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Abstract

Using only bivariate copulas as building blocks, regular vine copulas constitute a flexible

class of high-dimensional dependency models. However, the flexibility comes along with an

exponentially increasing complexity in larger dimensions. In order to counteract this problem,

we propose using statistical model selection techniques to either truncate or simplify a regular

vine copula. As a special case, we consider the simplification of a canonical vine copula using a

multivariate copula as previously treated by Heinen and Valdesogo (2009) and Valdesogo (2009).

We validate the proposed approaches by extensive simulation studies and use them to investigate

a 19-dimensional financial data set of Norwegian and international market variables.
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1 Introduction

A copula is a multivariate distribution with standard uniform marginal distributions. While the

literature on copulas is substantial, most of the research is still limited to the bivariate case.

However, recently hierarchical copula-based structures have been proposed as an alternative to

the standard copula methodology. One of the most promising of these structures is the pair-

copula construction (PCC). The PCC was originally proposed by Joe (1996) and has further

been explored by Bedford and Cooke (2001, 2002) and Kurowicka and Cooke (2006). After being

set in an inferential context by Aas et al. (2009), the PCC has been used in various applications,

see, e.g., Schirmacher and Schirmacher (2008), Chollete et al. (2009), Heinen and Valdesogo

(2009), Berg and Aas (2009), Min and Czado (2010, 2011), Czado et al. (2011), and Smith et al.

(2010).
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Pair-copula constructions are also called regular vine (R-vine) copulas. They are hierarchical

in nature, the various levels (also called trees) corresponding to the incorporation of more vari-

ables in the conditioning sets, using bivariate copulas as simple building blocks, the so-called

pair-copulas. Until now, the concentration has been on two special cases of R-vine copulas;

drawable vine (D-vine) and canonical vine (C-vine) copulas. However, very recently, there has

been considerable progress in constructing R-vine copulas even in general, using graph theoretic

algorithms (Dißmann et al. 2011).

The growing interest for pair-copula constructions/R-vine copulas is probably due to their

high flexibility, which makes them able to model a wide range of complex dependencies. Nev-

ertheless, these structures have some shortcomings, the most important being that the compu-

tational effort required to estimate all parameters grows exponentially with the dimension. For

the R-vine copulas to be really useful in practice, one need to be able to fit such structures to

data with more than 20 dimensions. Hence, in this paper we treat the problem of determining

whether an R-vine copula can be either truncated or simplified. By a pairwisely truncated R-

vine copula at level K, we mean an R-vine copula where all pair-copulas with conditioning set

equal to or larger than K are replaced by independence copulas. The subject of optimal trun-

cation of vine copulas has previously been treated by Kurowicka (2011), who constructs R-vine

copulas bottom-up beginning with the highest level and iteratively moving to the first level.

Her approach is however based on Pearson product-moment correlations and therefore does not

reflect non-elliptical dependence adequately. The approach suggested here is very different. It

sequentially proceeds top-down and does not rely on the assumption of elliptical dependence.

Additionally, our approach allows to identify independence of variables based on a statistical

test in contrast to the ad-hoc procedure of Kurowicka (2011).

An R-vine copula is defined to be pairwisely simplified at level K if all pair-copulas with

conditioning set equal to or larger thanK instead are replaced by Gaussian copulas. We advocate

using Gaussian copulas for the following reasons. They mean a simplification since they are easy

to specify and faster to estimate than, e.g., t copulas. Moreover, they are easy to interpret in

terms of the correlation parameter. Most common Archimedean copulas such as the Clayton

or the Gumbel, on the other hand, have asymmetric tail dependence and therefore not suitable

for simplification, since such asymmetry for a large number of pair-copulas is a very strict

assumption. Thus the choice of the Gaussian copula as “neutral” copula is reasonable. It

will be shown in our 19-dimensional application how specification and simulation times can be

significantly improved using simplification with Gaussian copulas.

To identify the most appropriate truncation/simplification level, we use a heuristic procedure

based on statistical model selection methods; more specifically, AIC, BIC and the likelihood-

ratio based test proposed by Vuong (1989). We first evaluate the performance of the different

methods in a simulation study, and then we investigate whether it is possible to simplify or

truncate the R-vine copula specification corresponding to a 19-dimensional data set consisting

of Norwegian and international market variables.

For the special case of a C-vine copula, the product of all pair-copulas with conditioning

set equal to or larger than K (i.e., the pair-copulas involved in trees higher than K) gives a

(d −K)-variate copula, where d is the total number of variables. Hence, in this case one may

in addition to the above-mentioned model selection methods, use copula goodness-of-fit tests to

determine the truncation/simplification level. The first kind of methods are hereafter referred

to as pairwise truncation or simplification and the latter as joint truncation or simplification.
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It should be noted that joint simplification of C-vine copulas previously has been treated by

Heinen and Valdesogo (2009) and Valdesogo (2009). There, it is referred to as “truncation”,

while using our notation it would be called “simplification” (truncation in our meaning of the

word is not explicitly discussed in Valdesogo (2009)). Pairwisely simplified R-vine copulas and

the identification of truncation/simplification levels are not considered in these papers.

The rest of this paper is organized as follows. In Section 2 we provide necessary background

on R-vine copulas and their likelihood. In Section 3 we introduce the pairwise simplification

and truncation of R-vine copulas in general, while Section 4 treats the joint simplification and

truncation of the special case of C-vine copulas. The heuristic selection of an appropriate

truncation and simplification level in the general case and in the special case of C-vine copulas

is discussed in Section 5. The performance of the different selection methods is studied in Section

6, while in Section 7 we apply the methodology in the context of a financial data set. Finally,

Section 8 contains some concluding remarks.

2 Multivariate copulas and regular vines

Consider a vector X = (X1, ..., Xd) of random variables with a joint density function f . Sklar’s

theorem (Sklar 1959) states that every multivariate distribution F with marginals F1, ..., Fd can

be written as

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)), (2.1)

for some appropriate d-dimensional copula C. Using the chain rule, we further have for an

absolutely continuous F with strictly increasing continuous marginals F1, ..., Fd that

f(x1, ..., xd) =

[
d∏

k=1

fk(xk)

]
× c(F1(x1), ..., Fd(xd)).

