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Abstract

Ordinal stochastic volatility (OSV) models were recently developed and fitted by Müller
and Czado (2008) to account for the discreteness of financial price changes, while allowing
for stochastic volatility (SV). The model allows for exogenous factors both on the mean and
volatility level. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is followed
to facilitate estimation in these parameter driven models. In this paper the applicability of
the OSV model to financial stocks with different levels of trading activity is investigated and
the influence of time between trades, volume, day time and the number of quotes between
trades is determined. In a second focus we compare the performance of OSV models to SV
models by developing model selection criteria. This analysis shows that the discreteness of
price changes should not be ignored.
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1 Introduction

Modeling price changes in financial markets is a challenging task especially when models have to
account for salient features such as fat tail distributions and volatility clustering. An additional
difficulty is to allow for the discreteness of price changes. These are still present after the US
market graduation to decimalization of possible tick sizes. Recently, Müller and Czado (2008)
introduced the class of ordinal stochastic volatility (OSV) models, which utilizes the advantages
of stochastic volatility (SV) models (see Ghysels, Harvey, and Renault (1996) and more lately
Shephard (2006)) such as fat tails and persistence through autoregressive terms in the volatility
process, while adjusting for the discreteness of the price changes.

OSV models are based on a threshold approach, where the hidden continuous process follows
a SV model, thus providing a more realistic extension of the ordered probit model suggested
by Hausman et al. (1992). In addition we allow for exogenous variables both on the mean and
variance level of the hidden process. Parameter estimation in OSV models using maximum
likelihood is not feasible, since first the hidden SV process has no closed form of the likelihood
and second the threshold approach induces the need to evaluate multidimensional integrals
with dimension equal to the length of the financial time series. Therefore Müller and Czado
(2008) follow a Bayesian approach. Here Markov Chain Monte Carlo (MCMC) methods allow for
sampling from the posterior distributions of model parameters and the hidden process variables.

While Müller and Czado (2008) provided the model specification, developed and implemented
the necessary estimation techniques, this paper explores the applicability of the OSV model to
financial stocks with different levels of trading activity. Especially, we investigate which exoge-
nous factors such as volume, daytime, time elapsed between trades and the number of quotes
between trades have influence on the mean and variance level of the hidden process and thus
on the discrete price changes. A second focus of this paper is the comparison of OSV and SV
model specifications to assess how large the gain of the OSV over the SV model is.

Alternative discrete price change models include rounding approaches and decomposition ap-
proaches. For the rounding approach Harris (1990) models discrete prices by assuming constant
variances of the underlying efficient price, while Hasbrouck (2000) models efficient prices for
bid and ask prices separately using GARCH dynamics for the volatility of the effcient price
processes. Hasbrouck (2000) proposes to use non-Gaussian, non-linear state space estimation of
Kitagawa (1987). Later works of Manrique and Shephard (1997), Hasbrouck (1999), Hasbrouck
(2004a) and Hasbrouck (2004b) also use MCMC techniques for estimation.

A second class of models to deal with discrete price changes are decomposition models, where the
price change is assumed to be a product of three random variables, namely price change indicator,
its direction and the size of the price change. Rydberg and Shephard (2003) and Liesenfeld
et al. (2006) follow this approach. Russell and Engle (2005) introduce a joint model of price
changes and time elapsed between trades (duration) where price changes follow an autoregressive
conditional multinomial (ACM) model and durations the autoregressive conditional duration
(ACD) model of Engle and Russell (1998). A common feature of these models is that the time
dependence is solely induced by lagged endogenous variables, while our OSV specification allows
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for parameter driven time dynamics.

The paper is organized as follows: Section 2 introduces OSV and SV specifications and its
estimation using MCMC methods. It also considers the problem of model selection among OSV,
among SV and between OSV and SV models. The data application to three NYSE stocks with
different trading levels from the TAQ data base are given in Section 3. Special emphasis is given
to model interpretation and model selection. The paper closes with a summary and outlines
further research.

2 Ordinal stochastic volatility models

2.1 Model specification and interpretation

As introduced by Müller and Czado (2008) we consider the following stochastic volatility model
for ordinal valued time series {Yti , i = 1, · · · , I}. In this model the response Yti with K possible
values is viewed as a censored observation from a hidden continuous variable Y ∗

ti which follows
a stochastic volatility model, i.e.

