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Summary

Longitudinal data with binary and ordinal outcomes routinely appear in medical appli-

cations. Existing methods are typically designed to deal with short measurement series.

In contrast, modern longitudinal data can result in large numbers of subject-specific serial

observations. In this framework, we consider multivariate probit models with random ef-

fects to capture heterogeneity and autoregressive terms for describing the serial dependence.

Since likelihood inference for the proposed class of models is computationally burdensome be-

cause of high dimensional intractable integrals, a pseudolikelihood approach is followed. The

methodology is motivated by the analysis of a large longitudinal study on the determinants

of migraine severity.

Key words : Autoregressive residuals; Composite likelihood; Longitudinal data; Migraine

severity; Ordinal probit; Mixed models; Pairwise likelihood.

1 Introduction

Pain severity is often measured on rating scales which involve four to eleven categories

ranging from the absence of symptoms to the most severe pain (Von Korff et al., 2000,

e.g.). For chronic and recurrent pain conditions, such as migraine and back pain, studying

the symptom severity over a time period is crucial to detect common- and person-specific

1



pain trigger conditions. To this aim, patients record the pain severity in a diary over some

time period. See Bolger et al (2003) for general design, technology and analysis questions.

With the availability of electronic data collection methods such as palmtop computers, the

frequency of such assessments can be very high. Thus, it is important to develop statistical

methods that are able to deal adequately with large longitudinal ordinal response data in

cross sectional setups.

There exist several methods to deal with short longitudinal setups involving ordinal re-

sponses measured typically over four to seven time points. Many of them require the inclusion

of random effects to deal with the dependence between subject-specific measurements, e.g.

Hedeker and Gibbons (1994), Gibbons and Hedeker (1997), Liu and Hedeker (2005) and

Todem et al. (2007). Estimation in such models are often based on Gauss-Hermite quadra-

ture for the integration of random effects. Another proposal involves the global odds ratio

suggested by Dale (1986); see Molenberghs and Lesaffre (1994) and Williamson et al. (1995).

Still another approach is based on Markov transition models. Lee and Daniels (2007) extend

this method from binary (Heagerty, 2002) to ordinal longitudinal data involving six time

points. Böckenholt (1999) uses a first-order Markov process on the category indicators to

capture the time dependence. His model is able to fit longer ordinal time series, but requires

that all time points are equidistant and common to all units.

For studying binary time series, Piorecky et al. (1996) use generalized estimating equa-

tions (Liang and Zeger, 1986) to adjust for the dependency between measurements. Gener-

alized estimating equations could also be used for ordinal valued time series if one is only

interested in inference for regression parameters, see for example Liang et al. (1992), Lipsitz

and Kim (1994), Heagerty and Zeger (1996), Fahrmeir and Pritscher (1996) and Delfino et al

(2001).

All the above approaches are limited by the number of person-specific measurements or

by other restrictions such as common equidistant time points. Motivated by a longitudinal

study on migraine severity determinants, we propose a class of mixed ordered probit models

with an autocorrelated component to capture subject-specific time-series variability. In §2,

we describe the model class. In §3, we develop a computationally convenient composite

likelihood approach for inference and model selection. §4 illustrates the application to the

migraine pain severity data. The paper closes with some final remarks.

2 Mixed autoregressive ordinal probit models

Let Yij represent a categorical response with h possible ordered categories and let xij be a

vector of p exploratory variables observed at time tij for observation j = 1, . . . , ni on subject

i = 1, . . . ,m. As usual in longitudinal studies, the m subjects are assumed to be independent.

The ordinal response Yij may be viewed as a censored observation from a hidden contin-

uous variable Y ∗
ij ,

Yij = yij ↔ αyij−1 < Y ∗
ij ≤ αyij

, yij ∈ {1, . . . , h},
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where −∞ ≡ α0 < α1 < . . . < αh−1 < αh ≡ ∞ are suitable threshold parameters. The

important case of binary response corresponds to h = 2 and a single threshold parameter α1.

