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Abstract Dependence modelling and estimation is a key issue in thessisent
of financial risk. It is common knowledge meanwhile that thaltimariate normal
model with linear correlation as its natural dependencesomeais by no means an
ideal model. We suggest a large class of models and a depsmfierction, which
allows us to capture the complete extreme dependencewsturtta portfolio. We
also present a simple nonparametric estimation procedunésdunction. To show
our new method at work we apply it to a financial data set of fiighuency stock
data and estimate the extreme dependence in the data. Athengdults in the
investigation we show that the extreme dependence is the gandifferent time
scales. This is consistent with the result on high frequefXydata reported in
Hauksson et al. (2001). Hence, the two different assetedessem to share the same
time scaling for extreme dependency. This time scaling @ryf high frequency
data is also explained from a theoretical point of view.
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1 Multivariate risk assessment for extreme risk

Estimation of dependence within a portfolio based on higlffiency data faces
various problems:

data are not normal: they are skewed and heavy-tailed
one-dimensional data are uncorrelated but not iid
multivariate high-frequency data are not synchronised
data are discrete-valued for a very high frequency
most likely there is microstructure noise in the data
there is seasonality in the data

higher moments may not exist

the multivariate distribution may not be elliptical
dependence may not be symmetric

We are interested here in the influence of the multivariapeddence within the
portfolio. We first recall that under the condition that thertfolio P/L follows a
multivariate normal distribution and, if there is no sedapendence, the portfolio
P/L standard deviatioa is calculated by the square root of its variance

n
0’ = Zmr?Cfi2+ ;WinGinPii ) (1)
i= i)

where the portfolio consists af different instruments with nominal amouwt in-
vested into asset The standard deviation of as$eés given byg; and the pairwise
correlation coefficients afg;j (i,j = 1,...,n).

Definition 0.1. For two random variable$ andY theirlinear correlationis defined

as
cov(X,Y)

Vvar(X)var(Y)’
where coyX,Y) = E((X —EX)(Y —EY)) is the covariance of andY, and va(X)
and vatY) are the variances of andY, respectively.

pL(X.Y) =

Correlation measures linear dependence: we have,Y)| = 1 if and only if
Y = aX+ b with probability 1 fora € R\ {0} andb € R. Furthermore, correlation
is invariant under strictly increasinmear transformations; i.e. foa,y € R\ {0}
andB,d € R

pL(aX+B,yY +9) =sign(ay)p(X,Y).
Also for high-dimensional models correlation is easy todianFor random (col-
umn) vectorsX,Y € R" we denote by caiX,Y) = E((X —EX)(Y —EY)T) the co-
variance matrix oX andY. Then form x n matricesA, B and vectors, b € R™ we

calculate
cov(AX +a,BY +b) = Acov(X,Y)BT,

whereBT denotes the transpose of the maBixrom this it follows forw € R that
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var(w' X) = w' cov(X, X)w,

which is exactly formula (1.1) above. The popularity of esation is also based
on the fact that it is very easy to calculate and estimate. dt matural dependence
measure for elliptical distributions such as the multiggginormal ot distributions,
provided second moments exist. Within the context of limeadels correlation has
also proved as a useful tool for dimension reduction (e.gfalsyor analysis), an
important issue in risk management; see Klippelberg artth2009) for a new
approach to dimension reduction for financial data.

Multivariate portfolios, however, are often not elliptilyadistributed, and there
may be a more complex dependence structure than linear depes Indeed, data
may be uncorrelated, i.e. with correlation 0, but still maytighly dependent. In
the context of risk management, when measuring extremerriskielling depen-
dence by correlation may be grossly misleading; see e.gréohts, McNeil and
Straumann (2002).

We turn to a measure for tail dependence, which relates {aiges of the com-
ponents of a portfolio; see e.g. Joe (1997). In the bivadateext, consider random
variablesX andY with marginal distribution function&x andGy and (general-
ized) inversessy” andGy . For any distribution functiois its generalized inverse
or quantile functioris defined as

G (t)=inf{xeR|G(x) >t}, O0<t<1.

If Gis strictly increasing, the@®“ coincides with the usual inverse Gf
Definition 0.2. Theupper tail dependence coefficieaft(X,Y) is defined by

P = ImP(Y > Gk (u) | X > Gy (u). (12)

provided the limit exists. Ifoy € (0,1], thenX andY are calledasymptotically
dependent in the upper taiif py = 0, they are callegasymptotically upper tail
independent

For some situations, this measure may be an appropriaenexidependence mea-
sure; this is true, in particular, when the bivariate digttion is symmetric; see
Example 0.1. Howevempy is not a very informative measure, since the extreme
dependence around the 45 degree line does not reveal muahabat happens
elsewhere; see e.g. the asymmetric model in Example 0.2. iksnady we sug-
gest an extension of the upper tail dependence coefficienfitnction of the angle,
which measures extreme dependence in any direction in stegfiadrant ofR2.
Its derivation is based on multivariate extreme value theord we indicate this
relationship in Section 2. We shall, however, refrain froprecise derivation and
rather refer to Hsing et al. (2004) for details. We also wargmnphasize that one-
dimensional extreme value theory has been applied suctlgdsfrisk management
problems; see Embrechts (2000). We remark further thatdimensional extreme
value theory has meanwhile reached a consolidated stateefereto Embrechts,
Kluppelberg and Mikosch (1997) or Coles (2001) as standzfetences.
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We will illustrate our results by a direct application to alrdata set. The com-
plete data set we investigated consists of high frequenty fda three different
stocks: Intel, Cisco and General Motors (GM). We have futhgke paths of the
price data of the stocks between February and October 2082 tfe Trades and
Quotes TAQ database of the New York Stock Exchange (NYSE&)pur data con-
sists of all trading dates [in seconds] and correspondimgeprfin cents]. This
dataset has to be filtered in different steps due to false dagsonality and serial
dependence; see Section 4 for details.

After these filtering steps the residuals can be assumedddte dependence
structure between the three stocks can be investigatedfirffheow of Figure 1.2
shows scatter plots of different combinations of the fillestocks. We have esti-
mated the means, variances and the correlation of the datcscatter plot. The
second row shows simulated normal data with the estimatethpsiers.

For extreme risk assessment one is particularly interéstin left lower corner
and we have zoomed into this corner to get a more precise atchtihe dependence
there; see Figure 1.3. None of the normal models seem to leetaltapture the
dependence structure in this area.

Our paper is organized as follows. After introducing thedapendence function
in Section 2 we shall present some examples including an@agyric Pareto model
and the bivariate normal model.

In Section 3 we introduce a simple nonparametric estimagtimetedure of the
tail dependence function. We show its performance in vargmulation examples
and plots.

In Section 4 we investigate our high frequency data in motaildend estimate
their tail dependence function. We also show various ptggualize our results.
Finally, in Section 5 we conclude the paper with a summaryufimdings.

20 40 60 80 100 120 140 160 180

Figure 1.1 Example of stock prices: Intel, Cisco and GM: Feb-Oct 2002.
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2 Measuring extreme dependence

Although the upper tail dependence coefficient and its fonel extension we are
aiming at can be defined for random vectors of any dimensiengstrict ourselves
in our presentation to the bivariate case. For a generahtiegg in any dimension
we refer to Hsing et al. (2004).

SupposéX,Y:)i=1....nis a sequence of iid vectors afd,Y) is a generic random
vector with the same distribution functi@(x,y) = P(X < x,Y <) for (x,y) € R?
with continuous marginals. Fore N define the vector of componentwise maxima

Mn = (max—1. nX,max_1_ nYi).Asafirstgoal we want to describe the behavior

of My, for largen.

Itis a standard approach in extreme value theory to firssfoam the marginals
to some appropriate common distribution and then model ¢épexdence structure
separately. As copulas have become a fairly standard nfdiomodelling depen-
dence we follow this approach and transform the marginaiibigionsGyx andGy
to uniform (0,1). Then we have a bivariate uniform distribat which is called a
copulaand is given for 0< u,v < 1 by

Ca(u,v) = P(Gx(X) < u, Gy(Y) V) =P (X < G (u), Y < Gy (V).

