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We consider a multivariate Lévy process given by the sum of a Brownian motion with drift and

an independent time-homogeneous pure jump process governed by a Lévy density. We assume that

observation of a sample path takes place on an equidistant discrete time grid. Following Grenander’s

method of sieves, we construct families of non-parametric projection estimators for the restriction of a

Lévy density to bounded sets away from the origin. Moreover, we introduce a data-driven penalisation

criterion to select an estimator within a given family, where we measure the estimation error in an L2-

norm. We furthermore give sufficient conditions on the penalty such that an oracle inequality holds.
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Keywords: Lévy density, Lévy process, non-parametric estimation, oracle inequality, adaptive model

selection

AMS Subject Classification: 60G51, 60J25, 62G07, 62G20

This is a preprint of an article whose final and definitive form will be published in the Journal

of Nonparametric Statistics (2011) c©Taylor & Francis; The Journal of Nonparametric Statistics is

available online at: http://www.informaworld.com/smpp/ — The final form of this article is available

online as of 30 June 2011: http://www.tandfonline.com/doi/abs/10.1080/10485252.2011.581375

1. Introduction

1.1. Lévy processes

When calibrating continuous-time stochastic models to data sampled on a discrete time
grid, we inherently encounter the issue of separating continuous path components from
purely discontinuous ones. Focusing on stochastic processes with stationary and inde-
pendent increments, this translates to discriminating between the jumps, and Brownian
motion and drift. Historically, special cases like the Wiener and the compound Poisson
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process and, more recently, general Lévy processes have received a lot of attention in
various applied fields such as actuarial sciences, engineering, finance, geography, physics,
and telecommunications.

In this paper, we consider a general d-dimensional Lévy process X : [0,∞[×Ω → R
d

defined on a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual conditions,
viz. the filtration (Ft)t≥0 is right-continuous and complete, that is, ∩s>tFs = Ft, and
F0 contains all P -null sets. Throughout, we assume X0 = 0 a. s. and the paths of X
are càdlàg. For all t ≥ 0, consequently, Xt− := lims↑t Xs and ∆Xt := Xt − Xt− are
well-defined. In addition, the law L (Xt) of Xt is fully determined by L (X1). By the
Lévy–Khintchine representation (cf. Theorem 8.1 of Sato (1999)), L (X1) is infinitely
divisible and uniquely specified by its characteristic triplet (b, σ2, F ), where b ∈ R

d,
σ2 ∈ R

d×d is symmetric positive semi-definite and F is a measure on (Rd
◦,B(Rd

◦)), where
R

d
◦ := R

d\{0} and B(·) denotes the Borel σ-field of a set. F is called the Lévy measure of
X and satisfies

∫

(‖x‖2∧1)F (dx) < ∞. Since the correspondence between Lévy processes
and infinitely divisible distributions is one-to-one, (b, σ2, F ) is also called the generating
triplet of X.

Furthermore, the Lévy–Itô decomposition (cf. Theorem 19.2 of Sato (1999)) relates the
generating triplet to the components of X. Let µ : B([0,∞[×R

d
◦)× Ω → N0 be given by

µ(B,ω) := #{s ≥ 0 : (s,∆Xs(ω)) ∈ B}, (1)

where # denotes cardinality. Then, µ forms a Poisson random measure on
([0,∞[×R

d
◦,B([0,∞[×R

d
◦)) with intensity measure ν given by ν(dt,dx) = dtF (dx).

Moreover, let σ denote the Cholesky-triangle of σ2. Then, there exists a d-dimensional
Wiener process W independent of µ given by Equation (1) such that almost surely

Xt = bt + σWt +

∫ t

0

∫

{x:‖x‖>1}
xdµ + lim

ε↓0

∫ t

0

∫

{x:ε<‖x‖≤1}
xd(µ − ν) (t ≥ 0).

Certainly, various sub-classes of Lévy processes are interesting by its own right. Despite
presence or absence of Brownian motion and drift, the jump component of a Lévy process
is classified in terms of activity, sample path variation and existence of moments. If
F (Rd

◦) < ∞, then the jump component is of finite activity, that is, a compound Poisson
process, or else the jump component is of infinite activity, that is, the process jumps
infinitely often on each compact time interval. Note that the jumps ∆Xt accumulate
at the origin. Furthermore, the (small) jumps are absolutely summable if, and only
if,

∫

(‖x‖ ∧ 1)F (dx) < ∞. In this case, the paths of the jump component are of finite
variation. Otherwise, they are of infinite variation. Finally, a Lévy process has moments of
order k if, and only if, F satisfies

∫

{x:‖x‖>1}‖x‖kF (dx) < ∞ (cf. Sato 1999, Theorem 5.23).

In other words, the existence of moments is determined by the (big) jumps only.

1.2. Methodology

We aim for inference on the Lebesgue derivative f of the Lévy measure F , that is, the
Lévy density, which we always assume to exist. We focus on the method of penalised
projection estimation. This estimation procedure can be interpreted as a combination
of minimum contrast estimation (see, e. g., Birgé and Massart (1993, 1997, 1998)), the
method of sieves (cf. Grenander (1981)), and penalisation techniques which trace back to
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Whittaker (1923). In principle, the method can be outlined as follows. We assume that,
on a compact domain of estimation away from the origin, the Lévy density f belongs to
the corresponding L2-space. Firstly, we choose a family of finite dimensional subspaces
{Sm ⊆ L2 : m ∈ M}, called sieves. Secondly, for every m ∈ M we construct estimators

f̂m ∈ Sm for the orthogonal projection of f to Sm. Finally, we choose mpen ∈ M using
an empirical penalty. Combining these steps, we call f̂pen := f̂mpen a penalised projection
estimator (PPE). We note that this method has also been applied in the context of
density estimation of an i. i. d. sample and for the estimation of the intensity of finite
Poisson random measures by Barron, Birgé and Massart (1999) and Reynaud-Bouret
(2003), respectively.

Figueroa-López and Houdré (2006) presented the method outlined above for inference
on univariate Lévy densities, assuming all jumps of X are observed. As an important
ingredient of the method, oracle inequalities are proved to hold. A prototype for these
inequalities is given by

E‖f − f̂pen‖2
L2 ≤ C inf

m∈M
E‖f − f̂m‖2

L2 , (2)

where C is a finite positive constant. In other words, the asymptotic behaviour of f̂pen can

be derived from the so-called oracle, namely the optimal estimator within {f̂m : m ∈ M}.
Explicit observation of jumps, however, is known to remain theoretical in the context

of Lévy processes. In practice, observation of process increments on a discrete time grid
is commonly encountered. This more realistic observation scheme is our starting point.
We derive a sufficient condition on penalties such that an oracle-type risk bound and an
oracle inequality hold. As an application we consider smooth Lévy densities belonging
to a Sobolev space Wk,2 for an unknown degree of smoothness k > 0. We choose the
sieves {Sm : m ∈ M} to consist of piecewise polynomials. These are known to provide
good approximations to this type of smooth functions. By virtue of the oracle(-type)
inequality, we derive an explicit rate of convergence for the corresponding penalised
projection estimator. Particularly, as the length T of the observation interval [0, T ] tends

to infinity, we obtain E‖f − f̂pen‖2
L2 = O(T−2k/(2k+d)). This rate is a natural extension

of the rate obtained in the univariate setting when all jumps are observed. Moreover, the
achieved rate turns out to be optimal in the minimax sense.

Figueroa-López (2009) also develops a projection estimator for (univariate) smooth
Lévy densities from observations on a discrete time grid, which achieves the same rate.
However, there is an important distinction. Unlike the estimator of Figueroa-López
(2009), knowledge of the degree of smoothness k is neither needed nor used in the con-
struction of our estimator.

Comte and Genon-Catalot (2009, 2010, 2011) also based inference for Lévy processes
on penalised contrast, which, again, achieves the same rate. Nevertheless, there are sev-
eral differences. First and foremost, Comte and Genon-Catalot (2009, 2010, 2011) did not
estimate the Lévy density f but x 7→ xf(x) (resp., x 7→ x2f(x) and x 7→ x3f(x)) depend-
ing on additional assumptions. Second, their projection spaces are not finite dimensional.
Last, they estimate x 7→ xjf(x) for j = 1, 2, 3 arbitrarily close to zero. Certainly, dividing
by the appropriate power of x yields an estimate for f . But if the transformed estimates
are not truncated near zero, unsatisfactory effects arise. In particular, unbounded es-
timates with a pole at zero occur even in case of a compound Poisson process with a
bounded Lévy density. Moreover, when Brownian motion is present, then estimates vi-
olating the defining property of Lévy measures, that is,

∫

(‖x‖2 ∧ 1)F (dx) < ∞, can
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result.
Early works in the literature on parametric and non-parametric inference for Lévy

processes includes Rubin and Tucker (1959), Akritas (1982), and Basawa and Brockwell
(1982). Numerous non-parametric and semiparametric approaches for the estimation
of the characteristic triplet and, in particular, the Lévy density have been suggested
recently. Besides the ones mentioned in the last paragraph, which are closely related
to our work and will be discussed in detail in this work, we give an overview over the
existing statistical work as far as it is known to us. An interesting collection of work is
the special issue Gugushvili, Klaassen and Spreij (2010), where a wealth of interesting
papers can be found with ample references to previous literature.

Special Lévy processes given by the sum of drift, compound Poisson process and α-
stable process (including α = 2 referring to Brownian motion) have been statistically
estimated by Chen, Delaigle and Hall (2010), its restriction to drift, compound Poisson
and Brownian motion by Gugushvili (2009a,b), and van Es, Gugushvili and Spreij (2007).
In these papers the drift, the variance of the Brownian motion and the Poisson intensity
are estimated parametrically, whereas the jump density of the compound Poisson process
is estimated non-parametrically.

Watteel and Kulperger (2003), Neumann and Reiß (2009), and Kappus and Reiß (2010)
estimate instead of the Lévy measure the canonical measure (cf. Billingsley (1995, (28.6)))
for arbitrary Lévy processes with finite 4 + δ-moment. Estimated is the empirical char-
acteristic function and the optimal characteristic triplet is found by minimising some
distance measure.

