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Abstract Dependence modelling and estimation is a key issue in the assessment
of financial risk. It is common knowledge meanwhile that the multivariate normal
model with linear correlation as its natural dependence measure is by no means an
ideal model. We suggest a large class of models and a dependence function, which
allows us to capture the complete extreme dependence structure of a portfolio. We
also present a simple nonparametric estimation procedure of this function. To show
our new method at work we apply it to a financial data set of highfrequency stock
data and estimate the extreme dependence in the data. Among the results in the
investigation we show that the extreme dependence is the same for different time
scales. This is consistent with the result on high frequencyFX data reported in
Hauksson et al. (2001). Hence, the two different asset classes seem to share the same
time scaling for extreme dependency. This time scaling property of high frequency
data is also explained from a theoretical point of view.

AMS 2000 Subject Classifications:primary: 62G32, 62H12; secondary: 62E20,
62P05.

JEL Classifications:C14, C51.

Keywords:Risk management, extreme risk assessment, high-frequencydata, multi-
variate extreme value statistics, multivariate models, tail dependence function.

Erik Brodin
Department of Mathematical Sciences, Chalmers Universityof Technology, SE-412 96 Göteborg,
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1 Multivariate risk assessment for extreme risk

Estimation of dependence within a portfolio based on high-frequency data faces
various problems:

• data are not normal: they are skewed and heavy-tailed
• one-dimensional data are uncorrelated but not iid
• multivariate high-frequency data are not synchronised
• data are discrete-valued for a very high frequency
• most likely there is microstructure noise in the data
• there is seasonality in the data
• higher moments may not exist
• the multivariate distribution may not be elliptical
• dependence may not be symmetric

We are interested here in the influence of the multivariate dependence within the
portfolio. We first recall that under the condition that the portfolio P/L follows a
multivariate normal distribution and, if there is no serialdependence, the portfolio
P/L standard deviationσ is calculated by the square root of its variance

σ2 =
n

∑
i=1

w2
i σ2

i + ∑
i6= j

wiwj σiσ jρi j , (1.1)

where the portfolio consists ofn different instruments with nominal amountwi in-
vested into asseti. The standard deviation of asseti is given byσi and the pairwise
correlation coefficients areρi j (i, j = 1, . . . ,n).

Definition 0.1. For two random variablesX andY their linear correlationis defined
as

ρL(X,Y) =
cov(X,Y)√

var(X)var(Y)
,

where cov(X,Y) = E((X−EX)(Y−EY)) is the covariance ofX andY, and var(X)
and var(Y) are the variances ofX andY, respectively.

Correlation measures linear dependence: we have|ρL(X,Y)| = 1 if and only if
Y = aX+b with probability 1 fora∈ R\ {0} andb∈ R. Furthermore, correlation
is invariant under strictly increasinglinear transformations; i.e. forα,γ ∈ R \ {0}
andβ ,δ ∈ R

ρL(αX + β ,γY+ δ ) = sign(αγ)ρL(X,Y) .

Also for high-dimensional models correlation is easy to handle. For random (col-
umn) vectorsX,Y ∈ R

n we denote by cov(X,Y) = E((X−EX)(Y−EY)T) the co-
variance matrix ofX andY. Then form×n matricesA,B and vectorsa,b∈ R

m we
calculate

cov(AX+a,BY+b) = Acov(X,Y)BT ,

whereBT denotes the transpose of the matrixB. From this it follows forw∈R
n that
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var(wTX) = wTcov(X,X)w,

which is exactly formula (1.1) above. The popularity of correlation is also based
on the fact that it is very easy to calculate and estimate. It is a natural dependence
measure for elliptical distributions such as the multivariate normal ort distributions,
provided second moments exist. Within the context of linearmodels correlation has
also proved as a useful tool for dimension reduction (e.g. byfactor analysis), an
important issue in risk management; see Klüppelberg and Kuhn (2009) for a new
approach to dimension reduction for financial data.

Multivariate portfolios, however, are often not elliptically distributed, and there
may be a more complex dependence structure than linear dependence. Indeed, data
may be uncorrelated, i.e. with correlation 0, but still may be highly dependent. In
the context of risk management, when measuring extreme risk, modelling depen-
dence by correlation may be grossly misleading; see e.g. Embrechts, McNeil and
Straumann (2002).

We turn to a measure for tail dependence, which relates largevalues of the com-
ponents of a portfolio; see e.g. Joe (1997). In the bivariatecontext, consider random
variablesX andY with marginal distribution functionsGX andGY and (general-
ized) inversesG←X andG←Y . For any distribution functionG its generalized inverse
or quantile functionis defined as

G←(t) = inf{x∈R |G(x)≥ t} , 0 < t < 1.

If G is strictly increasing, thenG← coincides with the usual inverse ofG.

Definition 0.2. Theupper tail dependence coefficientof (X,Y) is defined by

ρU = lim
u↑1

P(Y > G←X (u) | X > G←Y (u)) , (1.2)

provided the limit exists. IfρU ∈ (0,1], then X andY are calledasymptotically
dependent in the upper tail, if ρU = 0, they are calledasymptotically upper tail
independent.

For some situations, this measure may be an appropriate extreme dependence mea-
sure; this is true, in particular, when the bivariate distribution is symmetric; see
Example 0.1. However,ρU is not a very informative measure, since the extreme
dependence around the 45 degree line does not reveal much about what happens
elsewhere; see e.g. the asymmetric model in Example 0.2. As aremedy we sug-
gest an extension of the upper tail dependence coefficient toa function of the angle,
which measures extreme dependence in any direction in the first quadrant ofR2.
Its derivation is based on multivariate extreme value theory and we indicate this
relationship in Section 2. We shall, however, refrain from aprecise derivation and
rather refer to Hsing et al. (2004) for details. We also want to emphasize that one-
dimensional extreme value theory has been applied successfully to risk management
problems; see Embrechts (2000). We remark further that one-dimensional extreme
value theory has meanwhile reached a consolidated state; werefer to Embrechts,
Klüppelberg and Mikosch (1997) or Coles (2001) as standardreferences.
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We will illustrate our results by a direct application to a real data set. The com-
plete data set we investigated consists of high frequency data for three different
stocks: Intel, Cisco and General Motors (GM). We have full sample paths of the
price data of the stocks between February and October 2002 from the Trades and
Quotes TAQ database of the New York Stock Exchange (NYSE); i.e. our data con-
sists of all trading dates [in seconds] and corresponding prices [in cents]. This
dataset has to be filtered in different steps due to false data, seasonality and serial
dependence; see Section 4 for details.

After these filtering steps the residuals can be assumed iid and the dependence
structure between the three stocks can be investigated. Thefirst row of Figure 1.2
shows scatter plots of different combinations of the filtered stocks. We have esti-
mated the means, variances and the correlation of the data ineach scatter plot. The
second row shows simulated normal data with the estimated parameters.

For extreme risk assessment one is particularly interestedin the left lower corner
and we have zoomed into this corner to get a more precise account of the dependence
there; see Figure 1.3. None of the normal models seem to be able to capture the
dependence structure in this area.

Our paper is organized as follows. After introducing the tail dependence function
in Section 2 we shall present some examples including an asymmetric Pareto model
and the bivariate normal model.

In Section 3 we introduce a simple nonparametric estimationprocedure of the
tail dependence function. We show its performance in various simulation examples
and plots.

In Section 4 we investigate our high frequency data in more detail and estimate
their tail dependence function. We also show various plots to visualize our results.
Finally, in Section 5 we conclude the paper with a summary of our findings.
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Figure 1.1 Example of stock prices: Intel, Cisco and GM: Feb-Oct 2002.
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2 Measuring extreme dependence

Although the upper tail dependence coefficient and its functional extension we are
aiming at can be defined for random vectors of any dimension, we restrict ourselves
in our presentation to the bivariate case. For a general treatment in any dimension
we refer to Hsing et al. (2004).

Suppose(Xi ,Yi)i=1,...,n is a sequence of iid vectors and(X,Y) is a generic random
vector with the same distribution functionG(x,y) = P(X ≤ x,Y ≤ y) for (x,y) ∈R

2

with continuous marginals. Forn∈ N define the vector of componentwise maxima
Mn = (maxi=1,...,nXi , maxi=1,...,nYi) . As a first goal we want to describe the behavior
of Mn for largen.