Yti = k ⇔ Y ∗
ti ∈ [ck−1, ck) ,(2.1)

Y ∗
ti = x′

tiβ + exp(h∗
ti/2)ε∗ti ,

h∗
ti = z′tiα + φ(h∗

ti−1
− z′ti−1

α) + ση∗ti ,

where c0 = −∞ < c1 < · · · < cK−1 < cK = +∞ are unknown threshold parameters. Further
xti and zti are p and q dimensional covariate vectors on the hidden mean and log volatility
level, respectively. Associated with these covariate vectors are unknown regression parameters β

and α, respectively. For t0 we assume z0 := (0, ..., 0)′ and h∗
0 follows a known distribution. The

error terms ε∗ti and η∗ti are assumed i.i.d. standard normal and independent of each other. The
model specified by (2.1) is denoted by OSV (X1, · · · , Xp;Z1, · · · , Zq). For identifiability reasons
we need to fix a threshold parameter, i.e. we set c1 = 0. Further, φ is an unknown autocorrelation
parameter and σ2 an unknown variance parameter on the hidden log volatility scale.

To interpret such a model , denote the mean and variance of the hidden process at ti by µti and
σ2

ti , respectively. As µti is increased holding σ2
ti fixed, we see that the probability of a large (small)

category is increased (decreased). For fixed µti , we see that if σ2
ti is increased the probability of

extreme categories is increased. These two situations are illustrated in Figure 1.

Further the OSV model allows to quantify the probability for observing a specific category at
time ti given by

p1
ti := P (Yti = 1) = Φ

(
c1 − x′

tiβ

exp(h∗
ti
)

)
pk

ti := P (Yti = k) = Φ
(

ck − x′
tiβ

exp(h∗
ti
)

)
− Φ

(
ck−1 − x′

tiβ

exp(h∗
ti
)

)
, k = 2, · · · ,K − 1

pK
ti := P (Yti = K) = 1− Φ

(
cK−1 − x′

tiβ

exp(h∗
ti
)

)
,
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Figure 1: Category probabilities (visualized as area under the curve between adjacent threshold
bounds) as mean and variance of a hidden N(µ, σ2) process varies
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where Φ() denotes the cumulative distribution function of a standard normal random variable.
Therefore the model is able to identify time points where there is a large probability of extreme
small or large category labels. Note that no symmetry assumptions about the occurrence of
large/small categories are present in the model specification.

We conclude this subsection by presenting the ordinary stochastic volatility model. For a real
valued time series {Y c

ti , i = 1, · · · , I}, we assume the following model specification

Y c
ti = x′

tiβ + exp(hti/2)εti(2.2)

hti = z′tiα + φ(hti−1 − z′ti−1
α) + σηti ,

where xti ,β, zti ,α, φ and σ2 are specified as in the OSV model. For the error terms εti and ηti

we assume i.i.d. standard normal and independence between εti and ηti . The model specified by
(2.2) we denote by SV (X1, · · · , Xp;Z1, · · · , Zq).

In our application we use OSV (X1, · · · , Xp;Z1, · · · , Zq) models for the category labels of the
associated price change classes, while SV (X1, · · · , Xp;Z1, · · · , Zq) models are used for modeling
directly the observed price changes.

2.2 Bayesian inference for OSV and SV models

Bayesian inference for the SV models was thoroughly investigated in Chib et al. (2002). They
used an estimation procedure based on a state space approximation which we now just recall
briefly. Obviously, in model (2.2) one can equivalently write

log
(
Y c

ti − x′
tiβ

)2 = hti + log ε2ti .

Kim et al. (1998) have shown that the distribution of log ε2ti can be approximated very well by a
seven-component mixture of normals. In particular, one can assume log ε2ti ≈

∑7
k=1 qku

(k)
ti

where
u

(k)
ti

is normally distributed with mean mk and variance v2
k independent of ti. Moreover, the

random variables {u(k)
ti
| i = 1, · · · , I, k = 1, · · · , 7} are independent. The quantity qk denotes

the probability that the mixture component k occurs. These probabilities are also independent
of t and are given in Chib et al. (2002), Table 1, together with the corresponding means and
variances. Let sti ∈ {1, · · · , 7} denote the component of the mixture that occurs at time ti and
let π(sti) denote the prior for sti , where π(sti =k) = qk. Then, by setting Ỹ c

ti := log
(
Y c

ti − x′
tiβ

)2,
one arrives at

Ỹ c
ti = hti + u

(sti )
ti

which, together with the second equation of (2.2), gives the desired state space representation.

The inference for the OSV models is even more complicated, since a straight-forward extension
of algorithm by Chib et al. (2002) shows an unacceptable bad mixing of the chains. Therefore,
Müller and Czado (2008) developed a grouped-move multigrid Monte Carlo (GM-MGMC) al-
gorithm which exhibits fast convergence of the produced Markov chains. Since the SV model
given by (2.2) is a submodel of the OSV model, we use the same sampling scheme also for the
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SV model, of course reduced by the sampling of the cutpoints which do not appear in the SV
model, and the variables Y ∗

ti , i = 1, · · · , I, which are observed in the SV case.