Lévy processes have proved extremely useful in finance, where price processes are often
modelled by an exponential Lévy process, or a stochastic volatility model is considered,
whose volatility process is driven by a subordinator (a Lévy process with increasing
sample paths). Problems like estimating the exponential Lévy model from option prices
with different strikes, or estimating the stochastic volatility from the price process have
attracted attention. These problems were considered in Belomestny and Reiß (2006) and
Shimizu (2006, 2009). Moreover, estimating the latent stochastic volatility, and drawing
conclusions about the jump behaviour of prices and volatilities have been studied in a
number of important papers (usually on the more general class of Itô-semimartingales)
by Jean Jacod and collaborators; we refer in particular to Aı̈t-Sahalia and Jacod (2007).
Based on results of this paper, tests have been developed to clarify, whether discretely
sampled data originate from a continuous-time jump process or a diffusion (cf. Aı̈t-
Sahalia and Jacod (2009)). Finally, the theoretical results have been applied to real data
in Jacod and Todorov (2010) and Jacod, Klüppelberg and Müller (2011).

The following is a brief outline of this paper. We specify the statistical problem and
construct the penalised projection estimator in Section 2. We establish our main results
— an oracle-type risk bound and a genuine oracle inequality — in Section 3. Moreover,
we apply this risk bound to the estimation of Lévy densities belonging to some Sobolev
space, where the sieves are chosen to consist of piecewise polynomials. Simulation results
are summarised in Section 4. All proofs are given in the appendix.
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2. Penalised projection estimation

2.1. The statistical problem

Let X : [0,∞[×Ω → R
d be a d-dimensional Lévy process with properties as specified in

Section 1. Notably, recall that F denotes the Lévy measure of X and we assume that its
Lebesgue derivative, the Lévy density f , exists.

For n ∈ N let ∆n > 0 be a mesh size and Tn < ∞ a terminal observation time. For
simplicity, we suppose that Tn is an integer multiple of ∆n. Our observation sample
at stage n consists of a realisation of X∆n

,X2∆n
, . . . ,XTn

. Equivalently, we observe the
realised increments

∆n
j X := Xj∆n

− X(j−1)∆n
(j = 1, . . . , Tn/∆n). (3)

Based on an observed sample of Equation (3), our objective is to estimate the restriction
f|D of the Lévy density f to a set D ⊆ R

d
◦ called domain of estimation. In the following,

we shall denote both, the restricted and the unrestricted Lévy densitiy, as f .
As usual, the observed increments serve as a proxy for the latent jumps. We aim for

high-frequency data, that is, we assume ∆n → 0 as n → ∞. The influence of Brownian
motion and drift is then asymptotically negligible, since ∆n

j W = O(
√

∆n) and b(j∆n −
(j − 1)∆n) = O(∆n). An infinite Lévy measure, however, implies infinitely many (small)
jumps over any compact time interval. To circumvent problems with a possible singularity
in zero, we always choose D away from zero such that there exists an ε > 0 with D ∩
Bε(0) = ∅, where Bε(0) denotes the ε-ball centred at the origin. Moreover, we assume
that D is a finite union of compact d-dimensional intervals.

2.2. Projection estimation

We assume that the Lévy density f is bounded outside every neighbourhood of the origin.
This implies ‖f‖2

L2(D)
:=

∫

D
f2(x)dx < ∞, hence f ∈ L2(D).

Let M be an auxiliary set to enumerate projection spaces. Furthermore, let {Sm : m ∈
M} be a family of finite-dimensional linear subspaces of L2(D), called sieves. The best
approximation of f w. r. t. (Sm, ‖·‖L2(D)) is given by its orthogonal projection, denoted

by Pmf . We denote the scalar product of a function g ∈ L2(D) and the Lévy density f by
F (g) :=

∫

D
g(x)f(x)dx =

∫

D
g(x)F (dx) and set dm := dim Sm. Let {gm,k : k = 1, . . . , dm}

be an orthonormal basis of Sm, then classical Hilbert space theory implies

Pmf =

dm
∑

k=1

F (gm,k)gm,k.

For presentation purposes, we extend g ∈ L2(D) to R
d, setting g(x) = 0 for all x 6∈ D.

If g is F -a. e. continuous, bounded, and vanishes in a neighbourhood of the origin, then
we deduce lim∆→0 E[∆−1g(X∆)] = F (g) from Corollary 8.9 of Sato (1999).

The increments defined in Equation (3) are i. i. d. Thus, if Tn → ∞ and ∆n → 0, the
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estimator

F̂n(g) :=
1

Tn

Tn/∆n
∑

j=1

g(∆n
j X)

of F (g) based on (∆n
j X)j=1,...,Tn/∆n

is consistent. This is a consequence of 0 ≤
Var[F̂n(g)] ≤ E[(F̂n(g))2] = T−1

n (E[∆−1
n g2(X∆n

)]) → 0 as n → ∞. Moreover, the esti-
mator

f̂n
m :=

dm
∑

k=1

F̂n(gm,k)gm,k (4)

of Pmf is consistent as well. We call f̂n
m the projection estimator of f w. r. t. Sm. To our

knowledge, this form of estimator traces back to Čencov (1962). Another representation

of f̂n
m as minimum contrast estimator (see, e. g., Definition 2 of Birgé and Massart (1993))

is shown in Figueroa-López (2009). We summarise relevant findings on f̂n
m in the following

Lemma. A proof is given in AppendixA.1.

Lemma 2.1 (minimum contrast estimator): For n ∈ N, let γn be an (empirical)
contrast function defined by

γn : L2(D) → R; g 7→ − 2

Tn

Tn/∆n
∑

j=1

g(∆n
j X) + ‖g‖2

L2(D). (5)

Then, the projection estimator f̂n
m defined in Equation (4) and the minimum contrast

estimator given by arg ming∈Sm
γn(g) coincide. Moreover,

γn(f̂n
m) = −‖f̂n

m‖2
L2(D). (6)

The approach via contrast functions has the advantage that a specific orthonormal basis
of Sm need not be chosen.

2.3. Penalisation and model selection

For a density estimator f̂ of f we denote the estimation risk by ‖f − f̂‖2
L2(D). We refer to

its expectation as mean squared error (henceforth abbreviated MSE). For every n ∈ N we

aim to select mn ∈ M such that the MSE of f̂n
mn

is minimal. For flexibility, let (Mn)n∈N

be an increasing family such that ∪n∈NMn = M . When choosing

m⋆
n := arg min

m∈Mn

E‖f − f̂n
m‖2

L2(D),

then the projection estimator f̂n
m⋆

n
(henceforth shortened f̂n

⋆ ) is called the oracle. Note,

however, that f̂n
⋆ is not computable without prior knowledge of f .

As a remedy, we invoke the method of model selection via penalisation (see, e. g.,
Barron et al. (1999) and references therein). Let (penn)n∈N be a family of mappings
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from M × Ω to [0,∞[. We call (penn)n∈N a penalty on {Sm : m ∈ M} if penn(m, ·) is
measurable w. r. t. σ(∆n

j X : j = 1, . . . , Tn/∆n) for all n ∈ N and m ∈ M . Note that
this measurability condition is rather innocuous, requiring that penn depends only on
the observable increments at stage n and can therefore be computed. In reality, given a
penalty (penn)n∈N on {Sm : m ∈ M}, we replace m⋆

n by

mpen
n := arg min

m∈Mn

{

−‖f̂n
m‖2

L2(D) + penn(m)
}

,

and call f̂n
mpen

n
the PPE of f . For convenience of notation we set f̂n

pen := f̂n
mpen

n
, and also

Ppenf := Pmpen
n

f .

Due to its relevance, again, we summarise the representation of the PPE f̂n
pen as a

minimum penalised contrast estimator in the following Corollary to Lemma2.1.

Corollary 2.2 (minimum penalised contrast estimator): Let γn be the (empirical)

contrast function defined in Equation (5). Then, the PPE f̂n
pen coincides with the min-

imum penalised contrast estimator given by arg ming∈Sm
pen
n

γn(g), where the data-driven

model selection criterion is given by

mpen
n := arg min

m∈Mn

{

min
g∈Sm

γn(g) + penn(m)

}

. (7)

Suitable penalties (penn)n∈N remain to be found.

3. Error bounds and adaptiveness

In this section we first establish our main results, that is, an oracle-type risk bound
and a genuine oracle inequality (recall Equation (2)) for the PPE f̂n

pen introduced in
Section 2. Then, we give an application, where rates of convergence for the MSE are
explicit. We also show that the PPE achieves the best rate attainable in the framework
of the application.

3.1. Oracle inequality

For general background on multi-index notation and weak derivatives, we refer to Brenner
and Scott (1994, pp. 24–26). A d-tupel α = (α1, . . . , αd) ∈ N

d
0 is called a d-dimensional

multi-index. The sum of its components, that is, |α| := α1 + · · · + αd is called the length
of α. The corresponding (weak) α-differential operator ∂α is given by ∂α := ∂α1

1 · · · ∂αd

d .
Note that a differentiable function is also weakly differentiable. In this case, the (strong)
derivative and the weak derivative coincide.

For k ∈ N and p ≥ 1 let g : D → R be locally integrable, denoted by g ∈ Lloc(D),
and suppose that the weak α-derivative ∂αg exists for every multi-index α with |α| ≤ k.
Then, we call

‖g‖Wk,p(D) :=





∑

|α|≤k

‖∂αg‖p
Lp(D)





1/p

and |g|Wk,p(D) :=





∑

|α|=k

‖∂αg‖p
Lp(D)





1/p
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Sobolev norm and Sobolev semi-norm of g, respectively. Additionally, we call

Wk,p(D) := {g ∈ Lloc(D) : ‖g‖Wk,p(D) < ∞} (8)

Sobolev space over D and refer to k as degree of smoothness.

Assumption 3.1 (regularity of projection spaces): For all m ∈ M , we assume
that there exists a finite partition Dm of disjoint d-dimensional intervals of D such that
g|D ∈ W1,∞(D) for all D ∈ Dm and all g ∈ Sm.

