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Summary. In this paper we analyze the extremal behaviour of wind speed with a measure-
ment frequency of 8 Hz located on three meteorological masts in Denmark. In the first part
of this article we set up a conditional model for the time series consisting of threshold ex-
ceedances from maxima per second for two consecutive days. The model directly captures
the non-stationary nature of wind speed during the day. We assume that the conditional distri-
bution of an exceedance given previous exceedances follows a generalized Pareto distribution.
In addition, we analyze the dependence structure in extreme wind speeds between two masts
using bivariate extreme value models. The initial motivation for this research was in the context
of renewable energy. Specifically, the extremal dynamics of wind speed at small time scales
plays a critical role for designing and locating turbines on wind farms.
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1. Introduction

In the context of renewable energy, wind power has become the most dynamically growing
energy source and, especially in the last few years, the installation of new wind turbines
has expanded rapidly. According to the World Wind Energy Report World Wind Energy
Association (2009), wind energy increased at a rate of 29% from 2007 to 2008. For the
production of electrical power, a group of wind turbines in the same location, called wind
farm, is used. To maximize the power output, wind farms are built offshore or in open fields
far away from buildings and trees. Each wind turbine is usually equipped with instruments
measuring wind speed, but these observations are disturbed from the turbulences produced
from the big rotors. Before building a wind farm, one or more meteorological masts, known
as met masts, are erected and characteristics of wind are measured at a targeted location.
Since much, if not all of this data is proprietary, we were restricted to only publicly available
data, which were in turn viewed as a proxy for the analysis one might carry out at a potential
site.
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One key objective in applying extreme value theory to wind speed data is often the
determination of return levels corresponding to a specified return period. For a given return
period the return level is the wind speed at which the probability of exceedance is 1/(return
period). Often, engineers must design structures that can withstand extreme meteorological
conditions for 50 or 100 years. In this case, it is vital for designers to have a good estimate
of 50 or 100 year return levels for wind speed. The above described considerations are
the motivation of many studies, including for instance Holmes and Moriarty (1999) and
Walshaw and Anderson (2000). These previous studies mainly focus on large-scale weather
events corresponding to macrometeorological fluctuations in wind with a time range of days
down to hours. Our primarily interest lies in the analysis of velocity measurements on a finer
time scale in the so-called micrometeorological range. Our data set consists of observations
measured in the atmospheric boundary layer on two different days with a frequency of 1 Hz.
The two days show different wind situations, including a windy day with wind speeds up
to 25 meters per second, and a day, where the wind speed is decreasing during the day. We
are dealing with time series from three different cup anemometers situated on measurement
masts at a height of 30 meters above ground located in Denmark.

The main objective of this study is to model tail-behaviour of wind speed over a
time-dependent threshold by using extreme value theory and in particular the Peaks-Over-
Threshold approach. This method has received much attention and there exist standard
textbooks, including Coles (2001), Embrechts et al. (1997) or Beirlant et al. (2004), where
methods for inference are described. The non-stationary nature of the time series leads
us to a conditional model, where we assume that, given previous wind speed values, the
exceedances over a time-dependent threshold possess a Markov-like structure, where the con-
ditional distribution follows the generalized Pareto distribution (GPD) with time-dependent
parameters. From the fitted distributions we estimate one-step ahead quantiles, which pre-
dict the risk of an extreme wind speed value within the next second.

It is stated in Chapter 2 of the wind energy handbook by Burton et al. (2001) that
“on still shorter time-scales of minutes down to seconds or less, wind speed variations can
have a very significant effect on the design and performance of the individual wind turbines,
as well as on the quality of power delivered to the network and its effect on consumers.”
Our models adjust for these intermittency effects present in the 1-second observations by
allowing the scale parameter in the model to be a function of previous large values. We
show that our technique works well for the Danish Lammefjord data set, especially on days
in which there are extended periods with highly volatile wind speed.