It is a standard approach in extreme value theory to first transform the marginals
to some appropriate common distribution and then model the dependence structure
separately. As copulas have become a fairly standard notionfor modelling depen-
dence we follow this approach and transform the marginal distributionsGX andGY

to uniform (0,1). Then we have a bivariate uniform distribution, which is called a
copulaand is given for 0< u,v < 1 by

CG(u,v) = P(GX(X)≤ u, GY(Y)≤ v) = P(X ≤G←X (u) , Y ≤G←Y (v)) .

Figure 1.2 Bivariate stock data vs. simulated normal with same (estimated) means and variances.
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For more details on copulas and dependence structures in general we refer to
Joe (1997); for applications of copulas in risk management see Embrechts, Lindskog
and McNeil (2001). The transformation of the marginals to uniforms is illustrated
in Figure 2.1.

Under weak regularity conditions on the bivariate distribution function G we
obtain

lim
n→∞

P

(
max

i=1,...,n
GX(Xi)≤ 1+

1
n

lnu, max
i=1,...,n

GY(Yi)≤ 1+
1
n

lnv

)

= exp(−Λ(− lnu,− lnv))) = C(u,v) , 0≤ u,v≤ 1.

Such a copula is calledextreme copulaand satisfies for allt > 0

Ct(u,v) = C(ut ,vt) , 0 < u,v < 1.

C(u,v) has various integral representations. ThePickands’ representationyields an
extreme event intensity measure (we writea∧b= min(a,b) anda∨b= max(a,b)):

Figure 1.3 Bivariate stock data vs. simulated normal with same (estimated) means and variances.
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Λ(x,y) = lim
n→∞

nP
(

GX(X) > 1−
x
n

or GY(Y) > 1−
y
n

)
(2.1)

=
∫ π/2

0

( x
1∨cotθ

∨
y

1∨ tanθ

)
Φ(dθ ) , x,y≥ 0.

Φ is a finite measure on(0,π/2) satisfying
∫ π/2

0 (1∧ tanθ )Φ(dθ ) =
∫ π/2

0 (1∧
cotθ )Φ(dθ ) = 1. The definition ofΛ as a limit of n× success probabilityis a
version of the classical limit theorem of Poisson. For largen the measureΛ can
be interpreted as the mean number of data in a strip near the upper and right
boundary of the uniform distribution; see Figure 2.1. We also recall some prop-
erties of tanθ = 1

cotθ = sinθ
cosθ : tan0= 0, tanθ is increasing inθ ∈ (0,π/2) and

limθ→π/2 tanθ = ∞. Then cotθ is its reflection on the 45 degree line, correspond-
ing to θ = π/4. Moreover, tan(π/4) = cot(π/4) = 1 and cot(π

2 −θ ) = 1/cotθ for
θ ∈ (0,π/2). Finally, arctan is the inverse function of tan.

The fact thatΛ(x,y) = xΛ(1,y/x) motivates the following definition.

Definition 0.3. For any random vector(X,Y) such that (2.1) holds we define the
dependence functionas

ψ(θ ) = Λ(1,cotθ ) , 0 < θ < π/2.
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Figure 2.1 Left plot: Simulated data forX andY Fréchet distributed with distribution functions
GX(x) = GY(x) = exp(−1/x) for x > 0 with region of large data points indicated. The range of
the data is in total[0,410] for X and[0,115] for Y; for reasons of presentation 14 extremely large
points had to be left out.
Right plot: Illustration of the intensity measureΛ as defined in equation (2.1):Λ measures the
probability in the strip near the upper and right boundary ofthe uniform distribution.
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Note thatψ(·) is a function of the angleθ only and measures dependency in any
direction of the positive quadrant of a bivariate distribution.

The following result shows thatψ(·) allows us to approximate for largex1 and
y1 the probability forX or Y to become large. We writea(x) ∼ b(x) asx→ x0 for
limx→x0 a(x)/b(x) = 1. We also denote byG(·) = 1−G(·) the tail ofG.

Proposition 0.1.Let (X,Y) be a random vector. If x1,y1 → ∞ such that P(X >
x1)/P(Y > y1)→ tanθ , then the following quotient converges for allθ ∈ (0,π/2),

P(X > x1 or Y > y1)

P(X > x1)
.

Furthermore, the limit is the dependence functionψ(θ ).

Proof. From (2.1) we have for largex1,y1 andx = nGX(x1) andy = nGY(y1) as
n→ ∞ (note thatx,x1,y,y1 depend onn):

P(X > x1 or Y > y1) ∼
1
n

Λ(nGX(x1),nGY(y1))

= GX(x1)Λ
(

1,
GY(y1)

GX(x1)

)
= GX(x1)ψ

(
arctan

(
GX(x1)

GY(y1)

))
. (2.2)

We set

θ = arctan

(
GX(x1)

GY(y1)

)

and obtain the result.

The following corollary summarizes some obvious results; the symmetry prop-
erty of part (d) is new and will prove useful for estimation purposes.

Corollary 0.1. (a) For X and Y independent we calculate

P(X > x1 or Y > y1)

P(X > x1)
∼

P(X > x1)+P(Y > y1)

P(X > x1)
→ 1+cotθ =: ψ0(θ )

for x1,y1→ ∞ such that P(Y > y1)/P(X > x1)→ cotθ .
(b) For X and Y completely dependent, i.e. X= g(Y) with probability 1 for some
increasing function g, we obtain

P(X > x1 or Y > y1)

P(X > x1)
=

P(X > x1)∨P(X > y1)

P(X > x1)
→ 1∨cotθ =: ψ1(θ )

for x1,y1→ ∞ such that P(Y > y1)/P(X > x1)→ cotθ .

(c) ψ1(θ ) ≤ ψ(θ ) ≤ ψ0(θ ) for 0 < θ < π/2.

(d) ψY,X(θ ) = cotθ ψX,Y (π/2−θ ).
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Proof. It only remains to proof part (d). By Example 4.3 in Hsing et al. (2004) we
have together with the change of variablesx = t tanθ ,

1+cotθ −ψX,Y(θ ) = lim
t→∞

P(X > G←X (1−1/(t tanθ ))|Y > G←Y (1−1/t))

= lim
t→∞

P(Y > G←Y (1−1/t)|X > G←X (1−1/(t tanθ )))
P(X > G←X (1−1/(t tanθ ))

P(Y > G←Y (1−1/t))

= cotθ (1+ tanθ −ψY,X(π/2−θ )) = cotθ +1−cotθ ψY,X(π/2−θ ) .

We normalizeψ(·) to the interval[0,1] as follows.

Definition 0.4. The normalized function

ρ(θ ) =
ψ0(θ )−ψ(θ )

ψ0(θ )−ψ1(θ )
=

1+cotθ −ψ(θ )

1∧cotθ
, 0 < θ < π/2,

we calltail dependence function.

Note thatρ describes the tail dependence of(X,Y) in any direction of the bivari-
ate distribution on the positive quadrant ofR

2.
By this definition we haveρ(θ ) ∈ [0,1] for all 0 < θ < π/2, ρ(θ )≡ 0 in case of

independence andρ(θ ) ≡ 1 in case of complete dependence. Consequently,ρ(θ )
being close to 0/1 corresponds to weak/strong extreme dependence.

Remark 0.1.(i) (Relation between tail dependence function and Pickands’ depen-
dence function.) We can write an extreme copula as

C(u,v) = exp

(
log(uv)A(

log(v)
log(uv)

)

)
, 0 < u,v < 1.

The functionA : [0,1] → [1
2,1] is called Pickands’ dependence function. A ≡ 1

corresponds to independence andA(t) = t ∨ (1− t) to total dependence. Using
−Λ(− log(u),− log(v)) = log(C(u,v)) we have the following relation betweenρ
andA:

ρ(θ ) =
(1+cotθ )(1−A

( cotθ
1+cotθ

)
)

1∧cotθ
, 0 < θ < π/2.

(ii) For elliptical copula models a new semi-parametric approach for extreme de-
pendence modelling was suggested and investigated in Klüppelberg et al. (2007,
2008).

The functionρ(·) is invariant under monotone transformation of the marginal
distributions. We show this by calculating it as a function of the copula.