In the light of Mazja (1979, 3.1 Korollar 1.1), Assumption 3.1 is sufficient for the so-
called “absolute continuity on lines” for g ∈ Sm. Consequently, the (weak) partial deriva-
tive ∂ig|D exists for all g ∈ Sm, D ∈ Dm and i ∈ {1, . . . , d}. For our main results we
require upper bounds for the range of g ∈ Sm and for the line integrals of ∂ig|D along
the coordinate axes for all D ∈ Dm and i ∈ {1, . . . , d}.

For all x ∈ D, therefore, let αD,x,i : [ξ
i
(x), ξi(x)] → D be defined by αD,x,i(ξ) := x+ξei,

where ei denotes the i-th standard unit vector in R
d, ξi(x) := sup{ξ ≥ 0 : x + ξei ∈ D},

and ξ
i
(x) := inf{ξ ≤ 0 : x + ξei ∈ D}. Then, (g ◦ αD,x,i)

′ = ∂ig|D ◦ αD,x,i exists under
Assumption 3.1. To avoid tedious notation, we set

‖g′‖α,L1(Dm) := max
D∈Dm

max
i=1,...,d

sup
x∈D

‖(g ◦ αD,x,i)
′‖L1([ξ

i
(x),ξi(x)]).

Consequently, for every m ∈ M we set Dm := sup{‖g‖2
L∞(D) : g ∈ Sm, ‖g‖L2(D) = 1},

which is an upper bound, uniformly in Sm, for (the square of) the range of g after
normalisation. Likewise, we set D

′
m := sup{‖g′‖2

α,L1(Dm) : g ∈ Sm, ‖g‖L2(D) = 1}, which

is an upper bound, uniformly in Sm, for (the square of) the line integrals of ∂ig|D along
the coordinate axes, again, after normalisation.

In AppendixA.2, we prove the following remark.

Remark 1 : Under Assumption 3.1, the constants Dm and D
′
m are finite for all m ∈ M .

Assumption 3.2 (polynomial family of sieves): The family {Sm : m ∈ M} of
projection spaces is assumed to be polynomial, that is, there exist ζ1 > 0 and ζ2 ≥ 0 such
that

∀l ∈ N : #{m ∈ M : dm = l} ≤ ζ1l
ζ2 . (9)

We now present our main theorem that stands in line with Theorem 1 of Reynaud-
Bouret (2003) and Theorem 4.1 of Figueroa-López and Houdré (2006). Theorem 3.3 jus-
tifies the empirical sieve selection via penalisation for our statistical problem, where
(high-frequency) observation of realised increments (∆n

j X)j=1,...,Tn/∆n
of a Lévy process

X is available only. A proof is given in AppendixA.3.

Theorem 3.3 (oracle-type risk bound for PPE): Let (Tn)n∈N and (∆n)n∈N be
sequences with values in ]0,∞[ such that Tn → ∞ and supn∈N Tn∆n < ∞ as n → ∞.
Furthermore, let (penn)n∈N be a penalty on a family of sieves {Sm ⊆ L2(D) : m ∈ M}
such that there exist c1 > 1 and c2, . . . , c4 > 0 with

penn(m) =
c1

Tn

dm
∑

k=1

F̂n(g2
m,k)+c2

(

Dm

Tn
∨ D

4
m

T 3
n

)

+c3

(

D
′
m

Tn
∨ D

′4
m

T 3
n

)

+c4

(

dm

Tn
∨ d4

m

T 3
n

)

(10)



Preprint — Journal of Nonparametric Statistics (2011) — c©Taylor & Francis 9

and let Mn := {m ∈ M : Dm ≤ Tn} for n ∈ N. Then, there exist positive constants

K1,K2 < ∞ such that the PPE f̂n
pen = f̂n

mpen
n

satisfies for all n ∈ N,

E‖f − f̂n
pen‖2

L2(D) ≤ K1 inf
m∈Mn

(

‖f − Pmf‖2
L2(D) + E[penn(m)]

)

+
K2

Tn
. (11)

Let us briefly comment on the three last terms on the right-hand side of Equation (10).
On the one hand, for a fixed model m ∈ M , we have DmT−1

n ≥ D
4
mT−3

n if, and only if,

Tn ≥ D
3/2
m . The analogue holds w. r. t. D

′
m and dm. Thus, there exists a finite Nm ∈ N

such that

penn(m) =
c1

Tn

dm
∑

k=1

F̂n(g2
m,k) + c2

Dm

Tn
+ c3

D
′
m

Tn
+ c4

dm

Tn
(12)

for all n ≥ Nm. We note that this would match the penalty from part c) of Theorem 4.1
of Figueroa-López and Houdré (2006) if c3 was equal to zero. On the other hand, for a

fixed n ∈ N, let M̄n ⊆ Mn be the subset of models such that Tn < max(D
3/2
m ,D

′3/2
m , d

3/2
m )

for all m ∈ M̄n. We interpret these models as ‘more complex’, for instance, in the sense of
dimensionality. We observe that penn given in Equation (10) imposes higher penalties on
models in M̄n compared to the penalty given in Equation (12). Therefore, Equation (10)
increases the probability for a less complex model mpen

n ∈ Mn \ M̄n to be chosen. Taking
these findings into account, we readily derive the oracle inequality below, which we prove
in AppendixA.4.

Corollary 3.4 (oracle inequality): Let the prerequisites of Theorem 3.3 be satisfied,

but let Mn := {m ∈ M : max(D
3/2
m ,D

′3/2
m , d

3/2
m ) ≤ Tn}. If, additionally,

inf
n∈N

inf
m∈Mn

∑dm

k=1 E[F̂n(g2
m,k)]

Dm + D′
m + dm

> 0 (13)

holds, then there exist positive constants K1,K2 < ∞ such that the PPE f̂n
pen = f̂n

mpen
n

and the oracle f̂n
⋆ = f̂n

m⋆
n

satisfy for all n ∈ N,

E‖f − f̂n
pen‖2

L2(D) ≤ K1E‖f − f̂n
⋆ ‖2

L2(D) +
K2

Tn
. (14)

3.2. Estimation of Sobolev-type smooth Lévy densities

As an application we consider the estimation of a Sobolev-type smooth Lévy density
f ∈ Wk,2(D), recall Equation (8), where the degree of smoothness k ∈ N is unknown.
From approximation theory (see, e. g., Sections 2.9–10 of DeVore and Lorentz (1993))
and the theory of finite elements (see, e. g., Chapter 4 of Brenner and Scott (1994)) we
know that piecewise polynomials have good approximation properties for Sobolev-type
smooth functions. For k ∈ N let Pk := {g ∈ R[x] : deg(g) ≤ k} denote the ring of
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polynomials with degree less than or equal to k. Then, we define

P
d
k :=







g : R
d → R; g(x1, . . . , xd) =

l
∑

j=1

cj

d
∏

i=1

gj,i(xi) : l ∈ N, cj ∈ R, gj,i ∈ Pk







. (15)

We choose M := N in this setting. For all m ∈ M let Dm be a partition of D, consisting
of d-dimensional intervals, such that

∀D ∈ Dm : diam D = m−1 diam D, (16)

where the diameter of D is defined by diam D := max{‖x1 − x2‖∞ : x1, x2 ∈ D}. Then

S
k
m := {g ∈ L2(D) : g|D ∈ P

d
k for all D ∈ Dm} (17)

is called the space of piecewise polynomials with degree less than or equal to k based
on Dm. Certainly, {Sk

m : m ∈ N} satisfies Assumptions 3.1 and 3.2, where ζ1 and ζ2 in
Equation (9) can be chosen equal to one and zero, respectively. Nevertheless, we have to
exclude some cases of degenerate partitions.

Assumption 3.5 (regularity of partitions): In addition to Equation (16), we as-
sume that there exists a positive ρ ≤ 1 such that for all m ∈ N and D ∈ Dm, there exists
a ball BD ⊆ D with diam BD ≥ ρdiam D.

As a consequence of Theorem 4.4.20 of Brenner and Scott (1994), we have the following
approximation result.

Proposition 3.6 (approximation error for Sobolev-type smooth functions):
Let D ⊆ R

d
◦ satisfy Assumption 3.1 such that f ∈ Wk,2(D) for some k ∈ N. Furthermore,

for m ∈ N, let S
k−1
m be defined by Equation (17), where the underlying partition Dm

satisfies Assumption 3.5. Then, there exists a positive constant Ck,ρ < ∞ such that

‖f − Pmf‖L2(D) ≤ Ck,ρ|f |Wk,2(D)m
−k. (18)

Remark 2 : In the setting of Proposition 3.6 we observe that Equation (13) in Corol-
lary 3.4 is satisfied for all sequences (Tn)n∈N and (∆n)n∈N such that Tn → ∞ as n → ∞
and supn∈N Tn∆n < ∞.

We prove Proposition 3.6 and Remark 2 in AppendicesA.5 and A.6, respectively.
We now combine the risk bound (11) from Theorem 3.3 with the approximation result

(18) from Proposition 3.6 to derive an explicit rate of convergence for the PPE esti-
mating a Lévy density belonging to some Sobolev space. Our result stands in line with
Corollary 5.1 of Figueroa-López and Houdré (2006). We show that it can be extended
to the estimation of Lévy densities from observations on a discrete time grid. Without
prior knowledge of the smoothness of f , in contrast to Proposition 3.5 of Figueroa-López
(2009), we prove that the PPE based on the empirical sieve selection method given in
Equation (10) achieves the optimal rate of convergence.

