1. More precisely, for any time t ≥ 0,

Ct(i, j) =

1 if the default of firm i causes default of firm j at time t,

0 otherwise .
(2.1)

This results in a representation of the default indicator process of firm j

Zt(j) = Yt(j) + (1− Yt(j))
(

1−
∏
i 6=j

(1− Ct∧τi(i, j)Yt(i))
)

= Yt(j) + (1− Yt(j))
(

1−
∏
i 6=j

(1− Cτi(i, j)Yt(i))
)
, t ≥ 0 . (2.2)
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Since firm j is influenced by itself, we define Ct(j, j) ≡ 1 for all j ∈ {1, . . . ,m} and t ≥ 0.

Then equation (2.2) can also be written as

Zt(j) = 1−
m∏
i=1

(1− Cτi(i, j)Yt(i)) , t ≥ 0 . (2.3)

The defaults of the portfolio, either by itself or by infection, are caused by fluctuations in the

macroeconomic environment, which we model by a state variable process Ψ = (Ψt)t≥0 with

values in Rd for d ∈ N, representing the evolution of macroeconomic variables such as supply

and demand, interest rates, the gross national product, or other measures of economics activities.

In the literature Ψ is usually taken to be Markovian, so that the overall model of the system,

given by (Ψt, Yt, Ct)t≥0 is Markovian.

It is, however, well-known that many macroeconomic variables show a long-range dependence

effect; see e.g. Henry and Zaffaroni [17]. Consequently, we model the macroeconomic environment

by a long range dependent process (Ψt)t≥0 to be specified later (see Section 5).

2.2 The probability space

The overall state of our system is described by the process (Ψt, Yt, Ct)t≥0 on the probability

space (Ω,F ,P) endowed with the filtration

Ft := FΨ
t ∨ FYt ∨ FCt , t ≥ 0 ,

where (FΨ
t )t≥0, (FYt )t≥0 and (FCt )t≥0 are the natural filtrations associated to the processes Ψ, Y

and C, respectively. Here we assume that the agent on the market knows if a firm has defaulted

by itself or not and the contagion structure among the firms. Moreover, we define the filtration

Gt := FΨ
∞ ∨ FYt ∨ FCt , t ≥ 0 .

We assume that investors have access to (Ft)t≥0, whereas the larger filtration (Gt)t≥0, which

contains information about the whole path (Ψt)t≥0 serves mainly theoretical purposes. Finally,

we assume that all filtrations satisfy the usual hypotheses of completeness and right-continuity.

From now on we work under the following assumptions.

Assumption 2.1. (1) We remain in the framework of most reduced-form credit risk models

in the literature and assume that the dynamic of Ψ is not affected by the evolution of the

default indicator process Z. This has the advantage that we first model the dynamic of Ψ

and, in a second step, the conditional distribution of the default indicator process Z for a

given realization of the macroeconomic factor process Ψ. In particular, we require that Ψ is

not affected by the evolution of the default indicator process Y and the contagion matrix

C. In mathematical terms this means that for every bounded FΨ
∞-measurable random

variable η,

E [η | Ft] = E
[
η | FΨ

t

]
, t ≥ 0 .
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(2) The processes (Yt(i))t≥0 for i ∈ {1, . . . ,m}, (Ct(i, j))t≥0 for i, j ∈ {1, . . . ,m}, i 6= j, are

conditionally independent with respect to the filtration (Gt)t≥0. This means that for every

{i1, . . . , ik} ⊆ {1, . . . ,m} and for every choice (α1, β1), . . . , (αl, βl) in {(i, j) ∈ {1, . . . ,m}2 |
i 6= j} we have for all tj ≥ t, j = 1, . . . , k, and sn ≥ t, n = 1, . . . , l

E

 k∏
j=1

l∏
n=1

f
(
Ytj (ij)

)
g (Csn(αn, βn))

∣∣∣∣∣∣ Gt


=
k∏
j=1

E
[
f
(
Ytj (ij)

) ∣∣ Gt] l∏
n=1

E [g (Csn(αn, βn)) | Gt]

=
k∏
j=1

E
[
f
(
Ytj (ij)

) ∣∣ FΨ
∞ ∨ F

Y (ij)
t

] l∏
n=1

E
[
g (Csn(αn, βn)) | FΨ

∞ ∨ F
C(αn,βn)
t

]
for f, g : {0, 1} → R, with FY (i)

t := σ(Yu(i) : u ≤ t) and FC(i,j)
t := σ(Cu(i, j) : u ≤ t), for

every i, j ∈ {1, . . . ,m} , i 6= j.

(3) For every i ∈ {1, . . . ,m} the self-default indicator process (Yt(i))t≥0 is a doubly stochastic

indicator process with respect to the filtration (FΨ
∞ ∨ FYt )t≥0 with stochastic intensity

depending only on the path of (Ψt)t≥0. In particular we assume that the stochastic intensity

of firm i is of the form λi(t,Ψt) for λi : R2 → R+ a continuous function. This means that

E [1− Ys(i) | Gt] = (1− Yt(i))e
−

s∫
t
λi(u,Ψu)du

, s ≥ t , (2.4)

where the last equality holds by Corollary 5.1.5 of Bielecki and Rutkowski [5].

(4) The contagion processes (Ct(i, j))t≥0 for i 6= j are FΨ
∞−conditionally time-inhomogeneous

Markov chains; i.e. for every function f : {0, 1} → R,

E
[
f(Cs(i, j)) | FΨ

∞ ∨ F
C(i,j)
t

]
= E

[
f(Cs(i, j)) | FΨ

∞ ∨ σ(Ct(i, j))
]
, s ≥ t .

For all i, j ∈ {1, . . . ,m}, i 6= j and k, h ∈ {0, 1}, we denote the conditional transition

probabilities by

pijts(k, h) = P
[
Cs(i, j) = h | FΨ

∞ ∨ σ(Ct(i, j) = k)
]
,

and assume that (pijts(k, h))s∈R+ is a continuous process for every t ∈ R+, i, j ∈ {1, . . . ,m}
and k, h ∈ {0, 1}.
In the sequel we will use the fact that on {Ct(i, j) = k}

pijts(k, h) =
P
[
Cs(i, j) = h,Ct(i, j) = k | FΨ

∞
]

P [Ct(i, j) = k | FΨ
∞]

.

Note that, unlike the default indicator processes, the processes (Ct(i, j))t≥0 are allowed to

change between 0 and 1 back and forth in time. They model the presence of a business

relationship between firm i and firm j, which can be present at time 0, absent at some

later time, and come in force again even later.

5



3 A portfolio with disjoint contagion classes

We want to discuss our model assumptions for the simple case of a credit portfolio with group

structure. For simplicity we assume that the matrix C is time-independent and deterministic.

This means that we can divide the credit portfolio of m firms into groups, which we can identify

by the following assumptions.

Assumption 3.1. (1) Reflexivity: By definition C(i, i) = 1 for all i ∈ {1, . . . ,m}.

(2) Symmetry: C(i, j) = C(j, i) for all i, j ∈ {1, . . . ,m}.
The influence of default is symmetric.