Proposition 0.2.Let (X,Y) be a random vector with continuous marginal distri-

bution functions GX and GY. Then GX(X)
d
= U and GY(Y)

d
= V for uniform ran-

dom variables U and V with the same dependence structure as(X,Y). Denote by
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C(u,v) = P(U ≤ u, V ≤ v) the corresponding copula. We also relate the arguments
by GX(x1) = u and GY(y1) = v. Then, provided that the limits exist,

ρ(θ ) = lim
u,v→1

(1−u)/(1−v)→tanθ

1−u−v+C(u,v)
(1−u)∧ (1−v)

, 0 < θ < π/2.

Proof.

ψ(θ ) = lim
x1,y1→∞

GX(x1)/GY(y1)→tanθ

1−P(X ≤ x1 , Y ≤ y1)

P(X > x1)
= lim

u,v→1
(1−u)/(1−v)→tanθ

1−C(u,v)
1−u

.

Remark 0.2.Note also that the quantityρ(π/4) is nothing but the(upper) tail de-
pendence coefficientρU as defined in (1.2). Thus, the functionρ extends this notion
from a single direction, the 45 degree line corresponding toθ = π/4, to all direc-
tions in(0,π/2).

This extension is illustrated by the following examples.

Example 0.1.[Gumbel copula]
Let (X,Y) be a bivariate random vector with dependence structure given by a Gum-
bel copula forδ ∈ [1,∞):

C(u,v) = exp

{
−
[
(− lnu)δ +(− lnv)δ

]1/δ
}

, 0 < u,v < 1. (2.3)

The dependence arises fromδ . To calculateψ(θ ) we use the relationship ofψ to its
copula. We use also the fact that foru,v→ 1 we have

− lnv
− lnu

∼
1−v
1−u

→ cotθ .

Then by continuity ofux in x we obtain foru,v→ 1 such that(1−v)/(1−u)→ cotθ

1−C(u,v) = 1−exp



lnu

[
1+

(
− lnv
− lnu

)δ
]1/δ



 ∼ 1−u(1+(cotθ)δ )1/δ
.

Using the l’Hospital rule and the fact thatu→ 1, we obtain

1−C(u,v)
1−u

→
(

1+(cotθ )δ
)1/δ

,

and hence

ρ(θ ) =
1+cotθ −

(
1+(cotθ )δ )1/δ

1∧cotθ
, 0 < θ < π/2.
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We also obtain the well-known upper tail dependence coefficient ρU = ρ(π/4) =
2−21/δ .

Our next result concerns models, whose extreme dependence vanishes in the
limit.

Proposition 0.3.Let (X,Y) be a random vector with continuous marginal distribu-
tion functions GX and GY. If ρ(θ0) = 0 for someθ0 ∈ (0,π/2) thenρ(θ ) = 0 for all
θ ∈ (0,π/2).

Proof. From Corollary 0.1(d) we have

ρY,X(π/2−θ ) = ρ(θ ) , 0 < π/2< 1. (2.4)

Now note thatP(X > G←X (1− 1/(t tanθ ))|Y > G←Y (1− 1/t)) is decreasing inθ ,
hence ifρ(θ0) = 0 thenρ(θ ) = 0 for θ > θ0. Now, assume thatρ(π/4) = 0 so
thatρY,X(π/4) = 0 by (2.4). This results inρ(θ ) = 0 andρY,X(θ ) = 0 for θ > π/4,
i.e ρ ≡ 0 by (2.4) and monotonicity. Hence, we only have to show thatρ(θ0) = 0
for someθ0 ∈ (0,π/2) impliesρ(π/4) = 0. This is trivial forθ0 < π/4 by mono-
tonicity. Forθ0 > π/4, (2.4) givesρY,X(π/2−θ0) = 0 for π/2−θ0 < π/4, so that
ρY,X(π/4) = ρ(π/4) = 0 and this finishes the proof.

We conclude with the multivariate normal distribution. It is well-known (see
e.g. Embrechts et al. (2001, 2002)) that for correlationρ < 1 the upper tail de-
pendence coefficient isρU = 0. Consequently, Proposition 0.3 gives the following
result.

Corollary 0.2. For a bivariate normal distribution with correlationρ < 1 we have
ρ ≡ 0.

The following example is a typical model to capture risk in the extremes.

Example 0.2.[Asymmetric Pareto model]
For p1, p2 ∈ (0,1) setp1 = 1− p1 andp2 = 1− p2 and consider the model

X = p1Z1∨ p1Z2 and Y = p2Z1∨ p2Z3

with Z1,Z2,Z3 iid Pareto(1) distributed; i.e.,P(Zi > x) = x−1 for x≥ 1. Clearly, the
dependence betweenX andY arises from the common componentZ1. Hence the
dependence is stronger for larger values ofp1, p2. We calculate the functionρ , and
observe first that by independence of theZi for x→ ∞,

P(X > x) = 1−P(p1Z1∨ p1Z2 ≤ x) = 1−P(p1Z1≤ x)P(p1Z2 ≤ x)

= 1−
(

1−
p1

x

)(
1−

p1

x

)
∼

1
x

(p1 + p1) =
1
x

.

Consequently, we choosey = xtanθ , which satisfies the conditions of Proposi-
tion 0.1 and calculate similarly,
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P(X > x or Y > x tanθ ) = 1−P(X ≤ x, Y ≤ x tanθ )

= 1−P

(
Z1≤

x
p1
∧

xtanθ
p2

)
P

(
Z2≤

x
p1

)
P

(
Z3 ≤

xtanθ
p2

)

∼
1
x
(p1∨ p2cotθ + p1 + p2cotθ ) ,

which impliesψ(θ ) = 1+cotθ − p1∧ p2cotθ for 0 < θ < π/2 and

ρ(θ ) =
p1∧ p2cotθ

1∧cotθ
, 0 < θ < π/2.

An important class of distributions are those with Pareto-like tails. Proposi-
tion 0.4 ensures that, within this class, multivariate returns on different timescales
have the same extremal (spatial) dependence, provided the observations are inde-
pendent and have no time series structure. Hence, one can take advantage of the
fact that a higher frequency results in a larger sample and iseasier to estimate. We
shall illustrate this in Section 4.5. This version of the proof of Proposition 0.4 was
kindly communicated to the first author by Patrik Albin. Also, one can find a similar
proposition in Hauksson et al. (2001) in the setting of multivariate regular variation.

Proposition 0.4.Let (X,Y) be a random vector with marginal tailsGX andGY that
are regularly varying at infinity, with indicesα < 0 andβ < 0, respectively. Denote
by X∗n the sum of n iid copies of X and define Y∗n analogously. If the limit

lim
t→∞

P
(
X > G←X (1−λ/t)

∣∣Y > G←Y (1−1/t)
)
= L(λ ) exists forλ > 0, (2.5)

then the following hold:
(a) P

(
X∗n > x,Y∗n > y

)
∼ nP(X > x,Y > y) as x,y→ ∞;

(b) The marginal tailsGX∗n andGY∗n of X∗n and Y∗n satisfy for all n≥ 2

lim
t→∞

P
(
X∗n > G←X∗n(1−λ/t)

∣∣Y∗n > G←Y∗n(1−1/t)
)
= L(λ ) forλ > 0.

