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1 Introduction

The famous Sklar’s theorem (see [54]) allows to build multivariate distributions us-
ing a copula and marginal distributions. For the basic theory on copulas see the first
chapter ([14]) or the books on copulas by Joe ([32]) and Nelson ([51]). Much em-
phasis has been put on the bivariate case and in [32] and [51] many examples of bi-
variate copula families are given. However the class of multivariate copulas utilized
so far has been limited. Especially financial applications need flexible multivariate
dependence structures in the center of the distribution as well as in tails. For value
at risk (for a definition see for example [44]) calculations we need flexibility in the
tails. One such measure are the upper and lower tail dependence parameter (for a
definition see [15]), which coincide for (reflection) symmetric distributions. For ex-
ample the Gaussian copula allows for an arbitrary correlation matrix with zero tail
dependence, while the the multivariate t-copula has only a single degree of freedom
parameter which drives the tail dependence parameter. Boththe Gaussian and the
t-copula are examples of an elliptical copula (see for example [18] and [20]).

In addition to elliptical copulas attention has focused on multivariate extensions
of the Archimedian copulas. In this class we have fully and partially nested Archi-
median copulas as discussed in [32], [56] and [52]. Hierarchical Archimedian cop-
ulas are considered in [52], while multiplicative Archimedian copulas are proposed
in [50] and [43]. However these extensions require additional parameter restrictions
and thus result in reduced flexibility for modeling dependence structures.

The first topic of this chapter is to present a general construction method for
multivariate copulas using only bivariate copulas, which is called a pair-copula con-
struction (PCC). This includes a simple derivation of PCC models such as D-vines
and canonical vines. More general PCC’s such as regular vines (see [4], [5] and
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[38]) are introduced and some of their properties are discussed. The second topic is
to provide statistical inference methods, when only parametric bivariate copulas are
used as building blocks in a PCC model. Here we present three methods one based
on stepwise estimation, one on maximum likelihood and one ona Bayesian ap-
proach. Applications of these methods in the literature will be given. The next topic
involves model selection within a specified PCC model. Application areas will be
discussed next. We close with further extensions and open problems.

2 Pair copula constructions of D-vine , canonical and regular
vine distributions

We assume that all joint, marginal and conditional distributions are absolutely con-
tinuous with corresponding densities. In 1996 Joe ([31]) gave the first pair-copula
construction of a multivariate copula. He gave the construction in terms of distri-
bution functions, while Bedford and Cooke (see [4] and [5]) expressed these con-
structions in terms of densities. They organized these constructions in a graphical
way involving a sequence of nested trees, which they called regular vines. They
also identified two popular subclasses of PCC models, which they call D-vines and
canonical vines. Their results are developed in more detailin the book by Kurowicka
and Cooke (see [38]). First we present easy derivations of D-vines and canonical
vines before we introduce general regular vines.

2.1 Pair-copula constructions of D-vine and canonical vine
distributions

The starting point for constructing multivariate distribution is the well known recur-
sive decomposition of a multivariate density into productsof conditional densities.
For this let(X1, ...,Xd) be a set of variables with joint distributionF and densityf ,
respectively. Consider the decomposition

f (x1, ...,xd) = f (xd |x1, · · · ,xd−1) f (x1, · · · ,xd−1)

= · · · =
d

∏
t=2

f (xt |x1, · · · ,xt−1)× f (x1). (1)

HereF(·|·) and laterf (·|·) denote conditional cdf’s and densities, respectively.
As second ingredient we need Sklar’s theorem for dimensiond = 2 given by

f (x1,x2) = c12(F1(x1),F2(x2)) · f1(x1) · f2(x2), (2)

wherec12(·, ·) is an arbitrary bivariate copula density. Using (2) we can express the
conditional density ofX1 givenX2 as
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f (x1|x2) = c12(F1(x1),F2(x2)) · f1(x1). (3)