Among several possible specifications for the relationship between the unobserved Y ∗
ij and

the vector of regressors xij, a common choice is a linear mixed model of type

Y ∗
ij = xT

ijβ + Ui + εij, (1)

where β is a vector of p unknown coefficients, also termed fixed effects, while the Ui are m

mutually independent random effects describing the heterogeneity among different subjects

and the εij are underlying errors. Popular assumptions for the marginal distribution of εij

are logistic and normal distributions, leading to the cumulative logit and cumulative probit

models for the observed Yij, respectively. Additionally we assume independence between

εij and Ui. For more details see Agresti (2002, §7). Here, we choose a probit model and

assume that the random effects are normally distributed, Ui
i.i.d.∼ N (0, σ2). We consider

these distributional assumptions for ease of interpretation and mathematical manageability,

although the methodology discussed in this paper holds more generally.

Model identifiability for the resulting multivariate probit model requires restrictions on

both the location and the scale of the unobserved process Y ∗
ij . These requirements are met

when the residuals εij have unit variance, and the first cutpoint α1 or, alternatively, the

intercept β1 is fixed to zero, see for example Chib and Greenberg (1998).

Probit models with random effects have a particularly convenient interpretation. In fact,

it is straightforward to move from a subject-specific interpretation to a population level

interpretation. For example, consider the probability that subject i experiences a certain

level yij at time tij

pr (Yij = yij; θ) = pr
(
Y ∗

ij ∈ (αyij−1, αyij
]; θ
)

= Φ

(
αyij

− xT
ijβ√

σ2 + 1

)
−Φ

(
αyij−1 − xT

ijβ√
σ2 + 1

)
, (2)

where Φ(z) denotes the cumulative probability function of a standard Normal variable and θ

is the parameter vector, including the cutpoints α = (α2, · · · , αh)
T, the regressor coefficients

β and the variance component σ2. While the subject-specific effect of the covariates on the

response is described by β, from expression (2) it follows that the average population effect

is governed by the rescaled coefficient βpop = β/
√

σ2 + 1.

Commonly, probit models with random effects are constructed by assuming that the

underlying errors εij are mutually independent, εij
i.i.d.∼ N (0, 1). It follows that the joint

distribution of the hidden variables for the ith subject (Y ∗
i1, . . . , Y

∗
ini

)T is multivariate Normal

with standardized mean vector (
xT

i1β√
σ2 + 1

, . . . ,
xT

ini
β

√
σ2 + 1

)T

(3)

and correlation matrix with constant non-diagonal entries given by σ2/(σ2 + 1).

Model fitting is typically performed by maximum likelihood. Denote by y = (yT
1 , . . . ,yT

m)T

the vector of all observations, with yi = (yi1, . . . , yini
)T being the subvector of observations
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pertaining to the ith patient. Similarly denote the vectors of the corresponding hidden vari-

ables Y ∗ and Y ∗
i , respectively. The likelihood function for the usual probit model with

underlying independent residuals involves m intractable integrals

L(θ; y) =
m∏

i=1

∫ ∞

−∞

ni∏
j=1

pr (Yij = yij|xij, ui; θ) f(ui; θ)dui

=
m∏

i=1

∫ ∞

−∞

ni∏
j=1

(∫ αyij

αyij−1

f(y∗ij|xij, ui; θ)dy∗ij

)
f(ui; θ)dui

=
m∏

i=1

∫ ∞

−∞

ni∏
j=1

(
Φ(αyij

− xT
ijβ − ui)− Φ(αyij−1 − xT

ijβ − ui)
)
φ
(ui

σ

)
dui, (4)

where φ(z) denotes the probability density function of a standard Normal variable. This like-

lihood may be approximated by Gauss-Hermite quadrature or, more accurately, by adapative

Gauss-Hermite quadrature (see for example, Pinheiro and Bates (2000)).