Proof. (a) The one-dimensional version of this result goes back to Feller and has
been extended to the larger class of subexponential random variables (see e.g. Em-
brechts et al. (1997), Appendix A3); i.e. we have

P
(
X∗n > t

)
∼ nP(X > t) and P

(
Y∗n > t

)
∼ nP(Y > t) as t→ ∞. (2.6)

We prove a bivariate version of this result. Forε > 0 sufficiently small, we have
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P
(
X∗n > x,Y∗n > y

)
≤

n

∑
i=1

n

∑
j=1

P
(
Xi > (1−(n−1)ε)x,Yj > (1−(n−1)ε)y

)

+ ∑
1≤i6=k≤n

n

∑
j=1

P
(
Xi > εx,Xk > εx,Yj > (1−(n−1)ε)y

)

+
n

∑
i=1

∑
1≤ j 6=l≤n

P
(
Xi > (1−(n−1)ε)x,Yj > εy,Yl > εy

)

+ ∑
1≤i6=k≤n

∑
1≤ j 6=l≤n

P
(
Xi > εx,Xk > εx,Yj > εy,Yl > εy

)

≤ nP(X > (1−(n−1)ε)x,Y > (1−(n−1)ε)y)

+n2P(X > (1−(n−1)ε)x)P(Y > (1−(n−1)ε)y)

+2n2P(X > εx,Y > εy)(P(X > εx)+P(Y > εy))

+n3P(X > εx)P(Y > εy)(P(X > εx)+P(Y > εy))

+n2P(X > (1−(n−1)ε)x)P(Y > (1−(n−1)ε)y)

+n2P(X > εx,Y > εy)2 (2.7)

+n3P(X > εx,Y > εy)P(X > εx)P(Y > εy)

+n4P(X > εx)2P(Y > εy)2

∼ nP(X > (1−(n−1)ε)x,Y > (1−(n−1)ε)y) as x,y→ ∞

by (2.5) together with the regular variation properties. Now, using again anε > 0
and properties of disjoints sets together with the Boolean inequality, we estimate

P
(
X∗n > x,Y∗n > y

)

≥
n

∑
i=1

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y)

⋂

j 6=i

{−εx≤ Xj ≤ x,−εy≤Yj ≤ y}
)

≥
n

∑
i=1

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y

)

−
n

∑
i=1

∑
j 6=i

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y,Xj /∈ [−εx,x]

)

−
n

∑
i=1

∑
j 6=i

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y,Yj /∈ [−εy,y]

)

∼ nP(X > (1+(n−1)ε)x,Y > (1+(n−1)ε)y) asx,y→ ∞.

(b) Proposition 1.5.15 of Bingham, Goldie and Teugels (1987) ensures that the
generalized inverses satisfy

G←X (1−1/t)∼G←X∗n(1−n/t) and G←Y (1−1/t)∼G←Y∗n(1−n/t) as t → ∞ .
(2.8)
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In particular,G←X (1−1/·) andG←X∗n(1−1/·) are regularly varying with index 1/α,
while G←Y (1−1/·) andG←Y∗n(1−1/·) are regularly varying with index 1/β .

By (2.5)-(2.7), we have (withε not the same as before)

limsup
t→∞

P
(
X∗n > G←X∗n(1−λ/t)

∣∣Y∗n > G←Y∗n(1−1/t)
)

≤ limsup
t→∞

nP
(
X > (1−ε)β/αG←X (1−λ/(nt)),Y > (1−ε)G←Y (1−1/(nt))

)

nP
(
Y > (1+ε)G←Y (1−1/(nt))

)

≤ limsup
t→∞

P
(
X > G←X (1− (1−2ε)β λ/(nt)),Y > G←Y (1− (1−2ε)β/(nt))

)

((1+ε)/(1−3ε))β P
(
Y > (1−3ε)G←Y (1−1/(nt))

]

≤
(1−3ε

1+ε

)β
limsup

t→∞
P
(

X > G←X
(

1−
(1−2ε)β λ

nt

)∣∣Y > G←Y
(

1−
(1−2ε)β

(nt)

))

=
(1−3ε

1+ε

)β
L(λ )

→ L(λ ) as ε ↓ 0.

Analogously follows from the reverse inequality in (a)

liminf
t→∞

P
(
X∗n > G←X∗n(1−λ/t)

∣∣Y∗n > G←Y∗n(1−1/t)
)
≥ L(λ ).

Remark 0.3.In Example 4.3 in Hsing et al. (2004) we have, forX andY random
variables with continuous distributionsGX andGY,

lim
t→∞

P(X > G←X (1−1/(t tanθ ))|Y > G←Y (1−1/t))= (1∧cotθ )ρ(θ ) , 0< θ < π/2.

Hence, forX andY random variables with Pareto-like tails, settingλ = 1/ tanθ and
L(cotθ ) = (1∧cotθ )ρ(θ ) we concludeL(λ ) = (1∧λ )ρ(arctan(1/λ )) for λ > 0.

Corollary 0.3. Denote byψ(θ ) the dependence function of(X,Y). Let X∗n and Y∗n

be the sum of n iid copies of X and Y, respectively, and denote by ψ∗n(·) the depen-
dence function of(X∗n,Y∗n) for n≥ 2. Thenψ∗n(θ ) = ψ(θ ) for all 0 < θ < π/2.
The same holds for the tail dependence functionρ(θ ).

3 Extreme dependence estimation

To assess extreme dependence in data we estimate the tail dependence functionρ(·)
on the positive quadrant. We use a nonparametric estimator as suggested in Hsing et
al. (2004) based on the empirical distribution function, which yields a simple non-
parametric estimator ofψ(·) and hence ofρ(·). Recall that the empirical distribution
function given by

ĜX(x) = P̂n(X ≤ x) =
1
n

n

∑
j=1

I(Xi ≤ x) , x∈R ,
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is the standard estimator for the distribution functionGX of iid data (I(A) denotes
the indicator function of the setA). The empirical distribution function can be
rewritten in terms of the ranks of the sample variablesXi for i = 1, . . . ,n and we
write

ĜX(Xi) = P̂n(X ≤ Xi) =
1
n

rank(Xi) .

We still have to explain one important issue of our estimation procedure. Recall
from (2.1), denoting byGX(·) = 1−GX(·) andGY(·) = 1−GY(·) for continuous
GX andGY, that

Λn(x,y) := nP
(

GX(X) > 1−
x
n

or GY(Y) > 1−
y
n

)

= nP
(
nGX(X)≤ x or nGY(Y)≤ y

)

= nP(n(GX(X),GY(Y)) ∈ A) (3.1)

→ Λ(x,y) n→ ∞ .

By a continuity argument we can replacen∈N by t ∈ (0,∞) and also replace in a
first step the probability measureP by its empirical counterpart̂Pn. Then we obtain

Λ̂t,n(x,y) = tP̂n
(
t (GX(X),GY(Y)) ∈ A

)
=

t
n

n

∑
i=1

I(t (GX(X),GY(Y)) ∈ A) .

Now estimate the two distribution tails by their empirical counterparts:

ĜX(Xi) :=
1
n

RX
i :=

1
n

rank(−Xi) and ĜY(Yi) :=
1
n

RY
i :=

1
n

rank(−Yi) .

Then settingε = t/n we obtain

Λ̂ε,n(A) = ε
n

∑
i=1

I(ε (RX
i , RY

i ) ∈ A) .

This yields in combination with Definition 0.4 an estimator for the functionρ :

ρ̂ε,n(θ ) =
1+cotθ − Λ̂ε,n(1,cotθ )

1∧cotθ
, 0≤ θ ≤

π
2

, (3.2)

whereΛ̂ε,n(1,cotθ ) can be rewritten as

ε
n

∑
i=1

I(RX
i ≤ ε−1 or RY

i ≤ ε−1cotθ ) , 0≤ θ ≤
π
2

, . (3.3)

Choosingε is not an easy task and whenθ approachesπ/2 increasingly fewer
points are used in the estimation. In Hsing et al. (2004) thisproblem was solved by
letting ε decrease slightly asθ approachesπ/2. A much better solution is provided
by the symmetry proved in Corollary 0.1(d) in combination with (2.4): the extreme
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dependence of(X,Y) for θ ∈ [π/4,π/2] is the same as the extreme dependence of
(Y,X) for θ ∈ [0,π/4]. Consequently, we estimateρε,n(θ ) by estimatingρX,Y(θ ) by

ρ̂ε,n(θ ) :=

{
ρ̂XY

ε,n (θ ) 0 < θ < π/4

ρ̂YX
ε,n (π/2−θ ) π/4≤ θ < π/2.

(3.4)

In the following remark we summarize some important properties ofρ̂ε,n.

Remark 0.4.(i) Estimator (3.4) has good convergence properties: for appropri-
ately smallε andn→ ∞ it converges in probability and almost surely; see Hsing
et al. (2004) and references therein.
(ii) To assess asymptotic dependence involves passing to a limit function, which for
a finite sample is simply impossible. Consequently, forX andY independent, even
for very smallε it is highly possible that the estimated tail dependence function will
be positive. This can be made precise by calculating

ε
n

∑
i=1

I(RX
i ≤ ε−1 or RY

i ≤ ε−1cotθ )

= ε
n

∑
i=1

(I(RX
i ≤ ε−1)+ I(RY

i ≤ ε−1cotθ ))− I(RX
i ≤ ε−1 andRY

i ≤ ε−1cotθ ))

= 1+cotθ − ε
n

∑
i=1

I(RX
i ≤ ε−1 andRY

i ≤ ε−1cotθ )

Now, independent samples forX andY yield for fixedn, ε andθ

n

∑
i=1

I(RX
i ≤ ε−1 andRY

i ≤ ε−1cotθ ) ∼ Bin

(
cotθ
ε2n2 ,n

)
.