Theorem 3.7 (adaptive rate of convergence of PPE): Let D ⊆ R
d
◦ satisfy As-

sumption 3.1 such that f ∈ Wk,2(D) for some k ∈ N with k > d/4. Furthermore, let
{Sk−1

m : m ∈ N} be defined by Equation (17), where the underlying partitions (Dm)m∈N
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satisfy Assumption 3.5. Assume also that (Tn)n∈N and (∆n)n∈N be such that Tn → ∞ as
n → ∞ and supn∈N Tn∆n < ∞, and define Mn := {m ∈ M : Dm ≤ Tn} for n ∈ N.
Then, a penalty (penn)n∈N satisfying Equation (10) for some c1 > 1 and c2, . . . , c4 > 0
is sufficient for

sup
n∈N

T
2k

2k+d

n E‖f − f̂n
pen‖2

L2(D) < ∞. (19)

Moreover, let a1, a2 > 0 be finite constants and denote by

B(a1, a2) := {g ∈ Wk,2(D) : ‖g‖L∞(D) ≤ a1 and |g|Wk,2(D) ≤ a2}

the ball of all Sobolev-type smooth functions with supremum norm and Sobolev semi-norm
bounded by a1 and a2, respectively. Then, additionally,

sup
n∈N

T
2k

2k+d

n sup
f∈B(a1,a2)

E‖f − f̂n
pen‖2

L2(D) < ∞. (20)

Remark 3 : The rate of convergence in Equations (19) and (20) is optimal in the

minimax sense. In particular, lim infn→∞ T
2k/(2k+d)
n inf f̂n supf∈Wk,2 Ef‖f̂n − f‖2

L2(D) > 0

holds in analogy to Corollary 4.2 and Remark 4.3 of Figueroa-López (2009), where the

infimum is taken over all estimators f̂n that are σ(∆n
j X : j = 1, . . . , Tn/∆n)-measurable.

We prove Theorem 3.7 and Remark 3 in Appendices A.7 and A.8, respectively.

4. Simulations

In this section we present our simulation results. We have implemented the PPE
method based on piecewise quadratic polynomials. Recall that M = N and Sm = S

k−1
m

with k = 3 as defined in Equation (17). For a given domain of estimation D note
that Dm = 9m/vol(D), D

′
m = 45m/vol(D), and dm = 3m. Consequently, Mn =

{1, . . . , ⌊Tnvol(D)/9⌋}. In addition, the penalty constants in Equation (10) are set to
c1 = 2, c2 = 1, c3 = 0.1, and c4 = 0.5. Although in practice, the penalty constants could
be tuned to give better estimates in instances where Brownian motion is clearly present,
here, we use the same constants whether Brownian motion is present or not. In doing so,
we intend to emphasise the effect of Brownian motion on the PPE and the asymptotic
behaviour of the PPE.

As a comparison, we also implemented the estimation procedure described in secs. 6
and 7 of Comte and Genon-Catalot (2009, 2011), respectively. We denote this estimator
by SCE, which indicates the sinus cardinal (basis). Moreover, any notation referring
to the latter procedure will be appended by the label SC. Let g∗ denote the Fourier
transform of a function g and let ϕ denote the sinus cardinal, that is, ϕ(x) = sin(πx)/(πx)
with ϕ(0) = 1. For msc > 0 the corresponding SC-projection space is given by S

sc
msc

=
{g ∈ L2(R : supp(g∗) ∈ [−πmsc, πmsc])}. The set {ϕmsc,k : k ∈ Z}, where ϕmsc,k

(x) =√
mscϕ(mscx− k), forms an orthonormal basis of S

sc
msc

. Note that msc plays the role of a
bandwidth and is unrelated to the m of our method.

Depending on whether Brownian motion is absent or present, the corresponding SCEs
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of x 7→ gsc(x) = xf(x) and x 7→ psc(x) = x3f(x) are given by

ĝsc
msc

=
∑

k∈Z

âsc
msc,kϕmsc,k and p̂sc

msc
=

∑

k∈Z

b̂sc
msc,kϕmsc,k,

respectively, where

âsc
msc,k =

1

Tn

Tn/∆n
∑

j=1

∆n
j Xϕmsc,k(∆

n
j X) and b̂sc

msc,k =
1

Tn

Tn/∆n
∑

j=1

(∆n
j X)3ϕmsc,k(∆

n
j X).

The contrast values for the SCEs are equal to −∑

k∈Z
(âsc

msc,k
)2 and −∑

k∈Z
(b̂sc

msc,k
)2, and

the respective penalty functions are defined by

pensc
n (msc) =

κscmsc

T 2
n

Tn/∆n
∑

j=1

(∆n
j X)2 and pensc

n (msc) =
κscmsc

T 2
n

Tn/∆n
∑

j=1

(∆n
j X)6.

In analogy to Comte and Genon-Catalot (2009, 2011), we truncate the infinite sum in
the definition of ĝsc

msc
and p̂sc

msc
to {k : |k| ≤ 15}. In addition, msc is chosen from the

set {0.1, 0.2, . . . , 10}, and the constant in the penalties is set to κsc = 7.5 if there is no
Brownian motion and κsc = 3 otherwise. As we are interested in the Lévy density itself, we
transform the raw estimates ĝsc

msc
and p̂sc

msc
to f̂ sc

msc
(x) = ĝsc

msc
(x)/x and f̂ sc

msc
(x) = p̂sc

msc
/x3,

respectively, and restrict them to the domain of estimation D from our method.
We simulated the following univariate models:

(i) a compound Poisson process with intensity 0.5 and exponentially distributed jumps
with mean 1: f(x) = 0.5e−x1{x>0};

(ii) a superposition of (i) and Brownian motion with σ = 0.5;
(iii) a standard gamma process: f(x) = x−1e−x1{x>0};
(iv) a superposition of (iii) and Brownian motion with σ = 0.5;
(v) a superposition of a bilateral gamma process with parameters (α+, β) = (1, 1) and

(α−, β) = (0.7, 1) and Brownian motion with σ = 0.5:
f(x) = x−1e−x1{x>0} + x−1e0.7x1{x<0}.

Note that the parameters of the processes are taken as in Comte and Genon-Catalot
(2009, 2011). In all cases, we investigated the scenarios

(1) T1 = 2500, ∆1 = 0.05 (50 000 observations), and
(2) T2 = 5000, ∆2 = 0.02 (250 000 observations).

Furthermore, we choose D = [0.05, 10] in cases (i) and (iii), D = [0.25, 10] in cases (ii)
and (iv), and D = [−10,−0.35] ∪ [0.35, 10] in case (v).

As f ∈ C∞(D) in all cases (i–v), by Theorem 3.7 we expect the PPE based on piecewise
quadratic polynomials to converge with rate T−6/7. By Theorem 3.1 and Theorem 4.1 of
Comte and Genon-Catalot (2009, 2011), respectively, we expect the SCE to converge
with rates (i) T−3/4, (ii) T−7/8, (iii) T−1/2, and (iv–v) T−5/6 in the respective cases. We
give a summary of the theoretical relative reductions corresponding to doubling T from
scenario (1) to (2) in Table 1.

For the cases (ii) and (iv), moreover, we remark the probability for a purely Brownian
increment to be bigger than the lower bound of D (0.25 in these cases) equals 1.27%
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Table 1. Summary of asymptotic rates of convergence (rows 1 and 3) and relative reduction of the MSE
(rows 2 and 4) as T doubles from scenario (1) to (2) for the PPE (rows 1 and 2) and the SCE (rows 3 and
4) corresponding to the estimation of f for a CPP–Exp(1) with rate 0.5 (column i), a superposition of (i)
and Brownian motion with σ = 0.5 (column ii), a standard gamma process (column iii), a superposition of
(iii) and Brownian motion with σ = 0.5 (column iv), and a superposition of a bilateral gamma(1,1;0.7,1)
process and Brownian motion with σ = 0.5 (column v).

(i) (ii) (iii) (iv) (v)
PPE

Asymptotic rate T−6/7 T−6/7 T−6/7 T−6/7 T−6/7

Rel. reduction (T2 = 2T1) 44.8% 44.8% 44.8% 44.8% 44.8%
SCE

Asymptotic rate T−3/4 T−7/8 T−1/2 T−5/6 T−5/6

Rel. reduction (T2 = 2T1) 40.5% 45.5% 29.3% 43.9% 43.9%

in scenario (1) and 0.02% in scenario (2). Therefore, we expect significant distortions
of the PPEs caused by Brownian motion in scenario (1), whereas these effects should
remarkably diminish in scenario (2). In case (v), we have chosen D further away from the
origin such that minx∈D|x| = 0.35. The probabilities that a purely Brownian increment
falls into D, hence, are reduced to 0.174% and 7.43·10−5%, respectively, in comparison to
cases (ii) and (iv). Accordingly, we expect the impact of Brownian motion on the PPEs
to be small in either scenario. We want to emphasise that the SCEs are based on all
increments independent of their sizes. Hence, we do not expect a significant difference
for the SCEs between cases (ii) and (iv) on the one hand, and case (v) on the other hand.

Results are given in Figure 1. Columns (a/b) correspond to the PPE, and columns (c/d)
correspond to the SCE. Columns (a/c) show 50 estimated Lévy densities for scenario (1),
and columns (b/d) show 50 estimated Lévy densities for scenario (2). On the y-axis, we
restrict the plotted range to (i) [0, 0.75], (ii) [0, 1.5], (iii) [0, 20], (iv) [0, 6], and (v) [0, 5].
Near zero, some of the estimates fall out of this range and had to be truncated above.
Nonetheless, all these cases are explicitly discussed below. Moreover, for the cases (iii–
v) the Lévy densities and their estimates plotted over D are indistinguishable to the
naked eye. However, there are notable differences over the range D ∩ [−2, 2] which we
present here. In addition, for each scenario, we calculated the empirical MSE, that is,
the mean of the empirical squared error of each estimate (‖f − f̂‖2

L2(D); cf. the definition

at the beginning of Section 2.3), and the mean of the estimated m and msc selected
by penalisation. These are summarised in Table 2. In brackets, we give the standard
deviation over 50 samples.