Although the above described probit mixed model is widely used, its underlying equal

correlation assumption seems unsatisfactory for many longitudinal studies, especially for

those characterized by moderate to long subject-specific series. Better models should take

into account the serial correlation within each subject-specific time-series. In this paper,

we propose to model the within-subject serial correlation by a smooth temporal decaying

correlation function as, for example, the exponential correlation model (Diggle et al., 2002),

corr(εij, εik) = exp(−δ|tij − tik|), where tij denotes the measurement time of observation yij.

This correlation function reduces to the autoregressive model of order one, γ|tij−tik| with

γ = e−δ, for equi-spaced observations times. Correspondingly, the correlation between two

hidden continuous variables is formed by a constant subject-specific level plus a smooth serial

component

corr(Y ∗
ij , Y

∗
ik) =

σ2

σ2 + 1
+

e−δ|tij−tik|

σ2 + 1
. (5)

Thus, by assuming serial correlation among the residuals, we obtain a multivariate probit

model with the same marginal interpretation as in (2) but with a more realistic longitudinal

structure. Thereafter, the proposed class of models will be termed mixed autoregressive

ordinal probit (MAOP) models.

Further model flexibility may be obtained by allowing the parameter δ to depend on

a subject-specific factor Si with q different levels. Thus, the model may describe different

memory effects in different groups of subjects. For example, in the migraine data discussed

in §4 different pain memory effects can be postulated in patients taking medications or not,

or in patients with different headaches types.

The cost for the versatility of the MAOP model is paid in terms of computational dif-

ficulties. The likelihood function still involves m intractable integrals but with dimensions

corresponding to the cluster sizes n1, . . . , nm. Denote always by θ the parameter vector that

now contains also the autocorrelation parameters δ. The likelihood function for the model

with serially correlated residuals is

L(θ;y) =
m∏

i=1

∫ ∞

−∞

(∫ αyi1

αyi1−1

. . .

∫ αyini

αyini
−1

f(y∗i1, . . . , y
∗
ini
|xi1, . . . ,xini , ui;θ)dy∗i1 . . .dy∗ini

)
f(ui;θ)dui.
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By using the assumptions of normality for both the random effects Ui and the hidden errors

εij, the likelihood may be rewritten as the product of m integrals of multivariate Normal

densities of dimensions n1, . . . , nm

L(θ; y) =
m∏

i=1

∫ α̃yi1

α̃yi1−1

. . .

∫ α̃yini

α̃yini
−1

φni
(zi1, . . . , zini

; Ri) dzi1 . . . dzini
, (6)

where α̃yij
indicates the standardized cutpoint, α̃yij

=
(
αyij

− xT
ijβ
)
/
√

σ2 + 1. The inte-

grands φni
(zi1, . . . , zini

; Ri) are ni-dimensional multivariate Normal densities with zero means

and correlation matrix Ri whose entries are given by expression (5).

Except for longitudinal data with small numbers of observations per subject, the direct

computation of likelihood (6) is time-consuming and possibly numerically unstable.

MAOP models for discrete-time observations are categorized Gaussian linear state space

models. The celebrated Kalman filter (Kalman, 1960) allows efficient iterative computa-

tion of the exact likelihood function in Gaussian linear state space models, but cannot be

applied to censored observations. Reliable approaches use several kinds of Monte Carlo ap-

proximations based typically on Kalman filter-type iterations, see for example Durbin and

Koopman (2001). A Bayesian analysis of binary time series allowing for covariates using

Markov Chain Monte Carlo methods and the simulation smoother of De Jong and Shephard

(1995) for block updates of the hidden process variables were developed in Czado and Song

(2008). It would be feasible to extend their approach to ordinal-valued time series models

using ideas of Müller and Czado (2005) and Müller and Czado (2008) to update the threshold

parameters.

Unfortunately, these computer-intensive approaches may be difficult to apply in large

longitudinal data sets, such as the migraine data analysed in §4. Moreover, even if the

computational cost would be tolerable, a full likelihood approach might be impractical due

to the difficulty of assessing the adequacy of the multivariate assumptions underlying the

model. These considerations lead us to consider a composite likelihood approach (Lindsay,

1988).