Intel-Cisco Intel-GM

-2 -2

-4 -4

6L . . gl i ; 65l 3 i
-5 0 5 -5 0 5 -5 0 5

Figure 1.2 Bivariate stock data vs. simulated normal with same (es@djaneans and variances.
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For more details on copulas and dependence structures erajemne refer to
Joe (1997); for applications of copulas in risk managemsmEsmbrechts, Lindskog
and McNeil (2001). The transformation of the marginals tdfarms is illustrated
in Figure 2.1.

Under weak regularity conditions on the bivariate disttidao function G we
obtain

. 1 1
limP ( max Gx(Xi) <1+ =Inu, max Gy(Y) < 1+—Inv)
n—oo i=1...n n i=1,...,n n

= exp(—A(—=Inu,—Inv))) = C(u,v), 0<uv<l1.
Such a copula is callegktreme copuland satisfies for atl > 0
Cl(u,v) =C(u',V), O<uv<l.

C(u,v) has various integral representations. Hiekands’ representatiopields an
extreme event intensity measure (we wateb = min(a,b) andav b =maxa,b)):

Intel-Cisco Intel-GM Cisco-GM
-1 -1 + "
iR
T
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-2 -2 o e N
TR £
PRI
o5 -3 . . :’:'.’,‘.:’{
4 -4 ‘ .
-5 -5
-6 -6 L L -6 ' L
-6 -5 -4 -2 -6 -4 -2

Simulated Normal

-2 2

-3 -3

-4 -4

-5 -5 -5
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Figure 1.3 Bivariate stock data vs. simulated normal with same (es@djaneans and variances.
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@ is a finite measure ofi0,77/2) satisfying JJ” (1A tanf) @(d6) = [7/*(1 A
cotf) @(dB) = 1. The definition of A as a limit of nx success probabilitys a
version of the classical limit theorem of Poisson. For langbe measuré\ can
be interpreted as the mean number of data in a strip near therwnd right
boundary of the uniform distribution; see Figure 2.1. Wepaiscall some prop-
erties of tar@ = ﬁ = %: tan0= 0, tan@ is increasing in6 € (0,71/2) and
limg_.z/2tanfd = . Then cob is its reflection on the 45 degree line, correspond-
ing to 8 = 11/4. Moreover, tafvt/4) = cot(r1/4) = 1 and cot3 — ) = 1/ cot6 for
6 € (0,11/2). Finally, arctan is the inverse function of tan.

The fact that\ (x,y) = xA (1,y/x) motivates the following definition.

Definition 0.3. For any random vectofX,Y) such that (2.1) holds we define the
dependence functicas

Y(0)=A(1,cotf), 0<B<m/2.

20 ; ; ; 1 . ‘ :
Gx(X)'> 1- % or Gy'(Y) >1 7'%'
18 ’ 1 0.9¢ . :
16 1 osf * . . T .
14 1 07t -
12 X>gOrY>§ 1 0.6f
>~ 10 =05 ’
<
8 04
6. 03
.
4t 0.2
2j..;.-., | 1 0.1t
sl ) . B .
e o R
0 5 10 15 20 0 02 04 06 08 1
X Gx(X)

Figure 2.1 Left plot: Simulated data foX andY Fréchet distributed with distribution functions
Gx (X) = Gy (x) = exp(—1/x) for x > 0 with region of large data points indicated. The range of
the data is in total0,410 for X and[0,115 for Y; for reasons of presentation 14 extremely large
points had to be left out.

Right plot: lllustration of the intensity measure as defined in equation (2.1t measures the
probability in the strip near the upper and right boundarthefuniform distribution.
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Note thaty(-) is a function of the anglé only and measures dependency in any
direction of the positive quadrant of a bivariate distribot

The following result shows thap(-) allows us to approximate for large and
y1 the probability forX orY to become large. We writa(x) ~ b(x) asx — Xo for
limy_x, a(x)/b(x) = 1. We also denote b@(-) = 1— G(-) the tail of G.

Proposition 0.1.Let (X,Y) be a random vector. Ifxy; — o such that PX >
x1)/P(Y > y1) — tanf, then the following quotient converges for 8l (0, 11/2),

P(X>xiorY >yj)
P(X >x1)

Furthermore, the limit is the dependence functip(®).

Proof. From (2.1) we have for largey,y; andx = nGx(x;) andy = nGy(y1) as
n — oo (note thatx, x;,y,y1 depend om):

1 — _
P(X > XxporyY > yl) ~ ﬁ/\ (nGx(Xl), nGy(yl))

= Gx(x)A ( g;gi;) = Gx(x1)y (arctan(éx(xl))) . (22

We set

6= arctan< Cx(x1) >

and obtain the result.

The following corollary summarizes some obvious resulie; symmetry prop-
erty of part (d) is new and will prove useful for estimationrposes.

Corollary 0.1. (a) For X andY independent we calculate

PX>xiorY>y;)) PX>x)+P(Y>vy1)
P(X > Xl) P(X > Xl)

— 1+cotf =: Yp(0)

for x1,y1 — oo such that RY > y;)/P(X > x1) — cotf.
(b) For X andY completely dependent, i.e=¢g(Y) with probability 1 for some
increasing function g, we obtain

PX>xgorY>y;) PX>x1)VPX>y1)

PX>x) P(X > x1) — Lveotd = ¢a(6)

for x1,y1 — oo such that RY > y;)/P(X > x1) — cotf.
(©) ¢n(8) < W(B) < wo(6)for 0< 6 <m/2
(d) ynx(6) =cotb Yxy (1/2—6).
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Proof. It only remains to proof part (d). By Example 4.3 in Hsing et(@004) we

have together with the change of variabtes ttang,

1+cotf — yxy(0) = tIim P(X > Gy (1—1/(ttanB))|Y > Gy (1—1/t))

P(X > Gy (1—1/(ttan@))
P(Y > Gy (1-1/t))

= cotf (1+tanb — Yy x(11/2— 0)) = cotf + 1 —cotb Yy x(11/2—09).

= tlm P(Y > Gy (1-1/t)|X > Gy (1—-1/(ttand)))

We normalizes(-) to the interval0, 1] as follows.

Definition 0.4. The normalized function

~ Uo(6)—w(B) 1+cotb—y(6)
~ Yo(6)—yn(B)  1acotd '

we calltail dependence function

p(0) 0<6<m2,

Note thatp describes the tail dependencgXfY) in any direction of the bivari-
ate distribution on the positive quadrant®f.

By this definition we hav@(0) € [0,1] forall 0 < 8 < 11/2, p(6) =0 in case of
independence and(8) = 1 in case of complete dependence. Consequentt))
being close to 0/1 corresponds to weak/strong extreme diepes.

Remark 0.1(i) (Relation between tail dependence function and Pickadepen-
dence function.) We can write an extreme copula as

log(v)
log(uv)

C(u,v) = exp(log(uv)A( )) , O<uv<li.

The functionA: [0,1] — [%,1] is called Pickands’ dependence functioA = 1
corresponds to independence aid) =tV (1 —t) to total dependence. Using
—A(—log(u),—log(v)) = log(C(u,v)) we have the following relation betwegn

andA:
cotf

(1+cotd)(1-A(-——3))
1+cotb
= 2.
p(6) 1Acotf , 0<<m
(i) For elliptical copula models a new semi-parametric @agh for extreme de-
pendence modelling was suggested and investigated inplbprg et al. (2007,

2008).

The functionp(-) is invariant under monotone transformation of the marginal
distributions. We show this by calculating it as a functidhe copula.