For (i), the pure compound Poisson process, we observe that all four plots exhibit
high quality estimates with small variability. Near zero, the PPE follows the slope of
the true Lévy density closely. The estimated values f̂n

pen(0.05) range between 0.36 and
0.50, and between 0.31 and 0.39 in scenarios (1) and (2), respectively. The conclusion
that the true Lévy density is bounded (on R◦) becomes obvious. For the SCE, this is

not necessarily the case. The estimated values f̂ sc(0.05) range between 0.79 and 1.25
in scenario (1), and between 1.54 and 1.95 in scenario (2). Compare these values with
the true value f(0.05) ≈ 0.48. Note also, the raw estimates ĝsc are, in general, non-zero
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Figure 1. Estimation of f for a CPP–Exp(1) with intensity 0.5 (row i), a superposition of (i) and Brownian

motion with σ = 0.5 (BM) (row ii), a standard gamma process (row iii), a superposition of (iii) and BM (row

iv), and a superposition of a bilateral gamma(1,1;0.7,1) process and BM (row v). We present the true (dashed

black) and 50 Lévy densities estimated (dotted red) by the PPE (columns a/b) and the SCE (column c/d), where

(Tn, ∆n) = (2500, 0.05) (columns a/c) and (Tn, ∆n) = (5000, 0.02) (columns b/d).
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Table 2. Summary of the estimation of f for a CPP–Exp(1) with rate 0.5 (row i), a superposition of (i) and
Brownian motion with σ = 0.5 (row ii), a standard gamma process (row iii), a superposition of (iii) and Brownian
motion with σ = 0.5 (row iv), and a superposition of a bilateral gamma(1,1;0.7,1) process and Brownian motion
with σ = 0.5 (row v) by the PPE based on piecewise quadratic polynomials and the SCE.

X (Tn,∆n) mpen
n msc se(f̂n

pen) se(f̂ sc
msc

)

(i) (2500, 0.05) 2.92 (0.34) 0.96 (0.13) 0.876 (0.642) 8.065 (2.599) ×10−3

(5000, 0.02) 2.98 (0.14) 1.87 (0.35) 0.415 (0.209) 0.385 (0.271) ×10−3

(ii) (2500, 0.05) 43.34 (2.73) 0.47 (0.21) 0.752 (0.068) 1.527 (2.178)
(5000, 0.02) 3.50 (0.71) 0.55 (0.25) 0.007 (0.003) 5.397 (5.410) ×10−1

(iii) (2500, 0.05) 59.10 (4.40) 4.82 (0.41) 0.174 (0.052) 0.765 (0.133)
(5000, 0.02) 73.12 (8.68) 5.93 (0.31) 0.059 (0.018) 0.329 (0.053)

(iv) (2500, 0.05) 43.96 (4.54) 0.63 (0.27) 0.885 (0.091) 1.185 (0.747)
(5000, 0.02) 25.58 (5.40) 0.72 (0.24) 0.015 (0.005) 0.674 (0.488)

(v) (2500, 0.05) 26.36 (3.11) 0.29 (0.03) 0.137 (0.057) 5.679 (4.369) ×10−1

(5000, 0.02) 25.56 (3.00) 0.46 (0.23) 0.051 (0.012) 3.733 (2.003) ×10−1

Notes: The empirical mean of the values for m chosen by penalisation, and the empirical MSE for each pair

(Tn, ∆n) are presented. Standard deviations over 50 samples are given within the brackets. The squared errors

and their standard deviations are to be scaled by the factor in the last column.

at the origin. Without restriction to D, therefore, the SCEs of f have a pole at zero,
whereas f(x) → 0.5 as x → 0. In contrast, the SCEs are smoother than the PPEs further
away from zero. Moreover, the empirical MSEs of the PPEs and SCEs reduce by 52.6%,
and 95.2% on average, respectively. For comparison, we refer to the asymptotic values
summarised in Table 1.

For (ii), the superposition of (i) and Brownian motion, we observe highly unstable
estimates in columns (a), (c) and (d), and high quality estimates in column (b) only. The
distortions in the former cases are due to Brownian motion. However, in the latter case,
the PPE behaves similar to case (i), where Brownian motion was absent. In particular,
the PPE benefits considerably from the smaller observation time lag ∆2. For the SCE
this is not the case, as all observed increments are taken into account independent of
their sizes. The values f̂n

pen(0.25) estimated by the PPE range between 4.47 and 6.01 in

scenario (1), and between 0.36 and 0.48 in scenario (2). In contrast, the values f̂ sc(0.25)
estimated by the SCE range between -1.46 and +17.0, and between -0.50 and +7.95 in
scenarios (1) and (2), respectively. The true value is f(0.25) ≈ 0.39. Note that the raw
estimates p̂sc are, in general, non-zero at the origin. Unrestricted, thus, the SCEs of f
have a pole at zero, whereas f(x) → 0.5 as x → 0. Moreover, the defining property of

Lévy densities, that is,
∫

(|x|2 ∧ 1)f̂ sc(x)dx < ∞, is violated.
For (iii), the standard gamma process, we observe that all four plots exhibit high

quality estimates with small variability. The empirical MSE of the PPE is slightly smaller
than the corresponding MSE of the SCE as the PPEs follow the slope near zero slightly
closer. Further away from zero, though, the SCEs are smoother than the PPEs. We
observe the empirical MSEs of the PPEs and SCEs reduce by 66.1%, and 57.9% on
average, respectively. Again, we refer to the asymptotical values summarised in Table 1
for comparison.

For (iv), the superposition of (iii) and Brownian motion, similar to (ii) we observe
unstable estimates in columns (a), (c) and (d), and estimates of higher quality in column
(b) only. Once more, we observe distortions in the former cases due to Brownian motion.
However, in the latter case, the PPE behaves very similar to case (iii), where Brownian
motion was absent. The PPE benefits considerably from the smaller observation time
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lag ∆2, whereas the SCE does not. The values f̂n
pen(0.25) estimated by the PPE range

between 7.55 and 9.11 in scenario (1), and between 3.14 and 3.89 in scenario (2). In con-

trast, the values f̂ sc(0.25) estimated by the SCE range between 3.50 and 11.6 with mean
8.02 in scenario (1), and between 3.49 and 10.4 with mean 6.78 in scenario (2). Compare
these values to the true value f(0.25) ≈ 3.12. Note also, the raw estimates p̂sc exhibit, in
general, non-zero values at the origin for both scenarios (1) and (2). Analogously to case

(ii), therefore, the unrestricted SCEs of f violate
∫

(|x|2 ∧ 1)f̂ sc(x)dx < ∞. Furthermore,
the empirical MSEs of the PPEs and SCEs reduce by 98.3%, and 57.9% on average,
respectively. For comparison, once more, we refer to the asymptotical values in Table 1.

For (v), the superposition of a bilateral gamma process and Brownian motion, we chose
D further away from the origin in comparison to cases (ii) and (iv). The PPE exhibits a
reasonable empirical MSE in both scenarios (1) and (2) as compared to case (iii), where
Brownian motion was absent. Moreover, the PPEs are not too large to be plotted and,
hence, not truncated. Although one may expect estimates like those in case (iv), changing
D yields estimates like those in case (iii). The influence of purely Brownian increments
is lowered considerably in comparison to case (iv). As for the SCE, in scenario (1) the

estimated values f̂ sc(−0.35) and f̂ sc(0.35) range between 3.21 and 6.36, and between
−1.87 and +3.25, respectively. In scenario (2), the SCEs’ corresponding values range
between 2.04 and 5.49, and between 1.43 and 4.35, respectively. Compare these values
to the true values f(−0.35) ≈ 2.24 and f(0.35) ≈ 2.01. We note that the SCE does not
benefit significantly from the change of D.

From a statisticians point of view, if Brownian motion is present, the choice of D

appears to be crucial for a given scenario. In cases (ii) and (iv) above, if we choose a
domain of estimation further away from the origin, e. g., D = [0.35, 10], the distortions
observed in scenarios (ii-1) and (iv-1) vanish and the plots look similar to cases (i-1) and
(iii-1), respectively, where Brownian motion was absent. A practicable method, therefore,
is to estimate σ first, e. g., as presented in Mancini (2005). Then, assuming σ̂ = σ, we
determine D such that the probability for purely Brownian increments to fall into D is
very small.

Having said that, there exists another provision despite changing D. Again for cases
(ii) and (iv), we observe that the penalisation criterion chooses on average m = 43.34
and m = 43.96, respectively, in scenario (1), and m = 3.50 and m = 25.58 on average,
respectively, in scenario (2). Although, the optimal m, that is, m⋆

n, increases with rate
T 1/7 in these cases (cf. Proposition 3.5 of Figueroa-López (2009)), the estimated m chosen
by penalisation, in fact, decreases from scenario (1) to (2). Obviously, the relatively
large amount of purely Brownian increments just above the threshold of 0.25 causes
the penalised contrast to favour large m in scenario (1). Since we partition the domain
equidistantly, only a few increments remain for each partition cell where a jump of
corresponding size occurred. This increases the variance of our estimator significantly. If
we increase the constants c1, . . . , c4 in our penalty, the influence of Brownian motion is
decreased such that smaller m, that is, coarser partitions, resulting in a smaller empirical
MSE are chosen. In summary, not only the right choice of the domain of estimation D

but the right balance between D and the penalty constants c1, . . . , c4 is crucial.
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10, 449–474, 10.1007/s00780-006-0021-5.

Billingsley, P. (1995), Probability and Measure, 3rd edition ed., New York: Wiley.
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Appendix A. Proofs

The proofs are based on the scheme of proofs of Figueroa-López and Houdré (2006) and Reynaud-Bouret (2003)

given in the framework of estimating the intensity of infinite and finite Poisson random measures from explicit

observation of the associated pure jump process, respectively. In turn, the latter credits Talagrand (1996), Ledoux

(1997) and Massart (2000) for crucial ideas and results incorporated.

A.1. Proof of Lemma2.1

Let g ∈ Sm and let {gm,k : k = 1, . . . , dm} be an arbitrary orthonormal basis of Sm. From classical al-

gebra we know there exists a unique representation g =
Pdm

k=1 αkgm,k with α ∈ Rdm . We deduce that

γn(g) = −2
Pdm

k=1 αkF̂ n(gm,k) +
Pdm

k=1 α2
k . Equivalently, we observe that

γn(g) =

dm
X

k=1

(αk − F̂ n(gm,k))2 −
dm
X

k=1

(F̂ n(gm,k))2.

Evidently, γn(g) is minimal if, and only if, αk = F̂ n(gm,k) for all k = 1, . . . , dm. Thus, f̂n
m and arg ming∈Sm

γn(g)

coincide and Equation (6) holds.

A.2. Proof of Remark 1

By Assumption 3.1, there exists a finite partition Dm of D so that for every D ∈ Dm, g|D ∈ W1,∞(D). Let

{gm,k : k = 1, . . . , dm} be an arbitrary orthonormal basis of Sm. Then, Dm = ‖Pdm
k=1 g2

m,k‖L∞(D) by duality.