(3) Transitivity: C(i, h)C(h, j) ≤ C(i, j) for all i, j, h ∈ {1, . . . ,m}.
If the default of firm i causes firm h to default, and firm h causes firm j to default, then

also firm i causes the default of firm j.

Assumptions 3.1 define an equivalence relation on the credit portfolio, i.e. i ∼ j if and only

if C(i, j) = 1. The equivalence relation subdivides the portfolio into disjoint equivalence classes,

which we call contagion classes and denote by

[i] := {j ∈ {1, . . . ,m} | C(i, j) = 1} .

We assume that the portfolio consists of k contagion classes [i1], . . . , [ik], representing for instance

business sections or local markets.

By definition (2.2) of the default indicator process we have:

Zt(i) =

1 if (Yt(i) = 1) ∨ (∃j 6= i C(i, j) = 1 s.t. Yt(j) = 1)

0 if (Yt(i) = 0) ∧ (Yt(j) = 0 ∀j 6= i s.t. C(i, j) = 1) .
(3.1)

Given some i ∈ {1, . . . ,m}, from the definition of the default indicator process in (2.2) and

Assumption 3.1 we have

Zt(i) = 0 ⇐⇒ Zt(j) = 0 ∀j ∈ [i].

This means that either all firms of the same contagion class default at the same time or all of

them are alive. Here we see that our modeling is different from (and more drastic than) the usual

credit risk contagion modeling, where the default of some firm within a group only increases the

hazard of all other group members; for examples and further references see Schönbucher [20],

Chapter 10.5.

Conditionally on the macroeconomic state variable process Ψ the default indicator process

(Zt)t≥0 is Markovian. Since in this case C is supposed to be deterministic it is to be expected

that the intensities of (Zt)t≥0 are inherited in a deterministic way by the default intensities of

the self-indicator process (Yt)t≥0 as given by (2.4) of Assumption 2.1(3).

This allows us to calculate the conditional generator of the default indicator process as well

as of the default number process.
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3.1 Conditional infinitesimal generator of the default indicator process

We calculate the conditional infinitesimal generator of the default indicator process (Zt)t≥0,

where we use Definition 2.2 of Yin and Zhang [23].

Theorem 3.2. The infinitesimal generator At of the FΨ
∞−conditional time inhomogeneous

Markov process (Zt)t≥0 is for any test function f : {0, 1}m → R given by

AZt f(z) =
m∏
j=1

∏
u∈[j]

(1− |zj − zu|)
m∑
i=1

[
f(z(i))− f(z)

]
(1− zi)λi(t,Ψt) , z ∈ {0, 1}m , (3.2)

where

z(i) = (z1 + (1− z1)C(i, 1), . . . , zm + (1− zm)C(i,m)). (3.3)

Proof. By Proposition 11.3.1 of [5] we obtain that the infinitesimal conditional generator of Zt

is given by

AZt f(z) =
∑
w 6=z

[f(w)− f(z)]λZt (z, w)

for any f : {0, 1}m → R, where λZt (z, w) denotes the FΨ
∞−conditional stochastic intensity of the

process Z from state z to state w, given by

λZt (z, w) := lim
h→0

pZtt+h(z, w)− pZtt(z, w)

h
(3.4)

with conditional transition probabilities

pZtt+s(z, w) :=
P
(
Zt+s = w,Zt = z | FΨ

∞
)

P (Zt = z | FΨ
∞)

=: PΨ (Zt+s = w | Zt = z) , t, s ≥ 0.

and

pZtt(z, w) = δz,w :=

1 if z = w,

0 otherwise.

Since the different contagion classes are independent, we factorize the transition probabilities as

follows:

pZtt+s(z, w) :=
k∏

h=1

PΨ
(
∩i∈[ih]Zt+s(i) = wi | ∩i∈[ih]Zt(i) = zi

)
. (3.5)

Recall that in each factor in (3.5) the states wi, zi ∈ {0, 1} and that 1 is the absorbing state.

Because of the deterministic contagion mechanism, at any time either the whole contagion class

of firms has defaulted or has not, i.e.

∃ i ∈ [ih] s.t. {Zt(i) = 0} ⇔ ∩i∈[ih]{Zt(i) = 0} . (3.6)

Moreover, by definition (3.1) we have that

∩i∈[ih]{Zt(i) = 0} ⇔ ∩i∈[ih]{Yt(i) = 0} . (3.7)
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Setting Zt(ih) :=
∏
i∈[ih] Zt(i), which also is a 0-1 random variable, we have

∩i∈[ih]{Zt(i) = 0} ⇔ {Zt(ih) = 0}

and by (2.4), (3.6) and (3.7) we get

E[1− Zt+s(ih) | Gt] = (1− Zt(ih))e
−
∫ t+s
t

∑
i∈[ih]

λi(u,Ψu)du
. (3.8)

Given z = (z1, . . . , zm) ∈ {0, 1}m we define for h ∈ {1, . . . , k}

z[ih] := (z1 + (1− z1)C(ih, 1), . . . , zm + (1− zm)C(ih,m)),

representing the fact that only group [ih] can default and, if it does, then all other components

of z remain the same. Then by (3.5) and (3.8), taking the limit in (3.4), we obtain for z[ih] 6= z

λZt (z, z[ih]) =
∏
j∈[ih]

(1− zj)
∑
i∈[ih]

λi(t,Ψt)

and λZt (z, w) = 0 for w 6= z[ih] or w = z.

Then the infinitesimal generator for elements z such that zi = zj , if firms i, j are in the same

contagion class, is given by

AZt f(z) =
k∑

h=1

[
f(z[ih])− f(z)

] ∏
j∈[ih]

(1− zj)
∑
i∈[ih]

λi(t,Ψt) ,

which can equivalently be represented as

AZt f(z) =
m∑
i=1

[
f(z(i))− f(z)

]
(1− zi)λi(t,Ψt)

where z(i) is defined as in (3.3). To guarantee that at the same time only defaults in one contagion

class take place, we multiply the right hand side by
m∏
j=1

∏
u∈[j]

(1− |zj − zu|), which means that

the vector z can not have two different components which correspond to equivalent firms. This

gives the form of the generator as in (3.2).

3.2 Conditional infinitesimal generator of the default number process

We invoke the previous result to calculate the generator of the default number process for the

portfolio. To this end we split the group of all firms in l homogeneous groups G1, . . . , Gl, where

each group contains all the firms with the same default intensity. We recall that firms belonging

to the same equivalent class [i] have a default intensity given by

λ
[i]
t =

∑
j∈[i]

λj(t,Ψt).

It follows that each homogeneous group Gh is given by the union of a certain number sh of

contagion classes, i.e.

Gh = [jh1 ] ∪ · · · ∪ [jhsh ] .
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For every h ∈ {1, . . . , l}, we denote by nhi the cardinality of the class [jhi ] for i = 1, · · · , sh, and

by λGh(t,Ψt) the intensity of every firm belonging to the group Gh. Let

Mt(h) :=
1

sh

∑
i∈[jh1 ]

Zt(i)

nh1
+ · · ·+

∑
i∈[jhsh

]

Zt(i)

nhsh

 (3.9)

be the weighted average number of defaults in the group Gh.We now consider the process Mt :=

(Mt(1), . . . ,Mt(l)). Because of the conditional independence of contagion classes the components

of this process are also conditionally independent. We calculate the conditional infinitesimal

generator of (Mt)t≥0.