For distinct indicesi, j, i1, · · · , ik with i < j andi1 < · · · < ik we use the abbrevi-
ation

ci, j|i1,··· ,ik := ci, j|i1,··· ,ik(F(xi|xi1, · · · ,xik),F(x j|xi1, · · · ,xik)). (4)

Using (3) for the conditional distribution of(X1,Xt) givenX2, · · ·Xt−1 we can express
f (xt |x1, · · · ,xt−1) recursively as

f (xt |x1, · · · ,xt−1) = c1,t|2,··· ,t−1× f (xt |x2, · · · ,xt−1)

= [
t−2

∏
s=1

cs,t|s+1,··· ,t−1]× c(t−1),t × ft(xt) (5)

Using (5) in (1) ands = i,t = i+ j it follows that

f (x1, . . . ,xd) = [
d

∏
t=2

t−2

∏
s=1

cs,t|s+1,··· ,t−1] · [
d

∏
t=2

c(t−1),t ][
d

∏
k=1

fk(xk)]

= [
d−1

∏
j=1

d− j

∏
i=1

ci,(i+ j)|(i+1)···,(i+ j−1)] · [
d

∏
k=1

fk(xk)] (6)

Note that the decomposition (6) of the joint density consists of pair-copula den-
sitiesci, j|i1,··· ,ik (·, ·) evaluated at conditonal distribution functionsF(xi|xi1, · · · ,xik )
andF(x j|xi1, · · · ,xik ) for specified indicesi, j, i1, · · · , ik and marginal densitiesfk.
This is the reason why we call such a decompositionpair-copula decomposition.
This class of decompositions was named by Bedford and Cooke aD-vine distribu-
tion.

A second class of decompositions is possible, when one applies (3) to the con-
ditional distribution of(Xt−1,Xt) given X1, · · · ,Xt−2 to expressf (xt |x1, · · · ,xt−1)
recursively. This yields the following expression

f (xt |x1, · · · ,xt−1) = ct−1,t|1,··· ,t−2× f (xt |x1, · · · ,xt−2). (7)

Using (7) instead of (5) in (1) and settingj = t−k, j+ i = t results in the follow-
ing decomposition

f (x1, ...,xd) = f (x1)×

[
d

∏
t=2

t−1

∏
k=1

ct−k,t|1,··· ,t−k−1× f (xt)

]

=

[
d

∏
t=2

t−1

∏
k=1

ct−k,t|1,··· ,t−k−1

]

× [
d

∏
k=1

fk(xk)]

=

[
d−1

∏
j=1

d− j

∏
i=1

c j, j+i|1,··· , j−1

]

× [
d

∏
k=1

fk(xk)]. (8)

According to Bedford and Cooke this PCC is called acanonical vine distribution.
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2.2 Regular vines distributions and copulas

Bedford and Cooke in [5] and [4] noticed that they can represent these pair-copula
decompositions (6) and (8) graphical with a sequence of nested trees with undirected
edges, which they call a vine tree. Edges in the trees denote the indices used for the
conditional copula densities. Following [38] we recall forthe convenience of the
reader the definition of a regular vine. According to Definition 4.4 of [38] aregular
vine tree on d variables consists of connected treesT1, · · ·Td−1 with nodesNi and
edgesEi for i = 1, · · · ,d −1, which satisfy the following

1. T1 has nodesN1 = {1, · · · ,d} and edgesE1.
2. Fori = 2, · · · ,d−1 the treeTi has nodesNi = Ei−1.
3. Two edges in treeTi are joined in treeTi+1 if they share a common node in tree

Ti

The edges in treeTi will be denoted byjk|D where j < k and D is the con-
ditioning set. Note that in contrast to [38] we order the conditioned set{ j,k} to
make the order of the arguments in the bivariate copulas unique. If D is the empty
set, we denote the edge byjk. The notation of an edgee in Ti will depend on the
two edges inTi−1, which have a common node inTi−1. Denote these edges by
a = j(a),k(a)|D(a) andb = j(b),k(b)|D(b) with V (a) := { j(a),k(a),D(a)} and
V (b) := { j(b),k(b),D(b)}, respectively. The nodesa andb in treeTi are therefore
joined by edgee = j(e),k(e)|D(e), where

j(e) := min{i : i ∈ (V (a)∪V(b))\D(e)}

k(e) := max{i : i ∈ (V (a)∪V(b))\D(e)}

D(e) := V (a)∩V(b).