The starting point in most extreme value models is to assume a GPD for the distribution
of exceedances. The shape parameter ξ in the GPD family is perhaps the most interesting
since it determines the tail behaviour of the exceedance distribution and is directly linked
to the choice of extreme value distribution for the maximum. In many articles, including for
example Coles and Walshaw (1994), who modeled hourly maximum wind gust speeds to-
gether with the wind gust direction, the shape parameter in the extreme value distribution
is negative, which implies a distribution in the Weibull (Type III) domain of attraction, not
to be confused with a standard Weibull distribution. This type of extreme value distribu-
tion has a finite right endpoint x∗ = sup {x ∈ R : F (x) < 1} of support and we show that
the conditional distribution for the Lammefjord velocity data also lies in this domain of
attraction. This is also supported by the studies of Holmes and Moriarty (1999), Walshaw
and Anderson (2000) and Simiu and Heckert (1996).

In traditional wind engineering hourly mean wind speeds are usually modelled by the
Weibull distribution (see for instance Burton et al. (2001)) which, in the extreme value
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setting, is a distribution in the Gumbel domain of attraction. Since we are dealing with
velocities on a finer time scale this is not in discrepancy to our approach. On finer time
scales down to less than a second maxima are often modeled by the Rice distribution
(Ronold and Larsen, 1999). This is based on the assumption that the underlying signal
is a Gaussian process. Recent developments about turbulence and velocity show that the
Gaussian process assumption may not be appropriate for micrometeorological measurements
which might cast doubt on the suitability of the Rice distribution for maxima. For example
see Barndorff-Nielsen and Schmiegel (2007).

We also analyze the extremal dependence in large velocities measured at different masts
using bivariate extreme value theory. In order to account for the movement of wind, we
investigate the time-lag giving the highest dependence at different masts.

A detailed description about the data set can be found in Section 2. Section 3 develops
the modelling framework we use for the univariate wind speed time series, and we describe a
procedure to measure extremal dependence between wind speed records at different masts.
Summary comments are made in Section 4.

2. Description of wind speed data set

The data used in this study can be downloaded from a database on wind characteristics, that
is supervised by Kurt S. Hansen from the Technical University of Denmark (Lyngby, north
of Copenhagen) together with Gunner C. Larsen from the Risø National Laboratories in
Roskilde (Denmark) (see www.winddata.com). The database provided by the Lammefjord
Station in Denmark consists of 8 Hz (8 measurements per second) observations measured by
cup anemometers and wind vanes situated 30 meters above ground. Thus, the velocity mea-
surements are taken from the atmospheric boundary layer (ABL) of the troposphere. The
ABL is directly influenced by the Earth’s surface friction from vegetation and topography
and velocities display rapid fluctuations. The terrain in Lammefjord is flat and homoge-
neous. The measurement system consists of 3 meteorological masts which are located in
Lammefjord, a reclaimed fjord on the Danish island of Zealand. On each mast several
instruments are erected at different heights, including cup anemometers and wind vanes.
The heights are 10, 20 and 30 meters, respectively and we choose the 30 meters height data
for our analysis. In terms of wind farm analysis the Lammefjord data set represents free
stream conditions, since there are no wind turbines at the site.

Figure 1 shows the allocation of masts in Lammefjord together with the location of the
instruments from which the data were collected. In the following we refer to the leftward
most mast as mast 1, the middle mast as mast 2 and the mast on the right hand side as
mast 3.

Cup anemometers are mechanical instruments with a vertical axis of rotation, usually
consisting of three or four hemispherical cups mounted, where the rate of rotation measures
the wind speed. There is data available for year 1987 and we choose two days such that
we have no missing values and that the days represent different wind situations. In the
dataset we found two days with these properties, namely July 12th and July 13th. Day 1
(corresponding to July 12th) was a windy day with maximum wind speed of 23.84 meters
per second measured at mast 1. In day 2 the wind speed is decreasing over time. Since we
are mostly interested in modelling large wind speeds and for computational convenience, we
calculate the maxima per second for each day and work with the six resulting univariate time
series, each having a length of 86 400 measurements. Figure 2 shows the time series for day 1
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Fig. 1. Allocation of masts in Lammefjord

and 2 (mast 1). The dataset also provides information for the wind direction, from which we
know, that the wind is mainly blowing from the east to the west on both days. This means,
that the wind first passes mast 1 and then mast 2 and 3. Since we are dealing with one
direction, only, the wind direction unfortunately is not a possible variable to describe the
time-dependence of wind speed for consecutive observations. We also applied the following
analyses to the velocity observations measured by the anemometers at 10 meters height and
obtained very similar results.