Recall first from our calculations in the proof of Theorem 3.2 that we can not have simultaneous

defaults for two different contagion classes, and that inside a contagion class all firms default at

the same time. Hence the counting process (Mt)t≥0 can jump from a state u = (u1, . . . , ul) =(
v1
s1
, . . . , vlsl

)
, where vk ∈ {0, . . . , sk} (for k = 1, . . . , l), only to a state of the form u+ 1

sk
ek, where

ek is the k-th element of the canonical basis of Rl. With an analogous proof as in Lemma 3.4

of Frey and Backhaus [12], we obtain that the transition intensity of M from u into the state

u+ 1
sk
ek is given by

λMt

(
u, u+

1

sk
ek

)
= sk(1− uk)λGk(s,Ψs) .

Then the infinitesimal conditional generator of (Mt)t≥0 has the following form.

Theorem 3.3. Let Mt = (Mt(1), . . . ,Mt(l)), t ≥ 0, be the default number process with compo-

nents defined in (3.9). Under Assumptions 2.1 and 3.1 the infinitesimal generator of this FΨ
∞-

conditional Markov process is for any test function f : {0, 1
s1
, · · · , 1} × · · · × {0, 1

sl
, . . . , 1} → R

given by

Atf(u) =

l∑
k=1

[
f

(
u+

1

sk
ek

)
− f(u)

]
sk(1− uk)λGk(t,Ψt) .

4 The price of credit derivatives as a function of Ψ

We consider the problem of pricing derivatives, whose values are influenced by the contagion

mechanism represented by the matrix C and the underlying macroeconomics factors Ψ as de-

scribed in Section 2.1.

Assumption 4.1 (Market structure; cf. Frey and Backhaus [13], Ass. 3.1.).

(1) The investor information at time t is given by the default history Ft; i.e. the investor knows

the latent process Ψ, the self-default indicator process Y and the contagion matrix C up

to time t.

(2) The default-free interest rate is deterministic, so that we can w.l.o.g. set it equal to 0. This

does not prevent us to include for instance the LIBOR rate as one of the macroeconomic

variables processes.
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(3) A pricing (martingale) measure P exists and is known. For conditions such that this as-

sumption holds, see for example Lemma 13.2 of [14]. The price in t of any FT -measurable

claim L ∈ L1(Ω,P) with maturity T > 0 is given by

Lt = E [L | Ft] for 0 ≤ t ≤ T. (4.1)

Here we do not assume that the pricing measure P is necessarily unique. In an incomplete

market setting in absence of arbitrage, the price process of a claim is given by formula (4.1) for

some choice of a martingale measure P. See for example Theorem 5.30 of [16].

We do not investigate further the issue of market completeness in this model, since it goes

beyod the interests of this paper. Given a contingent claim, we then focus on the pricing issue

in this setting and compute (4.1) for a given pricing measure P.

Without further specifying the macroeconomic process Ψ we can formulate the following result.

Theorem 4.2. Let f : R × Rm → R be a bounded measurable function. Let α = (α1, . . . , αm),

β = (β1, . . . , βm) and z = (z1, . . . , zm) be in {0, 1}m and h(i), k(i) ∈ {0, 1}m−1 for i = 1, . . . ,m.

Set hii = kii := 1 for i = 1, . . . ,m, hij := [h(i)]j and kij := [k(i)]j for j 6= i. Then for t ∈ [0, T ]

E [f(ΨT , ZT ) | Ft] =
∑

z,α,β∈{0,1}m
(−1)

m∑
j=1

αjzj
m∏
j=1

z
1−αj
j

m∏
i=1

(Yt(i)at(i))
1−βi (1− Yt(i))βi

× E

[
f(ΨT , z)

m∏
i=1

bt,T (i)βi

∣∣∣∣∣ FΨ
t

]
, (4.2)

with

at(i) =
∑

h(i)∈{0,1}m−1

I{h̃i(α,h)=0}I{C(i)
τi

=h(i)}

bt,T (i) =
∑

h(i),k(i)∈{0,1}m−1

I{C(i)
t =k(i)}

(∫ ∞
T

λi(u,Ψu)e−
∫ u
t λ

i(s,Ψs)dspt,u(k(i), h(i))du

+I{h̃i(α,h)=0}

∫ T

t
λi(u,Ψu)e−

∫ u
t λ

i(s,Ψs)dspt,u(k(i), h(i))du

)
,

where

h̃i(α, h) :=


0 if

m∑
j=1

αjhij = 0,

1 otherwise.

(4.3)

and pt,τi(k
(i), h(i)) :=

∏m
j=1 p

ij
tτi

([k(i)]j , [h
(i)]j) denotes the joint transition probabilities of the

random vector C
(i)
τi from time t to time τi.

Our proof is based on the following lemma.
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Lemma 4.3. Assume the same notation as in Theorem 4.2. Then for all z ∈ {0, 1}m and

t ∈ [0, T ]

E
[
I{ZT=z}

∣∣ Gt]
=

∑
α∈{0,1}m

(−1)

m∑
j=1

αjzj
m∏
j=1

z
1−αj
j

m∏
i=1

Yt(i) ∑
h(i)∈{0,1}m−1

I{h̃i(α,h)=0}I{C(i)
τi

=h(i)}

+ (1− Yt(i))
∑

h(i),k(i)∈{0,1}m−1

I{C(i)
t =k(i)}

(∫ +∞

T
λi(u,Ψu)e−

∫ u
t λ

i(s,Ψs)dspt,u(k(i), h(i))du

+ I{h̃i(α,h)=0}

∫ T

t
λi(u,Ψu)e−

∫ u
t λ

i(s,Ψs)dspt,u(k(i), h(i))du

)]
. (4.4)

Proof. By (2.3) we have for zj ∈ {0, 1}

I{ZT (j)=zj} = zj + (−1)zj
m∏
i=1

(1− Cτi(i, j)YT (i)) .

Then for z ∈ {0, 1}m,

I{ZT=z} =

m∏
j=1

[
zj + (−1)zj

m∏
i=1

(1− Cτi(i, j)YT (i))

]
. (4.5)

We apply the following identity, which can be proved easily, for instance, by induction on m:

m∏
j=1

(Aj +Bj) =
∑

α∈{0,1}m

m∏
j=1

A
1−αj
j B

αj
j , (4.6)

where αj ∈ {0, 1}, j = 1, . . . ,m. Setting 00 := 1 the formula holds also if there exists j ∈
{1, . . . ,m} such that Aj = 0 or Bj = 0. We apply this formula to

Aj := zj and Bj := (−1)zj
m∏
i=1

(1− Cτi(i, j)YT (i))

Then we obtain the following expression for the indicator function in (4.5):

I{ZT=z} =
∑

α∈{0,1}m

m∏
j=1

(
z

1−αj
j

[
(−1)zj

m∏
i=1

(1− Cτi(i, j)YT (i))

]αj)
(4.7)

=
∑

α∈{0,1}m
(−1)

m∑
j=1

αjzj( m∏
j=1

z
1−αj
j

) m∏
j=1

m∏
i=1

(1− Cτi(i, j)YT (i))αj

Then by Assumption 2.1(2) we have that

E
[
I{ZT=z}

∣∣ Gt] =
∑

α∈{0,1}m
(−1)

m∑
j=1

αjzj( m∏
j=1

z
1−αj
j

) m∏
i=1

E

 m∏
j=1

(1− Cτi(i, j)YT (i))αj

∣∣∣∣∣∣ Gt
 .

