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1 Introduction

The famous Sklar’s theorem (see [54]) allows to build mattiate distributions us-
ing a copula and marginal distributions. For the basic thearcopulas see the first
chapter ([14]) or the books on copulas by Joe ([32]) and Ne(§®l]). Much em-
phasis has been put on the bivariate case and in [32] and [&1y examples of bi-
variate copula families are given. However the class of iwariate copulas utilized
so far has been limited. Especially financial applicatioeschflexible multivariate
dependence structures in the center of the distributionedisaw in tails. For value
at risk (for a definition see for example [44]) calculations meed flexibility in the
tails. One such measure are the upper and lower tail depeagamameter (for a
definition see [15]), which coincide for (reflection) symmetistributions. For ex-
ample the Gaussian copula allows for an arbitrary cortatiatrix with zero tail
dependence, while the the multivariate t-copula has onigglesdegree of freedom
parameter which drives the tail dependence parameter. tBetBaussian and the
t-copula are examples of an elliptical copula (see for eXarfi8] and [20]).

In addition to elliptical copulas attention has focused antivariate extensions
of the Archimedian copulas. In this class we have fully andialy nested Archi-
median copulas as discussed in [32], [56] and [52]. Hieliaeti\rchimedian cop-
ulas are considered in [52], while multiplicative Archiniga copulas are proposed
in [50] and [43]. However these extensions require addii@arameter restrictions
and thus result in reduced flexibility for modeling depenmkestructures.

The first topic of this chapter is to present a general coostnu method for
multivariate copulas using only bivariate copulas, whihalled a pair-copula con-
struction (PCC). This includes a simple derivation of PCQleis such as D-vines
and canonical vines. More general PCC's such as regulas \(see [4], [5] and

Claudia Czado
Department of Mathematics, Technische Universitat Migm; Garching, Germanye-mail:
cczado@ma.tum.de



2 Claudia Czado

[38]) are introduced and some of their properties are dssulisThe second topic is
to provide statistical inference methods, when only patemieivariate copulas are
used as building blocks in a PCC model. Here we present thetleans one based
on stepwise estimation, one on maximum likelihood and ona @ayesian ap-

proach. Applications of these methods in the literaturélvalgiven. The next topic

involves model selection within a specified PCC model. Aggilon areas will be

discussed next. We close with further extensions and oparigims.

2 Pair copula constructions of D-vine , canonical and regula
vine distributions

We assume that all joint, marginal and conditional distidms are absolutely con-
tinuous with corresponding densities. In 1996 Joe ([31))egthe first pair-copula
construction of a multivariate copula. He gave the congtvadn terms of distri-
bution functions, while Bedford and Cooke (see [4] and [5Pressed these con-
structions in terms of densities. They organized thesetnget®ons in a graphical
way involving a sequence of nested trees, which they cabgdlar vines. They
also identified two popular subclasses of PCC models, whiel ¢all D-vines and
canonical vines. Their results are developed in more dattik book by Kurowicka
and Cooke (see [38]). First we present easy derivations winBs and canonical
vines before we introduce general regular vines.

2.1 Pair-copula constructions of D-vine and canonical vine
distributions

The starting point for constructing multivariate distritaun is the well known recur-
sive decomposition of a multivariate density into prodwftsonditional densities.
For this let(Xy, ..., Xq) be a set of variables with joint distributidh and densityf,
respectively. Consider the decomposition

f(xla"'vxd) = f(Xd|X]_,"',Xd,]_)f(X]_,"',Xd,l)

d
:---ztgf(&lxlf-nml)xf(xl). 1)

HereF(-|-) and laterf (-|-) denote conditional cdf’s and densities, respectively.
As second ingredient we need Sklar’s theorem for dimengier? given by

f(x1,%2) = c12(F1(x1), F2(%2)) - fa(xa) - f2(x2), 2)

whereci,(-, ) is an arbitrary bivariate copula density. Using (2) we capress the
conditional density oK; givenX, as
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f(xe|x2) = cr2(F1(x1), Fa(x2)) - fa(x1). (3)
For distinct indices, j,iq1,---,ix withi < j andi; < --- < ix we use the abbrevi-
ation
Cijlig, ik = Ci,jlig, i (F O Xig, 5 X0 ) F (X X5+ 5%, ) (4)

Using (3) for the conditional distribution @Ky, X ) givenXy, - - - X1 we can express
f(%|x1, - ,%_1) recursively as

f(Xt|X1,"',Xt,1):Clt‘2 = 1><f(Xt|X27"'7Xt*1)

rlcst\yrl ] X Cro1)r % fi(x) (5)
Using (5) in (1) ands=i,t =i+ j it follows that
dt-2 d
f(X]_,.. » Xd rLl_LCSt‘S—Fl |_L |_| fk
d—1d—]

I_Ill_lq i) |(+1) - (i4— l rllfk (6)

Note that the decomposition (6) of the joint density coissidtpair-copula den-
sities ¢ jji, .. (+;-) evaluated at conditonal distribution functioRgx; X, ,-- - , %)
andF (xj|xi,, -, ) for specified indices, j,i1,--- ,ix and marginal densitieg;.
This is the reason why we call such a decomposipiain-copula decomposition.
This class of decompositions was named by Bedford and Co@keiae distribu-
tion.