Each iteration of the GM-MGMC sampler consists of three parts. In the first part, the parameter
vector β is drawn in a block update from a (p+1)-variate normal distribution, the latent variables
Y ∗

ti , i = 1, · · · , I, from truncated univariate normals, and the cutpoints ck, k = 2, · · · ,K − 1,

from uniform distributions. In the second part, the grouped move step is performed. Here one
draws a transformation element γ2 from a Gamma distribution and updates β, (Y ∗

t1 , · · · , Y ∗
tI

),
and c by multiplication by the element γ =

√
γ2. The third part starts with computation of the

state space approximation, i.e. by computing Ỹ ∗
ti = log(Y ∗

ti − x′
tiβ)2 for i = 1, · · · , I. Then sti ,

i = 1, · · · , I, are updated in single updates, and (α, φ, σ) by a Metropolis-Hastings step. Finally,
the log volatilities h∗

t1 , · · · , h∗
tI

are drawn in one block using the simulation smoother of De Jong
and Shephard (1995). For more details on the updates we refer to Müller and Czado (2008).

For the Bayesian approach one also has to specify the prior distributions for c, β, h∗
0, α, φ, and

σ. Assuming prior independence the joint prior density can be written as

π(c,β, h∗
0,α, φ, σ) = π(c)π(β)π(h∗

0)π(α1) · · ·π(αq)π(φ)π(σ).

For β a multivariate normal prior distribution is chosen, for h∗
0 the Dirac measure at 0, and for

the remaining parameters uniform priors. In particular,

π(c) = I{0<c2<···<cK−1<C}, π(β) = Np+1(β |b0, B0), π(h∗
0) = I{h∗0=0},

π(αj) = I(−Cα,Cα)(αj), j = 1, · · · , q, π(φ) = I(−1,1)(φ), π(σ) = I(0,Cσ)(σ),

where C > 0, Cα > 0, and Cσ > 0 are (known) hyperparameters, as well as the mean vector b0

and the covariance matrix B0.

2.3 Model selection between OSV models

Reasonable model specifications will be models where credible intervals do not contain the zero
for all parameters. However model selection among such reasonable models is difficult since the
likelihood cannot be evaluated simply for OSV models, thus the often used deviance information
criteria (DIC) of Spiegelhalter et al. (2002) or score measures discussed in Gneiting and Raftery
(2007) cannot be computed directly. Therefore we consider the following simple model selection
criteria.

To choose among OSV models we first derive estimates of the ordinal categories for each ti

based on the MCMC iteration values. Note that the hidden observed volatilities are individually
updated for each ti, but it would be prohibitive to store all MCMC iterates for h∗

ti , since the
number of time points is too large in the applications considered. Therefore we keep only the
average value of the hidden log volatilities at ti over all MCMC iterations. These averages we
denote by ĥ∗

ti . These are used to derive fitted hidden process values. Let βr,αr, σr, φr and
cr
k, k = 2, · · · ,K − 1 the rth MCMC iterate of β,α, σ, φ and ck, k = 2, · · · ,K − 1, respectively

for r = 1, · · · , R. The average hidden log volatilities ĥ∗
ti give now rise to fitted hidden process

variables y∗rti defined by
y∗rti := x′

tiβ
r + exp(ĥ∗

ti/2)ε∗rti ,
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where ε∗rti are i.i.d. standard normal observations. Finally find category k such that y∗rti ∈
[cr

k−1, c
r
k) and set

yr
ti := k.

The ordinal category at time ti is now fitted by the empirical median of {yr
ti , r = 1, · · · , R},

which we denote as ŷti .

To construct interval estimates for the ordinal categories we define

y∗rti,1−α := x′
tiβ

r + exp(ĥ∗
ti/2)z1−α

y∗rti,α := x′
tiβ

r − exp(ĥ∗
ti/2)zα,

where zβ is the β quantile of a standard normal distributed random variable. Then we find
categories k1−α such that y∗rti,1−α ∈ [cr

k−1, c
r
k) and kα such that y∗rti,α ∈ [cr

k−1, c
r
k), respectively,

and set
yr

ti,1−α := k1−α and yr
ti,α := kα.

The interval estimate for a category at a time ti is now defined as the interval [ŷti,α, ŷti,1−α]
where ŷti,α(ŷti,1−α) is the empirical median of {yr

ti,α, r = 1, · · · , R}({yr
ti,1−α, r = 1, · · · , R}).

Alternatively we could consider a 100(1 − α)% credible interval given by [ŷB
ti,α, ŷti,1−α], where

ŷB
ti,α(ŷB

ti,1−α) is the empirical α quantile ((1−α) quantile) of {yr
ti , r = 1, · · · , R}. Since the fitted

category yr
ti of the rth MCMC iterate takes on only a few values, the empirical α and (1 − α)

quantiles are not well defined. Therefore we will not follow this approach.