As W1,∞(D) ⊂ L∞(D), ‖g2
m,k|D

‖L∞(D) < ∞ for each D, and
Pdm

k=1

P

D∈Dm
‖g2

m,k|D
‖L∞(D) is a finite upper
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bound for Dm.

Let x ∈ D and i ∈ {1, . . . , d}. Then, ∂igm,k|D ∈ L∞(D) ⊂ L1(D) by assumption. Hence, (gm,k ◦ αD,x,i)
′ ∈

L1([ξ
i
(x), ξi(x)]) and x 7→ ‖(gm,k ◦ αD,x,i)

′‖L1([ξ
i
(x),ξi(x)]) ∈ L∞(D) by Fubini’s theorem. Thus, Km,k,D,i :=

supx∈D‖(gm,k ◦ αD,x,i)
′‖L1([ξ

i
(x),ξi(x)]) < ∞ for each k = 1, . . . , dm, D ∈ Dm and i = 1, . . . , d. Therefore, for

arbitrary g ∈ Sm,

‖g′‖α,L1(Dm) ≤ ‖g‖L2(D)

dm
X

k=1

X

D∈Dm

d
X

i=1

Km,k,D,i < ∞.

Consequently, D′
m < ∞.

A.3. Proof of Theorem 3.3

We recall that there exists an ε > 0 with D ∩ Bε(0) = ∅ and let η ∈ ]0, ε/2 ∧ 1[. We decompose the Lévy process

X as follows:

Vt := bηt + σWt with bη = b −
Z

{x∈Rd:η<‖x‖≤1}
xF (dx),

Yt :=

Nt
X

k=1

Zk :=
X

s≤t

∆Xt1]η,∞[(‖∆Xt‖),

Rt := Xt − Vt − Yt,

(t ≥ 0)

where V , Y and R are independent stochastic processes, W denotes a Wiener process, N denotes a Poisson process

with rate λη := F (Rd
◦ \ Bη(0)) < ∞, and {Zk}k∈N is an i. i. d. family of Rd-valued random variables (independent

of N) with law PZ1
given by PZ1

(dx) = λ−1
η f(x)1

Rd
◦
\Bη(0)(x)dx. We always assume λη > 0, since otherwise

f|D ≡ 0 and the argument of proof would simplify considerably.

Recalling Equation (6) and Equation (7), we observe that γn(f̂n
pen) + penn(mpen

n ) ≤ γn(Pmf) + penn(m)

is satisfied for all m ∈ Mn. For all g ∈ L2(D) we denote υn(g) := F̂ n(g) − F (g) and conclude that γn(g) =

‖f − g‖2
L2(D)

− ‖f‖2
L2(D)

− 2υn(g) holds. Therefore, we deduce in analogy to Lemma 7.1 of Figueroa-López and

Houdré (2006) that

‖f − f̂n
pen‖2

L2(D)
≤ ‖f − Pmf‖2

L2(D)
+ 2υn(Ppenf −Pmf)

+ 2‖Ppenf − f̂n
pen‖2

L2(D)
+ penn(m) − penn(mpen

n )
(A1)

holds for every m ∈ Mn.

We derive further upper bounds for the right-hand side of Equation (A1) that hold on sets of large probability.

At first, we focus on υn(g). Subsequently, we take g = Pm′f −Pmf for m′ ∈ Mn arbitrary. For ease of notation,

we introduce the (non-observable) auxiliary object F̃ n(g) := Tn
−1
Pkn

j=1 g(∆n
j X)1{∆n

j
N=1}, where we abbreviate

kn := Tn/∆n. We note that this quantity is well-defined as we extend g ∈ L2(D) to Rd by setting g(x) = 0 for all

x 6∈ D. Clearly, we have

υn(g) ≤ |F̂ n(g) − F̃ n(g)| + |F̃ n(g) − E[F̃ n(g)]| + |E[F̃ n(g)] − F (g)|. (A2)

We separately analyse the three summands on the right-hand side of Equation (A2).

i) By definition, the j-th summands of F̂ n(g) and F̃ n(g) differ on the set Ωj := {∆n
j X ∈ D,∆n

j N 6= 1} only.

For each j = 1, . . . , kn, moreover, the difference is bounded by ‖g‖L∞(D). Consequently, we observe that

|F̂ n(g) − F̃ n(g)| ≤ ‖g‖L∞(D)Ψ
nT−1

n , (A3)

where Ψn :=
Pkn

j=1 1Ωj
.

ii) We apply Bernstein’s inequality to F̃ n(g). Particularly, we deduce for all x > 0 that

P (|F̃ n(g) − E[F̃ n(g)]| ≥ x) ≤ 2 exp

 

− x2Tn

2E[F̃ n(g2)] + 2‖g‖L∞(D)x/3

!

.

Subsequently, we invert the exponent on the right-hand side as a function of x and use the subadditivity of the

root function. For arbitrary a′
m′

> 0 we arrive at

P

0

@|F̃ n(g) − E[F̃ n(g)]| ≤

s

2a′
m′

E[F̃ n(g2)]

Tn
+

a′
m′

‖g‖L∞(D)

2Tn

1

A ≥ 1 − 2e−a′

m′ . (A4)
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We also observe that

E[F̃ n(g2)] = ∆−1
n E[g2(∆n

1 X)1{∆n
1

N=1}] = e−λη∆nληE[g2(∆n
1 V + ∆n

1 R + Z1)],

since N is a Poisson process independent of V, R and Z. Let h denote the density of the convolution of P (V∆n +

R∆n ∈ ·) with F ( · |Rd
◦ \ Bη(0)). Then, we observe ‖h‖L∞(Rd

◦
) ≤ ‖f‖L∞(Rd

◦
\Bη(0)) < ∞, where the finiteness

follows as f is assumed to be bounded outside every neighbourhood of the origin. Thus,

E[F̃ n(g2)] = e−λη∆n

Z

g2(x)h(x)dx ≤ ‖f‖L∞(Rd
◦
\Bη(0))‖g‖2

L2(D)
. (A5)

We repeatedly apply the following equivalent inequalities that follow directly from the binomial identity. In par-

ticular, for all x, y ∈ R and arbitrary a > 0 we have

2xy ≤ax2 + a−1y2, (A6)

(x + y)2 ≤(1 + a)x2 + (1 + a−1)y2. (A7)

These inequalities can also be found in Figueroa-López and Houdré (2006, (7.10)). Invoking Equation (A6) for

arbitrary a1 > 0 we get
s

2a′
m′

‖f‖L∞(Rd
◦
\Bη(0))‖g‖2

L2(D)

Tn
≤ a1‖g‖2

L2(D)
+

a′
m′

‖f‖L∞(Rd
◦
\Bη(0))

2a1Tn
.

In summary, we derive that

|F̃ n(g) − E[F̃ n(g)]| ≤ a1‖g‖2
L2(D)

+
a′

m′
‖f‖L∞(Rd

◦
\Bη(0))

2a1Tn
+

a′
m′

‖g‖L∞(D)

2Tn
(A8)

holds with probability greater than 1 − 2e−a′

m′ .

iii) We note again that E[F̃ n(g)] = ∆−1
n E[g(∆n

1 X)1{∆n
1

N=1}]. By virtue of Proposition 2.1 of Figueroa-López

(2011) and a multivariate generalisation of Lemma3.2 of Figueroa-López (2009) there exists a constant K̃ ′
η < ∞

such that

sup
n∈N

∆−1
n |E[F̃ n(g)] − F (g)| ≤

“

‖g‖L∞(D) + d‖g′‖α,L1(Dm)

”

K̃ ′
η . (A9)

Since supn∈N Tn∆n < ∞, there exists K ′
η := K̃ ′

η supn∈N Tn∆n < ∞ such that the same upper bound with K̃ ′
η

replaced by K ′
η holds for supn∈N Tn|E[F̃ n(g)] − F (g)|.

The bounds on the right-hand side of Equation (A3), Equation (A8) and Equation (A9) are given in terms of

‖g‖L∞(D) and ‖g′‖α,L1(Dm), where our interest is focused on g = Pm′f − Pmf with m, m′ ∈ Mn arbitrary. Cer-

tainly, ‖Pm′f−Pmf‖L∞(D) ≤ ‖Pm′f‖L∞(D)+‖Pmf‖L∞(D). Furthermore, by definition, we have ‖Pm′f‖L∞(D) ≤
p

Dm′‖Pm′f‖L2(D) for all m′ ∈ Mn. Due to Pythagoras’ theorem, we have ‖Pm′f‖L2(D) ≤ ‖f‖L2(D) as well.

Thus, applying Equation (A6) and Equation (A7) in analogy to Figueroa-López and Houdré (2006, p. 14), we

deduce for arbitrary constants a2, a3 > 0 that

(a′′
m′ + Ψn)‖Pm′ f −Pmf‖L∞(D) ≤ a2

2
Dm′ +

a3

2
Dm +

(a2 + a3)((a′′
m′

)2 + (Ψn)2)

a2a3
‖f‖2

L2(D)
,

where a′′
m′ = a′

m′/2 + K ′
η . For arbitrary a4, a5 > 0 replacing a2 and a3, respectively, we get an analo-

gous inequality for dK′
η‖(Pm′f − Pmf)′‖α,L1(Dm), where Dm′ and Dm are replaced by D

′
m′

and D
′
m, re-

spectively. We adapt the final step of Figueroa-López and Houdré (2006, p. 14). In particular, we fix a′
m′

=

ã6

p

dm′ min(‖f‖−1
L2(D)

, ‖f‖−1
L∞(Rd

◦
\Bη(0))

) + ξ for an arbitrary ã6 > 0. Therefore, we deduce that for arbitrary

a1, . . . , a6 > 0 there exist a constant K ′′
η,a < ∞, a finite number k1 > 0 (depending on f , ζ1 and ζ2 from

Equation (9)), and a quadratic polynomial h1 : ξ 7→ h1(ξ) increasing on [0,∞[ with h1(0) = 0 such that

‖f − f̂n
pen‖2

L2(D)
≤ ‖f −Pmf‖2

L2(D)
+ 2‖Ppenf − f̂n

pen‖2
L2(D)

+ 2a1‖Ppenf − Pmf‖2
L2(D)

+
1

2Tn

“

a2Dm
pen
n

+ a3Dm + a4D
′
m

pen
n

+ a5D
′
m + a6dm

pen
n

”

+
(1 + (Ψn)2)K ′′

η,a‖f‖2
L2(D)

Tn
+

h1(ξ)

Tn
+ penn(m) − penn(mpen

n ).

holds for all m ∈ Mn with probability greater than 1 − k1e−ξ. Moreover, if we choose a1 ∈]0, 1/4[, then for an
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arbitrary a7 ≥ 1 − 4a1 we observe that

‖f −Pmf‖2
L2(D)

+ 2‖Ppenf − f̂n
pen‖2

L2(D)
+ 2a1‖Ppenf − Pmf‖2

L2(D)
− ‖f − f̂n

pen‖2
L2(D)

≤ K(4)‖f −Pmf‖2
L2(D)

+ (1 + a7)‖Ppenf − f̂n
pen‖2

L2(D)
− K ′′′‖f − f̂n

pen‖2
L2(D)

holds in analogy to Figueroa-López and Houdré (2006, (7.17)) , where K ′′′ = 1 − 4a1 and K(4) = 1 + 4a1.