A second class of decompositions is possible, when oneesp(8) to the con-
ditional distribution of (X;_1,%;) given Xy,---,X%_2 to expressf (X |x1, - ,%_1)
recursively. This yields the following expression

fO& X0, %) = Gogn t—2 X F(Xe[Xa, - % 2). (7)

Using (7) instead of (5) in (1) and setting=t —k, j +i =t results in the follow-
ing decomposition

f(X, .-, Xd)

d t—1
X L'lﬂcck,tl,.._’tkl X £ (%)
d t—1 .
lrL |_| G- Kt|1, t—k— 1‘| X klj
d—1d- )
[rll I_!CJ L, - l‘| % D

According to Bedford and Cooke this PCC is callezhaonical vine distribution.

(8)
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2.2 Regular vines distributions and copulas

Bedford and Cooke in [5] and [4] noticed that they can repreieese pair-copula
decompositions (6) and (8) graphical with a sequence oédestes with undirected
edges, which they call a vine tree. Edges in the trees dehetedices used for the
conditional copula densities. Following [38] we recall tbe convenience of the
reader the definition of a regular vine. According to Defmmité4.4 of [38] aregular
vine tree on d variables consists of connected trdgs - - Ty_1 with nodesN; and
edgess; fori =1,---,d — 1, which satisfy the following

1. Ty has nodedl = {1,--- ,d} and edgeg;.

2. Fori=2,---,d—1the tre€l; has noded\; = E;_;.

3. Two edges in tre@; are joined in tred; 1 if they share a common node in tree
Ti

The edges in tred; will be denoted byjk|D wherej < k andD is the con-
ditioning set. Note that in contrast to [38] we order the dboded set{j,k} to
make the order of the arguments in the bivariate copulasuenidD is the empty
set, we denote the edge ljly. The notation of an edgein T; will depend on the
two edges inT;_;, which have a common node ifi_;. Denote these edges by
a= j(a),k(a)|D(a) andb = j(b),k(b)|D(b) with V(a) := {j(a),k(a),D(a)} and
V(b) :={j(b),k(b),D(b)}, respectively. The nodesandb in treeT, are therefore
joined by edgee= j(e),k(e)|D(e), where

j(e) :=min{i:ie (V(a)uV(b))\D(e)}
k(e) :=max{i:i e (V(a)uV(b))\D(e)}
D(e) :=V(a)nV(b).

Two special vine tree specifications were identified by Beditmd Cooke, one
they calleddrawable vine trees or shortD-vine trees, while the other one is called
canonical vine trees or shortC-vine trees. They are defined as follows

A regular vine tree is called

e D-vinetreeif each node ifilf — 1 has at most 2 edges.
e C-vine tree if each treeT; has a unique node withh — i edges. The node with
d—1 edges in tred; is called theroot.

In Figure 1 a graphical representation of a D-vine tree indingensions is given,
while in Figure 2 we see a representation of a C-vine tree eikample the edge
e=14|23 in tre€Ts of Figure 1 is derived from edges= 13|2 withV (a) = {1, 2, 3}
andb = 24|13 withV (b) = {2,3,4}. Note thatD(e) = {2,3}, j(e) = 1 andk = 4.

To build up a statistical model on a regular vine tree with exeet. /" =
{Np,---,Ng_1} and edge set’ := {Ej,--- ,Eq_1} one associates each edge-
i(e),k(e)|D(e) in E with a bivariate copula density ¢ k(e)p(e)- LEt Xp(e) be the
sub random vector oX indicated by the indices containedD{e). A vine distri-
bution is defined as the distribution of the random vecXor= (Xy,---,Xq) with
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marginal densitiesy,k = 1,--- ,d and the conditional density 0K; e, X)) given
the variablesKp e, specified ag;) ke)p(e) for the regular vine tree with node set
/ and edge sef. In Theorem 4.2 of [38] it is proven that the joint density>ofs
uniquely determined and given by

d d-1
f(Xe, .., Xq) =[] (%) x C F (Xi(e |X F X , (9
(x1 ) ﬂ (%) il:lele_lli i©.kepe) (F(Xje Xpee), F (Xe Xoe)), (9)

wherexp e denotes the subvector rfindicated by the indices containedDye).
This is an analogue of the Hammersley-Clifford theorem farkbv random fields
(see [8]) to vine distributions.