3 Composite likelihood inference

The term composite likelihood denotes a rich class of pseudolikelihoods constructed by com-

pounding valid likelihoods based on data subsets. Recent applications include genetics,

spatial statistics, time series and longitudinal data analysis; see Varin (2008) for a recent

review.

Here, we focus on the composite likelihood constructed combining likelihoods for pairs of

observations, also called pairwise likelihood (Le Cessie and Van Houwelingen, 1994). Since

pairs formed from closest observations are likely to be more informative, it is convenient to

restrict to the pseudolikelihood constructed from the marginal probabilities of observed pairs
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of outcomes less distant than q units,

p`(q)(θ; y) =
m∑

i=1

ni∑
j<k

log pr(Yij = yij, Yik = yik; θ)1[−q,q](tij − tik),

where 1A(x) is the indicator of the event {x : x ∈ A}. Note that p`(q)(·; y) is a weighted

pairwise likelihood with dummy weights used to exclude pairs too far apart. A recent detailed

discussion of weighted versions of pairwise likelihood can be found in Joe and Lee (2009).

In contrast to a full likelihood approach, the pairwise likelihood for MAOP models in-

volves only two-dimensional Gaussian integrals,

pr(Yij = yij, Yik = yik; θ) =

∫ α̃yij

α̃yij−1

∫ α̃yik

α̃yik−1

φ2

(
zij, zik;

σ2

σ2 + 1
+

e−δwi |tij−tik|

σ2 + 1

)
dzijdzik.

The maximum composite likelihood estimator for θ solves the composite likelihood score

equation,

u(q)(θ; y) =
m∑

i=1

u
(q)
i (θ; yi) =

m∑
i=1

ni∑
j<k

ui·jk(θ; yi)1[−q,q](tij − tik),

where ui·jk(θ; yi) = ∇ log pr(Yij = yij, Yik = yik; θ). Since u(q)(θ; y) is a linear combination of

proper score functions associated with each pairwise term forming the pseudolikelihood, it fol-

lows that, under standard assumptions (Molenberghs and Verbeke, 2005, §9), the maximum

pairwise likelihood estimator θ̂
(q)

is consistent and asymptotically Normally distributed. See

also Cox and Reid (2004) for a discussion on situations in which consistency of maximum

pairwise likelihood estimators may not hold, such as in long-memory temporal processes.

The asymptotic variance of θ̂
(q)

assumes the typical “sandwich” form,

Σ(m)(θ) = H(q)(θ)−1J(q)(θ)H(q)(θ)−1,

where H(q)(θ) = −E{∇u(q)(θ; Y )} and J(q)(θ) = cov{u(q)(θ; Y )}. The inverse of Σ(q)(θ)

is also termed Godambe Information (Song, 2007, §3). An empirical estimate of H(q)(θ)

is −∇u(q)(θ̂
(q)

; y). Alternatively, exploiting the information identity for each pairwise term

forming the pseudolikelihood, H(q)(θ) may be conveniently estimated by

Ĥ
(q)

(y) =
m∑

i=1

ni∑
j<k

ui·jk(θ̂
(q)

; yi)ui·jk(θ̂
(q)

; yi)
T1[−q,q](tij − tik), (7)

thus avoiding the need to derive Hessian matrices. The natural empirical estimate of J(q)(θ)

is

Ĵ
(q)

(y) =
m∑

i=1

u
(q)
i (θ̂

(q)
; yi)u

(q)
i (θ̂

(q)
; yi)

T. (8)

Matrices Ĥ
(q)

(y) and Ĵ
(q)

(y) are key ingredients for high-level inferential tasks such as hy-

pothesis testing and model selection. The composite likelihood information criterion (CLIC)

by Varin and Vidoni (2005) is a direct generalization of the Akaike (1973) criterion for model
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selection with composite likelihoods. The CLIC suggests to prefer models with smaller values

of the quantity

CLIC(q) = −2
(
p`(q)(θ̂; y)− d(q)(y)

)
where d(q)(y) is an estimate of the effective number of parameters of the model. A consistent

estimate of d(q)(y) is given by the trace of the matrix Σ̂(q)(y)Ĥ
(q)

(y). This information

criterion may be seen as a form of the Takeuchi (1976) information criterion for model

selection with misspecified likelihoods, being the pairwise likelihood a misspecified likelihood

under the working assumption of independent pairs.