Proposition 0.2.Let (X,Y) be a random vector with continuous marginal distri-

bution functions G and G;. Then G(X) 44 and Gr(Y) 4 v/ for uniform ran-
dom variables U and V with the same dependence structu(X a$). Denote by
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C(u,v) =P(U <u,V <) the corresponding copula. We also relate the arguments
by Gx(x1) = uand G/(y1) = v. Then, provided that the limits exist,

1-u—v+C(u,v)

p(B) = uI‘|vrl1l WAV ’ 0<B<m2.
(1-u)/(1-v)—tanb
Proof.
_ ; 1-PX<x,Y<y1) . 1—C(u,v)
W) = xl!'yglw P(X >xq) N uller1 1—-u

By (x1)/Gy (y1)—tand (1-u)/(1-v)—tand

Remark 0.2Note also that the quantity(7/4) is nothing but thupper) tail de-
pendence coefficiept) as defined in (1.2). Thus, the functiprextends this notion
from a single direction, the 45 degree line corresponding to 17/4, to all direc-
tions in (0, 11/2).

This extension is illustrated by the following examples.

Example 0.1[Gumbel copula]
Let (X,Y) be a bivariate random vector with dependence structuradiye Gum-
bel copula ford € [1,):

C(u,v) = exp{ [(—In u)® + (—Inv)‘s} 1/6} , O<uv<l.  (2.3)

The dependence arises framTo calculata)(6) we use the relationship af to its
copula. We use also the fact that fov — 1 we have

Then by continuity of* in x we obtain foru,v— 1 such that1—v)/(1—u) — cotf

14 —Inv N 17u(1+(cot6)5)1/5
—Inu '

Using the I'Hospital rule and the fact that— 1, we obtain

1-C(u,v) = 1exp(|nu

1—-C(u,v) 5\ /0
—-u — <1+(C0t9) ) ,
and hence
1+ cotd — (1+ (cotg)?)™®
p(6) = = (LH(Co0) " g2

1A coto
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We also obtain the well-known upper tail dependence coefitgy = p(17/4) =
2218,

Our next result concerns models, whose extreme dependamighes in the
limit.
Proposition 0.3.Let (X,Y) be a random vector with continuous marginal distribu-

tion functions G and Gy. If p(6g) = O for someby € (0, 11/2) thenp(8) = O for all
0 € (0,1/2).

Proof. From Corollary 0.1(d) we have
pyx(m/2—0)=p(0), O0<m/2<1. (2.4)

Now note thatP(X > Gy (1— 1/(ttan8))|Y > Gy (1— 1/t)) is decreasing ir®,

hence ifp(6y) = 0 thenp(8) = 0 for 6 > B,. Now, assume thap(77/4) = 0 so
thatpy x (77/4) = 0 by (2.4). This results ip(6) = 0 andpy x(8) = 0 for 6 > 11/4,

i.e p = 0 by (2.4) and monotonicity. Hence, we only have to show &) = 0

for some6y € (0, 11/2) implies p(11/4) = 0. This is trivial for 6y < 11/4 by mono-
tonicity. For 6y > 11/4, (2.4) givepy x (11/2— 6) = 0 for 1/2— 6y < 1/4, so that
pyx(11/4) = p(mt/4) = 0 and this finishes the proof.

We conclude with the multivariate normal distribution. $t well-known (see
e.g. Embrechts et al. (2001, 2002)) that for correlajior: 1 the upper tail de-
pendence coefficient igy = 0. Consequently, Proposition 0.3 gives the following
result.

Corollary 0.2. For a bivariate normal distribution with correlatiop < 1 we have
p=0.

The following example is a typical model to capture risk ie #xtremes.

Example 0.2[Asymmetric Pareto model]
For ps, p2 € (0,1) setp; = 1— p; andp, = 1 — pz and consider the model

X=p1Zy3VPZz and Y = pZ1 VP23

with Zy,Z,, Z3 iid Pareto(1) distributed; i.eR(Z > x) = x~ for x > 1. Clearly, the
dependence betweéefiandY arises from the common componéit Hence the
dependence is stronger for larger valuepqfp,. We calculate the functiop, and
observe first that by independence of #ador X — o,

PX>X) = 1-P(p1Z1VP1Z2 < X) = 1—P(p1Z1 < X)P(P1Z2 < X)

P 1 1
=1- (1*%) (1%) ~ ;(ler_pl) =3

Consequently, we choose= xtanf, which satisfies the conditions of Proposi-
tion 0.1 and calculate similarly,
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P(X >xorY >xtanf) = 1-P(X <x,Y < xtanf)

_ 1—P<Zl§ i/\xtané))|3<zZS _i)P<23§ xt3n6>
P1 P2 P1 P2

1
~ > (P1V p2cotf + Py + P, c0t6)

which implies(0) = 1+ cotf — p1 A ppcotb for 0 < 6 < 17/2 and

_ p1Apocotd

p(B) = Thcold 0<O<m/2

An important class of distributions are those with Pardte-kails. Proposi-
tion 0.4 ensures that, within this class, multivariate mesuon different timescales
have the same extremal (spatial) dependence, providedoen@tions are inde-
pendent and have no time series structure. Hence, one caratifantage of the
fact that a higher frequency results in a larger sample ardsger to estimate. We
shall illustrate this in Section 4.5. This version of thegfrof Proposition 0.4 was
kindly communicated to the first author by Patrik Albin. Aleme can find a similar
proposition in Hauksson et al. (2001) in the setting of nvaltiate regular variation.

Proposition 0.4.Let (X,Y) be a random vector with marginal taisx andGy that
are regularly varying at infinity, with indices < 0 and3 < 0, respectively. Denote
by X*" the sum of n iid copies of X and defin€™analogously. If the limit

tlmP(X >Gy (L-A/t)|Y>Gy (1-1/t)) =L(A) existsforA >0, (2.5)

then the following hold:
(@ P(X™M>xY"M>y)~nP(X >XY >y)asxy— o;
(b) The marginal tailGy:n andGy« of X*" and Y*" satisfy for all n> 2

Jim P(X™ > Gin(1= A /)[Y'" > Gyan(1-1/t) = L(A)  forA >0.

Proof. (a) The one-dimensional version of this result goes bacletleFand has
been extended to the larger class of subexponential randdables (see e.g. Em-
brechts et al. (1997), Appendix A3); i.e. we have

P(X*">t) ~nP(X >t) and P(Y">t)~nP(Y>t) ast—c. (2.6)

We prove a bivariate version of this result. For 0 sufficiently small, we have
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P(X">xY">y) < _ P(X > (1—(n=1)&)x,Yj > (1— (n—1)¢)y)

n

+ P(Xi > ex, Xk > ex,Y; > (1—(n—1)¢e
K;@ S P( i > (1-(n-1)e)y)

=1
+ ; P(Xi > (1—(n=1)e)x,Yj > ey, Y > gy)
i=11<]#I<n

+ P(Xi > ex, X > ex,Yj > €Y, Y| > gy)

<nP(X > (1 (n De)x,Y > (1—(n—-1)¢)y)
+n2p(x> (1—(n=1)e)x)P(Y > (1— (n—1)e)y)

N2P(X > ex,Y > gy) (P(X > &x) + P(Y > &y))
+n3P(X > ex) P(Y > gy) (P(X > ex) + P(Y > gy))
+2P(X > (1 (n-1)e)X)P(Y > (1- (n-1)e)y)
+?P(X > ex,Y > gy)? (2.7)
+M3P(X > ex,Y > gy) P(X > ex) P(Y > gy)
+n*P(X > ex)2P(Y > gy)?

~nPX>(1-(n-1)&)x,Y > (1-(n—1)¢)y) asx,y— o

by (2.5) together with the regular variation propertieswiNasing again aig > 0
and properties of disjoints sets together with the Booleaquality, we estimate

P(X">x,Y*" >y)
> i"(m > (1+(n=1)e)x Y > (1+(n=1)e)y)

({—ex< X <x,—ey<Yj<y})
j#i

> iP(X; > (1+ (n—1)e)x,Y; > (1+ (n—1)e)y)
- iZP(Xi > (1+(n=1)e)x,Y; > (1+ (n—1)e)y, Xj & [—&x,x])
=1

_i;p(x > 1+ (=D Y > (1+ (-1)e)y,Y; ¢ [—eyy])
~nP(X > (1+(n—1)e)x,Y > (14+(n—1)e)y) asx,y— oo.