(4.8)
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We focus now on the calculation of the conditional expectation in (4.8). The total probability

theorem, by considering all the possible contagion structures for i-th row C
(i)
τi of the the random

matrix Cτi (written in its vector representation and avoiding the element Cτi(i, i)), yields

E

 m∏
j=1

(1− Cτi(i, j)YT (i))αj

∣∣∣∣∣∣ Gt


=
∑

h(i)∈{0,1}m−1

E

 m∏
j=1

(1− hijYT (i))αjI{C(i)
τi

=h(i)}

∣∣∣∣∣∣ Gt


=
∑

h(i)∈{0,1}m−1

E
[

(1− YT (i))h̃i(α,h)I{C(i)
τi

=h(i)}

∣∣∣ Gt] (4.9)

where hii := 1 and hij := [h(i)]j for j 6= i and h̃i(α, h) is as in (4.3). We now calculate

E
[

(1− YT (i))h̃i(α,h)I{C(i)
τi

=h(i)}

∣∣∣ Gt]
= E

[
(I{T<τi})

h̃i(α,h)I{C(i)
τi

=h(i)}

∣∣∣ Gt]
= E

[
E
[

(I{T<τi})
h̃i(α,h)I{C(i)

τi
=h(i)}

∣∣∣ FY (i)
T ∨ Gt

] ∣∣∣ Gt]
= I{τi≤t}I{h̃i(α,h)=0}I{C(i)

τi
=h(i)}

+ I{h̃i(α,h)=0}E

I{t<τi} ∑
k(i)∈{0,1}m−1

pt,τi(k
(i), h(i))I{C(i)

t =k(i)}

∣∣∣∣∣∣ Gt


+ I{h̃i(α,h)6=0}E

I{T<τi} ∑
k(i)∈{0,1}m−1

pt,τi(k
(i), h(i))I{C(i)

t =k(i)}

∣∣∣∣∣∣ Gt


= Yt(i)I{h̃i(α,h)=0}I{C(i)
τi

=h(i)} +
∑

k(i)∈{0,1}m−1

I{C(i)
t =k(i)} (4.10)

×
(
I{h̃i(α,h)=0}E

[
I{t<τi}pt,τi(k

(i), h(i))
∣∣∣ Gt]+ I{h̃i(α,h)6=0}E

[
I{T<τi}pt,τi(k

(i), h(i))
∣∣∣ Gt]) ,

where by using Assumption 2.1(2) and (4) we have set pt,τi(k
(i), h(i)) :=

∏m
j=1 p

ij
tτi

([k(i)]j , [h
(i)]j)

to denote the joint transition probabilities of the random vector C
(i)
τi from time t to time τi

under the convention that [h(i)]i = [k(i)]i = piitτi([k
(i)]i, [h

(i)]i) := 1. Note that in the second term

of (4.10) we have τi > t.

Since by Assumption 2.1(4) pt, ·(k
(i), h(i)) is a bounded continuous stochastic process, we can

now apply Proposition 5.1.1(ii) and Corollary 5.1.1(ii) of Bielecki and Rutkowski [5] and obtain
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I{h̃i(α,h)=0}E
[
I{t<τi}pt,τi(k

(i), h(i))
∣∣∣ Gt]+ I{h̃i(α,h) 6=0}E

[
I{T<τi}pt,τi(k

(i), h(i))
∣∣∣ Gt]

= I{τi>t}
(
I{h̃i(α,h)=0}E

[∫ +∞

t
λi(u,Ψu)e−

∫ u
t λ

i(s,Ψs)dspt,u(k(i), h(i))du

∣∣∣∣ FΨ
∞

]
+ I{h̃i(α,h)6=0}E

[∫ +∞

T
λi(u,Ψu)e−

∫ u
t λ

i(s,Ψs)dspt,u(k(i), h(i))du

∣∣∣∣ FΨ
∞

])
= (1− Yt(i))

(∫ +∞

T
λi(u,Ψu)e−

∫ u
t λ

i(s,Ψs)dspt,u(k(i), h(i))du

+ I{h̃i(α,h)=0}

∫ T

t
λi(u,Ψu)e−

∫ u
t λ

i(s,Ψs)dspt,u(k(i), h(i))du

)
, (4.11)

where in the last equality we have used the fact that all terms in the conditional expectation

are FΨ
∞-measurable (Assumption 2.1(4)).

By plugging now (4.10) and (4.11) in (4.9) and then in (4.8) we conclude the proof.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Iterating the conditional expectation we get

E [f(ΨT , ZT ) | Ft] = E [E [f(ΨT , ZT ) | Gt] | Ft] .

In order to calculate the inner conditional expectation we use formula (4.4) of Lemma 4.3. For

the sake of simplicity, we set

at(i) =
∑

h(i)∈{0,1}m−1

I{h̃i(α,h)=0}I{C(i)
τi

=h(i)}

and

bt,T (i) =
∑

h(i),k(i)∈{0,1}m−1

I{C(i)
t =k(i)}

(∫ +∞

T
λi(u,Ψu)e−

∫ u
t λ

i(s,Ψs)dspt,u(k(i), h(i))du

+I{h̃i(α,h)=0}

∫ T

t
λi(u,Ψu)e−

∫ u
t λ

i(s,Ψs)dspt,u(k(i), h(i))du

)
,

Then by the total probability theorem it follows that

E [f(ΨT , ZT ) | Ft] = E

 ∑
z∈{0,1}m

f(ΨT , z)E
[
I{ZT=z}

∣∣ Gt]
∣∣∣∣∣∣ Ft

 (4.12)

=
∑

α,z∈{0,1}m
(−1)

m∑
j=1

αjzj
m∏
j=1

z
1−αj
j E

[
f(ΨT , z)

m∏
i=1

(Yt(i)at(i) + (1− Yt(i))bt,T (i))

∣∣∣∣∣ Ft
]
.

We now calculate the conditional expectation appearing in (4.12). By (4.6) we have that

m∏
i=1

(Yt(i)at(i) + (1− Yt(i))bt,T (i)) =
∑

β∈{0,1}m

m∏
i=1

(Yt(i)at(i))
1−βi ((1− Yt(i))bt,T (i))βi .
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Hence

E

[
f(ΨT , z)

m∏
i=1

(Yt(i)at(i) + (1− Yt(i))bt,T (i))

∣∣∣∣∣ Ft
]

= E

f(ΨT , z)
∑

β∈{0,1}m

m∏
i=1

(Yt(i)at(i))
1−βi ((1− Yt(i))bt,T (i))βi

∣∣∣∣∣∣ Ft


=
∑

β∈{0,1}m

m∏
i=1

(Yt(i)at(i))
1−βi (1− Yt(i))βiE

[
f(ΨT , z)

m∏
i=1

bt,T (i)βi

∣∣∣∣∣ FΨ
t

]
. (4.13)

Plugging (4.13) in (4.12) concludes the proof. �

Equation (4.13) shows that the final pricing formula depends on the specification of the

macroeconomic process Ψ and the dynamics of the contagion matrix C.