Regarding the choice of the maximal admissible distance q between pairs used in the

pairwise likelihood, previous work on pairwise likelihood for temporal and spatial processes

suggests that the inclusion of too-distant pairs is not only computationally inefficient, but

may also not improve statistical efficiency, see Varin (2008). Here, we propose to choose

the tuning parameter q as the value minimizing a global fitting criterion, for example the

generalized variance defined as the determinant of Σ̂(q)(y).

The web supplementary appendix (http://www.biostatistics.oxfordjournals.org) contains

details on a simulation study carried out to evaluate the finite-sample performance of the

proposed inferential methods. The results suggest that maximum pairwise likelihood esti-

mators behave well for all the parameters even in case of strong serial correlation among the

hidden variables. Computer code written in the R language (R Development Core Team,

2008) is also included in the supplementary material.

4 Migraine severity data

Prince et al. (2004) report that forty-five million Americans seek medical attention for

headaches yearly, at an estimated labor cost of $13 billion. They show that only half of

the migraine patients are affected by weather conditions. In contrast some studies show

little or no effect of weather conditions on migraine severity, see Cooke et al. (2000) and

Prince et al. (2004) for specific references. However in these studies only the frequency of

headache occurrences, the daily maximum or total score of an ordinal severity levels have

been studied.

Current strategies for the analysis of pain severity data measured on an ordinal scale

require aggregating over periods to achieve continuous average or total pain scores, e.g.

Cooke et al. (2000), Prince et al. (2004), Goldstein et al (2005) and Raskin et al. (2005).

Such an approach ignores effects occurring during the aggregation periods.

Here, we directly model the observed severity categories collected using a headache diary.

In particular, we investigate the four daily ratings – recorded at morning, noon, afternoon

and bedtime – of the headache intensity of 133 Canadian (Toronto) patients in a study

conducted by psychologist T. Kostecki-Dillon during the years 1993-1996. Records of the

migraine severity were made on an ordinal scale with six categories described in Table 1.

Table 1 about here.
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In addition to a subject-specific questionnaire with personal and clinical information,

weather conditions were recorded. They were collected from the meteorological station

closest to the place where patients spends most of their time. The weather covariates include

measurements related to sunshine, humidity, wind direction and speed, windchill, pressure,

air quality and many others.

Patients with a very large number of missing observations in subsequent measurements,

or with less than one day of measurements, were omitted. The final data set comprises 119

patients with a total of 16,366 measurements, 1,157 of which are missing. We assume an

ignorable missing mechanism and thus we base inference on the pairwise likelihood formed

by pairs of observed outcomes. The numbers of observations per patient vary from 16 (4

days) to 1,352 (338 days). Observations are not necessarily consecutive. Often the subject-

specific observations are organized in separated measurement periods, each of them formed by

consecutive observations. The minimal measurement period is one day (four measurements),

while the maximal one is 213 days (815 measurements).

Table 2 reports the observed proportions of the transitions between the ordinal categories

in two consecutive measurements. Serial correlation in the data is suggested by the patterns

of symptom persistence and of transitions between adjacent categories.

Table 2 about here.

For illustration, we study the relationship between headache severity using university

degree status and the usage of analgesics as base variables. Three weather covariates are

additionally included. The first is the change in atmospheric pressure from the previous day,

categorized in three levels, namely from high (> 1013 hPa) to low pressure (≤ 1013 hPa),

from low to high pressure and unchanged level of pressure (from low to low or from high to

high). The second weather covariate is the relative humidity index with three levels, that

is less than 60% of humidity, between 60% and 80% of humidity and more than 80% of

humidity. The last weather covariate is windchill categorized into four classes, between −50◦

and −10◦ Celsius, between −10◦ and 0◦ Celsius, between 0◦ and 10◦ Celsius and between

10◦ and 30◦ Celsius.