To choose among several OSV specifications we now count the times the observed category
coincides with the fitted category as well as how many times the interval estimate covers the
observed category. We choose the model with the highest correctly fitted and covered categories
as the best model. Note that the observed coverage percentage is not identical with 100(1−α) for
the α value used in the construction of the interval estimates, since category values for different
time points are dependent.

2.4 Model selection between SV models

A similar approach as for the OSV models is followed for the SV models. First let ĥc
ti denote

the average value of all log volatilities over all MCMC iterations. Again let βr,αr, σr, φr and
cr
k, k = 2, · · ·K− 1 the rth MCMC iterate of β,α, σ, φ and ck, k = 2, · · · ,K− 1 for r = 1, · · · , R

for the SV model, respectively. Define

yc,r
ti

:= x′
tiβ

r + exp(ĥc
ti/2)εr

ti

yc,r
ti,1−α := x′

tiβ
r + exp(ĥc

ti/2)z1−α

yc,r
ti,α

:= x′
tiβ

r − exp(ĥc
ti/2)zα,

where εr
ti are i.i.d. standard normal. Now determine the median of {yc,r

ti
, r = 1, · · · , R}, {yc,r

ti,α
, r =

1, · · · , R} and {yc,r
ti,α

, r = 1, · · · , R}, and denote them by ŷc
ti , ŷ

c
ti,α and ŷc

ti,1−α, respectively. Since
ŷc

ti is real-valued, it is not informative to count the times the observed value is equal the fitted
value ŷc

ti for all ti, we only count the number of times the observed value is covered by the
interval [ŷc

ti,α, ŷc
ti,1−α] for all ti.
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2.5 Model selection between OSV and SV models

The coverage percentage by the interval estimate for the OSV and SV, respectively, is used as
a measure how good the model explains the observed values. A larger percentage gives a better
fit.

Minimum Median Maximum

number of trades per day 28.00 52.50 133.00
price 2.44 4.31 5.31

FMT volume per trade 100.00 1000.00 122400.00
price difference between ti−1 and ti −0.25 0.00 0.12
time difference between ti−1 and ti 0.00 192.00 4001.00

number of quotes between ti−1 and ti 0.00 1.00 24.00

number of trades per day 796.00 1348.00 2056.00
unit price 38.06 46.19 53.94

Agilent volume per trade 100.00 500.00 247000.00
price difference between ti−1 and ti −0.69 0.00 0.50
time difference between ti−1 and ti 0.00 11.00 276.00

number of quotes between ti−1 und ti 0.00 1.00 14.00

number of trades per day 1937.00 2478.00 3091.00
unit price 91.62 99.44 104.30

IBM volume per trade 100.00 1000.00 225000.00
price difference between ti−1 and ti −0.81 0.00 0.88
time difference between ti−1 and ti 0.00 7.00 150.00

number of quotes between ti−1 and ti 0.00 1.00 24.00

Table 1: Observed characteristics of the FMT, Agilent and IBM stocks between Nov. 1 - 30,
2000

3 Application

3.1 Data

To investigate the gain of the OSV model over a corresponding SV model for the price changes
we selected 3 stocks traded at the NYSE, reflecting stocks which are traded at a low, medium
and high level. In particular we chose the Fremont General Corporation (FMT), the Agilent
Technologies (Agilent) and the International Business Machine Cooperation (IBM) from the
TAQ data base for a low, medium and high level of trading, respectively. The data was collected
between November 1-30, 2000 excluding November 23, 24 (thanksgiving) and between 9:30am
until 4 pm to avoid opening and closing effects.

Table 1 gives trading characteristics for the three stocks during the investigated time period.
It illustrates the different levels of trading activity. Further the absolute size of extremal price
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changes is increased as trading activity is increased, indicating a higher volatility for higher
traded stocks. As expected the median time between trades decreases as the level of trading
increases. The same is true for the maximum time between trades. For the number of quotes
between trades we see a different behavior; while the medium number of quotes remains constant,
the maximal number of quotes is the same for low and high trading stocks, while it is lower for
medium traded stocks. A similar behavior is observed for volume.

To illustrate the severe discreteness of the observed price changes we recorded the number of oc-
currences of tick changes of size ≤ − 3

16 ,− 2
16 ,− 1

16 , 0, 1
16 , 2

16 ,≥ 3
16 together with their percentages.