We first comment on the contagion matrix. Recall that it simply describes for two firms, if

there is a business relation at time t or not. From our formulas it is clear that we only need to

know C at the time of default. There is still room for more precise modeling of the contagion

matrix. For the moment we assume a time-independent but possibly random contagion matrix

given by

Ct(i, j) = C(i, j)Yt(i), t ≥ 0, (4.14)

where C has entries [C]ij = Cij(ω) given by iid random variables independent of the processes

Y and Ψ. In what follows, we have then Ft = FΨ
t ∨ FYt ∨ σ(C) for t > 0 and F0 := {∅,Ω}.

We study now this situation. Note that we still do not specify the macroeconomic process Ψ;

this will only come in Section 5, where we price derivatives under the assumption of long range

dependence for Ψ.

Theorem 4.4. If the contagion matrix is of the form (4.14), the pricing formula (4.2) is given

for 0 < t ≤ T by

E [f(ΨT , ZT ) | Ft] =
∑

α,z∈{0,1}m

∑
h∈{0,1}m(m−1)

(−1)

m∑
i=1

αizi
m∏
i=1

z1−αi
i (1− Yt(i))h̃i(α,h)I{C=h}

× E

f(ΨT , z)e
−
T∫
t

m∑
i=1

h̃i(α,h)λi(u,Ψu)du

∣∣∣∣∣∣ FΨ
t

 , (4.15)

and for t = 0 by

E[f(ΨT , ZT )] =
∑

α,z∈{0,1}m

∑
h∈{0,1}m(m−1)

(−1)

m∑
i=1

αizi
m∏
i=1

z1−αi
i P(C = h)

× E

f(ΨT , z)e
−
T∫
0

m∑
i=1

h̃i(α,h)λi(u,Ψu)du

 , (4.16)

where h̃i(α, h) is as in (4.3) with hii := 1 for i = 1, . . . ,m, and hij := [h]ij for i 6= j.
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Proof. First we note that in this case Cτi(i, j)Yt(i) = C(i, j)Yt(i). The total probability theorem,

by considering all possible contagion structures for the random matrix C (again written in its

vector representation and avoiding the diagonal) yields with (4.7)

E
[
I{ZT=z}

∣∣ Gt] =
∑

h∈{0,1}m(m−1)

E
[
I{ZT=z}I{C=h}

∣∣ Gt]

=
∑

h∈{0,1}m(m−1)

∑
α∈{0,1}m

(−1)

m∑
j=1

αjzj( m∏
j=1

z
1−αj
j

)
E

 m∏
i=1

m∏
j=1

(1− hijYT (i))αjI{C=h}

∣∣∣∣∣∣ Gt
 .

We now distinguish between t = 0 and t > 0. Since I{C=h} is Ft-measurable for every t > 0, by

Assumption 2.1(2) and by (4.9) we obtain that for t > 0

E
[
I{ZT=z}

∣∣ Gt] (4.17)

=
∑

h∈{0,1}m(m−1)

∑
α∈{0,1}m

(−1)

m∑
j=1

αjzj( m∏
j=1

z
1−αj
j

)
I{C=h}

m∏
i=1

E

 m∏
j=1

(1− hijYT (i))αj

∣∣∣∣∣∣ Gt
 .

=
∑

h∈{0,1}m(m−1)

∑
α∈{0,1}m

(−1)

m∑
j=1

αjzj( m∏
j=1

z
1−αj
j

)
I{C=h}

m∏
i=1

E
[

(1− YT (i))h̃i(α,h)
∣∣∣ Gt] ,

where h̃i(α, h) is as in (4.3) with hii := 1, i = 1, . . . ,m, and hij := [h]ij , i 6= j. Since by (2.4)

E
[

(1− YT (i))h̃i(α,h)
∣∣∣ Gt] = (1− Yt(i))h̃i(α,h)e

−
T∫
t
h̃i(α,h)λi(u,Ψu)du

,

we obtain that for t > 0

E
[
I{ZT=z}

∣∣ Gt] (4.18)

=
∑

h∈{0,1}m(m−1)

∑
α∈{0,1}m

(−1)

m∑
j=1

αjzj( m∏
j=1

z
1−αj
j

)
I{C=h}

m∏
i=1

(1− Yt(i))h̃i(α,h)e
−
T∫
t
h̃i(α,h)λi(u,Ψu)du

.

To obtain the final pricing formula, we proceed analogously as in the proof of Theorem 4.2. By

(4.18) and (4.12) we have for t > 0

E [f(ΨT , ZT ) | Ft] = E

 ∑
z∈{0,1}m

f(ΨT , z)E
[
I{ZT=z}

∣∣ Gt]
∣∣∣∣∣∣ Ft

 (4.19)

=
∑

α,z∈{0,1}m

∑
h∈{0,1}m(m−1)

(−1)

m∑
j=1

αjzj( m∏
j=1

z
1−αj
j

)
I{C=h}

×
m∏
i=1

(1− Yt(i))h̃i(α,h)E

f(ΨT , z)e
−
T∫
t

∑m
i=1 h̃i(α,h)λi(u,Ψu)du

∣∣∣∣∣∣ FΨ
t

 .

15



This proves equation (4.15). For t = 0 we obtain

E
[
I{ZT=z}

∣∣ G0

]
(4.20)

=
∑

h∈{0,1}m(m−1)

∑
α∈{0,1}m

(−1)

m∑
j=1

αjzj( m∏
j=1

z
1−αj
j

)
P(C = h)e

−
T∫
0

∑m
i=1 h̃i(α,h)λi(u,Ψu)du

.

Substituting (4.20) in (4.19) for t = 0, we obtain formula (4.16).

If the contagion matrix is deterministic, i.e. for every i, j ∈ {1, . . . ,m} and all t ≥ 0,

Ct(i, j)(ω) = Ct(i, j) ∈ {0, 1} ∀ω ∈ Ω,

we have FCt = {∅,Ω} for every t ∈ [0, T ].

Corollary 4.5. Assuming that the contagion matrix is deterministic, the pricing formula (4.2)

simplifies to

E [f(ΨT , ZT ) | Ft] =
∑

α,z∈{0,1}m
(−1)

m∑
i=1

αizi
m∏
i=1

(
z1−αi
i (1− Yt(i))h̃i(α)

)

× E

f(ΨT , z) e
−
T∫
t

m∑
i=1

h̃i(α)λi(u,Ψu)du

∣∣∣∣∣∣ FΨ
t

 , (4.21)

where

h̃i(α) :=


0 if

m∑
j=1

αjCT (i, j) = 0,

1 otherwise.

(4.22)

In the following simple example we investigate the effect of the contagion mechanism.

Example 4.6. We assume the group model of section 3 in its simplest form of a portfolio

consisting of two classes, taking 5 firms in one group and 10 firms in the second group. We work

with a deterministic contagion matrix and consider different contagion scenarios for C:

C =

(
C5×5 C5×10

C10×5 C10×10

)

We consider the following six scenarios, where Id denotes the identity matrix in Rd, 0d×k the

matrix with only entries 0, and 1d×k the matrix with only entries 1.