We consider the two binary covariates university degree and usage of analgesics as covari-

ates of primary interest, thus they are included in all considered models. The base model

is

headache ∼ university+analgesics

Furthermore, we consider two different autocorrelation parameters γ for subjects with anal-

gesics intake and those without.

For model comparison, it is necessary to fit all models of interest with a pairwise likelihood

constructed from the same pairs of observations, that is with the same distance q. We choose

q as the value minimizing the generalized variance for the larger model

headache ∼ university+analgesics+change+humidity+windchill
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According to this criterion, the overall best performance is obtained with q = 12. Thus, we

fit all the other (nested) models with this value for q.

Table 3 shows the 23 = 8 models obtained by adding all the possible combinations

of the three weather covariates to the base model. The relative performance of the kth

model with respect to the alternative models can be summarized by CLIC weights defined

as wk = e−∆k/
∑8

k=1 e−∆k , where ∆k = (CLICk −mini CLICi)/2.

Table 3 about here.

Qualitative conclusions should take into account the fitted models with their relative im-

portance expressed through the CLIC weights. In Table 4, for illustration we show parameter

estimates and standard errors only for the two best models, namely the model including the

change in pressure and the base model.

Table 4 about here.

When considering also the other six fitted models, we obtain the following overall con-

clusions. Subjects with an university degree tend to suffer from lower levels of headache,

while those taking analgesics have stronger symptoms. These variables have more predictive

impact on the headache symptoms than the considered weather effects. Among the latter,

only the change in the atmospheric pressure is significant, in that its decrease is associated

with raised headache severity. The categorized relative humidity appears weakly significant

and the windchill covariate even less.

Finally, in all fitted models there is no appreciable difference between the symptom per-

sistence for patients who took analgesics and those who did not. Indeed, the difference

between the autocorrelation parameters for the analgesic users (γT ) and the non-analgesic

users (γF ) for all models is estimated between 0.133 and 0.148 with standard errors ranging

between 0.096 and 0.099. This is confirmed by re-fitting the models with a common auto-

correlation parameter γ for all patients: Table 4 reports the best model with and without

diversified autocorrelation parameters. The model with common autocorrelation has a value

of the CLIC statistic of 5915.8, thus somehow smaller than that of the corresponding model

with two different autocorrelation parameters (CLIC equals to 5916.3).

5 Concluding remarks

We have developed a pseudolikelihood approach for analyzing a large longitudinal study on

migraine severity symptoms. The proposed methodology is general and may be useful for

other studies with ordinal, as well as binary, outcomes.

The main advantage from pairwise likelihood inference is its computational simplicity.

Moreover since only the specification of bivariate margins is required, our approach relies on

model assumptions to a lesser degree than any approach based on a full likelihood approx-

imation. Some loss of efficiency may be experienced for the composite likelihood method
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compared to a full likelihood, but full likelihood is intractable for large numbers of obser-

vations per subject. The study of the efficiency of maximum pairwise likelihood estimators

is possible only with a small number of observations per patients as in Joe and Lee (2009)

whose results encourage the use of this pseudolikelihood.

The underlying Normal assumptions leading to the multivariate probit model were con-

sidered mainly for ease of interpretation. However, there are no theoretical restrictions

against considering other distributional assumptions. An alternative of possible interest is

a cumulative logit model (Agresti, 2002, §7) for the conditional distribution of the response

given the random effects.

Other useful variants of the proposed class of models may involve robustification of the

random effect distribution, for example by using a Student t-distribution instead of the

traditional Gaussian distribution.

Often in longitudinal studies the missing data mechanism may not be assumed ignorable

and thus likelihood-type analysis based on complete observations are not valid. Modification

of the pairwise likelihood for non-ignorable missing data mechanism are described in Parzen

et al. (2007).