(b) Proposition 1.5.15 of Bingham, Goldie and Teugels (338¥%ures that the
generalized inverses satisfy

G (1-1/t) ~ Gn(1—n/t) and Gy (1—1/t) ~Gyn(1—n/t) ast— .
(2.8)
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In particular,Gy (1—1/-) andGy..(1—1/-) are regularly varying with index/o,
while Gy (1—-1/-) andG{:n(1—1/-) are regularly varying with index /3.
By (2.5)-(2.7), we have (witlg not the same as before)

limsupP(X*" > Gicn(1— A /t) [Y*" > Gyan (1 — 1/1))

t—o0

, nP(X > (1-e)P/9G (1-A/(nt),Y > (1-£)Gy (1—1/(nt)))

< limsup nP(Y > (1+£)Gy (1—1/(n1)))
<”msupp(x>G;(1—(1—2s)5/\/(nt))Y>GY( —(1-2¢)B/(nt)))
T e (1+¢)/(1-3€))BP(Y > (1-3¢)Gy (1—1/(nt))]

1-3¢ . (1- 2£ (1—2¢)P
< <1+ ) Ilrtn_)smupP<X>G 1- )}Y (177““) ))

1-3¢\B
- ( 1+¢ ) L(A)

—L(A) ase]O.
Analogously follows from the reverse inequality in (a)
liminf P(X™" > Gin(1-A/) [Y*" > Gyin(1—1/t)) > L(A).

Remark 0.3In Example 4.3 in Hsing et al. (2004) we have, %randY random
variables with continuous distributio® andGy,

lim P(X > Gy (1-1/(ttand))|Y > Gy (1-1/1)) = (1Acot®)p(6), 0<0< /2.

Hence, forX andY random variables with Pareto-like tails, settihg= 1/tan6 and
L(cot8) = (1A cotf)p(6) we conclude(A) = (LA A)p(arctarfl/A)) for A > 0.

Corollary 0.3. Denote byy(6) the dependence function ©f,Y). Let X*" and Y*"
be the sum of n iid copies of X and Y, respectively, and deryate'li-) the depen-
dence function ofX*",Y*") for n > 2. Theny*"(6) = @(0) for all 0 < 8 < 11/2.
The same holds for the tail dependence functiof).

3 Extreme dependence estimation

To assess extreme dependence in data we estimate the ildsze functiop(+)
on the positive quadrant. We use a nonparametric estimagrggested in Hsing et
al. (2004) based on the empirical distribution functionjakihyields a simple non-
parametric estimator af(-) and hence gb(-). Recall that the empirical distribution
function given by

Gx(X) =Py(X <x) =

~ ~ 1
- (Xigx), XeR,

™:
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is the standard estimator for the distribution funct®yg of iid data ( (A) denotes
the indicator function of the seh). The empirical distribution function can be
rewritten in terms of the ranks of the sample variabfe$or i = 1,...,n and we
write

Gx() = Bu(X <X) = Lrankx).

We still have to explain one important issue of our estinrapeocedure. Recall
from (2.1), denoting byGx(-) = 1— Gx(:) andGy(-) = 1 — Gy(-) for continuous
Gx andGy, that

y
x (X) >1——OI’Gy( )>1_ﬁ)

( nGx(X) < xornGy(Y) <y)
nP(n

n(Gx(X),Gy(Y)) €A) 3.1)
—A(XYy) n— .

By a continuity argument we can replate N byt € (0, ) and also replace in a
first step the probability measulReby its empirical counterpaR,. Then we obtain

Aen(x,y) = tPn (t (Gx (X),Gy (Y ZI (Gx(X),Gy(Y)) €A).
Now estimate the two distribution tails by their empiricaloterparts:
Gx (%) = }F8< = %rank(—)(i) and Gy(Y)) = %R,Y = %rank(—Yi).
Then settingge =t/n we obtain
Aen(A) = siius(ax, R €A).

This yields in combination with Definition 0.4 an estimator the functionp :

. 1+ cotl — A n(1,cot) m
- ) << = 2
Pen(8) 1Acotf , 0s8< 2’ (3.2)
where/A\gyn(l, cotf) can be rewritten as
n
£ ZI (RE<elorR <elcoth), 0<O< g (3.3)
i=

Choosinge is not an easy task and wheéhapproachegt/2 increasingly fewer
points are used in the estimation. In Hsing et al. (2004)ghiblem was solved by
letting € decrease slightly a8 approaches/2. A much better solution is provided
by the symmetry proved in Corollary 0.1(d) in combinatiortha(2.4): the extreme
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dependence qiX,Y) for 8 € [r1/4,11/2] is the same as the extreme dependence of
(Y,X) for 8 € [0, r1/4]. Consequently, we estimate n(8) by estimatingox v (6) by

5216 {ﬁé}(@) 0<0<m/4
en =

PIX(m/2-0) mja<0 < 2. 4

In the following remark we summarize some important prapefp; .

Remark 0.4(i) Estimator (3.4) has good convergence properties: fqragpri-
ately smalle andn — oo it converges in probability and almost surely; see Hsing
et al. (2004) and references therein.

(i) To assess asymptotic dependence involves passingrtotdnction, which for

a finite sample is simply impossible. Consequently XaandY independent, even
for very smalle it is highly possible that the estimated tail dependencetfan will

be positive. This can be made precise by calculating

n
£ ZI (R¢<et orR <& 1coth)
i=
n

= Z(I (RE<eH+1(R <& lcoth)) - I(RE <&t andR' < e 1coth))

i=
n
=1+coth—¢ zil (R¢< el andR' < e 1coth)
i=

Now, independent samples fdrandY vyield for fixedn, € and@

n 6
X 1 Y < 1 ~ Bi cot .
;I (R*<e ! andR' < e cotf) ~ Bin (—sznz’n

Hence,
Ele S I(Rf< et orRY <& lcoth) 71+cott9—ﬂ 0<o<”
iZ\ B - B en ’ 2’
giving
YRS
E(pen(0)) = 3.5
— - — <0< =
en 4 2
In much the same fashion we get
to £o
Var(ﬁe,n(@) = " &
cot(m/2—6) cof(m/2—6) m cg. T
n e2n3 4 — 2
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(iif) Inspecting equation 3.3 one can see that choosing aequivalent to the
estimation ofp(0) based on the /& largest values oK. Hence, it is natural to see
1/¢ as a threshold of the data and we will therefore use this term.

(iv) The estimatoig , has the advantage that it is only based on the ranks of the
data. Consequently, it can be smoothed in the usual waynBtarice, by averaging

it over a window of size &+ 1 form e N, we call this smoothed estimatf)g?,) ().

In the second column of Figures 3.1 and 3.2 we estimaté for the Gum-
bel copula (cf. Example 0.1) and the asymmetric Pareto m@fleExample 0.2).
The estimated tail dependence function is indeed (exce {0, 11/2}, where
E(Pen(+)) has singularities) far away frof(pg n(-)). For our sample size and the
chosere it is smaller than 0.075 for the interval depicted. Givert tha variance is
of the ordem~1 the estimated extreme dependence in our data is significant.

Ranks p(0/4)=0.3 MSE(6)

0.1

0.05 w

0
04 06 08 1 12

2
04 06 08 1 12

0.15
URX o 0
Ranks p(0/4)=0.7 MSE(6)
1 0.1
0.15
> . =
o 01 S 08 0.05
- QU
0.05 . ]
it
0 6 0
005 01 015 04 06 08 1 12 04 06 08 1 12
URX 0 0
Ranks p(0/4) =0.9 MSE(6)
0.1
0.15
0.95
. _ —~
g 01 < 0.05
0.9
005 4
0 0.85

0 0.05 0.1

l/RiX

Figure 3.1 Simulated Gumbel copula model fof6/4) = 0.3 (upper row)p(8/4) = 0.7 (middle
row), p(8/4) = 0.9 (lower row).