Here c(·) denotes the copula density. More details on copula theory can be found in the books

by Joe (1997) and Nelsen (2006).

In higher-dimensional practical applications the choice of adequate copulas is limited. Mul-

tivariate copulas such as elliptical or exchangeable Archimedean are rather restricted and often

not appropriate for dependence modeling. Hence, there is a growing need for more flexible

copulas.

The notion of a regular vine distribution was introduced by Bedford and Cooke (2001, 2002)

and described in more detail in Kurowicka and Cooke (2006). It involves the specification of

a sequence of trees where each edge corresponds to a bivariate copula, a so-called pair-copula.

These pair-copulas then constitute the building blocks of the joint regular vine distribution.

According to Definition 4.4 of Kurowicka and Cooke (2006) a regular vine (R-vine) V on d

variables consists of trees T1, ..., Td−1 with nodes Ni and edges Ei for i = 1, ..., d − 1, which

satisfy the following:

1. T1 has nodes N1 = {1, ..., d} and edges E1.

2. For i = 2, ..., d− 1 the tree Ti has nodes Ni = Ei−1.

3. (proximity condition) If two edges in tree Ti are to be joined by an edge in tree Ti+1 they

must share a common node.
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To build up a statistical model on R-vine trees with the node set N := {N1, ..., Nd−1} and the

edge set E := {E1, ..., Ed−1}, one associates each edge e = j(e), k(e)|D(e) in Ei with a bivariate

copula density cj(e),k(e)|D(e). The nodes j(e) and k(e) are called the conditioned nodes, while

D(e) is the conditioning set. An R-vine distribution is defined as the distribution of the random

vector X with conditional copula density of (Xj(e), Xk(e)) given the variables XD(e) specified as

cj(e),k(e)|D(e)
1 for the R-vine trees with node set N and edge set E . XD(e) denotes the subvector

of X determined by the indices in D(e). In Theorem 4.2 of Kurowicka and Cooke (2006) it is

proven that the joint density of X is uniquely determined and given by

f(x1, ..., xd) =

[
d∏

k=1

fk(xk)

]
×

d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e)))

 , (2.2)

where xD(e) denotes the subvector of x = (x1, ..., xd)
′ determined by the indices in D(e). The

rightmost part of Equation (2.2), which involves d(d− 1)/2 bivariate copula densities, is called

an R-vine copula.

An example of a seven-dimensional R-vine tree specification together with its edge indices is

given in the left panel of Figure 1. This tree specification was found for a subset of the financial

data in Section 72 according to the selection criteria discussed at the end of this section.

Until now, the concentration has been on two special cases of regular vines; drawable vines

(D-vines) and canonical vines (C-vines). In particular an R-vine is called

• a D-vine if each node in T1 has a degree of at most 2, where the degree of a node denotes

the number of connections or edges the node has to other nodes, and

• a C-vine if each tree Ti has a unique node with degree d− i, the root node.

The corresponding R-vine distribution is called a D-vine or a C-vine distribution, respectively.

For distinct indices i, j, i1, ..., ik with i < j and i1 < ... < ik we use the abbreviation

ci,j|i1,...,ik := ci,j|i1,...,ik(F (xi|xi1 , ..., xik), F (xj |xi1 , ..., xik)).

Using this notation the D-vine density is given by

f(x1, ..., xd) =

[
d∏

k=1

fk(xk)

]
×

d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1

 , (2.3)

and the C-vine density by

f(x1, ..., xd) =

[
d∏

k=1

fk(xk)

]
×

d−1∏
j=1

d−j∏
i=1

cj,j+i|1,...,j−1

 . (2.4)

See Aas et al. (2009) for more on simulation, inference and applications of C- and D-vine

copulas. A five-dimensional C-vine tree specification is shown in the right panel of Figure 1.

1As in Aas et al. (2009) it is assumed here that this conditional distribution is independent of the condition-

ing variable XD(e). Hobæk Haff et al. (2010) call this the simplified PCC which must not be confused with

simplification discussed in the following.
2The considered variables and their corresponding numbers in the left panel of Figure 1 are: V17 (1), V20 (2),

V18 (3), V1 (4), V10 (5), V14 (6) and V15 (7); cp. Table 1.
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R-vine

6 5 1 2

7 3 4

6,5 5,1 2,1

7,5 3,1 4,3
T1

6,5 5,1 3,1 2,1

7,5 4,3

6,1|5 5,3|1 3,2|1

7,5|1 4,1|3

T2

6,1|5 5,3|1 3,2|1

7,1|5 4,1|3

6,3|15 5,2|31

7,3|15 4,2|13

T3

6,3|15 5,2|31 4,2|13

7,3|15

7,2|315

6,2|315 5,4|231

T4

7,2|315 6,2|315 5,4|231
7,6|2315 6,4|2315

T5

7,6|2315 6,4|2315
7,4|62315

T6

C-vine

2

1 3

4

5

1,2

1,3

1,4

1,5
T1

1,3

1,2 1,4

1,5

2,3|1

2,4|1

2,5|1 T2

2,3|1 2,4|1

2,5|1

3,4|12

3,5|12 T3

3,4|12 3,5|12
4,5|123

T4

Figure 1: An R-vine tree specification on seven variables (left panel) and a C-vine tree specifi-

cation on five variables (right panel) with edge indices.

For R-vines in general, there are no expressions like (2.3) and (2.4). Hence, an efficient

way of storing the indices of the pair-copulas required in the joint density expression (2.2) is

needed. One such approach was recently proposed by Morales-Napoles (2010) and explored in

more detail in Dißmann et al. (2011). It involves the specification of a lower triangular matrix

M = (mi,j |i, j = 1, ..., d) ∈ {0, ..., d}d×d with mi,i = d − i + 1. That is, the diagonal entries of

M are the numbers 1, ..., d in decreasing order. In this matrix, according to a rather technical

condition, each row from the bottom up represents a tree, where the conditioned set is identified

by a diagonal entry and by the corresponding column entry of the row under consideration,

while the conditioning set is given by the column entries below this row. Corresponding copula

types and parameters can conveniently be stored in matrices related to M .