C1 = I15 C2 =

(
15×5 05×10

010×5 I10

)
C3 =

(
I5 05×10

010×5 110×10

)

C4 =

(
15×5 15×10

010×5 110×10

)
C5 =

(
15×5 05×10

110×5 I10

)
C6 = 115×15
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Obviously, C1 corresponds to no contagion and will serve as reference scenario. C2 models

contagion within the first group, no contagion in the second and no contagion between firms of

the two groups. C3 models the complementary situation. Contagion matrix C4 models contagion

in the first group, but also the spill-over of default of group 1 firms into the second group. C5

models contagion within both groups, and contagion from firms in the second group to the first

group. Finally, C6 models contagion between all 15 firms.

These scenarios determine the vectors (h̃i(α), i = 1, . . . , 15) for all α ∈ {0, 1}m. We also

assume that all firms in the same group have the same intensity of default, i.e. λi = λ[1] for all

i ∈ {1, . . . , 5} and λi = λ[2] for all i ∈ {6, . . . , 15}. Furthermore, we assume that λ[2] = 2λ[1], and

that both groups are exposed to the same realization of the macroeconomic process λ[1].

Now to understand precisely, what the effect of the contagion is, we take as simplest example

one bond of one firm of the two groups at one time. For a defaultable bond of a firm in group

i ∈ {1, 2} with pricing formula (4.21) we obtain we have to calculate

V
[i]

0 = E

[
(1− Z [i]

T ) exp{−
∫ T

0

m∑
i=1

h̃i(α)λ[i](u, ψu)du}

]
.

Note that the zeros in h̃i(α) correspond to no default of all firms in group 1 and the second part

of the vector to arbitrary values in the second group.

It remains to specify λ[1] and we take the CIR model, such that the intensities are positive

a.s., i.e. λ[1](t, Bt) = λ
[1]
t is the solution to

dλ
[1]
t = a(b− λ[1]

t ) + σ

√
λ

[1]
t dBt , t ≥ 0, ,

where (Bt)t≥0 is standard Brownian motion, and we take the parameters a = 2.0, b = 0.05,

σ = 0.4 and initial value λ[1](0) = 0.03. Obviously, prices should decrease for higher contagion

scenarios and for bonds with higher maturity.

Bond of firm in group 1 Bond of firm in group 2

T = 1 T = 2 T = 1 T = 2

C1 0.966936 0.923076 0.935458 0.853588

C2 0.849446 0.681479 0.935458 0.853588

C3 0.966936 0.923076 0.550128 0.258520

C4 0.482438 0.195017 0.935458 0.853588

C5 0.849446 0.681479 0.482438 0.195017

C6 0.482438 0.195017 0.482438 0.195017

Table 4.1: Bond prices V
[i]

0 for maturities T = 1 and T = 2 and the different scenarios.
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5 Pricing contingent claim depending on the macroeconomic

process with credit risk contagion

5.1 Modeling the macroeconomic process

Now we turn to the macroeconomic process Ψ. There are many examples, which consider the

intensity as a function of a state vector of Markov processes; see e.g. Schönbucher [20], Chapter 7.

Gaussian processes and processes driven by Brownian motion are the most prominent ones. Here

we focus on the case, where Ψ = ΨH is given by a long range dependent process with Hurst

index H > 1
2 . This choice is motivated by the fact that macroeconomic variables like demand and

supply, interest rates, or other economic activity measures often exhibit long range dependence.

In the context of fractional processes examples include fractional geometric Brownian motion or

other processes driven by fractional Brownian motion with non-negativity guaranteed.

We recall here the definition of fractional Brownian motion.

Definition 5.1. A fractional Brownian motion (fBm) BH = (BH
t )t≥0 with Hurst index H ∈

(0, 1) is a continuous centered Gaussian process with covariance function

cov(BH
t , B

H
s ) := RH(t, s) :=

1

2
(t2H + s2H − |t− s|2H), t, s ∈ R+.

In this section we focus on the case where the macroeconomic process is given by a suitable

function ψ of a stochastic integral of a deterministic function with respect to fBm with Hurst

index H > 1
2 . For examples see Buchmann and Klüppelberg [6] and for more details concerning

fractional Brownian motion and the relevant stochastic calculus we refer to Biagini et al. [4]. Then

we will compute the pricing formula (4.2) of Theorem 4.2 under the macroeconomic variables

model

ΨH
t := ψ

(
IHt
)
, IHt :=

∫ t

0
g(s)dBH

s , t ∈ [0, T ], (5.1)

where ψ is an invertible continuous function and g is a deterministic function in L2
H([0, T ]). We

recall that L2
H([0, T ]) is the completion of the Schwartz-space S([0, T ]) equipped with the inner

product

〈f, g〉H := H(2H − 1)

∫ T

0

∫ T

0
f(s)g(t)|s− t|2H−2dsdt <∞ f, g ∈ S([0, T ]) .

In particular, in (5.1) we focus on deterministic integrands g ∈ Hµ([0, T ]) (which is a subset of

L2
H([0, T ])), the space of the Hölder continuous functions on [0, T ] of order µ > 1−H, and such

that 1/g(s) is defined for all s ∈ [0, T ].

Remark 5.2. Under the above condition on ψ and g we get the following.

(i) The stochastic integral in the formula (5.1) can be understood pathwise in the Riemann-

Stieltjes sense (see Section 5.1 in [4]).

(ii) By Theorem 4.4.2 of [24] we have also that BH(t) =
t∫

0

1
g(s)dI

H
s , where this integral can

again be interpreted in the Riemann-Stieltjes sense. This implies that the processes IH and BH

generate the same filtration and that FΨH
t = FBHt (because ψ is invertible and measurable).
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Although a long range dependent macroeconomic process may be more realistic than a

Markovian one, it is clear that the calculations and the resulting pricing formulas become much

more complicated. In this paper we shall restrict ourselves to the case, where for all i ∈ {1, . . . ,m}
the default intensities of the self-default processes (Yt(i))t≥0 are stochastic and of the form

λi(u,ΨH
u ) = βi(u)IHu + γi(u) , u ≥ 0 , (5.2)

where βi and γi are continuous functions.

Recall that intensities are supposed to be positive. Now, because the integral IH has fBm as

integrator, obviously it can happen with positive probability that the intensity becomes negative.

By the affine transformation, however, we can at least control that this probability remains small.

Of course, the same problem arises, when working with affine models driven by Brownian motion

as, for instance, for the Ornstein-Uhlenbeck model (see Schönbucher [20], Section 7.1).

In this paper we work with Gaussian macroeconomic variables, but allow for different co-

variances in time governed by the function g. For a further discussion on possible choices of g

and IH we also refer to [3]. Other fBm-driven models for macroeconomic factors are discussed

in [6]; analogous fractional models beyond Gaussian are suggested in [15].