3. Modelling wind speed threshold exceedances

3.1. Univariate modelling
In the following, we describe the modelling framework for the univariate wind speed time
series. The main objective is to model large velocities over time. Based on this model,
we estimate one-step ahead conditional quantiles. Short term extreme wind events are of
importance, since they can cause extreme loading as described in the introduction.

There is an extensive literature available on univariate extreme value theory and mod-
elling threshold exceedances by the generalized Pareto distribution. A detailed introduction
can for instance be found in Embrechts et al. (1997) and Coles (2001) and we just describe
the basic theory and introduce the notation needed. For X1, . . . , Xn independent and iden-
tically distributed (i.i.d.) random variables with distribution function F we define

Mn = max {X1, . . . , Xn} , n ∈ N.

The main objective of extreme value theory concerns the determination of the limiting
distribution G of (Mn− bn)/an, for n → ∞, where (an) with an > 0 and (bn) are sequences
of constants. If G is a non-degenerate distribution function, the limiting distribution is
given by the generalized extreme value distribution

Gξ(x) =

{

exp
{

−
(

1 + ξ x−µ
s

)−1/ξ
}

, 1 + ξ x−µ
s > 0, ξ 6= 0,

exp
{

−e−(x−µ)/s
}

, x ∈ R, ξ = 0.
(1)
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Fig. 2. Maxima per second wind speed time series for day 1 and day 2 (mast 1)

We say that F lies in the maximum domain of attraction of Gξ, denoted by F ∈ MDA(Gξ).
The extension of this result from the i.i.d. case to a stationary time series satisfying some
additional mixing conditions was shown by Leadbetter (1974, 1983). The shape parameter
−∞ < ξ < ∞ determines the type of extreme value distribution according to the Gumbel
family (Type II) for ξ = 0, the Fréchet family (Type I) for ξ > 0 and the Weibull family
(Type III) for ξ < 0. The main objective of our analysis is the modelling of extreme
wind speeds over a high threshold. The excess distribution for a random variable X with
cumulative distribution function F ∈ MDA(Gξ), which has right boundary point x∗ =
sup {x ∈ R : F (x) < 1}, is given for thresholds u < x∗ by

Fu(x) = P (X ≤ u+ x | X > u), x ≥ 0. (2)

Pickands (1975) showed that this distribution can be approximated for high thresholds u
by the generalized Pareto distribution (GPD) with distribution function

Hξ,σ(x) =

{

1−
(

1 + ξ x
σ

)−1/ξ

+
, ξ 6= 0,

1− e−x/σ, ξ = 0,
x > 0, (3)

where x+ = max {x, 0}. The shape parameter ξ has a similar interpretation as in the
generalized extreme value distribution and characterise the tail of the distribution.

Given a realization of an i.i.d. sample X1, . . . , Xn from the unknown distribution
function F , we define Y1, . . . , YNu

to be the corresponding exceedances Yj = XTj
− u,

j = 1, . . . , Nu, where Nu is the number of values which exceed the threshold u and
T1, . . . , TNu

are the exceedance times. The parameters of the GPD are estimated by maxi-
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mizing the log-likelihood function

l(ξ, σ;Y1, . . . , YNu
) = −Nu log(σ) −

(

1

ξ
+ 1

) Nu
∑

i=1

log

(

1 + ξ
Yi

σ

)

.

The tail probability

F (x) = P (X > x) = F (u)Fu(x− u), x > u

can then be approximated by

F̂ (x) =
Nu

n

(

1 + ξ̂
x− u

σ̂

)−1/ξ̂

, x > u.

By inspecting the time series plots for the Lammefjord wind speed data in Figure 2, we
clearly see the non-stationary nature of wind speed. There exist different approaches for
handling the non-stationarity in time series. Davison and Smith (1990) were the first, who
suggested to use the GPD as basis and enhanced the method to the non-stationary case by
allowing the parameters to be modelled as functions of covariates. Another description of
this approach can be found in Coles (2001) or Beirlant et al. (2004). In a more recent study
by Eastoe and Tawn (2009), who studied daily maxima of hourly ozone concentrations,
some approaches dealing with non-stationarity in the GPD- approach are discussed and
summarized. As a starting point we estimate the parameters of the GPD using subperiod-
samples. The length of each subperiod is chosen to be 600, since within this 10-minutes time
range, the time series seem to be stationary. It is common agreement in wind engineering,
that wind is stationary within a 10-minutes period. In each subperiod of length 600 we
choose the threshold such that 60 values lie above the threshold. We assume that within
each subperiod the exceedances form a stationary sequence of random variables. The results
of this exploratory analysis showed that the shape parameter ξ stays almost constant for
all 144 subperiods. The scale parameter σ varies over time and, based on the estimated
values for σ, we tried several regression models with response variable σTj