The R-vine matrix corresponding to the R-vine in Figure 1 is

M =



7

4 6

6 4 5

2 2 4 4

3 3 2 2 3

1 1 3 1 2 2

5 5 1 3 1 1 1


, (2.5)

where all other entries are zero. The bottom row of M corresponds to T1, the second row from

5



the bottom to T2, and so on. To determine the edges in T1, we combine the numbers in the

bottom row with the diagonal elements in the corresponding columns, i.e., the edges are (7,5),

(6,5), (5,1) and so on. To determine the edges in T2, we combine the numbers in the second

row from the bottom with the diagonal elements in the corresponding columns, and condition

on the elements in the bottom row, giving the edges (7,1|5), (6,1|5), etc. Proceeding like this,

the only edge in T6 is found by combining the two upper elements in the leftmost column of the

matrix and condition on the remaining 5 entries in the same column, i.e., (7,4|62315).

This matrix specification of R-vines at the same time directly allows for the derivation of the

pair-copula decomposition (cp. Aas et al. (2009)) of the corresponding R-vine distribution. Let

M = (mi,j |i, j = 1, ..., d) be an R-vine matrix corresponding to the R-vine V. Then, according

to Dißmann et al. (2011), the R-vine density is:

f(x1, ..., xd) =

[
d∏

k=1

fk(xk)

]
×

 1∏
j=d−1

j+1∏
i=d

cmj,j ,mi,j |mi+1,j ,...,mn,j

 , (2.6)

where the pair-copulas have arguments F (xmj,j |xmi+1,j , ..., xmn,j ) and F (xmi,j |xmi+1,j , ..., xmn,j ).

The number of different possible R-vines in d dimensions is very large (Morales-Napoles et al.

2010). Hence, we need a way of selecting reasonable R-vine trees. Here, we will heuristically

proceed as follows. We want to model the most important dependencies in the first trees. We

therefore construct a graph on d nodes corresponding to the d variables, where all nodes are

connected by a common edge, i.e., have d−1 neighbors. These edges have a weight according to a

measure of pairwise dependence between the respective two variables, e.g., empirical Kendall’s τ

or tail dependence. For this graph, we then find a maximum spanning tree (using the well-known

algorithm of Prim (1957)), which is a tree on all nodes that maximizes the pairwise dependencies.

Given this tree, we can now select pair-copulas, estimate parameters and compute transformed

observations F (xj(e)|xD(e)) for the next level, which in general are given by

F (x|v) =
∂Cxvj |v−j

(F (x|v−j), F (vj |v−j))
∂F (vj |v−j)

. (2.7)

Here Cxvj |v−j
is a bivariate copula, vj is an arbitrary component of v and v−j denotes the vector

v excluding vj .

At the second level, we repeat the first level procedure, and iterate until all trees are con-

structed and their pair-copulas sequentially estimated. See Dißmann et al. (2011) for more

details, and Brechmann (2010, Section 3.2) for construction methods for the special cases of C-

and D-vines. In the latter case, the root node in each tree is found by choosing the variable with

maximum sum of column entries in the matrix of pairwise dependencies.

Unfortunately vine copulas estimated in this way are not robust against misspecification of

the pair-copulas, as also noted by Hobæk Haff (2010). To the best of our knowledge reliable

alternatives are however not yet available. Goodness-of-fit tests for each pair-copula term may

help reduce this uncertainty. These tests are however computationally not feasible in higher

dimensions, since the number of pair-copulas grows quadratically with the dimension. Moreover,

a large scale simulation study in Brechmann (2010, Section 5.4) showed that copula selection

using the AIC is more reliable than using goodness-of-fit tests.
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3 Pairwise simplification and truncation

For R-vine copulas to be useful for risk analysis of market portfolios, one needs to be able to

fit the parameters of such models in the high-dimensional case, e.g., for 20-100 stocks. The

computational effort needed to estimate all required parameters of an R-vine copula increases

with the dimension. Hence, we take a pragmatic approach. We do not attempt to find the best

fitting R-vine copula, but try to find the best fitting one under limited time and computational

resources. To fix ideas, we want to allow for best possible specification of the first K trees in the

R-vine copula, while higher order trees should only involve simple pair-copula terms, according

to the idea that the most important dependencies are captured in the first trees.

Specifically, we denote an R-vine copula a pairwisely simplified K level one, if we replace

all pair-copula terms which involve a conditioning set of size larger or equal to K by bivariate

Gaussian copulas. Furthermore, we speak of a pairwisely truncated R-vine copula at level K, if

all pair-copulas with conditioning set equal to or larger than K are set to bivariate independence

copulas. If K = 1, the truncated R-vine copula becomes a Markov tree distribution, where all

conditional relationships are modeled as independent. Truncation may also be regarded as a

special case of simplification, using Gaussian pair-copulas with correlation parameter equal to

zero. Hence, it constitutes the greatest possible simplification.

In order to discuss the selection of simplification and truncation levels and propose ap-

propriate procedures, we introduce some notation. First, we denote a pairwisely truncated

R-vine copula at level K by tRV(K) and pairwisely simplified K level ones by sRV(K). Fur-

ther, let θtRV(K) be the pair-copula parameters of the truncated R-vine copula, i.e., θtRV(K) =

{θj(e),k(e)|D(e) : e ∈ Ei, i = 1, ...,K}, where θj(e),k(e)|D(e) denotes the parameter(s) of the copula

density cj(e),k(e)|D(e). Then, the density of a truncated R-vine copula at level K is given by

ctRV(K)(u|θtRV(K)) =
K∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)(F (uj(e)|uD(e)), F (uk(e)|uD(e))), (3.1)

where u = (u1, ..., ud)
′ ∈ [0, 1]d.