Left column: Plots of rank$1/R¥,1/RY), with points close td1, 1) truncated.

Middle column: Plots op(0) (dashed) overlaid with true functiqm(6) (solid).

Right column: Estimation error in terms @f MSE(8).

0
04 06 08 1 12 04 06 08 1 12
0 0

Example 0.3[Gumbel copula: continuation of Example 0.1]
In Figure 3.1 we simulated the model (with student-t 8 degodéreedom marginals)
forn= 10000 iid observations ¢i,Y) 100 times. We estimate the tail dependence
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function p(+) for this model withe = 1/200. We stay away from the boundaries
6 = 0 and6 = 11/2, since in the numerator of (3.2) we have the difference of tw
quantities which both tend te as@ — 0. The three sets of plots on the three rows
correspond to the casegs(t/4) = 0.3 (upper row) p(7/4) = 0.7 (middle row) and
p(m/4) = 0.9 (lower row). On each row the left plots contain rarftgR*,1/RY),

1 <i <n, of a simulated sample of size 10000. Points on the axessponel

to independent extreme points; all points in the open quedszhibit some ex-
treme dependence structure. Completely dependent pomt® de found on the
45-degree line. The true functiogg ) in (2.5) (solid) are overlaid with the es-
timated mean of; n(0) (dashed) based on the simulated sample. The right plot
depicts the squareroot of the estimated mean squared Boterthatp(77/4) is the
upper tail dependence coefficient, which is an appropriadesanple measure of ex-
treme dependence for this symmetric model. The level of niégece is manifested
by the data scattered around the diagonal.

Example 0.4[Asymmetric Pareto model: continuation of Example 0.2]

In Figure 3.2 we simulated this model far= 10000 iid observations ofX,Y)

with € = 1/200 100 times. The three sets of plots on the three rows qmmeisto

the cases(pi1, p2) = (0.7,0.3), (p1, p2) = (0.5,0.5) and(p1, p2) = (0.2, 0.8).

On each row the left plots contain ranks/R*,1/R"), 1 <i < n of a simulated
sample of size 10 000. The true functign@) in (2.5) (solid) are overlaid with the
estimated mean qd 1(6) (dashed) based on the simulated sample. The right plot
depicts the squareroot of the estimated mean squared error.

In the first row of plotsp is larger for small@ than for larged; this is reflected
by the left plot in which the violation of independence carsben to be more severe
below the diagonal. In the second row of plgtsis constant; which is reflected by
having a portion of extreme points lined up on the diagon#i@left plot. The third
row of plots is the converse situation to the first row, whigheflected by the pattern
of extreme points above the diagonal. This is an exampleitdat®on where the tail
dependence coefficient does not convey a good picture cérertdependence, in
thatp(rt/4) is not sufficient to describe the full dependence structéitkis model.

4 High frequency financial data

We have tick-by-tick data of th&rades and Quotedatabase, in terms of trading
times [in seconds] and prices [in 1 cent units] of three stdckded between Febru-
ary and October 2002 on NYSE and Nasdag. The stocks are Géfamas (GM)
from NYSE, and Intel and Cisco both from Nasdag. One majdedihce between
the two stock markets is that on NYSE trading is made on the figule Nasdaq
has electronic trading. We shall analyze the extreme deperedbetween the three
stocks using the tail dependence functmm study with focus on bivariate depen-
dence structures on FX spot data has been performed by Bneyetaal. (2003)
and Dias and Embrechts (2003). Also, FX spot data was stwdiaéh the concept
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Ranks p,=0.7,p,=0.3 MSE(0)
1 0.1
Sosf O\ 005 ~ 7
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Figure 3.2 Simulated asymmetric Pareto model wiiki6/4) = 0.3 (upper row),0(6/4) = 0.7
(middle row),p(6/4) = 0.9 (lower row).

Left column: Plots of rank$1/RX, 1/RY), with points close td1, 1) truncated.

Middle column: Plots op(0) (dashed) overlaid with true functiqm(6) (solid).

Right column: Estimation error in terms gf MSE(6).

of multivariate regular variation in Hauksson et al. (20049r cleaning and desea-
sonalizing our data we mainly follow the methods appliechiese papers; see also
there for further references. In these pagsmsametric bivariate copulawere fit-
ted to FX spot data in both non-extreme and extreme regiomsstDdy considers
the extremal dependence for stock data, which is estinmaiedarametricallyOne
main difference between stock data and FX spot data is thageXdata is traded
24 hours per day. In contrast, NYSE for instance, has regplaning hours between
9.30 and 16.00 on working days. This introduces additiooadmexity into our data
analysis, and we have to deal with this problem.

When dealing with extremes it is of importance to use as mata ds possible,
since extremes are consequences of rare events. Howevaavmet simply use the
full samples of all stocks as each single time series is atibstary and, even worse,
for high-frequency data the different time series are naothyonized. As a remedy
for the non-synchrone data we take subsamples of logreturapecific timescales.
If one chooses a relatively high frequency, one is confrdmigh the problem that
tick prices are discrete, and also microstructure noiseceffcan enter. We chose
5 minutes logreturns as the lowest frequency, thus avoidifggostructure noise
effects.
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There are a number of issues which appear when dealing wgth frequency
data and we will describe them in turns.

4.1 Cleaning the data

A full sample path of stock data contains a huge amount ofiméion. At Nasdaqg
there is almost a trade every second. However, some tickiglass mostly due to
fake quotes and decimal errors.

To be able to continue the analysis one has to clean the dais.isTdone by
filtering the data and removing values that differ too muamnfrtheir neighboring
values in the sense of logarithmic differences. Also, somed false values may
come in clusters, which one also has to deal with. The seledf thresholds for
removing a bad tic was done by visually inspecting the timmeesdefore and after
the cleaning. When a false tick was observed it was replaged\alue based on
linear interpolation with its neighbors. In this way lesantone percent of the data
was removed.

The thresholds for logarithmic difference were set to 0.B¥olfitel and Cisco
and to 0.2% for GM, respectively. The reason for differemedimolds is that Intel
and Cisco are traded at a much higher frequency. A resuliecflganing procedure
can be seen in Figure 4.1. We repeated our analysis afteingltde thresholds
slightly. However, this sensitivity analysis did basigailot change the results.

When dealing with information from a stock exchange one edawith the
problem that they do not trade for 24 hours resulting in a gapformation, when
the stock market is closed over night. However, Nasdag an8®ave off-hour
trading, but prices behave differently than prices durireggregular opening times as
the trading rules differ. To obtain synchronised data we @ohsidered the stocks
between 9.35t0 16.00 from Monday to Friday using the previmk method, which
results in 77 five minutes logreturns per day. Also, theresvgecouple of holidays

Intel 2002-02-01, uncleaned Intel 2002-02-01, cleaned

L L I L . L L L 2 L L L L L L L L
(] 1000 2000 3000 4000 5000 6000 7000 8000 9000 0O 1000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 4.1 Intel ticks during 9.35 to 11.45 on February 1, 2002. LeftwRéata. Right: Data
cleaned from false ticks as described in Section 4.1.
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where no data were available. Finally we had 14 476 synchednbbservations (5
minutes logreturns) for each stock, which we plot in Figuiz 4

4.2 Deseasonalizing the data

When investigating the 5 minutes logreturns closer one esectiseasonality in the
data. In Figure 4.3, we depict the autocorrelation of theasegilogreturns for Intel.
Here one can see the daily seasonality. A comparison to thédtxin Breymann
et al. (2003) shows that FX data have a much clearer week$pgaaity.

To be able to remove the seasonality, there are two main appes. The first one
is to time-change the logreturns to a business clock ingtEthe physical clock. The
second is to use volatility weighting. We chose the secordasrit is not clear how
to choose a business clock for multivariate time series.