For the D-vine tree in Figure 1 the corresponding vine distion has the joint
density given by

5
f(xa, %) = [[7] f(%)] - Cr2- C23- Cas
k=1

X C45-C132" C243 C354 * C1423" C25/34 " C15/234 (10)

while the corresponding joint density for the C-vine distition with tree represen-
tation (2) is given by

5
f(xa, %) = [[] fi(X)] - C12- C13- C14
kel

X +C15- Cp31 - Co4y1 - Co5j1 - C3412" C35/12 Ca5)123

O—— -6 T

12 23 34 45
T
12 23 34 45 2
<>13|2 P 2413 Y 35|4<>

1312 7 241357354 T,
g

151234

Fig. 1 A D-vine tree representation for= 5.
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Here we used the abbreviation defined in (4). Comparing @@p), we see that
(10) equals (6) fod = 5. Therefore we can identify (6) as the joint density of a
D-vine distribution. The same is true for (8), i.e. (8) is fbmt density of a C-vine
distribution in five dimensions. We can of course use vingidistions to construct
copulas, by just requiring that the marginal densities ina(@ univariate uniform
densities.

This construction of multivariate distributions and cagmils very general and
flexible, since we can use any bivariate copula as buildingkin the PCC model.
In contrast to the extended multivariate Archimedian capulo restriction to the
Archimedian pair-copulas or further parameter restricdiare necessary. In finance
the most commonly used pair-copulas are the Gaussian ¢apela-copula, the
Clayton copula and Gumbel copula (see for example [1] fonitefhs and proper-
ties). One problem with the multivariate t-copula in finadeipplications is that we
only have a single degree of freedom parameter which drivesdil dependence
of all pairs of variables. In [2] it was first noticed that a P@®0uld overcome this
problem and an application to financial stock data was gigefemonstrate the su-
perority of a D-vine copula with bivariate t-copulas as dinj blocks for the PCC
over a multivariate t-copula approach. PCC models have beepared to alterna-
tive copula based models in [19] and [7] and again the PCC m@deformed very
well among a large class of competitors.

To illustrate the model flexibility we consider a simple Dagitree in 3 dimen-
sions. Note that in three dimensions D-vines and C-vinesoidé. The correspond-
ing D-vine density with standard normal margins is therefgiven by

2311

@/@ 2511 15 T
S

2311 2511 Ts
35112
.m 451123 .ﬂ Ty

Fig. 2 A C-vine tree representation fdr= 5.
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C(Xl,Xz,X;g) = Clg((D(Xl), (D(Xz)) X ng(CD(Xz), (D(X;g))
x C132(F (X1, [%2), F (X3[%2)) X @(x1) X @(%2) x @(x3), ~ (11)

where®(-) andg(-) denote the standard normal cdf and pdf, respectively. Hiere t
pair-copulas 2, c23 andcyz, will be chosen as either a bivariate Clayt@(g)),
bivariate Gumbel®(a)) or bivariate FrankF (n)) copula. The corresponding pair
copula parameters a2 a andn, respectively. We will use for example the abbrevi-
ationDV(C(0.8),G(0.8),C(1)) to denote the D-vine copula density (11), wherg
isC(0.8), c23is G(0.8) andcy 3, isC(1). The bivariate marginal density foX;, Xz)
and(Xy, X3) are directly specified, while the bivariate marginal dgnfit (X3, X3)
needs to be computed by integrating (11) over the varigblén Figure 3 density
contours of( Xy, X3) are plotted for four different choices. We see that a largreta

of contour shapes are possible.

The tail behavior of vine copulas was investigated in [34].

In general the conditional pair-copula densities in (9) midepend on the con-
ditioning valuesx;,,--- ,x;,, however in this paper we assume the restriction that
Ci,jli1,.ix(~»-) do not depend o, ,---,X;,. This means that the decomposition (9)
captures the dependency on the conditioning values sdietygh the arguments

DV(C(0.8),G(0.8),C(1)) DV(G(0.8),G(0.5),C(1))

x3

2 3
|

x3

-2 -1 0

-3

Fig. 3 Density contours ofX1, X3) for different three dimensional D-vine distributions witan-
dard normal margins
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F(Xi[Xiy, -, %) andF(xj|xi,,---,%,). In a recent paper [24], the authors investi-
gate under which conditions the decomposition of the forpiid6three dimensions
satisfies the above restriction as well as what are the sfféthis restriction is
not satisfied on the value of risk. They claim that this restn is not so severe.
Therefore we consider in the following only decompositiomsvhich conditional
pair-copula densities do not depend on the conditioniniplaes.

For example [13] contains a regular vine density of the fd@ir{volving foreign
exchange rates. It also considers a C-vine model. Finallyveuat to mention that
two well known multivariate copulas can be recovered using ¢opulas. The first
one is the multivariate Gauss copula and the second oneisutiwariate t-copula,
which was shown in detail in Section 2 of [13].

3 Estimation methods for regular vine copulas

For estimation of regular vine parameters Kurowicka andikean [38] followed a
nonstandard way involving the determinant of the corretathatrix for the random
vector distributed according to a regular vine. Using hatg normal copulas with
conditional correlations in the specification of the PCC eladsults in a multivari-
ate normal distribution. Here one has to use the facts thaiapand conditional
correlations are equal for elliptical distributions (s&§ [and that conditional dis-
tributions of normals are normal with a covariance indegenaf the conditioning
value. Bedford and Cooke in [4] provided a one-to-one reteship between uncon-
ditional and partial correlations for Gaussian distribot. Further the determinant
of the correlation matrix can be expressed in terms of daztierelations. In the
case of Gaussian random vectors the distribution for therohéhant of an empiri-
cal version of the correlation matrix is known (see Theoreind [38]), however
bootstrapping would be necessary for other regular vineipation to determine
the distribution. Further it is unclear how useful the detierant of the induced cor-
relation matrix is for statistical inference.