The density in (3.1) may be interpreted as a composite likelihood (see Lindsay (1988) and

Varin et al. (2010)). This can be shown as follows. The joint density in (2.6) may also be

decomposed as

f(x1, ..., xd) = fmd,d
(xmd,d

)×
d∏
i=2

f(xmd−i+1,d−i+1
|xmd−i,d−i+1

, ..., xmd,d−i+1
), (3.2)

where the order of the conditioning variables is fixed, and given by the column entries of the

R-vine matrix M . If the R-vine copula is truncated at level K, the density in (3.2) reduces to

f(x1, ..., xd) = fmd,d
(xmd,d

)×
d∏
i=2

f(xmd−i+1,d−i+1
|xmd−K+1,d−i+1

, ..., xmd,d−i+1
), (3.3)

since the pair-copulas in trees TK+1, ..., Td−1 are set to independence copulas. Such an approxi-

mate likelihood, where the conditioning set is a subset of the variablesXmd−K+1,d−i+1
, ..., Xmd,d−i+1

,

has been proposed by Vecchia (1988) in the context of spatial models. For example, for K = 1 we

obtain a Markov structure of order 1. If we set all margins and all pair-copulas to be Gaussian,

(3.3) corresponds to the model of Vecchia (1988). In contrast to general composite likelihoods,
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the expression in (3.3) however does not require the choice of any weights and is in fact a valid

probability density. The increasing conditional dependence in higher order trees directly leads

to compatibility with composite likelihood methods. From their theory, we hence directly ob-

tain consistency of the composite maximum likelihood estimates θ̂tRV(K) based on the density

in (3.1).

The density of a simplified K level R-vine copula is given by

csRV(K)(u|θsRV(K)) =

 K∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)

×
 d−1∏
i=K+1

∏
e∈Ei

cρj(e),k(e)|D(e)

 , (3.4)

where, cρj(e),k(e)|D(e) denote Gaussian pair-copula densities with correlation parameter ρj(e),k(e)|D(e),

and the arguments of the copula densities have been omitted for simplicity. Further, θsRV(K) is

the parameter set of csRV(K), i.e.,

θsRV(K) = {θj(e),k(e)|D(e) : e ∈ Ei, i = 1, ...,K}
∪ {ρj(e),k(e)|D(e) : e ∈ Ei, i = K + 1, ..., d− 1},

(3.5)

with θj(e),k(e)|D(e) denoting the parameter(s) of the copula Cj(e),k(e)|D(e).

In Sections 5.1 and 5.2 we will develop heuristic procedures for the selection of truncation

and simplification levels, respectively, but first, in Section 4 we will describe the special case of

a C-vine copula, for which joint simplification of the remaining d−K trees is possible.

4 Joint simplification and truncation

If we consider the special case of a C-vine copula, all pair-copulas with a conditioning set larger

than or equal to K dimensions can be modeled jointly by a (d−K)-dimensional copula as shown

in Valdesogo (2009). Typically we will choose a simple shape for this (d−K)-dimensional copula,

such as the independence copula or multivariate Gaussian copula. In the case of an independence

copula we speak of a jointly truncated C-vine copula, while in the Gaussian case, the resulting

C-vine copula is denoted as jointly simplified. In the following, jointly simplified K level C-

vine copulas will be denoted by jsCV(K). Simplification of C-vine copulas has previously been

treated by Heinen and Valdesogo (2009) and Valdesogo (2009) who refer to it as “truncation”.

Truncation in our meaning of the word is however not discussed in these papers.

For C-vine copulas the second component of the product in (3.4) reduces to a (d − K)-

dimensional Gaussian copula. Hence, we obtain the density of a jointly simplified K level

C-vine copula by rewriting (3.4) to

cjsCV(K)(u|θjsCV(K)) =

 K∏
j=1

d−j∏
i=1

cj,j+i|1,...,j−1

× cρK+1,...,d|1,...,K(·),

where cρ(K+1),...,d|1,...,K(·) is a (d − K)-dimensional Gaussian copula density with arguments

F (xK+1|x1, ..., xK), ..., F (xd|x1, ..., xd). The parameter set θjsCV(K) is defined similarly to (3.5)

as

θjsCV(K) = {θj,j+i|1,...,j−1 : j = 1, ...,K, i = 1, ..., d−j}∪{ρij|1,...,K : i, j = K+1, ..., d, i 6= j},

where θj,j+i|1,...,j−1 are the parameters of the pair-copulas Cj,j+i|1,...,j−1, while ρij|1,...,K denote

the entries of the correlation matrix of the multivariate Gaussian copula CρK+1,...,d|1,...,K .
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Finally, note that for D-vine copulas, joint simplification as described above is not possi-

ble. The reason is that while C-vine copulas have a common conditioning set in each tree as

shown in (2.4), this is not the case for the D-vine copula (see (2.3)). For instance, in a five-

dimensional D-vine copula, the arguments to the pair-copula densities in tree T2 are F (x1|x2),
F (x3|x2), F (x2|x3), F (x4|x3), F (x3|x4) and F (x5|x4). Crosswise relationships such as F (x2|x3)
and F (x3|x2) complicate the situation.

5 Selection of truncation and simplification levels

5.1 Selection of truncation level in the general case

We will now consider the selection of the truncation level in the general case. Note that the
vine copula tRV(K) is nested in tRV(K + 1), since θtRV(K) ⊂ θtRV(K+1). The log likelihood for
tRV(K) is given by

ltRV(K)

(
θtRV(K)|u

)
=

n∑
i=1

K∑
`=1

∑
e∈E`

ln
[
cj(e),k(e)|D(e)

(
F (ui,j(e)|ui,D(e)), F (ui,k(e)|ui,D(e))|θj(e),k(e)|D(e)

)]
,

(5.1)

where n is the number of data points ui = (ui,1, ..., ui,d)
′ ∈ [0, 1]d, i = 1, ..., n. From now on

we assume that data has been transformed to the unit hypercube using the respective marginal

distribution functions of the variables. In practice this is either done parametrically by selecting

(and estimating) appropriate marginal distributions, or non-parametrically by using the empir-

ical distribution functions. Here, we assume that the latter is the case, because it eliminates

the risk of misspecification (and possible influences on the selection of the truncation or sim-

plification level). For more details on these issues see Genest et al. (1995), Joe (1997) and

Kim et al. (2007). However estimating the true margins by empirical ones alters the asymptotic

distribution of the maximum likelihood (ML) estimates of the dependence parameters and hence

influences the estimation of standard errors and critical values for hypothesis tests.