Hence,

E

(
ε

n

∑
i=1

I(RX
i ≤ ε−1 or RY

i ≤ ε−1cotθ )

)
= 1+cotθ −

cotθ
εn

, 0 < θ <
π
2

,

giving

E
(

ρ̂ε,n(θ )
)

=






cotθ
ε n

0 < θ <
π
4

cot(π/2−θ )

ε n
π
4
≤ θ <

π
2

.

(3.5)

In much the same fashion we get

Var(ρ̂ε,n(θ )) =






cotθ
n
−

cot2 θ
ε2n3 0 < θ <

π
4

cot(π/2−θ )

n
−

cot2(π/2−θ )

ε2n3

π
4
≤ θ <

π
2

.
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(iii) Inspecting equation 3.3 one can see that choosing anε is equivalent to the
estimation ofρ(θ ) based on the 1/ε largest values ofX. Hence, it is natural to see
1/ε as a threshold of the data and we will therefore use this term.
(iv) The estimator̂ρε,n has the advantage that it is only based on the ranks of the
data. Consequently, it can be smoothed in the usual way. For instance, by averaging

it over a window of size 2m+1 for m∈ N, we call this smoothed estimatorρ̂ (m)
ε,n (·).

In the second column of Figures 3.1 and 3.2 we estimatedρ(θ ) for the Gum-
bel copula (cf. Example 0.1) and the asymmetric Pareto model(cf. Example 0.2).
The estimated tail dependence function is indeed (except for θ ∈ {0,π/2}, where
E(ρ̂ε,n(·)) has singularities) far away fromE(ρ̂ε,n(·)). For our sample size and the
chosenε it is smaller than 0.075 for the interval depicted. Given that the variance is
of the ordern−1 the estimated extreme dependence in our data is significant.
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Figure 3.1 Simulated Gumbel copula model forρ(θ/4) = 0.3 (upper row),ρ(θ/4) = 0.7 (middle
row), ρ(θ/4) = 0.9 (lower row).
Left column: Plots of ranks(1/RX

i ,1/RY
i ), with points close to(1,1) truncated.

Middle column: Plots of̂ρ(θ) (dashed) overlaid with true functionρ(θ) (solid).
Right column: Estimation error in terms of

√
MSE(θ).

Example 0.3.[Gumbel copula: continuation of Example 0.1]
In Figure 3.1 we simulated the model (with student-t 8 degrees of freedom marginals)
for n= 10000 iid observations of(X,Y) 100 times. We estimate the tail dependence
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function ρ(·) for this model withε = 1/200. We stay away from the boundaries
θ = 0 andθ = π/2, since in the numerator of (3.2) we have the difference of two
quantities which both tend to∞ asθ → 0. The three sets of plots on the three rows
correspond to the cases:ρ(π/4) = 0.3 (upper row),ρ(π/4) = 0.7 (middle row) and
ρ(π/4) = 0.9 (lower row). On each row the left plots contain ranks

(
1/RX

i ,1/RY
i

)
,

1 ≤ i ≤ n, of a simulated sample of size 10 000. Points on the axes correspond
to independent extreme points; all points in the open quadrant exhibit some ex-
treme dependence structure. Completely dependent points are to be found on the
45-degree line. The true functionsρ(θ ) in (2.5) (solid) are overlaid with the es-
timated mean of̂ρε,n(θ ) (dashed) based on the simulated sample. The right plot
depicts the squareroot of the estimated mean squared error.Note thatρ(π/4) is the
upper tail dependence coefficient, which is an appropriate and simple measure of ex-
treme dependence for this symmetric model. The level of dependence is manifested
by the data scattered around the diagonal.

Example 0.4.[Asymmetric Pareto model: continuation of Example 0.2]
In Figure 3.2 we simulated this model forn = 10000 iid observations of(X,Y)
with ε = 1/200 100 times. The three sets of plots on the three rows correspond to
the cases:(p1 , p2) = (0.7, 0.3), (p1 , p2) = (0.5, 0.5) and (p1 , p2) = (0.2, 0.8).
On each row the left plots contain ranks

(
1/RX

i ,1/RY
i

)
, 1≤ i ≤ n of a simulated

sample of size 10 000. The true functionsρ(θ ) in (2.5) (solid) are overlaid with the
estimated mean of̂ρε,n(θ ) (dashed) based on the simulated sample. The right plot
depicts the squareroot of the estimated mean squared error.

In the first row of plots,ρ is larger for smallθ than for largeθ ; this is reflected
by the left plot in which the violation of independence can beseen to be more severe
below the diagonal. In the second row of plots,ρ is constant; which is reflected by
having a portion of extreme points lined up on the diagonal inthe left plot. The third
row of plots is the converse situation to the first row, which is reflected by the pattern
of extreme points above the diagonal. This is an example of a situation where the tail
dependence coefficient does not convey a good picture of extreme dependence, in
thatρ(π/4) is not sufficient to describe the full dependence structure of this model.

4 High frequency financial data

We have tick-by-tick data of theTrades and Quotesdatabase, in terms of trading
times [in seconds] and prices [in 1 cent units] of three stocks traded between Febru-
ary and October 2002 on NYSE and Nasdaq. The stocks are General Motors (GM)
from NYSE, and Intel and Cisco both from Nasdaq. One major difference between
the two stock markets is that on NYSE trading is made on the floor while Nasdaq
has electronic trading. We shall analyze the extreme dependence between the three
stocks using the tail dependence functionρ . A study with focus on bivariate depen-
dence structures on FX spot data has been performed by Breymann et al. (2003)
and Dias and Embrechts (2003). Also, FX spot data was studiedwithin the concept
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Figure 3.2 Simulated asymmetric Pareto model withρ(θ/4) = 0.3 (upper row),ρ(θ/4) = 0.7
(middle row),ρ(θ/4) = 0.9 (lower row).
Left column: Plots of ranks(1/RX

i ,1/RY
i ), with points close to(1,1) truncated.

Middle column: Plots of̂ρ(θ) (dashed) overlaid with true functionρ(θ) (solid).
Right column: Estimation error in terms of

√
MSE(θ).

of multivariate regular variation in Hauksson et al. (2001). For cleaning and desea-
sonalizing our data we mainly follow the methods applied in these papers; see also
there for further references. In these papersparametric bivariate copulaswere fit-
ted to FX spot data in both non-extreme and extreme regions. Our study considers
the extremal dependence for stock data, which is estimatednonparametrically. One
main difference between stock data and FX spot data is that FXspot data is traded
24 hours per day. In contrast, NYSE for instance, has regularopening hours between
9.30 and 16.00 on working days. This introduces additional complexity into our data
analysis, and we have to deal with this problem.

When dealing with extremes it is of importance to use as much data as possible,
since extremes are consequences of rare events. However, wecan not simply use the
full samples of all stocks as each single time series is not stationary and, even worse,
for high-frequency data the different time series are not synchronized. As a remedy
for the non-synchrone data we take subsamples of logreturnson specific timescales.
If one chooses a relatively high frequency, one is confronted with the problem that
tick prices are discrete, and also microstructure noise effects can enter. We chose
5 minutes logreturns as the lowest frequency, thus avoidingmicrostructure noise
effects.



20 Erik Brodin and Claudia Klüppelberg

There are a number of issues which appear when dealing with high frequency
data and we will describe them in turns.

4.1 Cleaning the data

A full sample path of stock data contains a huge amount of information. At Nasdaq
there is almost a trade every second. However, some ticks arefalse, mostly due to
fake quotes and decimal errors.

To be able to continue the analysis one has to clean the data. This is done by
filtering the data and removing values that differ too much from their neighboring
values in the sense of logarithmic differences. Also, sometimes false values may
come in clusters, which one also has to deal with. The selection of thresholds for
removing a bad tic was done by visually inspecting the time series before and after
the cleaning. When a false tick was observed it was replaced by a value based on
linear interpolation with its neighbors. In this way less than one percent of the data
was removed.

