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Abstract

Large insurance losses happen infrequently, but they do happen. In this

paper we present the standard distribution models used in fire, wind–storm

or flood insurance and mention some insurance applications.
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In the class of heavy–tailed distribution functions, subexponential distribu-
tion functions are a special class which have just the right level of generality for
risk measurement in insurance and finance models. The name arises from one of
their properties, that their right tail decreases more slowly than any exponential
tail. This implies that large values can occur in a sample with non–negligible
probability, which proposes the subexponential distribution functions as natural
candidates for situations, where extremely large values occur in a sample com-
pared to the mean size of the data. Such a pattern is often seen in insurance
data, for instance in fire, wind–storm or flood insurance (collectively known as
catastrophe insurance), but also in data from finance and communications engi-
neering, see for example [1, 6, 7]. Subexponential insurance claims can account
for large fluctuations in the risk process of a company. Textbook accounts are
in [2, 4, 6–8].

We present two defining properties of subexponential distribution functions.
Let (Xk)k∈N be i. i. d. positive random variables with distribution function F such
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that F (x) < 1 for all x > 0. Denote by F (x) = 1−F (x) for x ≥ 0, the tail of F ,
and for n ∈ N,

F n∗(x) = 1 − F n∗(x) = P(X1 + · · ·+Xn > x) , x ≥ 0 ,

the tail of the n–fold convolution of F . We then say that F (or X) is subexpo-
nential (written F ∈ S) if one of the following equivalent conditions holds:

(a) lim
x→∞

F n∗(x)

F (x)
= n for some (all) n ≥ 2 ,

(b) lim
x→∞

P(X1 + · · · +Xn > x)

P(max(X1, . . . , Xn) > x)
= 1 for some (all) n ≥ 2.

The heavy-tailedness of F ∈ S is demonstrated by the implications

F ∈ S =⇒ lim
x→∞

F (x− y)

F (x)
= 1 ∀ y ∈ R (1)

=⇒ F (x)/e−εx x→∞
−→ ∞ ∀ ε > 0 . (2)

A famous subclass of S is the class of distribution functions with regularly varying
tails; see [3]. For a positive measurable function f we write f ∈ R(α) for α ∈ R

(f is regularly varying with index α) if

lim
x→∞

f(tx)

f(x)
= tα ∀ t > 0 . (3)

Let F ∈ R(−α) for α ≥ 0, then it has the representation

F (x) = x−αℓ(x) , x > 0 ,

for some ℓ ∈ R(0).
For regularly varying distribution tails we can check (a) for n = 2 by splitting

the convolution integral and use partial integration to obtain

F 2∗(x)

F (x)
= 2

∫ x/2

0

F (x− y)

F (x)
dF (y) +

(F (x/2))2

F (x)
, x > 0 .

Immediately, by (3), the last term tends to 0. The integrand satisfies F (x −

y)/F (x) ≤ F (x/2)/F (x) for 0 ≤ y ≤ x/2; hence, Lebesgue dominated conver-
gence applies and, since F satisfies (1), the integral on the right hand side tends
to 1 as x→ ∞. Examples of distribution functions with regularly varying tail in-
clude the Pareto, Burr, transformed beta (also called generalized F ), log-gamma
and stable distribution functions (see Table 1.2.6 in [4]).
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Also the lognormal, the two Benktander families and the heavy-tailed Weibull
(shape parameter less than 1) belong to S; see again Table 1.2.6 in [4]. How-
ever, a direct proof of this is more difficult than for the regularly varying case.
Subexponentiality is typically established via an integral test for the hazard rate
known as Pitman’s criterion, see [2] pp. 256–257..

The two main examples in insurance risk theory which uses the tail properties
of subexponential distributions are aggregated claims tails and ruin probabilities.
The aggregated claims denoted by A (eqf21/013) are defined as the sum of all
claims to the insurance company in a given period. The usual model is

A = X1 + . . .+XN

where N is the number of claims and X1, X2, . . . are the claim sizes in the given
time interval (N , (Xk)k∈N are assumed to be independent and (Xk)k∈N is an i. i. d.
sequence). The tail of A and the associated quantiles are important for assessing
the probability of big losses and for Value-at-Risk (eqf15/004) calculations. The
main result in the heavy-tailed case states that if the Xk are subexponential, then
(a(u) ∼ b(u) as u → ∞ means that limu→∞ a(u)/b(u) = 1)

P(A > x) ∼ E(N)P(X1 > x), as x→ ∞, (4)

provided in addition E(zN ) <∞ for some z > 1 (cf. [2], Chapter IX, Lemma 2.2).
The classical insurance risk model is the Cramér-Lundberg model (cf. [2,4,6,8]

and ef21/001), where the claim times occur at the jump times of a Poisson(λ)
process (N(t))t≥0 (eqf02/006) and the claims (Xk)k∈N are again an i. i. d. sequence
with finite mean. The risk process is for initial reserve u ≥ 0 and premium rate

c > 0 defined as

R(t) = u+ ct−

N(t)∑
k=1

Xk , t ≥ 0 . (5)

Then the ruin probability ψ(u) in infinite time is the probability that R ever falls
below 0, i.e. ψ(u) = P(inft≥0R(t) < 0). Define the integrated tail distribution

function FI by

FI(x) =
1

E(X1)

∫ x

0

F (y)dy , x ≥ 0 . (6)

If FI is subexponential (which is satisfied for all subexponential distributions F
mentioned above under the condition that they have a finite mean) and ρ =
λE(X1)/c < 1, then

ψ(u) ∼
ρ

1 − ρ

∫ ∞

u

FI(y) dy , as u → ∞, (7)
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a result that is often associated with the names of (in alphabetical order) Borovkov,
Cohen, Embrechts, Pakes, Veraverbeke and von Bahr.

That FI plays a role may be understood from the fact that FI is the distribu-
tion function of the first undershoot of R(t)−u below 0 under the condition that
R(t) falls below u in finite time. The number M of times, where R(t) achieves
a new local minimum in finite time plus 1, is geometrically distributed with pa-
rameter (1 − ρ), i. e. P(M = n) = (1 − ρ)ρn, n ∈ N0. This leads easily to the
Beekman-Bowers-Pollaczek-Khinchine formula

ψ(u) = (1 − ρ)

∞∑
n=1

ρnF n∗
I (u) , u ≥ 0 .

from which (7) is an easy consequence.
For further aspects of ruin theory with heavy tails and a comprehensive set

of recent references, see [5].

References

[1] Adler, R. and Feldman, R. E. (1998). A Practical Guide to Heavy Tails:

Statistical techniques and applications. Birkhäuser, Boston.

[2] Asmussen, S. (2001). Ruin Probabilities. World Scientific, Singapore.

[3] Bingham, N. H., Goldie, C. M., and Teugels, J. L. (1987). Regular

Variation. Cambridge University Press, Cambridge.

[4] Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling

Extremal Events for Insurance and Finance. Springer, Berlin.

[5] Fasen, V. and Klüppelberg, C. (2008). Large insurance losses distri-
butions. In: E. Melnick and B. Everitt (Eds.), Encyclopedia of Quantitative

Risk Analysis and Assessment . Wiley & Sons, to appear.

[6] Mikosch, T. (2004). Non-Life Insurance Mathematics. Springer, Berlin.

[7] Resnick, S. I. (2006). Heavy-Tail Phenomena: Probabilistic and Statistical

Modeling . Springer, New York.

[8] Rolski, T., Schmidli, H., Schmidt, V., and Teugels, J. (1999).
Stochastic Processes for Insurance and Finance. Wiley, Chichester.

Related articles: eqf02/009, eqf21/001

4