If there are sufficient computing resources, we can maximize the full log likelihood (5.1).

Alternatively, one may use the stepwise/sequential ML-estimator originally proposed by Aas

et al. (2009) and further explored by Hobæk Haff (2010) and Hobæk Haff (2011). Based on an

extensive simulation study, the latter paper shows that the performance of the stepwise estimator

is satisfactory compared to the full log likelihood method. To determine the sequential parameter

estimates of θtRV(K), it is enough to only use transformed variables (2.7) up to tree K. These

sequential estimates can then be used as starting values for maximizing ltRV(K)(θtRV(K)|u). For

K small, the number of parameters to be maximized over is considerably reduced compared to

a full R-vine copula specification.

We will start with K = 1 and fit a truncated R-vine copula (for K = 0 a pre-test of joint

independence can be performed). We thereafter increase K by one and assess how much gain we

get by fitting the extra tree. If the gain is negligible we stop and use the resulting specification.

If the gain is large enough, we increase K by one again, and proceed in this way until we

have reached a truncation level K0, which either gives a sufficient fit, or we have reached the

computational time frame we allowed for the estimation process.

To assess whether there is gain to move from model tRV(K) to tRV(K+1), we now consider

two kinds of statistical model selection techniques; AIC/BIC and the likelihood-ratio based test

proposed by Vuong (1989). First, since tRV(K) is nested within tRV(K + 1), we can compare
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the AIC or BIC values of the two models to quantify the marginal gain of an additionally fitted

tree. In particular, these quantities are given by

AIC(tRV(K)) := −2× ltRV(K)(θ̂tRV(K)|u) + 2× ntRV(K)

BIC(tRV(K)) := −2× ltRV(K)(θ̂tRV(K)|u) + ln(n)× ntRV(K),

where ntRV(K) denotes the dimension of θtRV(K). We choose the one of tRV(K) and tRV(K+1)

with the smaller AIC or BIC value. If for some K0 the smaller model is chosen, we stop, and

declare tRV(K0) as the best fitting model among the model sequence tRV(j), j = 0, ..., d− 1.

Alternatively, we can use the likelihood-ratio based test proposed by Vuong (1989). In order

to compare two competing non-nested models f1 and f2 with estimated parameters θ̂1 and

θ̂2, respectively, we compute the standardized sum, ν, of the log differences of their pointwise

likelihoods mi := log
[
f1(xi|θ̂1)
f2(xi|θ̂2)

]
for observations xi, i = 1, ..., n. Under fairly general regularity

conditions ν is shown to be asymptotically standard normal, leading to the following test. We

prefer model 1 to model 2 at level α if

ν :=
1
n

∑n
i=1mi√∑n

i=1 (mi − m̄)2
> Φ−1

(
1− α

2

)
, (5.2)

where Φ−1 denotes the inverse of the standard normal distribution function. If ν < −Φ−1
(
1− α

2

)
we choose model 2. If, however, |ν| ≤ Φ−1

(
1− α

2

)
, no decision among the models is possible.

Like AIC and BIC, the Vuong test statistic may be corrected for the number of parameters

used in the models. There are two possible corrections; the Akaike and the Schwarz corrections,

which correspond to the penalty terms in the AIC and the BIC, respectively.

When dealing with truncated R-vines, models are nested and a classical likelihood-ratio test

could be used to compare tRV(K) and tRV(K+1). As we want to allow for misspecification of the

models, the asymptotic distribution of the test is however hardly tractable (see Vuong (1989)).

Moreover, a likelihood-ratio test cannot be corrected for the number of model parameters as

conveniently as the Vuong test.

We therefore heuristically apply the Vuong test to compare tRV(K) (model f1) and tRV(K+

1) (model f2). If ν ≥ −Φ−1
(
1− α

2

)
, we stop with tRV(K), since tRV(K) is preferred to, or

indistinguishable from tRV(K + 1), at level α. It thus determines the truncation level as the

level K0 for which tRV(K0 + 1) does not provide a significant gain in the model fit. In the light

of the regularity conditions of Vuong (1989), it is important to note that the log likelihood (5.1)

is in fact a valid log likelihood under certain conditional independence conditions and that the

sequential estimates are consistent and asymptotically normal as shown by Hobæk Haff (2010).

Algorithm 1 describes the truncation procedure based on the Vuong test. Truncation using

information criteria proceeds in the same way, where we need to compute only the contribution

from tree Tj+1 to the AIC of tRV(K + 1). This is due to the fact that the AICs of tRV(K) and

tRV(K + 1) are equal with the exception of the contribution from tree Tj+1. Since all copulas

in tree Tj+1 of tRV(K) are independence copulas, the contribution from tree Tj+1 to the AIC of

tRV(K) is zero. Hence, if the contribution from tree Tj+1 to the AIC of tRV(K + 1) is greater

than zero, we truncate at level j.

Before we move on to selection of the simplification level in the general case, we turn to an

illustrative example.

10



Algorithm 1 Truncation of R-vine copulas based on the Vuong test.

Input: Observations of d variables, significance level α.

1: for j = 0, ..., d− 2 do

2: Specify tRV(j + 1) by additionally constructing tree Tj+1 with appropriate pair-copulas.

3: Perform a Vuong test for tRV(j) (model f1) and tRV(j + 1) (model f2), i.e., determine

test statistic ν as in (5.2), possibly with Akaike or Schwarz correction.