The thresholds for logarithmic difference were set to 0.1% for Intel and Cisco
and to 0.2% for GM, respectively. The reason for different thresholds is that Intel
and Cisco are traded at a much higher frequency. A result of the cleaning procedure
can be seen in Figure 4.1. We repeated our analysis after altering the thresholds
slightly. However, this sensitivity analysis did basically not change the results.

When dealing with information from a stock exchange one is faced with the
problem that they do not trade for 24 hours resulting in a gap of information, when
the stock market is closed over night. However, Nasdaq and NYSE have off-hour
trading, but prices behave differently than prices during the regular opening times as
the trading rules differ. To obtain synchronised data we only considered the stocks
between 9.35 to 16.00 from Monday to Friday using the previous tick method, which
results in 77 five minutes logreturns per day. Also, there were a couple of holidays
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Figure 4.1 Intel ticks during 9.35 to 11.45 on February 1, 2002. Left: Raw data. Right: Data
cleaned from false ticks as described in Section 4.1.
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where no data were available. Finally we had 14 476 synchronized observations (5
minutes logreturns) for each stock, which we plot in Figure 4.2

4.2 Deseasonalizing the data

When investigating the 5 minutes logreturns closer one can detect seasonality in the
data. In Figure 4.3, we depict the autocorrelation of the squared logreturns for Intel.
Here one can see the daily seasonality. A comparison to the FXdata in Breymann
et al. (2003) shows that FX data have a much clearer weekly seasonality.

To be able to remove the seasonality, there are two main approaches. The first one
is to time-change the logreturns to a business clock insteadof the physical clock. The
second is to use volatility weighting. We chose the second one as it is not clear how
to choose a business clock for multivariate time series.

Volatility weighting divides a period (we first take a week) into several smaller
subperiods and then estimates the seasonality effect in each subperiod in terms of
volatility. Then each subperiod is deseasonalized separately by devolatization. We
chose 5 minutes intervals as subperiods. This means that ourobserved returns, ˜xt , is
a realization of the process

x̃t = µ +vtxt .

wherext are the deseasonalized returns,µ is a constant drift andvt is the seasonality
coefficient (volatility weights), estimated by

v̂τ =

√√√√ 1
Nτ

Nτ

∑
i=1

(x̃ti+τ)2. (4.1)
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Figure 4.2 Synchronized 5 minutes logreturns for Intel, Cisco and GM between 9.35 and 16.00
during February 1 to October 31, 2002
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HereNτ is the number of weeks, during which we have observed our stocks in
the given subperiodτ ∈ {0,5,10,15, . . .} (in minutes), andti denotes the start of
week i which always is on Monday at 9:35. Also,τ has to be corrected for nights
and weekends. We estimateµ with the sample mean̂µ of the logreturns. Hence, the
deseasonalized 5 minutes logreturns are

xt =
x̃t − µ̂

v̂t
. (4.2)

However, as we only have about 40 weeks the estimated volatility weights are quite
noisy, see Figure 4.4. This is due to the fact that single large values can dominate
v̂2

τ :the mean taken over 40 weeks is not sufficiently smooth.
To overcome this problem we first assume a daily seasonality instead of the

weekly. This can be motivated by the fact that the different days do not seem to
differ to a higher degree; see Figure 4.4. However, single large values still dominate
the volatility weights, which is unsatisfactory.

Consequently, we use a robust estimator based on the median and absolute val-
ues:

v̂M
γ = mediani=1,...,Nγ |x̃ti+γ |. (4.3)

HereNγ is the number of days, during which we have observed our stocks in the
given subperiodγ ∈ {0,5, . . . ,385} (in minutes). We can now observe the stylistic
pattern of the autocorrelation of squared logreturns in Figure 4.3 for our deseason-
alized time series using the robustly estimated volatilityweights.

The depicted volatility weights can be seen in Figure 4.4. One can clearly see that
trading is more intense at the beginning and at the end of a day. We also observe that
the robustly estimated volatility weights are much more stable. The deseasonaliza-
tion removes seasonality in the squared logreturns, which are right skewed, hence
the difference in magnitude for the two estimation methods.

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function (ACF)

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function (ACF)

Figure 4.3 Autocorrelation function of squared 5 minutes logreturns for Intel.
Left: Original data: Visible is the cycle of 77 lags indicating daily seasonality.
Right: Deseasonalized data as in (4.2) based on daily seasonality.
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When comparing the two different deseasonalization methods the robust one
leaves more larger absolute values in the data, which occur in low trading time.
The non-robust version decreases them as large values contribute much more to the
volatility weights. Hence, the non-robust version of the deseasonalization makes the
time series smoother than the robust method does.

4.3 Filtering the data

Because of the dependence, which we have observed in the autocorrelation for the
squared logreturns, we will assume a stochastic volatilitymodel for each stock. We
model the mean by an ARMA process and use the standard GARCH(p,q) model for
the martingale part. The model selection is based on the AIC criterion, the results
are summarized in Table 4.1.

We model the logreturns for different equidistant frequencies by

xt = µt + σtzt

with µt = c+ ∑r
i=1 φixt−i + ∑m

i=1 θiεt−i and σ2
t = α0 + ∑p

i=1 αiσ2
t−i + ∑q

i=1 βiε2
t−i ,

whereεt = σtzt . We model thezt by a standardnormal or a student-t distribution
with ν degrees of freedom. The overall fit of the model was assessed by a residual
analysis. We applied the Ljung-Box test for serial correlation, where we tested the
residuals and the squared residuals, and the Kolmogorov-Smirnov test for goodness-
of-fit of the normal and student-t distribution.

As we only have logreturns for 9.35-16.00 Monday to Friday wewill make an
error if we fit the time series model to our data without takingthe missing values
into account. We have used three different approaches to circumvent this problem:

(1)We (wrongly) fit the ARMA-GARCH model directly to the deseasonalized data,
ignoring the missing observations during the nights completely.
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γ for 5 minutes Intel logreturns: weekly estimated by (4.1),

v̂τ , (solid) and daily robust estimated by (4.3),v̂M
γ , (dashed).
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(2)We estimated the logreturns during the nights by 5 minutes logreturns using the
(wrong) square root scaling (the correct but complicated scaling constants have
been calculated by Drost and Nijman (1993)). Then we deseasonalize and fit the
time series.

(3)We fit different MA(1)-GARCH(1,1) models for each day. Inthis case we used
the estimated volatility of the previous day as the initial value.

Stock t normal our model
Intel 55531 (2,3,5,2,8.2) 55869 (2,3,4,1,-) 55534 (0,1,5,2,8.2)
Cisco 55805 (0,1,3,3,6.5) 56596 (0,1,4,0,-) 55807 (0,1,1,1,6.5)
GM 57343 (2,2,5,1,5.5) 58467 (1,2,3,1,-) 57355 (0,3,1,1,5.5)

Table 4.1 AIC-based values for(r,m, p,q,ν) andt and normally distributed residuals with corre-
sponding likelihood; the last column presents our model.

One comment to the second approach is that the deseasonalized nightly logre-
turns should have the same distribution as the deseasonalized daily logreturns. We
have tested this assumption via QQ-plots with bootstrappedconfidence interval. Us-
ing ordinary bootstrap we can conclude that the deseaonalized nightly logreturns do
not have the same distribution as the deseasonalized daily logreturns. However, as
we have dependence in our time series one should use a bootstrap method which
takes this into consideration. Using block bootstrap we cannot reject the hypothesis
that the deseaonalized nightly logreturns have the same distribution as the deseason-
alized daily logreturns.

If we compare the methods (1)-(3) we conclude that the first and second behave
very similar with respect to the parameter estimation. For the third method this
estimation was difficult. Even if we only use a three parameter model the estimation
is not stable. Based on the Ljung-Box test for serial correlation, both residuals and
squared residuals, the two first methods out-perform the third. Also, for the final
result in Section 4.4 the outcome is similar. We concluded that the error of using a
false approach (among these three) is minimal and concentrated on the first method
for simplicity.

In Table 4.1 we have selected the model by AIC criteria, also giving the like-
lihood of the selected model. The selected optimal order of the ARMA model
m, r ∈ (0, . . . ,5) and the order of the GARCH modelp,q ∈ (0, . . . ,6) for normal
and also the degree of freedomν for t-distributed innovations are given in the first
two columns.