Two special vine tree specifications were identified by Bedford and Cooke, one
they calleddrawable vine trees or shortD-vine trees, while the other one is called
canonical vine trees or shortC-vine trees. They are defined as follows

A regular vine tree is called

• D-vine tree if each node inT −1 has at most 2 edges.
• C-vine tree if each treeTi has a unique node withd − i edges. The node with

d−1 edges in treeT1 is called theroot.

In Figure 1 a graphical representation of a D-vine tree in fivedimensions is given,
while in Figure 2 we see a representation of a C-vine tree. Forexample the edge
e = 14|23 in treeT3 of Figure 1 is derived from edgesa = 13|2 withV (a) = {1,2,3}
andb = 24|3 with V (b) = {2,3,4}. Note thatD(e) = {2,3}, j(e) = 1 andk = 4.

To build up a statistical model on a regular vine tree with node setN :=
{N1, · · · ,Nd−1} and edge setE := {E1, · · · ,Ed−1} one associates each edgee =
j(e),k(e)|D(e) in Ei with a bivariate copula densityc j(e),k(e)|D(e). Let XD(e) be the
sub random vector ofX indicated by the indices contained inD(e). A vine distri-
bution is defined as the distribution of the random vectorX := (X1, · · · ,Xd) with
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marginal densitiesfk,k = 1, · · · ,d and the conditional density of(X j(e),Xk(e)) given
the variablesXD(e) specified asc j(e),k(e)|D(e) for the regular vine tree with node set
N and edge setE . In Theorem 4.2 of [38] it is proven that the joint density ofX is
uniquely determined and given by

f (x1, ...,xd) =
d

∏
r=1

f (xr)×
d−1

∏
i=1

∏
e∈Ei

c j(e),k(e)|D(e)(F(x j(e)|xD(e)),F(xk(e)|xD(e))), (9)

wherexD(e) denotes the subvector ofx indicated by the indices contained inD(e).
This is an analogue of the Hammersley-Clifford theorem for Markov random fields
(see [8]) to vine distributions.

For the D-vine tree in Figure 1 the corresponding vine distribution has the joint
density given by

f (x1, · · · ,x5) = [
5

∏
k=1

fk(xk)] · c12 · c23 · c34

× c45 · c13|2 · c24|3 · c35|4 · c14|23 · c25|34 · c15|234, (10)

while the corresponding joint density for the C-vine distribution with tree represen-
tation (2) is given by

f (x1, · · · ,x5) = [
5

∏
k=1

fk(xk)] · c12 · c13 · c14

× ·c15 · c23|1 · c24|1 · c25|1 · c34|12 · c35|12 · c45|123.

1      2              3                4                5

12    23                 34               45

12             23             34              45

13|2                24|3             35|4

13|2                     24|3                 35|4
14|23                  25|34 

14|23                 25|34

15|234

T
1

T
2

T
3

T
4

Fig. 1 A D-vine tree representation ford = 5.
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Here we used the abbreviation defined in (4). Comparing (10) to (6), we see that
(10) equals (6) ford = 5. Therefore we can identify (6) as the joint density of a
D-vine distribution. The same is true for (8), i.e. (8) is thejoint density of a C-vine
distribution in five dimensions. We can of course use vine distributions to construct
copulas, by just requiring that the marginal densities in (9) are univariate uniform
densities.