For each of the tick change size we associate a category label necessary for the OSV formulation
also given in Table 2. We observe that the observed price changes are quite symmetric around
0 during the investigated time period and that a zero price change is observed most often.

price difference <= −3/16 −2/16 −1/16 0 1/16 2/16 >=3/16

category 1 2 3 4 5 6 7
FMT frequency 3 25 229 755 227 28 0

percent 0.002 0.019 0.181 0.596 0.179 0.023 0

category 1 2 3 4 5 6 7
Agilent frequency 196 939 4662 16599 4747 863 216

percent 0.007 0.033 0.165 0.588 0.168 0.031 0.008

IBM category 1 2 3 4 5 6 7
frequency 585 3090 10251 22286 11161 2546 613
percent 0.012 0.061 0.203 0.441 0.221 0.05 0.012

Table 2: Observed price changes together with category label, frequency and percent for the
FMT, Agilent and IBM stocks from Nov. 1-30, 2000

The considered OSV and SV models allow for covariates on the mean and volatility level. To
get an idea of possible day time effects we record the observed median values of the number
of trades, price, volume, price change and time between trades (see Table 3), respectively. All
stocks show larger (smaller) time intervals between trades during midday (opening and closing
times), however the median price change is constant over the day time indicating no effect
on the mean level of the hidden process. With regard to the volatility we also recorded the
minimal and maximal price changes during trading hours in Table 4. Here we see less volatility
changes for different trading hours for FMT and Agilent stocks compared the the IBM stock.
This indicates a possible day time effect on the volatility level for IBM stocks, which is detected
by a corresponding OSV model specification.

Comparing Table 3 with Table 4 we might identify covariates on the volatility level. For example
the median volume value exhibits a similar pattern as the pattern of volatility changes for the
FMT and IBM stocks, indicating that volume has some explanatory power for the volatility of
the price changes. For Agilent stocks the patterns of volume and volatility of the price changes do
not match as well. For the other covariates the identification is less pronounced, so we consider
them all as potentially useful covariates and let the statistical models used later identify them.
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day time 9:30-10 10-11 11-12 12-1 1-2 2-3 3-4

no. of trades 120.00 412.00 366.00 322.00 344.00 394.00 530.00
price 4.50 4.19 4.25 4.25 4.50 4.62 4.19

FMT volume 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00
price change 0.00 0.00 0.00 0.00 0.00 0.00 0.00

time diff. 89.00 176.00 210.00 256.00 182.50 208.00 165.00
no. of quotes 1.00 1.00 1.00 2.00 1.00 1.00 1.00

no. of trades 2543.00 4860.00 4260.00 3474.00 3461.00 3974.00 4898.00
price 46.50 46.56 46.12 46.25 45.88 46.12 46.25

Agilent volume 600.00 600.00 500.00 500.00 500.00 500.00 500.00
price change 0.00 0.00 0.00 0.00 0.00 0.00 0.00

time diff. 7.00 10.00 11.00 12.00 12.00 11.00 10.00
no. of quotes 1.00 1.00 1.00 1.00 1.00 1.00 1.00

no. of trades 4935.00 9165.00 7450.00 5643.00 5731.00 7479.00 9143.00
price 99.19 99.56 99.50 99.69 99.69 99.44 99.25

IBM volume 1300.00 1000.00 800.00 600.00 700.00 800.00 1000.00
price change 0.00 0.00 0.00 0.00 0.00 0.00 0.00

time diff. 6.00 6.00 7.00 9.00 9.00 7.00 6.00
no. of quotes 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3: Observed median number of trades, price, volume, price change, time between trades
and number of quotes between trades for different trading hours of the FMT, Agilent and IBM
stock between Nov. 1 -30, 2000

day time 9:30-10 10-11 11-12 12-1 1-2 2-3 3-4

FMT Min. price change −0.12 −0.12 −0.12 −0.25 −0.19 −0.12 −0.12
Max. price change 0.12 0.12 0.12 0.12 0.12 0.12 0.12

Agilent Min. price change −0.38 −0.31 −0.25 −0.69 −0.31 −0.25 −0.50
Max. price change 0.50 0.38 0.31 0.31 0.25 0.44 0.44

IBM Min. price change −0.81 −0.50 −0.25 −0.56 −0.25 −0.31 −0.50
Max. price change 0.88 0.62 0.31 0.62 0.25 0.38 0.56

Table 4: Minimal and maximal price changes for different trading hours of the FMT, Agilent
and IBM stock between Nov. 1-30, 2000
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3.2 OSV models

As response we choose the category corresponding to the price change at trading time ti denoted
by yti . Since the current price is highly dependent on the previous price we model this dependency
by letting the current price change category depend also on its previous one. This is the only
significant covariate on the mean level and we denote it by LAG1. We allow for an intercept
parameter on the mean level. For possible covariates on the volatility level we use volume (V),
daytime (D), time elapsed between trades (T) and the number of quotes between trades (Q). For
numerical stability we use centered and standardized versions of these variables in our analysis.
Further no intercept term is included for the linear predictor z′tiα to avoid non identifiability.