As we want to keep the number of parameters as low as possible,we performed
a sensitivity analysis based on the likelihood of the model.In this way we found
the model given in column 3 of Table 4.1, which we will use in the sequel. Our
analysis also confirmed the common knowledge that residualsare heavy-tailed; i.e.
thet-distribution outperforms by far the normal distribution.

Concerning the Ljung-Box test, we could not reject independence of the residuals
or the squared residuals for all time series. In Table 4.3 we show thep-values for a
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selection of lags for squared logreturns. We have also looked at thep-values up to
50 lags. However, all time series failed the Kolmogorov-Smirnov test, actually for
all models presented in Table 4.1.

Diagnostic tools from extreme value theory (see e.g. Embrechts et al. (1997),
Section 6.1) show, however, clearly that all three filtered time series are heavy-tailed.
Consequently, we model the far out distribution tail of all residuals as regularly
varying and estimate the tail indexα by the Hill estimator. We summarize the result
in Table 4.2.

Stock Intel Cisco GM
α̂ 5.6 4.36 4.3

Table 4.2 Estimatedα by the Hill estimator for the loss region.

Due to the devolatilizaton a 10 minutes logreturn is obtained as a linear com-
bination of two 5 minutes logreturns and so logreturns should have the same
tail-parameter for different frequencies. However, for higher timescales the tail-
parameter increases slightly, even if one compares the filtered 5 minutes logreturns
with 45 minutes, but still remains heavy-tailed. This is well known and reported, for
instance, in Müller et al. (1998).

Stock 1 5 10
Intel 0.39 0.06 0.07
Cisco 0.74 0.86 0.77
GM 0.92 0.96 0.84

Table 4.3 p-values from the Ljung-Box test of filtered squared residuals. We have tested 1, 5, and
10 lags of the 5 minutes logreturns.

We have also investigated the cross-correlation between the stocks. In Table 4.4
we display the first four lags. The other lags were smaller in absolute magnitude.

Stocks -4 -3 -2 -1 0 1 2 3 4
Intel-Cisco -0.01 0.01 0.01 0.05 0.56 0.03 0.02 0.01 -0.00
Intel-GM 0.02 0.02 0.05 0.04 0.35 0.02 0.01 -0.00 -0.02
Cisco-GM 0.03 0.01 0.04 0.04 0.33 0.03 0.01 -0.00 -0.02

Table 4.4 Cross-correlation of the first four lags for the filtered 5 minutes logreturns.

From Table 4.4 one can see that GM tends to follow Intel and Cisco more than
vice versa. A formal test for uncorrelation of two time series tests this hypothesis
for each specific lag based on asymptotic normality of the cross-correlation function
(see e.g. Brockwell and Davis (1987), Theorem 11.2.2) The uncorrelation hypothe-
sis is rejected if the corresponding estimate has absolute value larger than 0.017.
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For the 15 minutes data, there is some cross-correlation between GM and Intel
and GM and Cisco for the first lag, but none significant betweenIntel and Cisco.
For the 30 minutes data, there is no significant cross-correlation at all.

Such tests have to be interpreted with caution for various reasons. First of all
there is the usual problem that a test should be performed notonly on each lag
separately. Furthermore, the amount of high frequency datais so large that a formal
test rejects already for very small cross-correlation: for5 min the rejection level is
0.017, for 30 min it is 0.042.

4.4 Analyzing the extreme dependence

Recall the estimator̂ρε,n from (3.4), whereε = t/n represents the proportion of
upper order statistics used for the estimation, which itself has to be estimated; cf.
Remark 0.4(iii). The estimation ofε involves in extreme value statistics a variance-
bias tradeoff; i.e. it is tricky and time-consuming, but important. We have used two
approaches.

Firstly, by plotting the estimated tail dependence function for different choices
of ε visual inspection clearly showed the influence of the variance/bias, when using
different thresholds. For high threshold, i.e. smallε, the estimated tail dependence
function was rather rough showing the high variation of the estimator. When de-
creasing the threshold the estimated tail dependence function became very smooth,
which we interpreted in analogy to tail index estimation as abias.

Secondly, we studied plots of̂ρε(θ ) as a function ofε for fixedθ . This was done
for θ = π/4±0,π/12,π/6. Here we looked for regions whereρ(θ ) was stable. The
caseθ = π/4 can be seen in Figure 4.5. We want to mention that for other choices
of θ the stability plots were not equally convincing.

As a result of our diagnostics we fixedε = 1/650, which represents about 4.5% of
the data. In Figure 4.6 we can see the resulting estimated tail dependence function.

We conclude that for all bivariate combinations of our data tail dependence can
be modelled symmetric and is significantly stronger than forthe independent case.
Not surprisingly, dependence is highest between Intel and Cisco, presumably due to
branch dependence, besides being both traded at Nasdaq. Thedependence of GM
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Figure 4.5 For the 5 minutes logreturns:̂ρε(π/4) as a function ofε for ε = 1/100, . . . ,1/1000.
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and Cisco is slightly higher than of GM and Intel. The symmetry in the dependence
reflects that we have three major stocks and can also be viewedas underlying mar-
ket dependence. We also notice that the estimated tail dependence function looks
similar as the tail dependence function of a bivariate extreme value distribution with
a Gumbel copula.

It is now tempting to fit a distribution witht marginals (a common model in
econometrics, called thet-GARCH) with degree of freedom from Table 4.1 and
a Gumbel copula (cf. Example 0.1,0.3) pairwise to our data oreven to the three-
dimensional sample. We know already from Section 4.3 that the t distribution is
not a good model for the marginals. However, our concern is now for the extreme
dependence structure, and it turns out that the Gumbel copula, although an extreme
value copula, is not a valid model. The dependence structurein our data is far more
complex. This can be illustrated by viewing the tail dependence function for differ-
entε (1/200 to 1/1200) compared to data simulated from the abovet-Gumbel model
with the same sample size, presented in Figure 4.7. Recall from Example 0.1 that
the Gumbel coupla gives tail dependence function

ρ(θ ) =
1+cotθ − (1+(cotθ )δ )(1/δ )

1∧cotθ
, 0 < θ < π/2.

Figure 4.6 Left plots: 1/Ri, j , whereRi, j = rank(−Xi, j ). Right plots: Estimators ofρ(θ) (solid
line). For sake of reference we have also plotted the expected dependenceE(ρ̂ε,n(·)) from (3.5) for
independent samples (dashed line).
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We estimatedδ from the upper tail dependence coefficientρ̂ε(π/4)= 2−2(1/δ̂), the
value of the estimated tail dependence function atπ/4. We obtained̂δ = 1.25. Now
we generate a sample of the same size as the 5 minutes logreturns with a Gumble(̂δ)
copula andt-distributed marginals. We compare the estimated extreme dependence
functions for differentε and present the results in Figure 4.7.

Notice that the simulated data behave much more stably with respect to changes
of ε, while the real data reacts heavily on such changes. Using a parametric model
such as the Gumble copula would only be an approximation based on one given
threshold.

4.5 Different timescales

As a result of our statistical analysis of the marginal data,the one-dimensional lo-
greturns exhibit Pareto-like tails. If the stocks came froma three-dimensional ex-
ponential Lévy process with appropriate dependence structure, then the extreme
dependence would be the same for all time scales, i.e. 5 minutes logreturns of the
three stocks would have the same dependence structure as daily logreturns. This ap-
plies in particular to extreme dependence and is in accordance with Proposition 0.4.
Note that our data do not satisfy the independence conditionof Proposition 0.4. Ex-
treme value estimates, however, often extend properties from independent data to
dependent data.

We shall at least perform a statistical test to our data, whether there is a change
in the extreme dependence on different timescales by analyzing logreturns of 5, 15,
30 and 45 minutes frequencies.

To this end we performed the same filtering steps as for the 5 minutes logreturns
again for the 15, 30 and 45 minutes logreturns obtained from the raw data. Then
we fitted a MA(1)-GARCH(1,1) model with student-t distributed residuals to the
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Figure 4.7 Estimated extreme dependence functionρ̂ε for different ε (1/200 to 1/1200). Left:
Simulated data from thet-Gumbel model with parameters estimated from the Intel-Cisco filtered
5 minutes logreturns. Right: Filtered 5 minutes logreturns, Intel-Cisco.
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deseasonalized data of the 15, 30 and 45 minutes logreturns.For the 5 minutes
logreturns we keep the model from Section 4.4.