Aas et.al. in [2] were the first to consider more standardredton methods
such as stepwise and maximum likelihood estimation (MLEjcw we will discuss
now. Emphasis here is on the estimation of vine copula paes)é.e we want to
estimate the parameters of the joint density (9), when aligimals are uniform
based on an i.i.d. sample from such a density.

Since we have an explicit expression for the joint densigylitkelihood is easily
derived (see [2] for explicit expressions for C- and D-vimpalas). These expres-
sions however involve conditional cdf’s, for which we neagressions as well. Joe
in [31] showed that fov € D andD_, :=D\ v

acxj ,XV‘D—V(F (XJ |XD—V)? F (XV|XD,V))

F(XJ|XD) = aF(XV|XD,V)

(12)

For the special case whele= {v} it follows that
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9Cyj % (F(Xj),F (%))
OF (xy) '

F(xjx) =

In the case of uniform margins this simplifies further for agraeterized copula cdf
CJV(XJ ,X\/) - CJV(XJ ,X\/| ejv) to

0C X',X 6
h(xj|xv,Bjv) i= w 13)

We can use (12) to express conditional cdf’'s whereontains more than one ele-
ment. Following [13] it follows forv € D

X
FOio) = [ e, (F(Ulx0.,). F(ixo.,)) (b0,

.
_ / 9°Cjup_, (F(uj[xp ). F (x/xp ) 9F (uj|xp_,)
OF (ujlxp ) OF (xv[Xp ) au;

duj

y
1 /‘ 9%Ciyp_, (F(ujlxo_,).F(x/[x0_,)) OF (ujlxp_,)
OF (xv|Xp_,) /| JF (uj|xp_,) ou;

de

a5 Civip_y (F(Uj 0, )-F (X0, )

0
= mcjv\o,v(':(xj|XD7V)7F(XV|XD7V))

0

= %ij\D,\,(F(XJ X0_); M) n=F (xylxo_,)

= h(F (XJ |XD—V)|F (XV|XD—V) | ejV\D,v)'

This shows that the conditional cdf’'s with conditioning etan be build up re-
cursively using thdn-function from conditional cdf’s with lower dimensionalico
ditioning set. Overall this allows an recursive determabf the likelihood. The
inverses of thesh-functions can be used to facilitate sampling from D and @&sin
using a conditional approach (see [2] and [40]).

However the number of parameters grows quadratically idiimensiord, since
there%’” different pair-copulas to be parametrized. Therefore iiseful to
consider a stepwise estimation approach, where we estifmatparameters from
the first tree to the last one sequentially. In an initial stspmate the parameters
corresponding to the pair-copulas in the first tree usingraathod you prefer. For
example the correlation paramefeof a bivariate t-copula pair is estimated using
Kendall'st and in second part the degree of freedom paramei®maximized us-
ing the estimateg. For the copula parameters identified in the second tredjmshe
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has to transform the data with théunction required for the appropriate conditional
cdf using estimated parameters to determine realizatieaded in the second tree.

For example we want to estimate the parameters of capyla First transform
the observation§uy t, Upt, Ugt,t = 1,--- ,n} tO Uyp 1= h(ugt|Uzy, 912) andugp; :=
h(uzt|uzg, 923), wheref1, and 8,3 are the estimated parameters in the first tree.
Now estimated; 3, based of{uy ¢, Uzz¢;t = 1,- -+, n}. Continue sequentially with
this procedure until all copula parameters of all trees atienated. Note for trees
T; with i > 2 recursive applications of thefunctions are needed to transform to the
appropriate conditional cdf.

This stepwise estimation gives parameter estimates, bédrsthe asymptotic
distribution of the stepwise estimates has not been detednitherefore the use
of these parameters as starting values is more appropimat@ntrast MLE’s of
the pair-copulas are efficient under regularity conditiamith asymptotic variance-
covariance given by the inverse of the Fisher informatiotrixidHowever it is diffi-
cult to determine the Fisher information matrix, so one usggneral the observed
Hessian matrix instead. Again the Hessian matrix corregipgrto a sample from
(9) is difficult to express analytically but simple to appimate numerically. It may
however happen that this numerical approximation mightynelt! a positive def-
inite variance-covariance matrix. In this case further etical manipulations are
necessary. This is the reason why in the first paper on ML asim ([2]) no esti-
mated standard errors where given. In subsequent paperfl@eand [19]) these
have been added. In most papers D- and C-vine copula panameteestimated, at
the moment only [13] considers a regular vine copula.