and covariates
Yj , XTj

and XTj−1 , respectively, to obtain an appropriate structure for our model. In this
way, we account for intermittency effects present in the univariate wind speed time series.
In our further analysis we use a time-dependent threshold u = ut, which is calculated by
a rolling-window procedure with a window length of 600 seconds, where the threshold is
chosen as the 98% empirical quantile in each window based on the previous 600 wind speed
values. With such a high threshold, the assumption of a generalized Pareto distribution
as an approximate distribution may be reasonable. We define the exceedance times by
T1, . . . , TNu

and the corresponding exceedances by

Yj = XTj
− uTj

, j = 1, . . . , Nu.

Conditional on previous wind speeds with recorded exceedances, we assume that the ex-
ceedances possess a Markov-like structure. The scale parameter is modelled through a
generalized linear model with exponential inverse link function, where we make the scale
parameter dependent on previous wind speed values with recorded exceedance. The shape
parameter is set constant over time. For j = 2, . . . , Nu, this leads to the following model:

Yj | FTj−1 ∼ GPD(σTj
, ξ), (4)

log(σTj
) = α0 + α1XTj−1 ,
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Table 1. MLEs for the marginal GPD-fits and confidence intervals
for the shape parameter ξ (CI(ξ)).

α̂0 α̂1 ξ̂ CI(ξ̂)

day 1, mast 1 -1.573 0.083 -0.125 [−0.163,−0.091]
(0.120) (0.007) 0.013

day 1, mast 2 -1.689 0.084 -0.083 [−0.128,−0.053]
(0.127) (0.007) (0.013)

day 1, mast 3 -1.558 0.077 -0.109 [−0.148,−0.075]
(0.126) (0.007) (0.018)

day 2, mast 1 -1.854 0.110 -0.113 [−0.149,−0.077]
(0.059) (0.006) (0.015)

day 2, mast 2 -2.006 0.121 -0.071 [−0.112,−0.037]
(0.064) (0.006) (0.018)

day 2, mast 3 -1.937 0.115 -0.066 [−0.097,−0.022]
(0.063) (0.006) (0.018)

where FTj−1 denotes the σ-algebra generated byXT1 , . . . , XTj−1 and contains all information
up to time Tj−1. The conditional density for the exceedances, given the previous wind speed
observations for which there is an exceedance, is given by

fYj |XTj−1
(y) =

1

exp(α0 + α1XTj−1 )

(

1 + ξ
y

exp(α0 + α1XTj−1 )

)−1/ξ−1

for ξ 6= 0. The log-likelihood for observed exceedances Y1, . . . , YNu
can, therefore, be ex-

pressed as

l(α0, α1, ξ;Y1, . . . , YNu
) =

−

Nu
∑

j=2

(

α0 + α1XTj−1

)

−

(

1

ξ
+ 1

) Nu
∑

j=2

log

(

1 + ξ
Yj

exp(α0 + α1XTj−1)

)

.

In Table 1 we list the estimates and the corresponding standard errors resulting from the
maximum-likelihood estimation. In addition, we approximate confidence bounds using the
limiting distribution of the maximum-likelihood estimates (MLEs) as calculated in Smith
(1987, Section 2) leading to the formula

ξ̂ ± zα/2N
−1/2
u (1 + ξ̂), (5)

where zα/2 is the (1 − α/2)-quantile of a standard normal distribution. In all cases the
shape parameters are slightly below zero and the confidence intervals do not contain the
value zero, which corresponds to distributions in the Weibull domain of attraction with
finite right endpoint of support. This result is consistent with other studies on wind speed
data as already motivated in the introduction.