For the 15, 30 and 45 minutes logreturns we applied the Ljung-Box test for se-
rial correlation, where we tested the residuals and the squared residuals, and the
Kolmogorov-Smirnov test for goodness-of-fit of the student-t density. Observe that
the degrees of freedom is not the same as in Table 4.1 for the different timescales.
All the filtered time series passed the Ljung-Box test and thefiltered 30 and 45
minutes logreturns passed the Kolmogorov-Smirnov test.

For the residuals we again estimate the dependence between the different stocks.

Stock Intel-Cisco Intel-GM Cisco-GM
5 0.56 0.35 0.33
15 0.62 0.41 0.38
30 0.65 0.43 0.39
45 0.66 0.46 0.41

Table 4.5 Correlation change for different timescales.

A comparisons of the linear dependence for different timescales is presented in
Table 4.5. Here we can see that the correlation increases forhigher frequencies; this
effect is well-known and also called the Epps effect; see Zhang (2006).

Next we estimate the tail dependence function for the different frequencies. To
compensate for the increasing lack of data for small frequencies, theε is always
chosen so thatε times the number of observations is the same for all frequencies.
Hence we always consider the same quantile.

As the sample of the 45 minutes logreturns is only about 10 percent in size of the
5 minutes logreturns, they set the standard for the other frequencies. We increased
the threshold 1/ε until the estimated tail dependence function behaved stably for
the 45 minutes logreturns. We also studied a plot ofρ̂ε(θ ) for various values ofθ ,
when alteringε. Forθ = π/4 the result can be seen in Figure 4.8. Finally, we chose
ε = 1/120, which represents about eight percent of the data. We want to remark
that, in view of Figure 4.5, we presumably introduced a bias into our estimation.

Also, by using straight forward bootstrap techniques one can present bootstrap
confidence intervals. In Figure 4.10 we depict the extreme dependence function for
Intel-Cisco on the timescales 5 minutes and 45 minutes.

From Figures 4.9 and 4.10 we can conclude that the tail dependence is approx-
imately the same for different timescales. This also holds for differentε but there
are some variations if we increase the threshold. If we lowerthe threshold, then the
similarities between the different timescales become morepronounced. We recall
that in Table 2 on p. 9 in Breymann et al. (2003) the tail dependence coefficient
ρ(π/4) is estimated via a parametric model for different timescales for DEM and
JPY. Even for the unfiltered data in that paper the estimator for ρ(π/4) looks sta-
ble. If we increase the timescale to, for instant, two hours the extreme dependence
starts to deviate unless we lower the threshold and use as much as 15% of the data.
This is consistent with the result on high frequency FX data reported in Hauksson et
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al. (2001). Hence, the two different asset classes seems to share the same time scal-
ing for extreme dependency. As pointed out earlier in this section, the time scaling
is also explained from a theoretical point of view via Proposition 0.4.

From the above analysis we conclude that we can estimate extreme dependence
for lower frequencies by estimating it for high frequencies, where enough data are
available.

Another possibility to achieve a more stable estimation procedure is to use sub-
sampling, based on different samples of the same frequency,obtained by time shifts.
We performed the estimation separately for each subsample and, at the end, aver-
aged over all estimated tail dependence functions. The subsamples proved to be very
stable in the basic statistics, the estimates for the ARMA and GARCH parameters,
and also the properties of the residuals. However, for the estimated tail dependence
functions we cannot report significant improvement, in particular, when compared
to the tail dependence function estimated from higher frequencies.

4.6 Dependence under filtering

Recall that we have in principle prices which are multiples of one cent, there are
values our logreturn will never take. Moreover, we have an unnaturally large amount
of zeroes and small values. However, concerning extreme dependence we can rest
assured that this does not affect the tails.

Now we shall investigate, how the dependence structure has changed during the
filtering steps. In Table 4.6 we can see the correlation between the 5 minutes logre-
turns for the different steps of the filtering.

It is satisfactory to see that the different filtering steps have obviously not
changed the correlation and hence not changed the linear dependence between the
different stocks. This also holds for other timescales.

Now we turn to an account of extreme dependence before and after filtering.
When examining the logreturns in Figure 4.2 one can clearly see the dominating
volatile periods. The same holds for Figure 4.11. Taking thesameε for the raw
data and the filtered returns yields for the raw data an over representation of the
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Figure 4.8 For the 45 minutes filtered logreturns we depictρ̂ε (π/4) as a function ofε for ε =
1/10, . . . ,1/250.
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Figure 4.9 Estimated tail dependence function of filtered logreturns for different frequencies. Five
minutes (straight-dotted), 15 minutes (straight), 30 minutes (dashed) and 45 minutes (dotted).
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Figure 4.10 Estimated tail dependence function with bootstrap confidence intervals (100 resam-
ples) of filtered logreturns for timescale 5 and 45 minutes. Five minutes with corresponding confi-
dence intervals (straight) and 45 minutes with corresponding confidence intervals (dotted).

volatile periods. This implies that one would consider in fact only a much smaller
time period for the extreme value analysis. So theoretically, there is no reason, why
extreme dependence before and after filtering should be similar. In Figure 4.12 we
have plotted the estimated tail dependence function for Intel and Cisco after each
filtering step for 5 minutes logreturns. We have used the sameε as in Section 4.4 and
the sameε for the different filtering steps. One can see that there seems to be only a
small difference in magnitude, not in shape. This also holdsfor different choices ofε
and different timescales. Consequently, for our data the rather complicated filtering
procedure seems to be obsolete for a realistic account of theextreme dependence.
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Stocks Original DeseasonizedFiltered
Intel-Cisco 0.57 0.56 0.56
Intel-GM 0.36 0.36 0.35
Cisco-GM 0.33 0.33 0.33

Table 4.6 Estimated correlation for the 5 minutes logreturns for different steps in the data analysis.

5 Conclusion

We have introduced a new estimator for the tail dependence function, which is tailor
made to assess the extreme dependence structure in data. As it measures dependence
in every direction it is in principle also able to measure extreme dependence for data
with asymmetric dependence structure. We show the performance of this function
for high-frequency data for varying frequencies.

After giving some theoretical results, which are importantin the high-frequency
context, we clean the data carefully and perform some basic statistics. We then show
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Figure 4.11 Upper three plots: Deseasonalized 5 minutes logreturns modelled by daily season-
ality and coefficients estimated by the robust method (4.3).Lower three plots: GARCH filtered
logreturns based on our model in Table 4.1. Compare to the rawdata in Figure 4.2.
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the tail dependence function at work for our data and estimate extreme dependence
for high frequency stock data.

We have investigated the extremal dependence between Intel, Cisco and GM for
different time scales. We can conclude for the filtered data:

• All three stocks have heavy tails. Within the 5,10,15,45 minutes frequencies we
observed that a lower frequency gives lighter tails.

• We can work with the hypothesis that the square root scaled deseasonalized
nightly logreturns have the same distribution as the deseasonalized daily logre-
turns.

• There is (weak) cross-correlation between the stocks for frequencies of up to 30
minutes, it disappears for lower frequencies.

• The extreme dependence is symmetric which means that the stocks influence
each other to the same degree. This can be interpreted as market dependence.

• The IT stocks (Cisco and Intel) have stronger dependence indicating branch de-
pendence.

• Extreme dependence is there, but moderate. We have the same extreme depen-
dence for different timescales. This is consistent with theresult on high frequency
FX data reported in Hauksson et al. (2001). Hence, the two different asset classes
seems to share the same time scaling for extreme dependency.The time scaling
is also explained from a theoretical point of view via Proposition 0.4.

• The filtering steps do not alter the extreme dependence to a high degree.
• Higher correlation does not necessarily lead to stronger extreme dependence.

Our analysis shows again that extreme value theory has to be applied with care.
To obtain a realistic picture about the extreme dependence structure in real data it
is not enough to describe it by one single number. Another obvious lesson to draw
from our analysis is that it is important to use reference results such as simulations
from exact models. Moreover, a message, which we can not repeat too often, one
should be careful when selecting the threshold.
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Figure 4.12 Estimated tail dependence function for 5 minutes Intel logreturns. Dashed: Unfiltered
data. Dotted: Deseasonalized data. Solid: GARCH filtered data.
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