Volatility weighting divides a period (we first take a weekjo several smaller
subperiods and then estimates the seasonality effect msedaperiod in terms of
volatility. Then each subperiod is deseasonalized segdgry devolatization. We
chose 5 minutes intervals as subperiods. This means thabsarved returns;,is
a realization of the process

% = M+ ViX.

wherex; are the deseasonalized returnss a constant drift and is the seasonality
coefficient (volatility weights), estimated by

(4.2)
Intel
T T T T T T T
0.02
0
-0.02[ I I I I I I I
0 2000 4000 6000 8000 10000 12000 14000
Cisco
0.02 T T T T T T T
0
-0.02 | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000
GM
T
0.0g’m, ul btedomstbbirtrbodoront ek . ALWWWWW
Y " W LaR AN i L ¥ falitihad
-0.02 I I I I I I -
0 2000 4000 6000 8000 10000 12000 14000

Figure 4.2 Synchronized 5 minutes logreturns for Intel, Cisco and GMvieen 9.35 and 16.00
during February 1 to October 31, 2002
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HereNT' is the number of weeks, during which we have observed oukstioc
the given subperiod € {0,5,10,15,...} (in minutes), and; denotes the start of
weeki which always is on Monday at 9:35. Also,has to be corrected for nights
and weekends. We estimatewith the sample meaj of the logreturns. Hence, the
deseasonalized 5 minutes logreturns are

X—H
X = % 4.2)
However, as we only have about 40 weeks the estimated viylatights are quite
noisy, see Figure 4.4, This is due to the fact that singleelaajues can dominate
2 :the mean taken over 40 weeks is not sufficiently smooth.

To overcome this problem we first assume a daily seasonalsitead of the
weekly. This can be motivated by the fact that the differeatsddo not seem to
differ to a higher degree; see Figure 4.4. However, singtelaalues still dominate
the volatility weights, which is unsatisfactory.

Consequently, we use a robust estimator based on the metiaatbaolute val-
ues:

W' = median_1 . ny[%yl- (4.3)

HereNY is the number of days, during which we have observed our stocke
given subperiod/ € {0,5,...,385} (in minutes). We can now observe the stylistic
pattern of the autocorrelation of squared logreturns inufégt.3 for our deseason-
alized time series using the robustly estimated volatdigights.

The depicted volatility weights can be seen in Figure 4.4 €an clearly see that
trading is more intense at the beginning and at the end of a/daglso observe that
the robustly estimated volatility weights are much moréletaThe deseasonaliza-
tion removes seasonality in the squared logreturns, whiehiight skewed, hence
the difference in magnitude for the two estimation methods.

o 50 100 150 200 250 300 o 50 100 150 200 250 300
Lag Lag

Figure 4.3 Autocorrelation function of squared 5 minutes logretuimsiftel.
Left: Original data: Visible is the cycle of 77 lags indiaagidaily seasonality.
Right: Deseasonalized data as in (4.2) based on daily saiétyon
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When comparing the two different deseasonalization megtibd robust one
leaves more larger absolute values in the data, which occlow trading time.
The non-robust version decreases them as large valuesott@tmuch more to the
volatility weights. Hence, the non-robust version of theefesonalization makes the
time series smoother than the robust method does.

4.3 Filtering the data

Because of the dependence, which we have observed in theoatgiation for the
squared logreturns, we will assume a stochastic volatitibglel for each stock. We
model the mean by an ARMA process and use the standard GAR@QHmModel for
the martingale part. The model selection is based on the At€rion, the results
are summarized in Table 4.1.

We model the logreturns for different equidistant freques by

X =l + Gtz

with gy = c+ 5 @%i+ 3", 6& i andof = ao+ 37, aio?; + 5, Big? s,
whereg = 0rz. We model thez by a standardnormal or a studendistribution
with v degrees of freedom. The overall fit of the model was assessaddsidual
analysis. We applied the Ljung-Box test for serial corielatwhere we tested the
residuals and the squared residuals, and the Kolmogoram8wiest for goodness-
of-fit of the normal and studentdistribution.

As we only have logreturns for 9.35-16.00 Monday to Fridaywi make an
error if we fit the time series model to our data without takihg missing values
into account. We have used three different approachesdomirent this problem:

(1)We (wrongly) fit the ARMA-GARCH model directly to the dessonalized data,
ignoring the missing observations during the nights coteple

x 1072 Intel, Seasonality Pattern

1;‘;” and T,
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v
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Time

Figure 4.4 \olatility weightsv; andV'Q,’1 for 5 minutes Intel logreturns: weekly estimated by (4.1),
Vr, (solid) and daily robust estimated by (4.W,, (dashed).
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(2)We estimated the logreturns during the nights by 5 mimldgreturns using the
(wrong) square root scaling (the correct but complicatedisg constants have
been calculated by Drost and Nijman (1993)). Then we deseadige and fit the
time series.

(3)We fit different MA(1)-GARCH(1,1) models for each day.timns case we used
the estimated volatility of the previous day as the initialue.

Stock t normal our model

Intel 55531 (2,3,5,2,8.2)| 55869 (2,3,4,1,-) [ 55534 (0,1,5,2,8.2)
Cisco 55805 (0,1,3,3,6.5)| 56596 (0,1,4,0,-) [ 55807 (0,1,1,1,6.5)
GM 57343 (2,2,5,1,5.5)| 58467 (1,2,3,1,-)| 57355(0,3,1,1,5.5)

Table 4.1 AlC-based values fofr,m, p, g, v) andt and normally distributed residuals with corre-
sponding likelihood; the last column presents our model.

One comment to the second approach is that the deseasadnailigely logre-
turns should have the same distribution as the deseasedalély logreturns. We
have tested this assumption via QQ-plots with bootstrappatidence interval. Us-
ing ordinary bootstrap we can conclude that the desea@aitightly logreturns do
not have the same distribution as the deseasonalized dgilgtlrns. However, as
we have dependence in our time series one should use a lbpotséthod which
takes this into consideration. Using block bootstrap wertatnieject the hypothesis
that the deseaonalized nightly logreturns have the sartrébdison as the deseason-
alized daily logreturns.

If we compare the methods (1)-(3) we conclude that the firdtssatond behave
very similar with respect to the parameter estimation. Fer third method this
estimation was difficult. Even if we only use a three parammiedel the estimation
is not stable. Based on the Ljung-Box test for serial coti@ta both residuals and
squared residuals, the two first methods out-perform the.tiilso, for the final
result in Section 4.4 the outcome is similar. We concludedi tie error of using a
false approach (among these three) is minimal and con¢edtoa the first method
for simplicity.

In Table 4.1 we have selected the model by AIC criteria, alsing the like-
lihood of the selected model. The selected optimal ordethef ARMA model
m,r € (0,...,5) and the order of the GARCH modelq € (0,...,6) for normal
and also the degree of freedanfor t-distributed innovations are given in the first
two columns.

As we want to keep the number of parameters as low as possidlperformed
a sensitivity analysis based on the likelihood of the mobtethis way we found
the model given in column 3 of Table 4.1, which we will use ie tequel. Our
analysis also confirmed the common knowledge that residualbeavy-tailed; i.e.
thet-distribution outperforms by far the normal distribution.

Concerning the Ljung-Box test, we could not reject indegemoe of the residuals
or the squared residuals for all time series. In Table 4.3legvshep-values for a
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selection of lags for squared logreturns. We have also lbake¢hep-values up to
50 lags. However, all time series failed the Kolmogorov-@rmow test, actually for
all models presented in Table 4.1.

Diagnostic tools from extreme value theory (see e.g. Entiiseet al. (1997),
Section 6.1) show, however, clearly that all three filtefetbtseries are heavy-tailed.
Consequently, we model the far out distribution tail of abiduals as regularly
varying and estimate the tail indexby the Hill estimator. We summarize the result
in Table 4.2.

Stock Intel Cisco GM
a 5.6 4.36 4.3

Table 4.2 Estimateda by the Hill estimator for the loss region.