Next, we focus on ‖Ppenf − f̂n
pen‖2

L2(D)
. For arbitrary m′ ∈ Mn we note that we have ‖Pm′f − f̂n

m′
‖2

L2(D)
=

Pdm′

k=1(υ
n(gm′,k))2. We recall Equation (A3), Equation (A8) and Equation (A9) and apply Equation (A7). Hence,

we arrive at

‖Pm′f − f̂n
m′‖2

L2(D)
≤ 2

dm′
X

k=1

˛

˛

˛F̃ n(gm′,k) − E[F̃ n(gm′,k)]
˛

˛

˛

2

+ 2

dm′
X

k=1

1

T 2
n

((K ′
η + Ψn)‖gm′,k‖L∞(D) + K ′

ηd‖g′m′,k‖α,L1(Dm))
2.

(A10)

For ease of notation, we denote the sums on the right-hand side of equation Equation (A10) by S
Equation (A10)
1

and S
Equation (A10)
2 , respectively. We separately analyse S

Equation (A10)
1 and S

Equation (A10)
2 .

a) By duality, we see that S
Equation (A10)
1 = (sup{|F̃ n(g) − E[F̃ n(g)]| : g ∈ Sm′ , ‖g‖L2(D) = 1})2. Therefore,

the concentration inequality established by Massart (2000, Theorem 1.3) can be applied. From Equation (A5)

we conclude by virtue of the Cauchy–Schwarz inequality that sup{Var[F̃ n(g)] : g ∈ Sm′ , ‖g‖L2(D) = 1} ≤
p

Dm′‖h‖L2(D)/Tn. Then, for arbitrary a′
m′

> 0 and a8 > 0 we derive that

q

TnS
Equation (A10)
1 ≤ (1 + a8)

v

u

u

u

t

dm′
X

k=1

E[F̃ n(g2
m′,k

)]

+
q

8
p

Dm′‖h‖L2(D)a
′
m′

+

„

3.5 +
32

a8

«

s

Dm′

Tn
a′

m′

holds for all m′ ∈ Mn with probability greater than 1 −Pm′∈Mn
e−a′

m′ . Moreover, Bernstein’s inequality Equa-

tion (A4) implies for all a9 > 0 and arbitrary a′′
m′ > 0 that

1

1 + a9

dm′
X

k=1

E[F̃ n(g2
m′,k)] −

„

1 +
1

2a9

«

Dm′

Tn
a′′

m′ ≤
dm′
X

k=1

F̃ n(g2
m′,k) ≤

dm′
X

k=1

F̂ n(g2
m′,k) (A11)

holds for all m′ ∈ Mn with probability greater than 1−Pm′∈Mn
e−a′′

m′ . The second inequality in Equation (A11)

holds, since F̃ n(g2) ≤ F̂ n(g2) for all g ∈ L2(D).

b) We invoke Equation (A6) and Equation (A7) repeatedly for arbitrary a10, a11, a12 > 0 and arrive at

S
Equation (A10)
2 ≤ 1

2T 3
n

(a10D
4
m′ + a11D

′4
m′ + a12d4

m′ )

+
2(Ψn)4

Tn

„

3

a10
+

2

a11

«

+
8(K ′

η)4(1 + d4)

Tn

„

6

a10
+

2

a11
+

1

a12

«

.

Certainly, x + y ≤ 2(x∨ y) holds for arbitrary x, y > 0. Adapting the final steps of Figueroa-López and Houdré

(2006, p. 16 and (7.25)), we deduce that for arbitrary a1, . . . , a9 > 0 there exist a constant K
(5)
η,a < ∞, a finite

number k2 > 0 (depending on f , ζ1 and ζ2 from Equation (9)), and a quadratic polynomial h2 : ξ 7→ h2(ξ)
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increasing on [0,∞[ with h2(0) = 0 such that

K ′′′‖f − f̂n
pen‖2

L2(D)
≤ K(4)‖f −Pmf‖2

L2(D)
+

(1 + a1)

Tn

d
m

pen
n
X

k=1

F̂ n(g2
m

pen
n ,k

)

+

 

a2Dm
pen
n

Tn
∨

a10D4
m

pen
n

T 3
n

!

+

0

@

a4D′
m

pen
n

Tn
∨

a11D
′4
m

pen
n

T 3
n

1

A+

 

a6dm
pen
n

Tn
∨

a12d4
m

pen
n

T 3
n

!

+
1

2Tn

`

a3Dm + a5D
′
m

´

+
1

Tn

`

1 + (Ψn)2 + (Ψn)4
´

K
(5)
η,a‖f‖2

L2(D)
(A12)

+
h2(ξ)

Tn
+ penn(m) − penn(mpen

n )

holds with probability greater than 1 − k2e−ξ.

In Equation (A12) we choose the (so-far) arbitrary constants a1, a2, a4, a6, a10, a11, and a12 appropriately

depending on c1, . . . , c4 from Equation (10) to cancel “− penn(mpen
n )”. Then, by Lemma7.4 of Figueroa-López

and Houdré (2006), and integration by parts, we deduce that there exists a δ > 0 such that

K ′′′E‖f − f̂n
pen‖2

L2(D)
≤ K(4)E‖f − Pmf‖2

L2(D)
+ (1 + δ)E[penn(m)] +

K
(6)
n

Tn
,

where K
(6)
n := k2

R∞
0 e−ξh2(ξ)dξ + (1 + E[(Ψn)2] + E[(Ψn)4])K

(5)
η,a‖f‖2

L2(D)
. We recall that Ψn =

PTn/∆n

j=1 1{‖∆n
j

V +∆n
j

R‖≥ε,∆n
j

N=0}∪{∆n
j

N≥2}. By Corollary 3.2 of Rüschendorf and Woerner (2002), and by

the choice of η < ε/2, we conclude that there is a finite constant Kη,ε such that P (‖∆n
1 V + ∆n

1 R‖ ≥ ε) ≤
Kη,ε∆2

n. Additionally, we recall that ∆n
j N has Poisson distribution with mean λη∆n. Hence, P (∆n

j N ≥ 2) =

e−λη∆n
P∞

k=2(λη∆n)k/k!. Since increments of Lévy processes are independent and stationary, we deduce that

Ψn has binomial distribution Bkn,ρn
with parameters kn = Tn/∆n and ρn ≤ Kη,ε∆2

n +
P∞

k=2(λη∆n)k/k!.

Moreover, there exist polynomials h3 and h4 of order 2 and 4, respectively, such that E[(Ψn)2] ≤ h3(knρn) and

E[(Ψn)4] ≤ h4(knρn) for all n ∈ N. Since supn∈N Tn∆n < ∞, by assumption, supn∈N knρn < ∞. Therefore,

supn∈N K
(6)
n < ∞. As m ∈ Mn was arbitrary, Equation (11) follows.

A.4. Proof of Corollary 3.4

To show Equation (14) we need to prove that there exists a finite constant K > 0 such that

KE‖Pmf − f̂n
m‖2

L2(D)
≥ E[penn(m)]

for all n ∈ N and m ∈ Mn = {m ∈ M : max(D
3/2
m , D

′3/2
m , d

3/2
m ) ≤ Tn}.

For arbitrary m ∈ Mn we observe E‖Pmf − f̂n
m‖2

L2(D)
= E[

Pdm
k=1(F (gm,k) − F̂ n(gm,k))2] for every or-

thonormal basis {gm,k : k = 1, . . . , dm} of Sm. By virtue of the binomial identity and the representation

Pmf =
Pdm

k=1 F (gm,k)gm,k , we arrive at

E‖Pmf − f̂n
m‖2

L2(D)
= F (Pmf) − 2E[F̂ n(Pmf)] + E

2

4

dm
X

k=1

(F̂ n(gm,k))2

3

5 .

Since Lévy increments are independent and stationary, we obtain that

E

2

4

dm
X

k=1

(F̂ n(gm,k))2

3

5 =

dm
X

k=1

E[F̂ n(g2
m,k)]

Tn
+

„

1 − ∆n

Tn

« dm
X

k=1

(E[F̂ n(gm,k)])2.

From Equation (A9) we infer that there exists a linear functional κ : L2(D) → R such that E[F̂ n(g)] = F (g) +

κ(g)∆n for all g ∈ L2(D). Moreover, the operator norm of the restriction κm := κ|Sm
of κ to Sm satisfies ‖κm‖ ≤

a
√

Dm + a′
p

D′
m for some constants a, a′ < ∞ independent of m. We recall that F (Pmf) =

Pdm
k=1(F (gm,k))2.
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Therefore, we conclude

E‖Pmf − f̂n
m‖2

L2(D)
= −F (Pmf) − 2κ(Pmf)∆n +

dm
X

k=1

E[F̂ n(g2
m,k)]

Tn

+ (1 − ∆nT−1
n )

dm
X

k=1

(F (gm,k) + κ(gm,k)∆n)2

=

dm
X

k=1

E[F̂ n(g2
m,k)]

Tn
+

dm
X

k=1

κ2(gm,k)∆2
n

− ∆n

Tn

0

@F (Pmf) + 2κ(Pmf)∆n +

dm
X

k=1

κ2(gm,k)∆2
n

1

A .