This construction of multivariate distributions and copulas is very general and
flexible, since we can use any bivariate copula as building block in the PCC model.
In contrast to the extended multivariate Archimedian copulas no restriction to the
Archimedian pair-copulas or further parameter restrictions are necessary. In finance
the most commonly used pair-copulas are the Gaussian copula, the t-copula, the
Clayton copula and Gumbel copula (see for example [1] for definitions and proper-
ties). One problem with the multivariate t-copula in financial applications is that we
only have a single degree of freedom parameter which drives the tail dependence
of all pairs of variables. In [2] it was first noticed that a PCCwould overcome this
problem and an application to financial stock data was given to demonstrate the su-
perority of a D-vine copula with bivariate t-copulas as building blocks for the PCC
over a multivariate t-copula approach. PCC models have beencompared to alterna-
tive copula based models in [19] and [7] and again the PCC models performed very
well among a large class of competitors.

To illustrate the model flexibility we consider a simple D-vine tree in 3 dimen-
sions. Note that in three dimensions D-vines and C-vines coincide. The correspond-
ing D-vine density with standard normal margins is therefore given by

T
1

T
2

T
3

T
4

34|12                 35|12

45|123

34|12

23|1 25|1

35|12

24|1

12
13

14

15
25|1

24|1

23|1

1

2 3

5

4

15

14

13
12

Fig. 2 A C-vine tree representation ford = 5.
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c(x1,x2,x3) = c12(Φ(x1),Φ(x2))× c23(Φ(x2),Φ(x3))

× c13|2(F(x1, |x2),F(x3|x2))×φ(x1)×φ(x2)×φ(x3), (11)

whereΦ(·) andφ(·) denote the standard normal cdf and pdf, respectively. Here the
pair-copulasc12,c23 andc13|2 will be chosen as either a bivariate Clayton (C(θ )),
bivariate Gumbel(G(α)) or bivariate Frank (F(η)) copula. The corresponding pair
copula parameters areθ ,α andη , respectively. We will use for example the abbrevi-
ationDV (C(0.8),G(0.8),C(1)) to denote the D-vine copula density (11), wherec12

isC(0.8), c23 is G(0.8) andc13|2 isC(1). The bivariate marginal density for(X1,X2)
and(X2,X3) are directly specified, while the bivariate marginal density for (X1,X3)
needs to be computed by integrating (11) over the variablex2. In Figure 3 density
contours of(X1,X3) are plotted for four different choices. We see that a large variety
of contour shapes are possible.

The tail behavior of vine copulas was investigated in [34].
In general the conditional pair-copula densities in (9) might depend on the con-

ditioning valuesxi1, · · · ,xik , however in this paper we assume the restriction that
ci, j|i1,··· ,ik(·, ·) do not depend onxi1, · · · ,xik . This means that the decomposition (9)
captures the dependency on the conditioning values solely through the arguments

Fig. 3 Density contours of(X1,X3) for different three dimensional D-vine distributions withstan-
dard normal margins
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F(xi|xi1, · · · ,xik ) andF(x j|xi1, · · · ,xik ). In a recent paper [24], the authors investi-
gate under which conditions the decomposition of the form (6) for three dimensions
satisfies the above restriction as well as what are the effects if this restriction is
not satisfied on the value of risk. They claim that this restriction is not so severe.
Therefore we consider in the following only decompositionsin which conditional
pair-copula densities do not depend on the conditioning variables.

For example [13] contains a regular vine density of the form (9) involving foreign
exchange rates. It also considers a C-vine model. Finally wewant to mention that
two well known multivariate copulas can be recovered using vine copulas. The first
one is the multivariate Gauss copula and the second one is themultivariate t-copula,
which was shown in detail in Section 2 of [13].

3 Estimation methods for regular vine copulas

For estimation of regular vine parameters Kurowicka and Cooke in [38] followed a
nonstandard way involving the determinant of the correlation matrix for the random
vector distributed according to a regular vine. Using bivariate normal copulas with
conditional correlations in the specification of the PCC model results in a multivari-
ate normal distribution. Here one has to use the facts that partial and conditional
correlations are equal for elliptical distributions (see [3]) and that conditional dis-
tributions of normals are normal with a covariance independent of the conditioning
value. Bedford and Cooke in [4] provided a one-to-one relationship between uncon-
ditional and partial correlations for Gaussian distributions. Further the determinant
of the correlation matrix can be expressed in terms of partial correlations. In the
case of Gaussian random vectors the distribution for the determinant of an empiri-
cal version of the correlation matrix is known (see Theorem 5.1 of [38]), however
bootstrapping would be necessary for other regular vine specification to determine
the distribution. Further it is unclear how useful the determinant of the induced cor-
relation matrix is for statistical inference.