For all three stocks we run a variety of models involving V,D,T and Q as well as quadratic
functions of these. In the following we only present models where all covariates are significant,
i.e. their individual 80% credible interval does not contain zero. For all models we run 20000
MCMC iterations of the GM-MGMC algorithm. Appropriate burnin values were determined
using trace plots. Further the estimated autocorrelations among the MCMC iterations suggested
a subsampling of every 20th iteration.

Fremont General Cooperation

The left panel of Table 5 presents the estimated posterior means and medians of each para-
meter together with a 80% credible interval for the subsampled MCMC iterations after burnin.
Estimated posterior densites for all OSV (1, LAG1;V, T ) parameters given in Figure 2. We see
symmetric behavior of the posteriors for the cutpoint parameters and regression parameters and
skewed distributions for σ and φ. The posterior density estimates for the remaining two OSV
specification show a similar behavior and are therefore obmitted.

Interpreting the results for the OSV specifications, we see that a higher previous price change
category decreases the probability of a lower current price change category compared to the
case where a lower previous price change category is observed. A higher volume, a larger time
interval between trades and a larger number of quotes increase the hidden log volatility, thus
the probability of observing an extreme positive or negative price change is increased.

It remains to choose among these OSV specifications. Since OSV (1, LAG1;V, T )
(OSV (1, LAG1;T,Q)) is nested within OSV (1, LAG1;V, T,Q), the significance of the param-
eter estimates established by the credible intervals indicate that OSV (1, LAG1;V, T,Q) is the
preferred model specification. This is also confirmed, when we consider first the fitted price
change categories (see Section 2.3) and compare them to the observed price categories. Sec-
ondly we determine fitted interval bounds for the price change category and check how many
times they are covering the observed price change category. The percentage of correctly fit-
ted categories is 59.67%, 59.43% and 59.75% for the OSV (1, LAG1;V, T ), OSV (1, LAG1;T,Q)
and OSV (1, LAG1;V, T,Q) model, respectively. The corresponding values for the percentage of
correctly covered categories are 96.45%, 96.37% and 96.53%, respectively. This shows a slight
preference for the large model.
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Figure 2: Estimated posterior density for OSV (1, LAG1;V, T ) parameters for FMT stocks
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OSV (1, LAG1;V, T ) SV (1;V, T )
Parameter 10% 90% Median Mean 10% 90% Median Mean

φ 0.64 0.89 0.80 0.78 0.75 0.79 0.77 0.77
σ 0.32 0.70 0.47 0.49 9.17 11.86 9.90 10.21
c2 1.25 1.72 1.47 1.48
c3 2.50 2.98 2.72 2.73
c4 3.73 4.29 3.99 4.00
c5 4.88 5.68 5.24 5.26
1 4.11 4.86 4.46 4.47 1.1−6 7.1−6 4.1−6 4.1−6

LAG1 −0.33 −0.23 −0.28 −0.28
V 1.86 7.83 4.66 4.79 14.14 24.96 19.48 19.51
T 3.45 9.46 6.32 6.39 25.09 36.75 31.09 31.04

OSV (1, LAG1;V,Q) SV (1;V,Q)

φ 0.44 0.85 0.74 0.69 0.75 0.79 0.77 0.77
σ 0.39 0.93 0.58 0.63 9.18 11.82 9.94 10.19
c2 1.47 2.00 1.72 1.73
c3 2.78 3.42 3.07 3.08
c4 4.01 4.73 4.34 4.36
c5 5.21 6.20 5.65 5.68
1 4.45 5.38 4.87 4.89 1.1−6 7.1−6 4.1−6 4.1−6

LAG1 −0.34 −0.24 −0.30 −0.29
V 1.49 7.57 4.76 4.64 13.67 25.19 19.28 19.44
Q 1.72 6.84 4.24 4.27 15.44 26.29 21.36 21.10

OSV (1, LAG1;V, T,Q) SV (1;V, T,Q)

φ 0.72 0.91 0.83 0.82 0.76 0.79 0.77 0.77
σ 0.26 0.58 0.40 0.42 9.12 11.71 9.88 10.11
c2 1.01 1.58 1.24 1.27
c3 2.14 2.84 2.42 2.46
c4 3.38 4.13 3.71 3.74
c5 4.52 5.45 4.94 4.96
1 3.77 4.65 4.18 4.19 1.1−6 7.1−6 4.1−6 4.1−6

LAG1 −0.33 −0.22 −0.27 −0.27
V 1.87 7.54 4.58 4.59 13.82 24.53 19.71 19.35
T 1.55 6.42 4.02 4.00 15.06 26.38 20.73 20.74
Q 3.63 8.93 6.26 6.30 25.13 36.67 31.00 30.98

Table 5: Estimated posterior means, medians and quantiles of three OSV (left panel) and three
SV (right panel) model specifications with significant parameters fitted for FMT stocks based
on the subsampled MCMC iterations after burnin
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Agilent Technologies

For the Agilent stock we found only a single OSV specification with significant parameter esti-
mates, whose summary statistics are given in the left panel of Table 6. It is a different specifi-
cation as for FMT stocks. While the effect of the previous price change category for the Agilent
stocks are similar to the one from the FMT stocks, the size of σ is larger and the hidden log
volatilities are stronger autocorrelated. A notable difference is the effect of the number of quotes
between trades on the price change categories. Here the parameter estimate has a negative sign
thus the probability of extreme price change categories is decreased when the number of quotes
is increased.