To test the goodness of fit we use probability-probability (pp-plots) and quantile-quantile
plots (qq-plots). In order to apply such diagnostic checks, the observations have to be
standardized as described in Coles (2001, Section 6.2). The transformation given for j =
2, . . . , Nu by

Ỹj = − log
(

1− F̂u(Yj)
)

=
1

ξ̂
log

(

1 + ξ̂
Yj

exp(α̂0 + α̂1XTj−1)

)



Extreme value analysis of wind speed data 8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Empirical

M
od

el
Probability plot, day 1, mast 3

0 2 4 6

0
2

4
6

8

Model

E
m

pi
ric

al

Quantile−quantile plot (exp. scale), day 1, mast 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Empirical

M
od

el

Probability plot, day 2, mast 3

0 2 4 6 8
0

2
4

6
8

Model

E
m

pi
ric

al

Quantile−quantile plot (exp. scale), day 2, mast 3

Fig. 3. Diagnostic plots for the marginal GPD fits. Left: pp-plots for day 1 (top) and day 2 (bottom).
Right: qq-plots for day 1 (top) and day 2 (bottom).

should lead to exponentially distributed random variables, if the fitted distribution is ap-
propriate. Figure 3 shows pp-plots and qq-plots, assuming exponential distributions for
(Ỹj) for day 1 and 2 (mast 3). The approximate straight line pattern in all plots leads us
to the conclusion that the estimated model provides a plausible statistical fit for the given
data. The plots for the other masts (not shown) look very similar. For further testing of
the significance according the shape parameter, we estimate the parameters α0 and α1 in
a setting with the shape parameter ξ forced to be zero leading to a Gumbel distribution.
By comparing the two resulting models via inspecting the probability and quantile-quantile
plots and calculating the Akaike-Information criterion (AIC), we conclude that ξ is below
zero.

In the following we determine conditional quantile plots for the original data. Let n
denote the total number of observations and define X̃t := max {Xt, ut} for t = 1, . . . , n.
The conditional quantiles are then defined for t = 2, . . . , n by

Qt(p) = inf
{

z ∈ R : P (X̃t ≤ z | X̃t−1) ≥ p
}

, for p ∈ [0, 1].

The conditional distribution for X̃t given X̃t−1 for t = 2, . . . , n can be calculated as

P
(

X̃t ≤ z | X̃t−1 = x̃t−1

)

= P
(

max {Xt, ut} ≤ z | X̃t−1 = x̃t−1

)

= P
(

Xt ≤ z, ut ≤ z | X̃t−1 = x̃t−1

)

=

(

1− Nu

n

(

1 + ξ x−ut

exp{α0+α1x̃t−1}

)−1/ξ
)

1{z≥ut},

where 1B denotes the indicator function for some set B. For z large enough, we can calculate
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Table 2. Validation for one-step ahead conditional 99%-quantile estimates:
absolute and relative number of excesses over the quantile estimates.

number of excesses proportion above quantile estimate

day 1, mast 1 872 1.01%
day 1, mast 2 873 1.01%
day 1, mast 3 865 1.00%

day 2, mast 1 885 1.02%
day 2, mast 2 865 1.00%
day 2, mast 3 879 1.02%

day 1, mast 3
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0
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maxima per second wind speed
conditional 99%−quantiles
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Fig. 4. Conditional quantile estimates: one-step ahead prediction for day 1 (top) and day 2 (bottom).

the one-step ahead conditional quantiles as

Qt(p) = ut +
1

ξ
exp

{

α0 + α1X̃t−1

}

(

(

n

Nu
(1− p)

)−ξ

− 1

)

, p ∈ [0, 1].

The quantile estimates are obtained by plugging in the MLEs. The main objective of
extreme value theory is to model very large values and, hence, we also want to obtain large
quantile estimates. Since the threshold was chosen such that 2% of the data lie above the
threshold in each subperiod, reasonable estimates for the conditional quantiles are given for
p larger than 0.98. In order to validate our quantile estimates, we estimate the 99% quantile
and then compute the proportion of observations that exceed these quantiles. As seen in
Table 2, the frequencies of these exceedances match the targeted exceedance probability of
1% reasonably well.
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Table 3. Pickands dependence functions for the parametric models.
Model Pickands dependence function

logistic A(u) = (u1/r + (1− u)1/r)r,

asymmetric logistic A(u) = (θrur + φr(1− u)r)1/r − (θ − φ)u+ 1− φ,

3.2. Dependence structure for extreme wind speed values
The next step in our analysis is to estimate the extremal dependence between velocities
measured at the investigated observation points. Based on the fitted distributions for the
marginals, we determine estimates for the joint distribution function for bivariate threshold
exceedances of wind speed observations from two different masts. The Pickands dependence
function is a commonly used tool for measuring the extremal dependence. It can be shown
(Beirlant et al., 2004, Chapter 8) that a bivariate extreme value distribution has the general
representation