Aas et.al. in [2] were the first to consider more standard estimation methods
such as stepwise and maximum likelihood estimation (MLE), which we will discuss
now. Emphasis here is on the estimation of vine copula parameters, i.e we want to
estimate the parameters of the joint density (9), when all marginals are uniform
based on an i.i.d. sample from such a density.

Since we have an explicit expression for the joint density the likelihood is easily
derived (see [2] for explicit expressions for C- and D-vine copulas). These expres-
sions however involve conditional cdf’s, for which we need expressions as well. Joe
in [31] showed that forv ∈ D andD−v := D\ v

F(x j|xD) =
∂ Cx j ,xv|D−v(F(x j|xD−v),F(xv|xD−v))

∂F(xv|xD−v)
. (12)

For the special case whereD = {v} it follows that
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F(x j|xv) =
∂ Cx j ,xv(F(x j),F(xv))

∂F(xv)
.

In the case of uniform margins this simplifies further for a parameterized copula cdf
C jv(x j,xv) = C jv(x j,xv|θ jv) to

h(x j|xv,θ jv) :=
∂ C j,v(x j,xv|θ jv)

∂xv
. (13)

We can use (12) to express conditional cdf’s whereD contains more than one ele-
ment. Following [13] it follows forv ∈ D

F(x j|xD) =

x j∫

−∞

c jv|D−v(F(u j|xD−v),F(xv|xD−v)) f (u j|xD−v)du j

=

x j∫

−∞

∂ 2C jv|D−v(F(u j|xD−v),F(xv|xD−v))

∂F(u j|xD−v)∂F(xv|xD−v)

∂F(u j|xD−v)

∂u j
du j

=
1

∂F(xv|xD−v)

x j∫

−∞

∂ 2C jv|D−v(F(u j|xD−v),F(xv|xD−v))

∂F(u j|xD−v)

∂F(u j|xD−v)

∂u j
︸ ︷︷ ︸

∂
∂ u j

C jv|D−v
(F(u j |xD−v ),F(xv|xD−v ))

du j

=
∂

∂F(xv|xD−v)
C jv|D−v(F(x j|xD−v),F(xv|xD−v))

=
∂

∂η
C jv|D−v(F(x j|xD−v),η)|η=F(xv|xD−v )

= h(F(x j|xD−v)|F(xv|xD−v)|θ jv|D−v).

This shows that the conditional cdf’s with conditioning setD can be build up re-
cursively using theh-function from conditional cdf’s with lower dimensional con-
ditioning set. Overall this allows an recursive determination of the likelihood. The
inverses of theseh-functions can be used to facilitate sampling from D and C vines
using a conditional approach (see [2] and [40]).

However the number of parameters grows quadratically in thedimensiond, since
there d×(d−1)

2 different pair-copulas to be parametrized. Therefore it isuseful to
consider a stepwise estimation approach, where we estimatethe parameters from
the first tree to the last one sequentially. In an initial stepestimate the parameters
corresponding to the pair-copulas in the first tree using anymethod you prefer. For
example the correlation parameterρ of a bivariate t-copula pair is estimated using
Kendall’sτ and in second part the degree of freedom parameterν is maximized us-
ing the estimatedρ . For the copula parameters identified in the second tree, onefirst
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has to transform the data with theh function required for the appropriate conditional
cdf using estimated parameters to determine realizations needed in the second tree.