These difficulties have been noted by Min and Czado (see,[##j)ch in-
stead propose to follow a Bayesian approach. Here parasnaterestimated us-
ing Markov Chain Monte Carlo (MCMC) methods (see for exaniplg and they
employ the Metropolis Hastings algorithm (see [28] and J4&] D-vines with pair-
copulas to be chosen as a bivariate t-copula. Interval agtgrare provided by cred-
ible intervals. This approach can also be easily extendeniadible intervals for
functions of the copula parameters. Examples for such iumetare tail dependence
coefficients A - function of [21] and value at risk. In particular tie function can
be used to assess model fit. Credible intervals for the tpibddence coefficient for
of pairs with bivariate-copula and the correspondidgfunction are provided in
[47].

4 Model selection among vine specifications

The number of different D- and C-vines is very large. In [2]s4. al show that for
a C-vine decomposition ot nodes there ard! /2 distinct C-vine trees and this is
also the number of distinct D-vine trees. For regular vieesrthe number is even
larger (see [49]). This means that we need additional stradb select reasonable
vine trees. First it might be reasonable to restrict to C- Badne trees. A C-vine
tree might be reasonable if a there is a variable which dallesther variables. This
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might be the case if one considers foreign exchange ratef.dther cases a D-vine
tree might be enough to consider.

For the order in the trees corresponding to a D-vine copuetaal in [2] put
the strongest bivariate dependencies in the first tree dbthime tree specification.
Strongest bivariate dependencies within the copula Higion might be measured
by Kendall'st or the tail dependence coefficientwhich is a function of the chosen
bivariate copula.

Another approach is to choose a vine tree distribution withdmallest partial
correlation in the last tree. However this requires baki@{Gaussian tree distribu-
tion, since conditional correlations are only easily eatiea for a Gaussian distribu-
tion, where partial correlations and conditional coriielas are equal and the partial
correlations have a one-to-one correspondence to uneamalitorrelations. This
approach for Gaussian D-vine copulas has been describeddarple in Chapter 5
of [41]. For regular vines this problem has been consider¢86].

Once a vine tree specification is chosen one needs to sedggathcopula terms
of the vine distribution. For this Aas et. al. in [2] suggesfdllow a stepwise ap-
proach. First they consider the pairs of variables involivethe first tree and ap-
ply a goodness-of-fit (GOF) test (see [6] and [22] for a revivsuch tests) for
each such pair when the copula family varies and pick theljawhich gives the
best fit for this pair. Now transform the data in the way ddsaxlifor the stepwise
estimation and continue with the conditional pairs of thetrieee within the vine
specification. FoK pair-copula families this involves fitting and testikg< w
bivariate models. Mendes et.al. (see [45]) are using tkigveise approach for the
analysis of Brazilian financial stocks, while Shirmached &nirmacher in [53] use
bivariatechi? display to select the bivariate pair copula family. Whilestls a fea-
sible first approach, there are obvious problems with thécehaf the pair-copulas
in the higher trees, since the transformed data only givespgnoximation to the
conditional cdf’s. This uncertainty is ignored and it ineses as one moves up the
different trees. In addition the critical values of the G@Bts are difficult to obtain,
if the test is applied not directly on an i.i.d sample of thewa, but to rank trans-
formed standardized residuals after applying an apprpmiarginal model. In this
case bootstrapping might be needed.

If one wants to avoid this stepwise approach, one could attéonapply GOF
tests directly on the fulll dimensional sample. However if one allows for foral-

ternative families of pair copulas, this would involve ﬁgiKMg;l) models, which

is excessive even whefiandd are small. Alternatively we consider now Bayesian
approaches, which can traverse large model spaces withwinghto visit all mod-
els.

We start with the following subproblem: Once a vine tree #pmation is selected
one is interested in the possibility of reducing the vineribstion further by iden-
tifying (conditional) independencies present in the data.a vine distribution with
a single pair-copula family this means that we want to idgmgair-copula terms,
which can be replaced by a bivariate independence copuigtddk is easiest being
accomplished by using reversible jump MCMC (RIMCMC) firgadissed in [23].
This approach was followed by Min and Czado in [48] who inigege D-vines
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with bivariate t-copulas. The RIMCMC algorithm is develd@ed implemented
for arbitrary dimensions. In a second approach suggest&bith et. al. (see [55])
selection indicators for each pair-copula are introduceskiect between the cho-
sen pair-copula family and the independence copula. Agd&ayesian approach
is followed and an appropriate MCMC algorithm is developed55] the perfor-
mance of the method is tested when selection is betweenéndepce copulas and
either Gauss, Clayton or Gumbel pair copulas. It is evideait both the RIMCMC
or the selection indicator approach can be extended to ehbetveen different
pair-copula families and this is topic of current research.