Due to the devolatilizaton a 10 minutes logreturn is obtaias a linear com-
bination of two 5 minutes logreturns and so logreturns sthddve the same
tail-parameter for different frequencies. However, foghar timescales the tail-
parameter increases slightly, even if one compares theefilte minutes logreturns
with 45 minutes, but still remains heavy-tailed. This is hkelown and reported, for
instance, in Muller et al. (1998).

Stock 1 5 10

Intel 0.39 0.06 0.07
Cisco 0.74 0.86 0.77
GM 0.92 0.96 0.84

Table 4.3 p-values from the Ljung-Box test of filtered squared resigdudle have tested 1, 5, and
10 lags of the 5 minutes logreturns.

We have also investigated the cross-correlation betwesnstttks. In Table 4.4
we display the first four lags. The other lags were smallebso&ute magnitude.

Stocks -4 8321 0 1 2 3 4
Intel-Cisco| -0.01]| 0.01/ 0.01]/ 0.05| 0.56/ 0.03| 0.02| 0.01 [-0.00
Intel-GM | 0.02|0.02|0.05(0.04| 0.35(0.02|0.01{-0.00[-0.02
Cisco-GM| 0.03|0.01(0.04|0.04|0.33[0.03|0.01|-0.00{-0.02

Table 4.4 Cross-correlation of the first four lags for the filtered 5 otes logreturns.

From Table 4.4 one can see that GM tends to follow Intel anddCisore than
vice versa. A formal test for uncorrelation of two time sertests this hypothesis
for each specific lag based on asymptotic normality of thesimrrelation function
(see e.g. Brockwell and Davis (1987), Theorem 11.2.2) Thwmelation hypothe-
sis is rejected if the corresponding estimate has absollte Varger than 0.017.
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For the 15 minutes data, there is some cross-correlationeleet GM and Intel
and GM and Cisco for the first lag, but none significant betwie¢gl and Cisco.
For the 30 minutes data, there is no significant cross-atroel at all.

Such tests have to be interpreted with caution for varioasaes. First of all
there is the usual problem that a test should be performedmgton each lag
separately. Furthermore, the amount of high frequencyidaalarge that a formal
test rejects already for very small cross-correlationSonin the rejection level is
0.017, for 30 min it is 0.042.

4.4 Analyzing the extreme dependence

Recall the estimatope , from (3.4), wheres = t/n represents the proportion of
upper order statistics used for the estimation, whichfitsas to be estimated; cf.
Remark 0.4(iii). The estimation a@finvolves in extreme value statistics a variance-
bias tradeoff; i.e. it is tricky and time-consuming, but ionant. We have used two
approaches.

Firstly, by plotting the estimated tail dependence funtfior different choices
of ¢ visual inspection clearly showed the influence of the varédinias, when using
different thresholds. For high threshold, i.e. snglthe estimated tail dependence
function was rather rough showing the high variation of teéneator. When de-
creasing the threshold the estimated tail dependencedurtmcame very smooth,
which we interpreted in analogy to tail index estimation #éees.

Secondly, we studied plots pf(6) as a function o for fixed 6. This was done
for 8 = /440, 11/12, 11/6. Here we looked for regions whepg6) was stable. The
casef = 11/4 can be seen in Figure 4.5. We want to mention that for otheicek
of 6 the stability plots were not equally convincing.

As aresult of our diagnostics we fixed= 1/650, which represents about 4.5% of
the data. In Figure 4.6 we can see the resulting estimatiedieaéndence function.

We conclude that for all bivariate combinations of our daiadependence can
be modelled symmetric and is significantly stronger thartHerindependent case.
Not surprisingly, dependence is highest between Intel ascbCpresumably due to
branch dependence, besides being both traded at Nasdadepbedence of GM

Intel-Cisco Intel-GM Cisco-GM
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1/ 1/ 1/

Figure 4.5 For the 5 minutes logreturng; (11/4) as a function of for € = 1/100,...,1/1000.
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and Cisco is slightly higher than of GM and Intel. The symmeéirthe dependence
reflects that we have three major stocks and can also be viasvedderlying mar-

ket dependence. We also notice that the estimated tail deper function looks
similar as the tail dependence function of a bivariate em&r@alue distribution with

a Gumbel copula.

It is now tempting to fit a distribution with marginals (a common model in
econometrics, called theGARCH) with degree of freedom from Table 4.1 and
a Gumbel copula (cf. Example 0.1,0.3) pairwise to our dataven to the three-
dimensional sample. We know already from Section 4.3 that tlistribution is
not a good model for the marginals. However, our concern s foo the extreme
dependence structure, and it turns out that the Gumbel apaltihough an extreme
value copula, is not a valid model. The dependence strusiwer data is far more
complex. This can be illustrated by viewing the tail depeardefunction for differ-
ente (1/200 to 1/1200) compared to data simulated from the ab&@embel model
with the same sample size, presented in Figure 4.7. Recatfl Example 0.1 that
the Gumbel coupla gives tail dependence function

~ 1+cotd—(1+ (cotf)2)(1/9)

0 0<B<m/2.
p(O) 1Acot6 ’ /
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Figure 4.6 Left plots: I/R j, whereR, j = rank(—X; ;). Right plots: Estimators op(8) (solid
line). For sake of reference we have also plotted the expetependencE (pe n(+)) from (3.5) for
independent samples (dashed line).
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We estimated from the upper tail dependence coefficipptrr/4) = 2— 2/ the

o~

value of the estimated tail dependence functiori/&. We obtained = 1.25. Now

we generate a sample of the same size as the 5 minutes logreditin a Gumbleﬁ)
copula and-distributed marginals. We compare the estimated extrespemtdence
functions for different and present the results in Figure 4.7.

Notice that the simulated data behave much more stably w#pact to changes
of &, while the real data reacts heavily on such changes. Usiragaaretric model
such as the Gumble copula would only be an approximationdoaseone given
threshold.

4 5 Different timescales

As a result of our statistical analysis of the marginal déte,one-dimensional lo-
greturns exhibit Pareto-like tails. If the stocks came frarthree-dimensional ex-
ponential Lévy process with appropriate dependencetsireicthen the extreme
dependence would be the same for all time scales, i.e. 5 egrogreturns of the
three stocks would have the same dependence structurdyalwdesturns. This ap-
plies in particular to extreme dependence and is in accortaith Proposition 0.4.
Note that our data do not satisfy the independence condifi®noposition 0.4. Ex-
treme value estimates, however, often extend properiies independent data to
dependent data.

We shall at least perform a statistical test to our data, hdrahere is a change
in the extreme dependence on different timescales by angliagreturns of 5, 15,
30 and 45 minutes frequencies.

To this end we performed the same filtering steps as for thenbites logreturns
again for the 15, 30 and 45 minutes logreturns obtained floaraw data. Then
we fitted a MA(1)-GARCH(1,1) model with studetdistributed residuals to the

Simulated data Intel-Cisco

Figure 4.7 Estimated extreme dependence functmnfor different £ (1/200 to 1/1200). Left:

Simulated data from theGumbel model with parameters estimated from the Intet&idtered
5 minutes logreturns. Right: Filtered 5 minutes logretumtel-Cisco.
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deseasonalized data of the 15, 30 and 45 minutes logrettonghe 5 minutes
logreturns we keep the model from Section 4.4.

For the 15, 30 and 45 minutes logreturns we applied the LjBoxgtest for se-
rial correlation, where we tested the residuals and thersquaesiduals, and the
Kolmogorov-Smirnov test for goodness-of-fit of the studedensity. Observe that
the degrees of freedom is not the same as in Table 4.1 for tleeadit timescales.
All the filtered time series passed the Ljung-Box test andfiltered 30 and 45
minutes logreturns passed the Kolmogorov-Smirnov test.

For the residuals we again estimate the dependence bethaedifferent stocks.

Stock| Intel-Cisco| Intel-GM | Cisco-GM
5 0.56 0.35 0.33
15 0.62 0.41 0.38
30 0.65 0.43 0.39
45 0.66 0.46 0.41

Table 4.5 Correlation change for different timescales.