For example we want to estimate the parameters of copulac13|2. First transform

the observations{u1,t ,u2,t ,u3,t ,t = 1, · · · ,n} to u1|2,t := h(u1,t |u2,t , θ̂ 12) andu3|2,t :=

h(u3,t |u2,t , θ̂ 23), whereθ̂ 12 and θ̂ 23 are the estimated parameters in the first tree.
Now estimateθ 13|2 based on{u1|2,t ,u3|2,t ; t = 1, · · · ,n}. Continue sequentially with
this procedure until all copula parameters of all trees are estimated. Note for trees
Ti with i ≥ 2 recursive applications of theh functions are needed to transform to the
appropriate conditional cdf.

This stepwise estimation gives parameter estimates, but sofar the asymptotic
distribution of the stepwise estimates has not been determined, therefore the use
of these parameters as starting values is more appropriate.In contrast MLE’s of
the pair-copulas are efficient under regularity conditionswith asymptotic variance-
covariance given by the inverse of the Fisher information matrix. However it is diffi-
cult to determine the Fisher information matrix, so one usesin general the observed
Hessian matrix instead. Again the Hessian matrix corresponding to a sample from
(9) is difficult to express analytically but simple to approximate numerically. It may
however happen that this numerical approximation might notyield a positive def-
inite variance-covariance matrix. In this case further numerical manipulations are
necessary. This is the reason why in the first paper on ML estimation ([2]) no esti-
mated standard errors where given. In subsequent papers (see [13] and [19]) these
have been added. In most papers D- and C-vine copula parameters are estimated, at
the moment only [13] considers a regular vine copula.

These difficulties have been noted by Min and Czado (see [47]), which in-
stead propose to follow a Bayesian approach. Here parameters are estimated us-
ing Markov Chain Monte Carlo (MCMC) methods (see for example[9]) and they
employ the Metropolis Hastings algorithm (see [28] and [46]) for D-vines with pair-
copulas to be chosen as a bivariate t-copula. Interval estimates are provided by cred-
ible intervals. This approach can also be easily extended tocredible intervals for
functions of the copula parameters. Examples for such functions are tail dependence
coefficients,λ - function of [21] and value at risk. In particular theλ - function can
be used to assess model fit. Credible intervals for the tail dependence coefficient for
of pairs with bivariatet-copula and the correspondingλ -function are provided in
[47].

4 Model selection among vine specifications

The number of different D- and C-vines is very large. In [2] Aas et. al show that for
a C-vine decomposition ond nodes there ared!/2 distinct C-vine trees and this is
also the number of distinct D-vine trees. For regular vine trees the number is even
larger (see [49]). This means that we need additional structure to select reasonable
vine trees. First it might be reasonable to restrict to C- andD-vine trees. A C-vine
tree might be reasonable if a there is a variable which drivesall other variables. This
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might be the case if one considers foreign exchange rates. Inall other cases a D-vine
tree might be enough to consider.

For the order in the trees corresponding to a D-vine copula Aas et. al in [2] put
the strongest bivariate dependencies in the first tree of theD-vine tree specification.
Strongest bivariate dependencies within the copula distribution might be measured
by Kendall’sτ or the tail dependence coefficientλ , which is a function of the chosen
bivariate copula.

Another approach is to choose a vine tree distribution with the smallest partial
correlation in the last tree. However this requires basically a Gaussian tree distribu-
tion, since conditional correlations are only easily estimated for a Gaussian distribu-
tion, where partial correlations and conditional correlations are equal and the partial
correlations have a one-to-one correspondence to unconditional correlations. This
approach for Gaussian D-vine copulas has been described forexample in Chapter 5
of [41]. For regular vines this problem has been considered in [36].