5 Applications of vine distributions

One application area of vines is to positive definite magri@ed correlation matri-
ces. We have a one-to-one relationship between partial acongitional correla-
tions. Therefore the values of the partial correlationsuarstricted in[—1, 1] and
can be chosen independently, while still inducing positiedinite matrices. This
was used in applications to linear algebra (see [37] and [Rgndom generation
of correlation matrices are considered in [33] using D-giaed more general us-
ing regular vines in [42]. Random distributions of corraatmatrices are useful as
prior choices in a Bayesian setup. This choice was used in [41

Another area of applications are in the area of distribition a directed acyclic
graph (DAG) or some times also called Bayesian belief ndkwBBN). These
distributions are specified through conditional indepemgestatements described
through the graph. For Gaussian and discrete DAG's see tonple [11]. Models
for variables in0, 1] which are only characterized through possibly conditioaak
(Spearman’s) correlations on the arcs of the DAG are caltegbarametric BBN's
(see [39]). In [26] connections between nonparametric BB&d a series of D-
vine distributions are established. Choose for each ranielation a copula which
realizes all rank correlations in [-1,1] and where a zerd@orrelation induces in-
dependence. With this copula choice it is shown in [26] thatjbint distribution on
the BBN is uniquely induced by the rank correlations. In tasecof normal BBN's
the structure of the graph can be learned by removing aromgsk the determinant
of the rank correlation matrix determined by the partiaketations is close to the
empirical rank correlation matrix (see [27]). Note thattfzrand conditional rank
correlations are equal. Mixed continuous and discrete BRI discussed in [25].

Pair copula constructions have found their applicatioriséranalysis of financial
data. Here one starts with appropriate time series modelsasi ARMA-GARCH
or skewed-t GARCH models. The corresponding standardiesdluals of each
margin are now considered as an i.i.d sample over time. Therdiency across
margins is modeled with a a vine distribution. Here one cdiovoa parametric or
nonparametric approach to estimate marginal and coputargers. The simplest
estimation approach is a two step approach. For the firstetgmate marginal
parameters separately for each margin and form standdrdézsédualsi;. In the
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parametric approach the distribution of the standardiesitiuals for each margin

is assumed to be known. LEt(-|m) denote this distribution, Whelérn are the es-
timated marginal parameters for margitNow define the probability integral trans-
formsuj; ;= F*l(rit|9im). For the nonparametric approach one uses the empirical
distribution function of{ry;,t = 1,--- , T} instead ofF(-|6m). In both approaches
the datau; = (uy, -+ ,Uq),t =1,---, T is assumed to be an i.i.d sample from a reg-
ular vine distribution. In a second step the copula pararsei® estimated based on
the datau;,t = 1,---, T using one of the estimation methods discussed in (3). This
two-step estimation procedure using the nonparametrioagp has been followed
by [2] and [13], while the parametric approach was used by {8l [30] together
with the stepwise procedure for selecting and estimatiegctipula parameters. In
[10] also a parametric two step approach was followed in aregwitching setup
using the EM algorithm. A truncated C vine copula was intrehlin [29] and a
stepwise estimation procedure to estimate the C-vine peteaamis followed. The
usefulness of this formulation was demonstrated in a plaotfif over 90 stocks,
however standard errors are not provided.

Joint estimation approaches of both marginal and copulanpeters are rare.
First examples are D-vine copulas with pair t copula pai AR(1) margins are
investigated in [12], while Gaussian D-vines copulas wégression are treated in
[41]. In both papers a Bayesian approach was followed.

Finally a first application to a geostatistical continuouarkbv mesh model was
provided by [35] involving a 4 dimensional D-vine.

6 Summary and open problems

Pair copula constructions provide a powerful tool to cardtflexible multivariate
distributions which can be used to model complex dependsné&ispecially the
modeling power of financial statistical models is enormpustreased. While there
has been progress in developing inference methods metimads,needs to be done
in the area of estimation, model selection and adaptatiesplecial data structures.

In the area of estimation, the lack of standard errors forstiepwise estima-
tors of the copula parameters is evident. Here the apptepasymptotic theory
has to be developed and fast computation implementatiotohas provided. An-
other estimation problem is to be solved are fast joint esims of marginal and
copula parameters, since the now common two step estimaitgmedures are not
efficient. Here marginals models as applied in financialsttes need to be consid-
ered. For joint estimation the Bayesian approach seems tebmost promising.
For financial applications a joint Bayesian inference piesginatural tools to assess
the variability of value of risk estimates.

The problem of selecting the appropriate vine tree spetiicand the appropri-
ate pair copula family is a challenging problem area. Whilthie past the flexibility
was limited, the model flexibility is now so large, that ones @ consider additional
structures for the selection. Restrictions such as pravidetruncated canonical
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vines in [29] are promising but need to be fully explored. 8sign techniques such
as RIMCMC or model indicators need to be studied further éncibntext of se-
lecting pair copula families. Finally the problem of priind effective non-nested
model selection criteria needs to be considered.

Finally adaptation to special data structures will enhaheepplicability of this
model construction method. Here we name the necessitydw &ir time varying
copula parameters. First approaches of such models areigif29] and [30]. How-
ever only stepwise estimates without standard errors asgdwd, while full ML or
Bayesian estimates are not investigated. In insurancécagiphs one can is often
faced with multivariate counts such as claim counts or maiate zero truncated
claim severities. A sampling method involving vines for tiuariate counts has
been developed in [16] and [17]. To model dependencies amuiitivariate dis-
crete or censored variables using vine distributions idherdnteresting research
area. Finally the development of statistical models on lgsag geostatistical struc-
tures and their inference involving the pair-copula cangton method is an inter-
esting and challenging area.