4: if ν ≥ −Φ−1
(
1− α

2

)
then

5: Truncate the R-vine copula at level K = j, i.e., exit the loop with tRV(j).

6: end if

7: end for

Output: Pairwisely truncated K level R-vine copula, or fully specified R-vine copula, if no

truncation is possible.

smaller model

T1 : c12 c23 c34 c45
T2 : c13|2 c24|3 c35|4
T3 : π14|23 π25|34
T4 : π15|234

larger model

T1 : c12 c23 c34 c45
T2 : c13|2 c24|3 c35|4
T3 : c14|23 c25|34
T4 : π15|234

Figure 2: Pair-copula density terms of five-dimensional D-vine copulas truncated after the second

tree T2 (smaller model) and after the third tree T3 (larger model), respectively, where πij|D denote

densities of independence copulas.

Example 1 (Pairwise truncation of R-vine copulas.). We consider a five-dimensional D-vine

copula. Assume that we have already appropriately specified the pair-copulas of the first two trees

T1 and T2. We now want to determine whether the D-vine copula can be truncated or simplified

at level 2. This is done by measuring the marginal gain of a third tree T3. If the marginal

gain is too small either in terms of AIC/BIC or as determined by a Vuong test, we truncate

at level K = 2. Hence, we simply have to compare the smaller model (T1 + T2) to the larger

model (T1 +T2 +T3) as illustrated in Figure 2. Note that this is not an exact model comparison

between a truncated D-vine copula and a fully specified one (T1 + T2 + T3 + T4), but only an

approximation to the truth, since possible dependencies in the fourth tree T4 are ignored in the

comparison. However, under the assumption that most dependencies are captured in the first

trees, this should be a reasonable approximation.

5.2 Selection of simplification level in the general case

Selection of simplification levels, i.e., model selection between sRV(K) and sRV(K+1), proceeds

in essentially the same way as for truncation. However, on the contrary to tRV(K) and tRV(K+

1), the models sRV(K) and sRV(K + 1) are not nested, in general θsRV(K) 6⊂ θsRV(K+1). Non-

nested models may be compared using the Vuong test under the assumption that models are

not equal3. If we use AIC or BIC, however, we have to deal with an increased variability (Ripley

2008, pp. 34-35). Since we build models according to the paradigm that the most important

dependencies are captured in the first trees, we assume that the specifications of trees TK+2 to

3A pre-test for overlapping (partially nested) models as outlined in Vuong (1989) is not performed, since it is

numerically not feasible and the assumption of unequal models is sensible here.
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Algorithm 2 Simplification of R-vine copulas based on the Vuong test.

Input: Observations of d variables, significance level α.

1: for j = 0, ..., d− 2 do

2: Specify sRV(j) by constructing higher order trees Tj+1, ..., Td−1 with bivariate Gaussian

copulas.

3: Specify sRV(j + 1) by additionally constructing tree Tj+1 with appropriate pair-copulas,

and by constructing higher order trees Tj+2, ..., Td−1 with bivariate Gaussian copulas.

4: Perform a Vuong test for sRV(j) (model f1) and sRV(j + 1) (model f2), i.e., determine

test statistic ν as in (5.2), possibly with Akaike or Schwarz correction.

5: if ν ≥ −Φ−1
(
1− α

2

)
then

6: Simplify the R-vine copula at level K = j, i.e., exit the loop with sRV(j).

7: end if

8: end for

Output: Pairwisely simplified K level R-vine copula, or fully specified R-vine copula, if no

simplification is possible.

Td−1 are equal in models sRV(K) and sRV(K + 1) if we work with AIC and BIC. Moreover,

we know that trees T1 to TK are the same. Hence, we have achieved “as much nestedness as

possible”, since only tree TK+1 is different in both models.

The simplification procedure based on the Vuong test is outlined in Algorithm 2. Sim-

plification using information criteria proceeds similarly but under the assumption that trees

Tj+2, ..., Td−1 are specified with bivariate Gaussian copulas according to the discussion of nest-

edness above. In Example 1 this means that we assume that the Gaussian pair-copulas Cρ15|234
and C̃ρ15|234 in T4 of the smaller and the larger model, respectively, are equal if we work with

AIC and BIC.

5.3 Selection of simplification and truncation levels for C-vine copulas

The procedures described in Sections 5.1 and 5.2 may of course be used also for the special case

of a C-vine copula. However, in this case, we may alternatively use multivariate independence

tests or copula goodness-of-fit tests to determine whether we can truncate or simplify the model

at level K, respectively. If the p-value of an independence test is larger than a preliminarily

chosen level, we truncate the structure at level K. Also for the purpose of simplification, if the p-

value of an appropriate copula goodness-of-fit test for the multivariate Gaussian copula is larger

than a preliminarily chosen level, we simplify the structure at level K. As previously described,

this way of truncation/simplification is denoted joint truncation/simplification. Algorithm 3

outlines the joint simplification procedure, while joint truncation proceeds in exactly the same

way but with the use of an independence test in the second line.

6 Simulation studies

We have evaluated the performance of the heuristic simplification and truncation procedures

presented in Section 5 in extensive simulation studies. A thorough description of the results can

be found in the supplementary material. To summarize the main findings, the procedures based

on the Vuong test with or without correction for the number of parameters should be used in most

12



Algorithm 3 Joint simplification of C-vine copulas.

Input: Observations of d variables, significance level α.

1: for j = 0, ..., d− 2 do

2: Perform a copula goodness-of-fit test for jsCV(j) to test if the transformed observations

from tree Tj can be appropriately modeled with a (d− j)-dimensional Gaussian copula.

3: if p-value > α then

4: Simplify the C-vine copula at level K = j, i.e., exit the loop with jsCV(j).

5: end if

6: Specify tree Tj+1 with appropriate pair-copulas.

7: end for

Output: Jointly simplified K level C-vine copula, or fully specified C-vine copula, if no simpli-

fication is possible.

cases, even for joint simplification/truncation where tailor-made procedures are available. The

procedures based on AIC/BIC can be regarded as “quick and dirty” alternatives. These criteria

tend to identify truncation and especially simplification too late, but they are very fast compared

to the Vuong test (in a 52-dimensional example, AIC identified the truncation/simplification

level 44%/80% faster than the Vuong test). Parsimonious models can be obtained by using the

Vuong test with Schwarz correction.