Once a vine tree specification is chosen one needs to select the pair-copula terms
of the vine distribution. For this Aas et. al. in [2] suggest to follow a stepwise ap-
proach. First they consider the pairs of variables involvedin the first tree and ap-
ply a goodness-of-fit (GOF) test (see [6] and [22] for a reviewof such tests) for
each such pair when the copula family varies and pick the family which gives the
best fit for this pair. Now transform the data in the way described for the stepwise
estimation and continue with the conditional pairs of the next tree within the vine
specification. ForK pair-copula families this involves fitting and testingK× d×(d−1)

2
bivariate models. Mendes et.al. (see [45]) are using this stepwise approach for the
analysis of Brazilian financial stocks, while Shirmacher and Shirmacher in [53] use
bivariatechi2 display to select the bivariate pair copula family. While this is a fea-
sible first approach, there are obvious problems with the choice of the pair-copulas
in the higher trees, since the transformed data only gives anapproximation to the
conditional cdf’s. This uncertainty is ignored and it increases as one moves up the
different trees. In addition the critical values of the GOF tests are difficult to obtain,
if the test is applied not directly on an i.i.d sample of the copula, but to rank trans-
formed standardized residuals after applying an appropriate marginal model. In this
case bootstrapping might be needed.

If one wants to avoid this stepwise approach, one could attempt to apply GOF
tests directly on the fulld dimensional sample. However if one allows for forK al-

ternative families of pair copulas, this would involve fitting K
d×(d−1)

2 models, which
is excessive even whenK andd are small. Alternatively we consider now Bayesian
approaches, which can traverse large model spaces without having to visit all mod-
els.

We start with the following subproblem: Once a vine tree specification is selected
one is interested in the possibility of reducing the vine distribution further by iden-
tifying (conditional) independencies present in the data.For a vine distribution with
a single pair-copula family this means that we want to identify pair-copula terms,
which can be replaced by a bivariate independence copula. This task is easiest being
accomplished by using reversible jump MCMC (RJMCMC) first discussed in [23].
This approach was followed by Min and Czado in [48] who investigate D-vines
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with bivariate t-copulas. The RJMCMC algorithm is developed and implemented
for arbitrary dimensions. In a second approach suggested bySmith et. al. (see [55])
selection indicators for each pair-copula are introduced to select between the cho-
sen pair-copula family and the independence copula. Again aBayesian approach
is followed and an appropriate MCMC algorithm is developed.In [55] the perfor-
mance of the method is tested when selection is between independence copulas and
either Gauss, Clayton or Gumbel pair copulas. It is evident that both the RJMCMC
or the selection indicator approach can be extended to choose between different
pair-copula families and this is topic of current research.

5 Applications of vine distributions

One application area of vines is to positive definite matrices and correlation matri-
ces. We have a one-to-one relationship between partial and unconditional correla-
tions. Therefore the values of the partial correlations areunstricted in[−1,1] and
can be chosen independently, while still inducing positivedefinite matrices. This
was used in applications to linear algebra (see [37] and [37]). Random generation
of correlation matrices are considered in [33] using D-vines and more general us-
ing regular vines in [42]. Random distributions of correlation matrices are useful as
prior choices in a Bayesian setup. This choice was used in [41].

Another area of applications are in the area of distributions on a directed acyclic
graph (DAG) or some times also called Bayesian belief network (BBN). These
distributions are specified through conditional independence statements described
through the graph. For Gaussian and discrete DAG’s see for example [11]. Models
for variables in[0,1] which are only characterized through possibly conditionalrank
(Spearman’s) correlations on the arcs of the DAG are called nonparametric BBN’s
(see [39]). In [26] connections between nonparametric BBN’s and a series of D-
vine distributions are established. Choose for each rank correlation a copula which
realizes all rank correlations in [-1,1] and where a zero rank correlation induces in-
dependence. With this copula choice it is shown in [26] that the joint distribution on
the BBN is uniquely induced by the rank correlations. In the case of normal BBN’s
the structure of the graph can be learned by removing arcs as long as the determinant
of the rank correlation matrix determined by the partial correlations is close to the
empirical rank correlation matrix (see [27]). Note that partial and conditional rank
correlations are equal. Mixed continuous and discrete BBN’s are discussed in [25].