Acknowledgements Claudia Czado is supported by the Deutsche Forschungsgscheit. (CZ86
1-3)

References

1. Aas, K.: Modelling the dependence structure of financsslets: A survey of four copulas.
Tech. Rep. SAMBA/22/04, Norsk Regnesentral (2004)

2. Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-coptastructions of multiple depen-
dence. Insurance, Mathematics and Economt4.82-198 (2009)

3. Baba, K., Sibuya, M.: Equivalence of partial and condisiiccorrelation coefficients. Journal
of Japanese Statistical Soci&y, 1-19 (2005)

4. Bedford, T., Cooke, R.M.: Probability density decomgiosifor conditionally dependent ran-
dom variables modeled by vines. Annals of Mathematics anifiéal Intelligence32, 245—
268 (2001)

5. Bedford, T., Cooke, R.M.: Vines - a new graphical modeldependent random variables.
Annals of Statistic80(4), 1031-1068 (2002)

6. Berg, D.: Copula goodness-of-fit testing: an overview poder comparison. The European
Journal of Finance pp. 1466—4364 (2009)

7. Berg, D., Aas, K.: Models for construction of higher-dims@nal dependence: A comparison
study (2009). Forthcoming in The European Journal of Fieanc

8. Besag, J.: Spatial interaction and the statistical amabf lattice systems. Journal of the Royal
Statistical Society, Series 8, 192—-236 (1974)

9. Chib, S.: Markov chain Monte Carlo methods: Computatiod imference. In: Handbook of
Econometrics, pp. 3569-3649. North Holland (2001)

10. Chollete, L., Heinen, A., Valdesogo, A.: Modeling imational financial returns with a mul-
tivariate regime switching copula (2008). Preprint

11. Cowell, R., Dawid, A., S., L., D., S.: Probabilistic netikks and experts systems. Springer,
New York (1999)

12. Czado, C., Gartner, F., Min, A.: Analysis of austrakdectricity loads using joint bayesian in-
ference of d-vines with autoregressive margins. Tech, Egmtrum Mathematik, Technische
Universitat Munchen (2009). URL http://www-m4.ma.tute/Papers/index.html



Pair-copula constructions of multivariate copulas 15

13.

14.

15.

16.

17.

18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

28.
29.
30.
. Joe, H.: Families of m-variate distributions with giveargins and m(m-1)/2 bivariate depen-
32.
33.
34.
35.
36.
37.

38.

Czado, C., Min, A., Baumann, T., Dakovic, R.: Pair-cgpudonstructions for mod-
eling exchange rate dependence (2008). Preprint, awailabider http://www-
m4.ma.tum.de/Papers/index.html

Durante, F., Sempi, C.: Copula theory: an introductianF. Durante, W. Hardle, P. Jaworki,
T. Rychlik (eds.) Workshop on Copula Theory and its Applimas, pp. ???—??? Springer,
Dortrecht (NL) (2010)

Embrechts, P., Lindskog, F., McNeil, A.: Modelling dedence with copulas and applications
to risk management. In: S.T.Rachev (ed.) Handbook of Heailgd Distributions in Finance.
Elsevier, North-Holland (2003)

Erhardt, V., Czado, C.: A method for approximately sangphigh-dimensional count vari-
ables with prespecified pearson correlation. (2008). regpavailable under http://www-
m4.ma.tum.de/Papers/index.html

Erhardt, V., Czado, C.: A method for approximately sangphigh-dimensional count vari-
ables with prespecified pearson correlation - a comparisonita (2008). Preprint, available
under http://www-m4.ma.tum.de/Papers/index.html

Fang, H.B., Fang, K., Kotz, S.: The meta-elliptical digttions with given marginals. Journal
of Multivariate Analysis82(1), 1-16 (2002)

Fischer, M., Kock, C., Schluter, S., Weigert, F.: Anpérnical analysis of multivariate copula
models. Quantitative Finance p. DOI 10.1080/1469768086@50 (2009)

Frahm, G., Junker, M., Szimayer, A.: Elliptical copudgplicability and limitations. Statist.
Probab. Lett63(3), 275-286 (2003)

Genest, C., Rivest, L.P.: Statistical inference pracesifor bivariate Archimedean copulas. J.
Amer. Statist. AssodB8(423), 1034-1043 (1993)

Genest, C., Rmillard, B., Beaudoin, D.: Omnibus gooshuédit tests for copulas: A review
and a power study. Insurance: Mathematics and Econofdick99-213 (2009)

Green, P.: Reversible jump markov chain monte carlo coatipn and Bayesian model deter-
mination. BiometrikeB2, 711-732 (1995)

Haff, I.H., Aas, K., Frigessi, A.: On the simplified paippula construction - simply useful or
too simplistic? Tech. rep., Norwegian Computing Centefp@2009)

Hanea, A., Kurowicka, D.: Mixed non-parametric conting and discrete bayesian belief net-
works. In: Advances in mathematical modeling for reliagillOS Press, Amsterdam (2008)
Hanea, A., Kurowicka, D., Cooke, R.: Hybrid method foantifying and analyzing bayesian
belief networks. Quality and Realiability Engineeriag(6), 709-729 (2006)