OSV (1, LAG1;T,Q) SV (1;T )
Parameter 10% 90% Median Mean 10% 90% Median Mean

φ 0.80 0.84 0.82 0.82 .74 .80 .77 .77
σ 0.46 0.52 0.49 0.49 9.12 10.37 9.67 9.72
c2 1.28 1.33 1.30 1.30
c3 2.24 2.31 2.28 2.28
c4 3.42 3.52 3.47 3.47
c5 4.39 4.52 4.46 4.46
c6 5.36 5.56 5.47 5.47
1 3.68 3.81 3.74 3.74 1.1−6 7.1−6 4.1−4 3.6−6

LAG1 −0.23 −0.21 −0.22 −0.22
T 22.12 27.43 24.78 24.80 62.57 181.79 121.86 121.89
Q −10.11 −5.25 −7.64 −7.64

Table 6: Estimated posterior means, medians and quantiles of the OSV (1, LAG1;T,Q) (left
panel) and SV (1;T ) fitted for Agilent stocks based on subsampled MCMC iterations after
burnin

.

International Business Machines Cooperation

For the highly traded IBM stocks we have two OSV model specification where all parameter esti-
mates are significant (see the left panel of Table 7). The effect of the number of quotes is similar
to the medium traded Agilent stock. The full specification also includes significant negative day-
time parameter, indicating a lower probability of extreme price change categories for later in the
day than in the morning. However the percentage of correctly fitted response categories is 41.54
% for the OSV (1, LAG1;V,Q) model compared to 41.48 % for the OSV (1, LAG1;V, T,Q,D)
model. Also the percentage of correctly covered response categories is 92.94 % for the for the
OSV (1, LAG1;V,Q) model compared to 92.93 % for the OSV (1, LAG1;V, T,Q,D) model. Both
model fit measures show a slight preference for the simpler OSV model specification.

In summary, we see different OSV model specification occur for the different stocks. While there
is a negative parameter estimate for the number of quotes between for medium and highly traded
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stocks, the opposite is true for the less traded FMT stock. Therefore the probability of extreme
price changes is decreased for high and medium level traded stocks when the number of quotes
increases between trades, while increased for low level traded stocks. In addition, the level of
trading influences the magnitude of autocorrelation present in the hidden log volatilities. It
increases as the level of trading increases. Daytime effects on the hidden volatility for the price
change categories are neglible in the stocks we have investigated. The effect of time elapsed
between trades also depends on the level of trading. A higher trading level decreases the size
of the corresponding regression parameter for the hidden log volatility, which induces that the
probabilities of extreme price changes is decreased for larger time intervals. The effect of the
trading level on the influence of volume is less pronounced. The positive regression coefficient for
volume in the hidden log volatilities induces a larger hidden volatility for larger volume trades,
which results in higher probabilities for the occurrence of extreme price change categories. This
effect is somewhat increased when the trading level is increased.

3.3 SV models

For the SV setup we use the observed price changes as response and ignore their discrete nature.
For each of the three stocks we investigated different SV specification. A first difference to the
OSV specifications are that none of the covariates LAG1, V, T, Q, and D for the mean level
are significant. Therefore all SV models include only an intercept parameter, which is significant
but very close to zero. For the log volatilities we find significant covariates, which we present in
the following. Again we run 20000 MCMC iterations and determine appropriate burnin values
and subsampling rates.

Fremont General Corporation

Three significant SV specifications were found for the FMT stocks and the results are sum-
marized in the right panel of Table 5. The highest coverage percentage is achieved using the
SV (1;V, T,Q), which we select as best model among the SV models for the FMT stocks.

Agilent Technologies

For the Agilent stocks only a single SV specification produces significant parameter estimates
and the results are presented in the right panel of Table 6. From this we see that only the
time elapsed between trades has a significant effect on the price changes. A larger time interval
between trades produces a larger volatility, i.e. extreme price changes become more likely.