In contrast, we recall that

E[penn(m)] = c1T−1
n

dm
X

k=1

E[F̂ n(g2
m,k)] + T−1

n (c2Dm + c3D
′
m + c4dm).

Subsequently, since d
3/2
m ≤ Tn and K ′ := supn∈N Tn∆n < ∞ implies dm∆n ≤ K ′d

−1/2
m , we additionally

observe that

dm
X

k=1

κ2(gm,k)∆2
n ≤ dm∆2

n(a
p

Dm + a′
p

D′
m)2 ≤ K ′d

−1/2
m ∆n(a

p

Dm + a′
p

D′
m)2.

Hence, Tn(
Pdm

k=1 κ2(gm,k)∆2
n)/(c2Dm + c3D

′
m + c4dm) = O(d

−1/2
m ). Additionally, by Phytagoras’ theo-

rem and Cauchy-Schwarz inequality, F (Pmf) ≤ F (D)‖f‖L2(D) independent of m. Moreover, κ(Pmf) =
Pdm

k=1 F (gm,k)κ(gm,k). Thus, ∆nκ(Pmf)/(c2Dm + c3D
′
m + c4dm) = O(∆n(

√
Dm +

p

D′
m)) = O(∆

2/3
n ).

Consequently, if K > c1, then KE‖Pmf − f̂n
m‖2

L2(D)
≥ E[penn(m)] is equivalent to

Pdm
k=1 E[F̂ n(g2

m,k)]

(c2Dm + c3D′
m + c4dm)

≥ 1 + O(d
−1/2
m ) + O(∆n)

K − c1
. (A13)

Thus, Equation (13) is sufficient to ensure the existence of a finite constant K that satisfies Equation (A13) for

all n ∈ N and m ∈ Mn.

A.5. Proof of Proposition 3.6

Let E := [0, 1]d be the d-dimensional unit orthotope and for k ∈ N let Pd
k−1 be given by Equation (15). We

note that dim(Pd
k−1) =

`d+k−1
k−1

´

. In Sections 3.5 and 3.6 of Brenner and Scott (1994) a basis N of the dual

(Pd
k−1)∗ of Pd

k−1 is constructed inductively such that N ⊆ (C 0(E))∗ . Then, (E, Pd
k−1, N ) is a finite element

(cf. Definition 3.1.1 of Brenner and Scott (1994)) satisfying the conditions of Theorem 4.4.4 of Brenner and Scott

(1994).

We note that every d-dimensional interval is (geometrically speaking) a polyhedron. For every m ∈ M and

D ∈ Dm, moreover, there exists a finite element (D, Pd
k−1(D), N (D)) which is affine-equivalent to (E, Pd

k−1, N )

(cf. Definition 3.4.1 of Brenner and Scott (1994)). Hence, by virtue of Theorem 4.4.20 of Brenner and Scott (1994),

there exists a g ∈ S
k−1
m such that for every 0 ≤ k′ ≤ k there is a positive constant ck,ρ < ∞ with

s

X

D∈Dm

‖f − g‖2
Wk′,2(D)

≤ ck,ρ|f |Wk,2(D)m
k′−k,

where we implicitly use Equation (16). The left-hand side reduces to ‖f − g‖L2(D) if k′ = 0. Consequently, the

validity of Equation (18) follows directly from the definition of the orthogonal projection, that is, the identity

Pmf = arg ming∈Sm
‖f − g‖L2(D).
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A.6. Proof of Remark 2

For all m ∈ M and D ∈ Dm Assumption 3.5 in combination with Equation (16) implies that the volume of D

is bounded below and above by ρd−1m−d and m−d times the volume vol(D) of D, respectively. Therefore, the

cardinality of Dm is bounded below and above by md and mdρ1−d, respectively. Let {g1,l : l = 1, . . . , d1} be an

orthonormal basis of Pd
k−1(D). Then, for every D ∈ Dm there exists a y ∈ Rd such that {gm,l : l = 1, . . . , d1} given

by gm,l(x) := vol(D)−1/2 g1,l(m(x−y)) is an orthonormal basis of Pd
k−1(D). Thus, we infer m−ddm ∈ [d1, d1ρ1−d]

for all m ∈ M from the cardinality of Dm. Similarly, we infer m−d
Dm ∈ [D1, D1ρ1−d] for all m ∈ M from the

definition of gm,l. Moreover, integration by substitution yields

‖(gm,k ◦ αD,x,i)
′‖2

L1([ξ
i
(x),ξi(x)])

=
1

vol(D)
‖(g1,k ◦ αD,m(x−y),i)

′‖2
L1([ξ

i
(m(x−y)),ξi(m(x−y))])

.

Hence, m−dD′
m ∈ [D′

1, D′
1ρ1−d] for all m ∈ M .

We recall that E[F̂ n(g)] = F (g)+κ(g)∆n for all g ∈ L2(D) holds for the linear functional κ defined in the proof

of Corollary 3.4. Since g2
m,k(X∆n ) is positive with non-zero probability, E[F̂ n(g2

m,k)] > 0 for all k and m. W. l. o. g.

we choose g1,1 = (
R

D
dx)−1/21D(·). Therefore, we conclude that

Pdm
k=1 g2

m,k ≥ (md/(vol(D))1D(·). Consequently,

we arrive at
dm
X

k=1

E[F̂ n(g2
m,k)] >

#Dm
X

k=1

E[F̂ n(g2
m,k)] =

mdF (D)

vol(D)
+

#Dm
X

k=1

κ(g2
m,k)∆n > 0.

By construction, ‖P#Dm
k=1 g2

m,k‖L2(D) ≤ ρ1−dmd/
p

vol(D). Analogously to the proof of Corollary 3.4, hence

|m−d
P#Dm

k=1 κ(g2
m,k)∆n| = O(∆n(

√
Dm +

p

D′
m)) = O(∆

2/3
n ). Consequently, for every δ ∈]0, F (D)/vol(D)[

the set

Aδ :=

8

<

:

(n, m) ∈ N
2 : m ∈ Mn, 0 <

F (D)

vol(D)
+ m−d

#Dm
X

k=1

κ(g2
m,k)∆n < δ

9

=

;

is a finite subset of N2. Certainly,

inf
n∈N

inf
m∈Mn,(n,m) 6∈Aδ

Pdm
k=1 E[F̂ n(g2

m,k)]

Dm + D′
m + dm

>
δρd−1

D1 + D′
1 + d1

.

In addition, the infimum over a finite set of strictly positive numbers is equal to the minimum and is strictly

positive. Thus, Equation (13) holds as D1, D′
1, d1 and ρ are finite constants independent of m and n.

A.7. Proof of Theorem 3.7

We recall supm∈N m−d(dm +Dm +D
′
m) < ∞ from the previous proof. Thus, Equation (10) implies E[penn(m)] ≤

K‖f‖L∞(Rd
◦
\Bη(0))(m

d/Tn + m4d/T 3
n) for a finite constant K < ∞ (independent of f), where η > 0 comes from

the proof of Theorem 3.3. In combination with Equation (11) and Equation (18) we observe that there exist finite

constants K ′, K ′′ < ∞ (monotone in (‖f‖L∞(Rd
◦
\Bη(0)) ∨ |f |Wk,2(D)) and ‖f‖L2(D), respectively) such that

E‖f − f̂n
pen‖2

L2(D)
≤ K ′ inf

m∈Mn

„

m−2k +
md

Tn
+

m4d

T 3
n

«

+
K ′′

Tn
.

Since k > d/4 by assumption, the order of the right-hand side is clearly minimised if lim supn→∞ mnT
−1/(2k+d)
n <

∞ and lim infn→∞ mnT
−1/(2k+d)
n > 0 as n → ∞. Hence we proved Equation (19). Finally, the monotonicity of

K ′ in ‖f‖L∞(Rd
◦
\Bη(0)) ∨ |f |Wk,2(D) is sufficient for Equation (20) as B(a1, a2) is compact in Wk,2(D).

A.8. Proof of Remark 3

We briefly outline how to adapt the proof of Theorem 4.1 of Figueroa-López (2009) from the univariate case. The

underlying results, viz. Theorem 1.3 and equation (2.11) of Kutoyants (1998), are independent of dimension. We

proceed to use the notation given on pp. 138–142 of Figueroa-López (2009).

Let α = k and let Θα(L, D) denote the class of Lévy densities that belong to the Hölder space of (k − 1)-times

differentiable functions such that g(k−1) is Lipschitz continuous with Lipschitz constant L < ∞. In the definition

of sθ on p. 138, we replace the exponents of T , that is “−α/(2α + 1)” and “1/(2α + 1)”, by “−α/γ” and “1/γ”,

respectively. Then, sθ ∈ Θα(L, D) remains valid for all |θ| < κ−α. We follow the proof on pp. 138–139 until the last

two equations on p. 139 of Figueroa-López (2009), where the central limit theorem for ∆T is shown. Integration by
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substitution in Rd with u := κ−1T 1/γ(x−x0) yields E|∆T |2+δ = O(T 1−α(2+δ)/γ−d/γ ) for the Liapunov condition

and Var[∆T ] = O(T 1−2α/γ−d/γ ) as T → ∞. Therefore, γ = 2α+d is necessary and sufficient to proceed the proof.

All further conclusions drawn on pp.140–142 in the proofs of Theorem 4.1 and Corollary 4.2 of Figueroa-López

(2009) remain valid in the multivariate setting if every exponent “. . . /(2α+1)” of T is replaced by “. . . /(2α+d)”.

Finally, we note that, by Rademacher’s theorem, every Lipschitz continuous function has a weak derivative

bounded by L. Therefore, as D is compact, g ∈ Θk(L, D) implies that g(k) ∈ Lp(D) for all p ≥ 1. Thus, Θα(L, D) ⊆
Wk,2(D). Hence, in analogy to Remark 4.3 of Figueroa-López (2009), the rate T

−2k/(2k+d)
n is proved to be minimax

over the class of Lévy densities that belong to Wk,2(D).