Pair copula constructions have found their applications inthe analysis of financial
data. Here one starts with appropriate time series models such as ARMA-GARCH
or skewed-t GARCH models. The corresponding standardized residuals of each
margin are now considered as an i.i.d sample over time. The dependency across
margins is modeled with a a vine distribution. Here one can follow a parametric or
nonparametric approach to estimate marginal and copula parameters. The simplest
estimation approach is a two step approach. For the first stepestimate marginal
parameters separately for each margin and form standardized residualsrit . In the
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parametric approach the distribution of the standardized residuals for each margin
is assumed to be known. LetFi(·|θ̂ m) denote this distribution, wherêθ m

i are the es-
timated marginal parameters for margini. Now define the probability integral trans-
forms uit := F−1(rit|θ̂

m
i ). For the nonparametric approach one uses the empirical

distribution function of{rit ,t = 1, · · · ,T} instead ofFi(·|θ̂ m). In both approaches
the dataut = (u1t , · · · ,udt),t = 1, · · · ,T is assumed to be an i.i.d sample from a reg-
ular vine distribution. In a second step the copula parameters are estimated based on
the dataut ,t = 1, · · · ,T using one of the estimation methods discussed in (3). This
two-step estimation procedure using the nonparametric approach has been followed
by [2] and [13], while the parametric approach was used by [45] and [30] together
with the stepwise procedure for selecting and estimating the copula parameters. In
[10] also a parametric two step approach was followed in a regime switching setup
using the EM algorithm. A truncated C vine copula was introduced in [29] and a
stepwise estimation procedure to estimate the C-vine parameters is followed. The
usefulness of this formulation was demonstrated in a portfolio of over 90 stocks,
however standard errors are not provided.

Joint estimation approaches of both marginal and copula parameters are rare.
First examples are D-vine copulas with pair t copula pairs and AR(1) margins are
investigated in [12], while Gaussian D-vines copulas with regression are treated in
[41]. In both papers a Bayesian approach was followed.

Finally a first application to a geostatistical continuous Markov mesh model was
provided by [35] involving a 4 dimensional D-vine.

6 Summary and open problems

Pair copula constructions provide a powerful tool to construct flexible multivariate
distributions which can be used to model complex dependencies. Especially the
modeling power of financial statistical models is enormously increased. While there
has been progress in developing inference methods methods,more needs to be done
in the area of estimation, model selection and adaptation the special data structures.

In the area of estimation, the lack of standard errors for thestepwise estima-
tors of the copula parameters is evident. Here the appropriate asymptotic theory
has to be developed and fast computation implementation hasto be provided. An-
other estimation problem is to be solved are fast joint estimators of marginal and
copula parameters, since the now common two step estimationprocedures are not
efficient. Here marginals models as applied in financial statistics need to be consid-
ered. For joint estimation the Bayesian approach seems to bethe most promising.
For financial applications a joint Bayesian inference provides natural tools to assess
the variability of value of risk estimates.

The problem of selecting the appropriate vine tree specification and the appropri-
ate pair copula family is a challenging problem area. While in the past the flexibility
was limited, the model flexibility is now so large, that one has to consider additional
structures for the selection. Restrictions such as provided by truncated canonical
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vines in [29] are promising but need to be fully explored. Bayesian techniques such
as RJMCMC or model indicators need to be studied further in the context of se-
lecting pair copula families. Finally the problem of prividing effective non-nested
model selection criteria needs to be considered.

Finally adaptation to special data structures will enhancethe applicability of this
model construction method. Here we name the necessity to allow for time varying
copula parameters. First approaches of such models are given in [29] and [30]. How-
ever only stepwise estimates without standard errors are provided, while full ML or
Bayesian estimates are not investigated. In insurance applications one can is often
faced with multivariate counts such as claim counts or multivariate zero truncated
claim severities. A sampling method involving vines for multivariate counts has
been developed in [16] and [17]. To model dependencies amongmultivariate dis-
crete or censored variables using vine distributions is another interesting research
area. Finally the development of statistical models on graphs or geostatistical struc-
tures and their inference involving the pair-copula construction method is an inter-
esting and challenging area.
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