International Business Machines Cooperation

For the highly traded only the SV (1;V, T ) produces significant posterior parameter estimates.
The results presented in right panel of Table 7 show that both volume and time elapsed between
trades increase the volatility, thus making more extreme price changes more likely.
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OSV (1, LAG1;V,Q)
Parameter 10% 90% Median Mean 10% 90% Median Mean

φ 0.93 0.94 0.94 0.94
σ 0.20 0.23 0.21 0.21
c2 0.93 0.95 0.94 0.94
c3 1.65 1.69 1.67 1.67
c4 2.52 2.57 2.54 2.54
c5 3.33 3.40 3.37 3.37
c6 4.10 4.21 4.16 4.16
1 3.04 3.12 3.08 3.08

LAG1 −0.25 −0.24 −0.24 −0.24
V 5.54 10.25 7.98 7.98
Q −9.17 −5.07 −7.12 −7.12

OSV (1, LAG1;V, T,Q,D) SV (1;V, T )

φ 0.92 0.94 0.93 0.93 .67 .69 .68 .68
σ 0.21 0.24 0.22 0.23 .07 .14 .09 .10
c2 −8.37 −3.90 0.92 0.91
c3 −35.08 −22.16 1.68 1.68
c4 0.89 0.93 2.53 2.53
c5 1.66 1.70 3.38 3.38
c6 2.50 2.56 4.20 3.38
1 3.04 3.12 3.08 3.08 1.9−5 7.5−4 3.9−4 3.9−4

LAG1 −0.25 −0.24 −0.24 −0.24
V 5.22 9.76 7.43 7.46 .54 9.6 4.91 4.99
T 33.36 38.85 36.08 36.02 23.15 37.59 29.28 29.99
Q −8.37 −3.90 −6.06 −6.07
D −35.08 −22.16 −28.12 −28.26

Table 7: Estimated posterior means, medians and quantiles of two OSV (left panel) and one
SV (right panel) model specifications with significant parameters fitted for IBM stocks based on
recorded MCMC iterations
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3.4 Comparison between OSV and SV models

We now compare by using the coverage percentages for all selected OSV and SV models given
in Table 8. From the table we see that there is a clear preference for the OSV specifications for
Agilent and IBM stocks, while for the FMT stock a slight preference for the SV specification
is visible. A graphical illustration of this is given in Figure 3 where the interval estimates are
plotted for the last 100 observation together with the observed values.

OSV SV

FMT OSV (1, LAG1;V, T,Q) SV (1, LAG1;V, T,Q)
1223/1267 = 96.53 % 1267/1267 = 100.00%

Agilent OSV (1, LAG1;T,Q) SV (1;T )
26738/28222 = 94.74 % 20980/28222 = 74.34 %

IBM OSV (1, LAG1;V,Q) SV (1;V, T )
46965/50532 = 92.94 % 42811/50532 = 84.72 %

Table 8: Percentage of correctly covered observations of different OSV and SV specifications for
FMT, Agilent and IBM stocks

As a final comparison we estimate posterior densities of the volatilities for each price change
category using the competing OSV and SV specifications for all three stocks. As expected the
OSV specification nicely identify different volatility patterns. In particular extreme price cate-
gories correspond to larger volatilities. In contrast the competing SV specifications are not able
to identfy these patterns for FMT and Agilent stocks.
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Figure 3: Fitted categories and fitted price differences of OSV and SV model of the last 100
observations together with interval estimates for FMT (top row), Agilent (middle row) and IBM
(bottom row) stocks, respectively
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Figure 4: Estimated posterior densities of the (hidden) volatilities for each category of OSV and
SV model for FMT (top row), Agilent (middle row) and IBM (bottom row) stocks, respectively
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4 Summary and discussion

In this paper we presented the results of a Bayesian analysis of two model class specifications
for financial price changes. Estimation is facilitated using MCMC methods. The OSV specifica-
tion explicitly accounts for the discrete values of the price changes, while the SV specification
ignores it. The OSV model identifies the previous price change, while the SV fails to identify
this influence. In addition we see that volume, time between trades and the number of quotes
between trades are important factors determining the volatility. Useful model specifications de-
pend on the trading activity of the stock. In particular a higher number of quotes between
trades increases the volatility for low traded stocks, while the opposite pattern is observed for
stocks which are mediumly and highly traded. As expected a larger duration between trades
increases the volatility. The coefficient of volume in the log volatility regression is lower than
the one corresponding of time between trades, indicating that time between trades influences
the volatility more than volume. For this comparison we need the fact that we use centered
and standardized covariates. A quadratic day time effect was not significant indicating that a
corresponding volatility smile was not present in the data.

When comparing the OSV and SV models we see that the OSV models perform better than the
the SV models with regard to the coverage proportion of interval estimates. More precise model
comparison criteria for comparing non nested models with numerical intractable likelihoods in
a Bayesian setup are needed and subject to current research.

Finally, the OSV model specifications can clearly identify volatility differences between the
different price change classes, while the SV specifications might fail to do so.

Overall we conclude that the discreteness of the price changes does matter and any useful model
has to account for this discreteness. In the future we want to investigate the predictive capability
of the OSV model.
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