A comparisons of the linear dependence for different tiralescis presented in
Table 4.5. Here we can see that the correlation increaségfioer frequencies; this
effect is well-known and also called the Epps effect; seengh{@006).

Next we estimate the tail dependence function for the diffefrequencies. To
compensate for the increasing lack of data for small freqiesnthee is always
chosen so that times the number of observations is the same for all fregesnc
Hence we always consider the same quantile.

As the sample of the 45 minutes logreturns is only about 16guetiin size of the
5 minutes logreturns, they set the standard for the othquéecies. We increased
the threshold Ze until the estimated tail dependence function behaved ystabl
the 45 minutes logreturns. We also studied a plgbg®) for various values 08,
when alteringe. For 6 = 11/4 the result can be seen in Figure 4.8. Finally, we chose
€ = 1/120, which represents about eight percent of the data. We waemark
that, in view of Figure 4.5, we presumably introduced a hids our estimation.

Also, by using straight forward bootstrap techniques oneprasent bootstrap
confidence intervals. In Figure 4.10 we depict the extrenpeddence function for
Intel-Cisco on the timescales 5 minutes and 45 minutes.

From Figures 4.9 and 4.10 we can conclude that the tail degreds approx-
imately the same for different timescales. This also hotagdffferente but there
are some variations if we increase the threshold. If we Iahethreshold, then the
similarities between the different timescales become mooaounced. We recall
that in Table 2 on p. 9 in Breymann et al. (2003) the tail depecd coefficient
p(1/4) is estimated via a parametric model for different timesséte DEM and
JPY. Even for the unfiltered data in that paper the estimatop {77/4) looks sta-
ble. If we increase the timescale to, for instant, two hohesextreme dependence
starts to deviate unless we lower the threshold and use als asut5% of the data.
This is consistent with the result on high frequency FX dafsorted in Hauksson et
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al. (2001). Hence, the two different asset classes seenhate the same time scal-
ing for extreme dependency. As pointed out earlier in thidige, the time scaling
is also explained from a theoretical point of view via Prdpos 0.4.

From the above analysis we conclude that we can estimatenestdependence
for lower frequencies by estimating it for high frequenciwbere enough data are
available.

Another possibility to achieve a more stable estimatiorcedure is to use sub-
sampling, based on different samples of the same frequeb@ined by time shifts.
We performed the estimation separately for each subsampleaa the end, aver-
aged over all estimated tail dependence functions. Theasales proved to be very
stable in the basic statistics, the estimates for the ARMA@ARCH parameters,
and also the properties of the residuals. However, for thimated tail dependence
functions we cannot report significant improvement, in ipatar, when compared
to the tail dependence function estimated from higher feegies.

4.6 Dependence under filtering

Recall that we have in principle prices which are multiplé®we cent, there are
values our logreturn will never take. Moreover, we have amatrally large amount
of zeroes and small values. However, concerning extremeraimce we can rest
assured that this does not affect the tails.

Now we shall investigate, how the dependence structurehresged during the
filtering steps. In Table 4.6 we can see the correlation bevtlee 5 minutes logre-
turns for the different steps of the filtering.

It is satisfactory to see that the different filtering stepmséh obviously not
changed the correlation and hence not changed the lineandepce between the
different stocks. This also holds for other timescales.

Now we turn to an account of extreme dependence before aad fdfering.
When examining the logreturns in Figure 4.2 one can cleatythe dominating
volatile periods. The same holds for Figure 4.11. Takingdhmee for the raw
data and the filtered returns yields for the raw data an oy@esentation of the

Intel-Cisco Intel-GM Cisco-GM
0.45 0.35 0.3
0.4 0.3 0.25
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0.15 01 005
50 100 150 200 250 50 100 150 200 250 0 50 100 150 200 250

1/e 1/e 1/e

Figure 4.8 For the 45 minutes filtered logreturns we deggtrr/4) as a function of for € =
1/10,...,1/250.



Multivariate Dependence for High-frequency Data 31

ntel-Cisco Intel-GM

Figure 4.9 Estimated tail dependence function of filtered logretuangffferent frequencies. Five
minutes (straight-dotted), 15 minutes (straight), 30 rréedashed) and 45 minutes (dotted).

Intel-Cisco

0z 04 05 06 07 08 09 1 11 12 13
8

Figure 4.10 Estimated tail dependence function with bootstrap conéidentervals (100 resam-
ples) of filtered logreturns for timescale 5 and 45 minutése Finutes with corresponding confi-
dence intervals (straight) and 45 minutes with correspandbnfidence intervals (dotted).

volatile periods. This implies that one would consider iotfanly a much smaller
time period for the extreme value analysis. So theorelicdiere is no reason, why
extreme dependence before and after filtering should béasirii Figure 4.12 we
have plotted the estimated tail dependence function fal bmd Cisco after each
filtering step for 5 minutes logreturns. We have used the saasdén Section 4.4 and
the same for the different filtering steps. One can see that there sderbe only a
small difference in magnitude, notin shape. This also hiadgifferent choices o€
and different timescales. Consequently, for our data ttheeracomplicated filtering
procedure seems to be obsolete for a realistic account etineme dependence.
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Stocks | Original| DeseasonizepFiltered
Intel-Cisco| 0.57 0.56 0.56
Intel-GM | 0.36 0.36 0.35
Cisco-GM| 0.33 0.33 0.33

Table 4.6 Estimated correlation for the 5 minutes logreturns forettght steps in the data analysis.

5 Conclusion

We have introduced a new estimator for the tail dependemezitin, which is tailor
made to assess the extreme dependence structure in dateeesiures dependence
in every directionitis in principle also able to measuragexte dependence for data
with asymmetric dependence structure. We show the perfazenaf this function
for high-frequency data for varying frequencies.

After giving some theoretical results, which are importarthe high-frequency
context, we clean the data carefully and perform some beteistics. We then show

Intel
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Figure 4.11 Upper three plots: Deseasonalized 5 minutes logreturnsheaddby daily season-
ality and coefficients estimated by the robust method (4.8)ver three plots: GARCH filtered
logreturns based on our model in Table 4.1. Compare to theladsvin Figure 4.2.
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the tail dependence function at work for our data and estiragtreme dependence
for high frequency stock data.

We have investigated the extremal dependence between@igeb and GM for
different time scales. We can conclude for the filtered data:

e All three stocks have heavy tails. Within the 5,10,15,45ut®s frequencies we
observed that a lower frequency gives lighter tails.

e We can work with the hypothesis that the square root scalsdad®nalized
nightly logreturns have the same distribution as the desedized daily logre-
turns.

e There is (weak) cross-correlation between the stocks émpuencies of up to 30
minutes, it disappears for lower frequencies.

e The extreme dependence is symmetric which means that thkssiofluence
each other to the same degree. This can be interpreted astrdagendence.

e The IT stocks (Cisco and Intel) have stronger dependendesitidg branch de-
pendence.

e Extreme dependence is there, but moderate. We have the samme depen-
dence for different timescales. This is consistent withréseilt on high frequency
FX data reported in Hauksson et al. (2001). Hence, the tWerdifit asset classes
seems to share the same time scaling for extreme dependémctime scaling
is also explained from a theoretical point of view via Prdpos 0.4.

e The filtering steps do not alter the extreme dependence tgredeigree.

Higher correlation does not necessarily lead to strongeeme dependence.

Our analysis shows again that extreme value theory has tpgied with care.
To obtain a realistic picture about the extreme dependeangetsre in real data it
is not enough to describe it by one single number. Anothefoaisiesson to draw
from our analysis is that it is important to use referenceltssuch as simulations
from exact models. Moreover, a message, which we can noatrépe often, one
should be careful when selecting the threshold.

Intel-Cisco

L L L L L L L L L L L
0.3 0.4 05 06 07 0.8 0.9 1 11 12 13
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Figure 4.12 Estimated tail dependence function for 5 minutes Intelétgmns. Dashed: Unfiltered
data. Dotted: Deseasonalized data. Solid: GARCH filtere¢a. da
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