5.2 Pricing contingent claims with a long range dependent Ψ

In the setting outlined in Section 5.1 we focus on the pricing of contingent claims written on

the long range dependent macroeconomic index ΨH and affected by credit risk contagion. For

the sake of simplicity we consider the case, where the contagion matrix Ct is deterministic for

all 0 ≤ t ≤ T . Referring to Corollary 4.5, the problem is now to calculate a term of the form

E

[
f
(
ΨH
T , z

)
e
−
∫ T
t

m∑
i=1

h̃i(α)λi(u,ΨHu )du
∣∣∣∣∣ Ft

]

= E

[
fψ
(
IHT , z

)
e
−
∫ T
t

m∑
i=1

h̃i(α)(βi(u)IHu +γi(u))du
∣∣∣∣∣ Ft

]

= e
−
∫ T
t

m∑
i=1

h̃i(α)γi(u)du
e

∫ t
0

m∑
i=1

h̃i(α)βi(u)IHu du

× E

[
fψ
(
IHT , z

)
e
−
∫ T
0

m∑
i=1

h̃i(α)βi(u)IHu du
∣∣∣∣∣ FΨH

t

]
(5.3)

for fixed z ∈ {0, 1}m, where we have set fψ := f ◦ ψ. Note that in (5.3) the last equality holds

by Assumption 2.1(1).

For simplicity we omit in the sequel the index z and write simply f(ΨH
T ) and fψ(IHT ) instead

of f(ΨH
T , z) and fψ(IHT , z), respectively.

We now proceed as follows. Define for a ∈ R the function fψa (x) := e−axfψ(x) for x ∈ R and

its Fourier transform by f̂ψa (ξ) :=
∫
R
e−iξxfψa (x)dx for ξ ∈ R. We assume that f and ψ are such

that

A :=
{
a ∈ R | fψa (·) ∈ L1(R) and f̂Ψ

a (·) ∈ L1(R)
}
6= ∅ .
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Then by Theorem 9.1 of Rudin [19] the following inversion formula holds:

fψa (x) =
1

2π

∫
R
eiξxf̂ψa (ξ)dξ , x ∈ R . (5.4)

We collect some useful results in the following lemma.

Lemma 5.3. With the same notation and assumptions as above, we have

E

[
f(ΨH

T )e
−
∫ T
0

m∑
i=1

h̃i(α)βi(u)IHu du
∣∣∣∣∣ FΨH

t

]
=

1

2π

∫
R
E
[
e
∫ T
0 η(s,ξ)dBHs

∣∣∣ FΨH

t

]
f̂ψa (ξ)dξ (5.5)

where

η(s, ξ) := g(s)

(
a+ iξ −

∫ T

s

m∑
i=1

h̃i(α)βi(u)du

)
, s ∈ [0, T ] (5.6)

where h̃i(α) for i ∈ {1, . . . ,m} are defined in (4.22).

Furthermore,

E
[
e
∫ T
0 η(s,ξ)dBHs

∣∣∣ FΨH

t

]
(5.7)

= exp

{
1

2
‖η(·, ξ)I(t,T )(·)‖2H −

1

2
‖ψHη (·, ξ, t, T )I(0,t)(·)‖2H

}
× exp

{∫ t

0
(η(s, ξ) + ψHη (s, ξ, t, T ))dBH

s

}
where ‖f‖2H := 〈f, f〉H for f ∈ L2

H([0, T ]),

ψHη (s, ξ, t, T ) = s−H+ 1
2 I
−(H− 1

2)
t−

(
I
H− 1

2

T− (·)H−
1
2 η(·, ξ)I[t,T ](·)

)
(s) (5.8)

and for α = H − 1
2 ∈ (0, 1/2) we define

(Iαt−η) (s) :=
1

Γ(α)

(∫ t

s
η(r)(r − s)α−1dr

)
, 0 ≤ s ≤ t, (5.9)

and (
I−α
T−η

)
(s) := − 1

Γ(1− α)

d

ds

(∫ T

s
η(r)(r − s)−αdr

)
, 0 < s < T. (5.10)

Proof. We first prove (5.5). We introduce the notation ET := exp

[
−
∫ T

0

m∑
i=1

h̃i(α)βi(u)IHu du

]
.

By Theorem 6.4 of Sottinen [21] follows that we can exchange the order of integration and obtain

ET = e
−
∫ T
0 g(s)

(∫ T
s

m∑
i=1

h̃i(α)βi(u)du

)
dBHs

.

Then by using the definition of fψa and the Fourier inversion formula (5.4) we get

E
[
f(ΨH

T )ET
∣∣ FΨH

t

]
= E

[
1

2π

∫
R
e

∫ T
0 [a+iξ−

∫ T
s

m∑
i=1

h̃i(α)βi(u)du]g(s)dBHs
f̂ψa (ξ)dξ

∣∣∣∣∣ FΨH

t

]

=
1

2π
E
[∫

R
e
∫ T
0 η(s,ξ)dBHs

∣∣∣∣ FΨH

t

]
f̂ψa (ξ)dξ , (5.11)
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where

η(s, ξ) := g(s)

(
a+ iξ −

∫ T

s

m∑
i=1

h̃i(α)βi(u)du

)
.

Since E
[
e
∫ T
0 η(s,ξ)dBHs

]
<∞, we can exchange the order of integration in (5.11) and obtain (5.5).

Next we prove (5.7). By Remark 5.2(ii) we have

E
[
e
∫ T
0 η(s,ξ)dBHs

∣∣∣ FΨH

t

]
= E

[
e
∫ T
0 η(s,ξ)dBHs

∣∣∣ FBHt ]
= exp

{∫ t

0
η(s, ξ)dBH

s

}
E
[

exp

{∫ T

t
η(s, ξ)dBH

s

} ∣∣∣∣ FBHt ]
,

which is equal to (5.7) by Proposition 3.6 of Biagini, Fink and Klüppelberg [3].

Example 5.4. For the special case where g ≡ 1 (that gives IHt = BH
t ) and βi ≡ 0 for all

i ∈ {1, . . . ,m}, formula (5.7) can be calculated by Theorem 3.2 of Valkeila [22] as follows

E
[
e(a+iξ)BHT

∣∣∣ FBHt ]
= exp

{
1

2
(a+ iξ)2 (T 2H − 〈MH〉t

)
+ (α+ iξ)

(
BH
t +

∫ t

0
ΦT (t, s)dBH

s

)}
where

〈MH〉t =

∫ t

0
zH(T, s)2ds

with

zH(T, s) :=
(
H − 1

2

)
cHs

1
2
−H
∫ T

s
uH−

3
2 (u− s)H−

1
2du

cH :=
( 2HΓ

(
3
2 −H

)
Γ
(
H + 1

2

)
Γ(2− 2H)

) 1
2

and

ΦT (t, s) :=
1

π
sin
(
π
(
H − 1

2

))
s

1
2
−H(t− 1)

1
2
−H
∫ T

t

uH−
1
2 (u− t)H−

1
2

u− s
du .

We are now able to provide a pricing formula for a long range dependent macroeconomic

state variable process.