Hanea, A., Kurowicka, D., Cooke, R., Ababei, D.: Miningdavisualizing ordinal data
with non-parametric continuous bbn’s. Computational iStias and Data Analysis p.
doi:10.1016/j.csda.2008.09.032 (2008)

Hastings, W.: Monte Carlo sampling methods using Margloains and their applications.
Biometrika57, 97-109 (1970)

Heinen, A., Valdesogo, A.: Asymmetric capm dependeackafge dimensions: The canonical
vine autoregressive copula model (2008). Preprint

Heinen, A., Valdesogo, A.: Dynamic d vines (2009). Firepr

dence parameters. In: L. Riischendorf and B. Schweizer aridl Maylor (ed.) Distributions
with Fixed Marginals and Related Topics (1996)

Joe, H.: Multivariate Models and Dependence Concegiapfan & Hall, London (1997)
Joe, H.: Generating random correlation matrices basegadial correlations. Journal of
Multivariate Analysis97, 2177-2189 (2006)

Joe, H., Li, H., Nikoloulopoulos, A.: Tail dependencel &me copulas. Tech. rep., Department
of Mathematics, Washington State University, Pullman, W&A (2008)

Kolbjornsen, O., Stien, M.: The d-vine creation of n@ugsian random fields (2008). Preprint
Kurowicka, D.: Optimal truncation of vines (2009). Piap

Kurowicka, D., Cooke, R.: A parametrization of positd&finite matrices in terms of partial
correlation vines. Linear Algebra and its Applicatidi&, 225-251 (2003)

Kurowicka, D., Cooke, R.: Uncertainty analysis withih@jmensional dependence modelling.
Wiley, Chichester (2006)



16

39.

40.

41.

42.
43.
44,
45.

46.

47.
48.
49.

50.
. Nelson, D.: ARCH models as diffusion approximationsurdal of Econometric45, 7—38.

52.

53.

54.
55.

56.

Claudia Czado

Kurowicka, D., Cooke, R.M.: Distribution-free contmus bayesian belief. In: Modern statis-
tical and mathematical methods in reliabiliy. World Sciga{2005)

Kurowicka, D., Cooke, R.M.: Sampling algorithms for geating joint uniform distributions
using the vine-copula method. Computational Statistics&&aDAnalysisc1(6), 2889-2906
(2007)

Lanzendorfer, J.N.: Joint estimation of parameterauiftivariate normal regression with cor-
related errors using pair-copula constructions and anagijan to finance (2009). Diploma
Thesis, Center for Mathematical Sciences, Technischedwsitat Minchen

Lewandowski, D., Kurowicka, D., Joe, H.: Generatingd@n correlation matrices based on
vines and extended onion method. Journal of Multivariatal$sis100, 1989-2001 (2009)
Liebscher, E.: Modelling and estimation of multivagi@obpulas. Tech. rep., Working Paper,
University of Applied Sciences Merseburg, Germany (2006)

McNeil, A.J., Frey, R., Embrechts, P.: QuantitativekRvdanagement: Concepts, Techniques
and Tools. Princeton University Press (2006)

de Melo Mendes, B.V., Semeraro, M.M., Leal, R.C.: Paptdas modeling in finance. Tech.
rep., IM/COPPEAD, Federal University at Rio de Janeiro,zZBr@009)

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N.|Idie A.H., Teller, E.: Equations of
state calculations by fast computing machines. Journalhein@cal Phisic1, 1087-1092
(1953)

Min, A., Czado, C.: Bayesian inference for multivariatgulas using pair-copula construc-
tions (2008). Preprint, available under http://www-m4.taa.de/Papers/index.html

Min, A., Czado, C.: Bayesian model selection for mutigfe copulas using pair-copula con-
structions (2009). Preprint

Morales-Napoles, O., Cooke, R.M., Kurowicka, D.: Abthé¢ number of vines and regular
vines on n nodes (2009). Submitted to Discrete Applied Matitecs

Morillas, P.: A method to obtain new copulas from a givee.oMetrika61, 169-184 (2005)

(1990)

Savu, C., Trede, M.: Hierarchical Archimedean copuladnternational Conference on High
Frequency Finance, Konstanz, Germany, May (2006)

Schirmacher, D., Schirmacher, E.. Multivariate depeiwcé modeling using pair-
copulas. Tech. rep., Society of Acturaries: 2008 Entegpfésk Management Sympo-
sium, April 14-16, Chicago (2008). URL http://www.soa.bifgrary/monographs/other-
monographs/2008/april/2008-erm-toc.aspx

Sklar, A.: Fonctions dé repartition a n dimensiongets marges. Publ. Inst. Stat. Univ. Paris
8, 229-231 (1959)

Smith, M., Min, A., Czado, C., Almeida, C.: Modeling lahglinal data using a pair-copula
decomposition of serial dependence (2009). Preprint

Whelan, N.: Sampling from Archimedian copulas. Quatitie Financet, 339—-352 (2004)