As with standard likelihood inference, maximum pairwise likelihood estimators for vari-

ance components fail to correct for the degrees of freedom lost for estimating fixed effects

and thus are prone to severe downward bias. When the number of covariates is not small

compared to the number of subjects, bias in the estimate of σ2 can be worthy of atten-

tion. Among several bias correction procedures, resampling methods such as jackknife and

bootstrap are viable approaches given the low computational cost of pairwise likelihood eval-

uations. Further computational saving may be obtained by using first-order approximations

instead of complete maximization of the pseudolikelihood for each resampled data.

Standard errors estimated from the empirical quantities (7) and (8) may be numerical

imprecise for longitudinal studies with few subjects, typically leading to overoptimistic stan-

dard errors. More robust variance estimates for small numbers of subjects may obtained

with resampling techniques such as jackknife and bootstrap.
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Table 1: Migraine data. Description of response categories with observed frequencies.

intensity frequency condition description

0 9210 no headache

1 2455 mild headache aware of it only when attending to it

2 1685 moderate headache could be ignored at times

3 1156 painful headache continuously aware of it, but able to start

or continue daily activities as usual

4 526 severe headache continuously aware of it, difficult to

concentrate and able to perform only

undemanding tasks

5 177 intense headache continuously aware of it, incapacitating

unable to start or continue activity
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Table 2: Migraine data. Observed two-step transition proportions.

0 1 2 3 4 5

0 0.83 0.10 0.04 0.02 0.01 0.00

1 0.35 0.37 0.17 0.08 0.03 0.01

2 0.25 0.22 0.33 0.14 0.05 0.01

3 0.20 0.15 0.22 0.30 0.10 0.03

4 0.15 0.10 0.14 0.27 0.27 0.07

5 0.10 0.05 0.10 0.16 0.24 0.35
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Table 3: Migraine data. Maximized log-pairwise likelihoods with q = 12, CLIC statistics

and CLIC weights for various models fitted to the migraine data.

change humidity windchill log-pair CLIC weights

- - - −2935.16 5917.15 0.27

∗ - - −2933.58 5916.30 0.41

- ∗ - −2934.36 5918.84 0.12

- - ∗ −2933.36 5922.53 0.02

∗ ∗ - −2932.90 5918.33 0.15

∗ - ∗ −2931.75 5921.93 0.02

- ∗ ∗ −2932.62 5924.59 0.01

∗ ∗ ∗ −2931.03 5924.20 0.01
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Table 4: Migraine data. Estimates and standard errors from the pairwise likelihood with

q = 12 for the base model (first two columns) and the best model accordingly to CLIC with

different autocorrelation parameters for analgesic users and non-analgesic users (second two

columns) and with a single common autocorrelation parameter (last two columns). The levels

of the variable change are 1: change from low to high atmospheric pressure, 2: substantially

unchanged atmospheric pressure, 3: change from high to low atmospheric pressure. The

baseline is “no university degree, no intake of analgesics, change from low to high pressure”.

est. s.e. est. s.e. est. s. e.

α2 0.588 0.046 0.588 0.046 0.589 0.046

α3 1.136 0.069 1.136 0.069 1.137 0.069

α4 1.786 0.079 1.787 0.080 1.788 0.080

α5 2.505 0.109 2.506 0.111 2.508 0.112

intercept −0.474 0.226 −0.522 0.223 -0.517 0.223

university −0.523 0.172 −0.523 0.174 -0.525 0.173

analgesics 0.558 0.202 0.561 0.205 0.557 0.205

change2 — — 0.031 0.051 0.031 0.051

change3 — — 0.164 0.053 0.164 0.053

γF 0.415 0.094 0.424 0.094 0.540 0.031

γT 0.556 0.030 0.557 0.030 — —

γT − γF 0.142 0.098 0.133 0.098 — —

σ2 0.566 0.110 0.564 0.111 0.566 0.112
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