7 Application

In this section, we analyze a 19-dimensional data set consisting of Norwegian and international

financial variables. See Table 1 for a description. The variables constitute the market portfolio

of a large Norwegian financial institution and hence, it is very important to correctly model

the dependencies between them. The observed time period is from 3/25/2003 to 3/26/2008,

resulting in 1107 daily observations. As previously stated, the computational effort needed to

estimate all required parameters of an R-vine copula increases with the dimension. Hence, the

aim of the work presented here was to investigate whether simplification or truncation of the

R-vine copula specification corresponding to this 19-dimensional data set is possible.

Before analyzing the dependence in the data set, we selected appropriate ARMA-GARCH

time series models for the univariate margins (see the supplementary material for more details).

After filtering the original returns with the chosen univariate models, the standardized residual

vectors are converted to uniform pseudo-observations using their empirical distribution functions.

In the light of results due to Chen and Fan (2006), the method of maximum pseudo likelihood

is consistent even when time series are fitted to the margins.

For the sake of reference, we first fit a full R-vine copula to this data set, using the approach

described in Section 2. We use Kendall’s τ ’s as edge weights, and pair-copulas are selected

from a range of 11 bivariate families using AIC: independence copula, Gaussian, t, Clayton,

rotated Clayton (90◦), Gumbel, rotated Gumbel (90◦), Frank, Joe, Clayton-Gumbel (BB1),

Joe-Clayton (BB7). For more information on copula types, see, e.g., Nelsen (2006) or Joe

(1997). The independence copula is chosen according to the bivariate independence test based

on Kendall’s τ as described in Genest and Favre (2007). If the p-value is larger than 5%, the

independence copula is chosen to obtain more parsimonious models and therefore results in an

additional inherent truncation.
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Figure 3: First tree of the full R-vine copula model for the Norwegian financial data set. The

edge labels indicate empirical Kendall’s τ ’s between the respective variables.

Figure 3 shows the first tree of the fitted R-vine copula. See Table 1 for the correspon-

dence between the IDs and the variable descriptions. The edge labels represent the empirical

Kendall’s τ ’s between the respective variables. The corresponding R-vine matrix specifications

with copula types and parameters can be found in the supplementary material. In particular, the

first tree pair-copula terms identify strong to medium tail dependence and some asymmetries.

Dependencies modeled in higher order trees are much weaker.

In economical terms, the tree in Figure 3 has an evident interpretation. It identifies three

clusters of economically similar variables. The first cluster consists of the stock indices, the

hedge fond index and the real estate index (variables V1, V17, V18, V19 and V20). The second

cluster consists of the interest rates and the bond indices (V7, V8, V9, V10, V11, V12, V13, V14,

V15 and V16). Finally, the exchange rates (V2, V3, V4, and V5) constitute the third cluster.

The stock and interest rate clusters are linked through the variables V10 and V17 (the 5-year

German Government Rate and the MSCI World index), while the interest rate and exchange

rate clusters are connected by V14 and V2 (the WGBI bond index and the USD-NOK exchange

rate).

In addition to the R-vine copula with different copulas for different pairs, we also fitted an

R-vine copula with t copulas for all pairs. The BIC-values in the two upper rows of Table 2 show

however that the R-vine copula with mixed copulas is superior to the one with only t copulas.

Having fitted the full R-vine copula, we apply the different statistical model selection cri-

teria from Sections 5.1 and 5.2 to investigate whether truncation and/or simplification of this

R-vine is possible. Table 2 shows the results. We report log likelihood values, the number of
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ID description ID description

V1 Norwegian Financial Index V12 5-year US Government Rate

V2 USD-NOK exchange rate V13 Norwegian bond index (BRIX)

V3

V4

EURO-NOK exchange rate

YEN-NOK exchange rate

V14 Citigroup World Government Bond Index

(WGBI)

V5 GBP-NOK exchange rate V15 Norwegian 6-year Swap Rate

V7 3-month Norwegian Inter Bank Offered

Rate

V16 ST2X - Government Bond Index (fix mod-

ified duration of 0.5 years)

V8 Norwegian 5-year Swap Rate V17 Morgan Stanley World Index (MSCI)

V9 3-month Euro Interbank Offered Rate V18 OSEBX - Oslo Stock Exchange main index

V10 5-year German Government Rate V19 Oslo Stock Exchange Real Estate Index

V11 3-month US Libor Rate V20 S&P Hedge Fund Index

Table 1: Variables of the Norwegian financial data set.

parameters4 and BIC for the truncated/simplified models obtained using the different criteria

(truncation/simplification based on AIC and BIC turned out to give the same results for this

data set). In addition, the table shows the test statistics of Vuong tests (with and without

Schwarz correction) with respect to the null hypothesis that the fully specified model and sim-

plified/truncated model are equivalent. Test statistics indicated by “*” imply that the null

hypothesis cannot be rejected at the 5% level or that the simplified/truncated model is even

superior.

If we first turn to the truncation results, they show that truncation at level 6 seems to give

a slightly better model than truncation at level 4. The hypothesis that the fully specified model

and the truncated model are equivalent is however rejected for both tRV(4) and tRV(6), meaning

that there still seems to be significant dependencies after tree T6. In Brechmann (2010, Section

11.2.2) we have studied the model tRV(4) in more detail, by considering, among others, joint

tail behavior, copula Q-Q plots and Kendall’s τ ’s of simulated observations. The results showed

that although this model did not fully reproduce the observed data characteristics, it may be

viewed as an adequate specification for the data. Hence, we conclude that the most important

dependencies in this data set are actually captured in the first four to six trees, meaning that

the corresponding R-vine copula may be truncated at level 6, or even at level 4, depending on

the desired level of parsimonity (and of course at the expense of accuracy).