Theorem 5.5. Assume that the contagion matrix C is deterministic and that for all i ∈
{1, . . . ,m} the intensities of the self-default processes Yi = (Yt(i))t≥0 are of the form

λi(t,ΨH
t ) := βi(t)IHt + γi(t), t ≥ 0,

where βi and γi are continuous functions. Consider

IHt :=

∫ t

0
g(s)dBH(s) , t ≥ 0 ,
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for g ∈ Hµ([0, T ]) with µ > 1 − H and such that 1
g is well-defined. Let f(·, z) and ψ(·) be

deterministic continuous functions and denote for all z ∈ {0, 1}m

fψ(x, z) := f(ψ(x), z), x ∈ R,

and

fψα (x, z) := e−αxfψ(x, z), α, x ∈ R.

Assume that there exists some a ∈ R such that fΨ
a (·, z) and its Fourier transform f̂Ψ

a (·, z) belong

to L1(R) for all z ∈ {0, 1}m.

Finally let ψ be invertible and set

ΨH
t := ψ

(∫ t

0
g(s)dBH(s)

)
, t ≥ 0.

Then the price (4.21) at time t ∈ [0, T ] is given by the following formula

E [f (ΨT , ZT ) | Ft]

=
∑

α,z∈{0,1}m
(−1)

m∑
i=1

αizi
m∏
i=1

(
z1−αi
i (1− Yt(i))h̃i(α)

)
e
−
∫ T
t

m∑
i=1

h̃i(α)γi(u)du

×e
∫ t
0

m∑
i=1

h̃i(α)βi(u)IHu du 1

2π

∫
R

exp

{
1

2
‖η(·, ξ)I(t,T )(·)‖2H −

1

2
‖ψHη (·, ξ, t, T )I(0,t)(·)‖2H

}
× exp

{∫ t

0
(η(s, ξ) + ψHη (s, ξ, t, T ))dBH

s

}
f̂ψa (ξ, z)dξ (5.12)

where h̃i(α) is given in (4.22), η in (5.6) and ψHη (·, ξ, t, T ) in (5.8).

A basic structural analysis for pricing formulas with long range dependent hazard func-

tion models will be presented in Biagini, Fink and Klüppelberg [3] together with an extended

numerical analysis study.

Example 5.6. (Inflation-linked caps and floors).

To illustrate how to compute f̂Ψ
a , we introduce some examples of inflation-linked derivatives,

such as inflation-linked caps and floors, that we allow to be also exposed to contagion risk. By

using the notation of Theorem 5.5, we consider a payoff of the form

f(ΨT , ZT ) := (ΨT − k)+b(ZT ),

where ΨT represents here the inflation index and b(·) is a positive measurable function, that

describes the contagion effects. By Theorem 5.5 we have to find some a ∈ R such that

(f
call

)ψa ∈ L
1(R) and

̂
(f
call

)ψa ∈ L
1(R) (5.13)

hold. We show (5.13) for g ≡ 1 and the two special cases ψ(x) = x and ψ(x) = ex, corresponding

to fractional Brownian motion and geometric fractional Brownian motion, respectively.
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(A) Let ψ(x) = x.

It follows immediately that (5.13) holds for (f
call

)ψa , for all a > 0. We compute now the

Fourier transform of (f
call

)ψa for a > 0.

̂
(f
call

)ψa (u) =

∫ ∞
K

e−x(a+iu)(x−K)dx =
e−K(a+iu)

(a+ iu)2
.

Since ∣∣∣∣∣e−K(a+iu)

(a+ iu)2

∣∣∣∣∣ =
e−Ka

u2
= O

(
1

u2

)
, u→∞,

we have that (5.13) holds also for the Fourier transform of (f
call

)ψa for all a > 0.

(B) Let ψ(x) = ex.

It follows from the calculations in (A) that (5.13) holds for (f
call

)ψa for all a > 1. We

compute now the Fourier transform of (f
call

)ψa for a > 1:

̂
(f
call

)ψa (u) =

∫ ∞
lnK

e−x(a+iu)(ex −K)dx =
e−(a−1+iu) lnK

(a+ iu)(a− 1 + iu)
.

Since ∣∣∣∣∣ e−(a−1+iu) lnK

(a+ iu)(a− 1 + iu)

∣∣∣∣∣ =
e−(a−1) lnK

|a(a− 1)− u2 + iu(2a− 1)|
= O

(
1

u2

)
, u→∞,

condition (5.13) holds also for the Fourier transform of (f
call

)ψa for all a > 1.

5.3 Comparison with Markovian Ψ

Theorem 5.7. Assume that (5.1) holds for standard Brownian motion as integrator and assume

also (5.2). Then

E [f (ΨT , ZT ) | Ft] =
∑

α,z∈{0,1}m
(−1)

m∑
i=1

αizi
m∏
i=1

(
z1−αi
i (1− Yt(i))h̃i(α)

)
e
−
∫ T
t

m∑
i=1

h̃i(α)γi(u)du

×e
∫ t
0

m∑
i=1

h̃i(α)βi(u)Iudu 1

2π

∫
R

exp

{
1

2

∫ T

t
η2(s, ξ)ds+

∫ t

0
η(s, ξ)dBs

}
f̂ψa (ξ, z)dξ

where h̃i(α) is given in (4.22) and η in (5.6).

Proof. By Theorem 4.4, (5.3) and Lemma 5.3 we obtain that calculating the price

E [f (ΨT , ZT ) | Ft] boils down to compute the term

E
[
e
∫ T
0 η(s,ξ)dBs

∣∣∣ FΨ
t

]
with η(s, ξ) = g(s)

(
a+ iξ −

∫ T
s

∑m
i=1 h̃i(α)βi(u)du

)
.

Since exp
{

1
2

∫ T
0 η2(s, ξ)ds

}
< ∞ for every fixed ξ ∈ R, i.e. the Novikov condition is satisfied,

we have that

E
[
e
∫ T
0 η(s,ξ)dBs

∣∣∣ FΨ
t

]
= exp

{
1

2

∫ T

t
η2(s, ξ)ds+

∫ t

0
η(s, ξ)dBs

}
.
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Since the integrand g in (5.1) is in L2([0, T ]) ⊂ L2
H([0, T ]) (see [1] for the proof), we now

compare the prices in t = 0 for the standard and the long range dependent case.

(i) For the standard Brownian motion case, the price V0 in t = 0 is equal to

V0 =
∑

α,z∈{0,1}m
(−1)

m∑
i=1

αizi
m∏
i=1

z1−αi
i e

−
∫ T
0

m∑
i=1

h̃i(α)γi(u)du

× 1

2π

∫
R

exp

{
1

2

∫ T

0
η2(s, ξ)ds

}
f̂ψa (ξ, z)dξ;

(ii) For the fractional Brownian motion case, the price V H
0 in t = 0 is equal to

V H
0 =

∑
α,z∈{0,1}m

(−1)

m∑
i=1

αizi
m∏
i=1

z1−αi
i e

−
∫ T
0

m∑
i=1

h̃i(α)γi(u)du

× 1

2π

∫
R

exp

{
1

2
‖η(·, ξ)I(0,T )‖2H

}
f̂ψa (ξ, z)dξ.

The difference is indeed due to the fact that for Brownian motion we use the Itô integral and

obtain consequently an Itô term, whereas for fBm integration is pathwise. Anyway, we see that

V0 > V H
0 for every H > 1

2 . Of course, the long range dependence effect takes effect for prices Vt

for t > 0, but then numerical calculations are called for.
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