As far as simplification is concerned, sRV(6) seems to be slightly better than sRV(2) in

terms of BIC. However, the hypothesis that the fully specified model and the simplified model

are equivalent is not rejected even for sRV(2). Based on this, and also on a more thorough study

of sRV(2) in Brechmann (2010, Section 11.2.2) we conclude that all important (asymmetric) tail

dependencies seem to be captured in the first two trees. Hence, simplification at level 2 seems

appropriate.

The d-dimensional t copula with one common degrees of freedom parameter is currently

the state-of-the-art approach for modeling financial return data. A number of papers, such

as Mashal and Zeevi (2002), have shown that the fit of this copula is generally superior to

4Note that the number of parameters of a full R-vine copula with d variables is d (d− 1)/2 if all pair-copulas

have one parameter each. The reason why the number of parameters shown in Table 2 is much smaller than this,

is that many of the pair-copulas in the full R-vine copula (both the one with mixed copulas and the one with only

t copulas) are estimated to be independence copulas. The R-vine copula with only t copulas would otherwise

have 342 parameters rather than 104!
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proc.

type

procedure level log

likeli-

hood

no. of

param.

BIC V. stat.

w.r.t.

full

model

V. stat.

(Schwarz)

w.r.t. full

model

V. stat.

w.r.t.

multi.

t cop.

V. stat.

(Schwarz)

w.r.t. multi.

t cop.

full model - 6390.75 92 -12130.22 - - -1.93* -10.22*

pair t copulas - 6378.33 104 -12020.42 0.82* 3.61 -1.71* -9.44*

multivariate t copula - 6324.98 172 -11432.34 1.93* 10.22 - -

trunc. Vuong 6 6274.47 77 -12003.83 7.25 3.94 1.34* -7.59*

V.Schwarz 4 6234.05 68 -11986.72 7.97 3.65 2.39 -7.28*

AIC/BIC 6 6274.47 77 -12003.83 7.25 3.94 1.34* -7.59*

simpl. Vuong 2 6350.09 84 -12105.52 3.19 0.97* -0.75* -10.07*

V.Schwarz 2 6350.09 84 -12105.52 3.19 0.97* -0.75* -10.07*

AIC/BIC 6 6373.80 88 -12124.63 2.46 0.41* -1.41* -10.02*

Table 2: R-vine copula specifications of the Norwegian financial data set obtained by different

procedures (full maximum likelihood estimation). Test statistics with a “*” imply that the

considered model is indistinguishable from or superior to the full R-vine copula model (columns

7 and 8) or the multivariate t copula (columns 9 and 10), respectively, at the 5% level. Models

considered are the truncated/simplified R-vine copulas as well as the R-vine copula with only

pair t copulas.

model estimation

(part I: sequential)

estimation

(part II: full MLE)

estimation

(part I & II)

simulation

pair t copulas 0.74 1.27 1.25 1.04

trunc. Vuong 1.18 0.47 0.50 0.89

V.Schwarz 1.03 0.34 0.37 0.81

AIC/BIC 0.63 0.47 0.48 0.90

simpl. Vuong 2.16 0.47 0.53 0.73

V.Schwarz 2.12 0.46 0.52 0.73

AIC/BIC 0.72 0.58 0.59 0.92

Table 3: Computing times relative to the full R-vine copula model for the models identified in

Table 2.

that of other d-dimensional copulas for such data. Hence, we wanted also to compare the

truncated and simplified R-vine copulas to this structure. The parameters of the t copula

were estimated in two steps. First, the correlation matrix of the t copula was determined by

inversion of bivariate Kendall’s τ -values, and then the degrees of freedom parameter was found

using maximum likelihood estimation. As indicated by the results in Table 2, the t copula is

statistically equivalent or even inferior to all truncated and simplified R-vine copula models, in

particular when taking the number of parameters into account. The latter is due to the fact

that the t copula requires the specification of the full correlation matrix, while even the full

R-vine copula might be reduced with bivariate independence tests, and hence leads to more

parsimonious copula models.

Finally, computing times relative to the full R-vine model are shown in Table 3. If we first

turn to the sequential estimation, we see that the AIC/BIC based procedures confirm their

naming as “quick and dirty”. The procedures based on the Vuong test require more time, since

the comparisons are more complex and require the estimation of additional trees in the case
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of simplification. Using the full maximum likelihood estimation, however, the truncated and

simplified R-vines can be fitted much faster than a full R-vine. Moreover, simulation from the

truncated/simplified models is of course more computationally efficient than from the full R-vine

model.

8 Conclusions

In this paper we considered the problem of determining whether R-vine copulas can be pair-

wisely truncated or alternatively, simplified with Gaussian pair-copulas, after a certain tree. In

extensive simulations different procedures for truncation and simplification were proposed and

evaluated. The results showed that Vuong test based procedures performed particularly well.

We also considered truncating or simplifying the special case of a C-vine copula. In this

case, the remaining dependencies may be captured by a multivariate copula; the independence

copula for the truncation alternative and the Gaussian copula for the simplification one. Hence,

simplification/truncation levels may be determined using a multivariate copula goodness-of-

fit-test. However, simulations showed that our procedures developed for the general R-vine

copula overall seemed to detect the simplification/truncation levels more accurately than the

multivariate goodness-of-fit-tests.

Finally, we have investigated whether it is possible to simplify or truncate the R-vine copula

specification corresponding to a 19-dimensional data set consisting of Norwegian and inter-

national market variables. This study showed that the most important dependencies in the

Norwegian data set are captured in the first 4-6 trees, meaning that the corresponding R-vine

copula may be truncated at level 6, or even at level 4. Moreover, simplification at level 2 seemed

to be appropriate, indicating that all important (asymmetric) tail dependencies are captured in

the first two trees.

To summarize, the methods discussed in this paper allow to efficiently construct R-vine

copula models even in higher dimensions and under time or resource restrictions. As such,

R-vine copula models constitute a flexible and powerful class of high-dimensional dependency

models, available for a wide range of applications.
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