G(x, y) = exp

{

(v1 + v2)A

(

v2
v1 + v2

)}

, x, y ∈ R, (6)

where

v1 = log(GX(x)), v2 = log(GY (y)),

GX and GY are the marginal distributions of G, and A is the Pickands dependence function.
Since G is a bivariate extreme value distribution, GX and GY are univariate extreme value
distributions. The dependence function A satisfies the following properties:

• A(0) = A(1) = 1 and A(u) ≥ 1/2 for all u ∈ [0, 1].

• A is convex on [0, 1].

• The marginal components are independent if and only if A(u) = 1 for all u ∈ [0, 1],
and

• If A(u) = max {u, 1− u} for all u ∈ [0, 1], the components are completely dependent.

We use a parametric and a non-parametric approach to estimate A from the data. We
shortly introduce the formulas used in our analysis. A more detailed description of the
estimates can be found in the Appendix. We focus on two parametric examples of the
Pickands dependence function given by the logistic (Gumbel, 1958) and the asymmetric
logistic model (Tawn, 1988) (see Table 3 for 0 < r ≤ 1, 0 ≤ θ ≤ 1 and 0 ≤ φ ≤ 1). The
parameters are estimated using a censored likelihood approach as described in Coles (2001,
Section 8.3.1), which accounts for the different combinations of a bivariate pair of points,
where one component could lie below the threshold and the other component is above the
threshold.

A non-parametric estimate for A, based on pseudo-polar coordinates, is given as follows:

Â(u) =
2

k

n
∑

t=1

1{R̂t>R̂(n−k)}max {uω̂X,t, (1− u)ω̂Y,t} ,

where

R̂t = X∗t + Y∗t and ω̂X,t =
X∗t

R̂t

, ω̂Y,t =
Y∗t

R̂t

, t = 1, . . . , n,
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X∗t =

{

1
1−F̂Xt

(Xt)
, Xt > uX,t,

1, Xt ≤ uX,t,
Y∗t =

{

1
1−F̂Yt

(Yt)
, Yt > uY,t,

1, Yt ≤ uY,t,

k denotes the number of exceedances in each individual component and R̂(1) < · · · < R̂(n)

are the order statistics of (R̂t). A convex modification of this estimator, which ensures the
properties mentioned above, is given by

Ã(u) = max
{

u, 1− u, Â(u) + 1− (1− u)Â(0) + uÂ(1)
}

.

The motivation for this estimate is given in the Appendix. Figure 5 shows the resulting
parametric and non-parametric estimates for all combinations of masts. When inspecting
the plots we recognize the placement of the masts in Pickands dependence function. As seen
from the plots in Figure 1 the dependence decreases with the distance between masts. An
analysis based on various parametric models leads to the same conclusion. A useful summary
measure for extremal dependence is the so-called tail dependence coefficient, which goes back
to Geffroy (1959) and Sibuya (1960) and a detailed description can be found for instance
in Falk et al. (2000). For a bivariate random vector (X,Y ) with marginal distributions FX

and FY the tail dependence coefficient is defined by

χ = lim
u→1

P (FX(X) > u | FY (Y ) > u),

provided that the limit exists. This value corresponds to the probability of one variable
being extreme given that the other is extreme. The values χ = 0 or χ = 1 correspond to
the two extreme cases of asymptotic independence and complete dependence, respectively.
It can be shown that χ is related to A by

χ = 2

(

1−A

(

1

2

))

, (7)

so that we can estimate the tail dependence coefficient from the estimate of the Pickands
dependence function. Table 4 shows the resulting tail dependence coefficient based on the
parametric and non-parametric estimates of the Pickands function. Again, we see how
the tail dependence coefficients decrease with the distance of the masts (see Figure 1). In
addition, the values on day 2 are lower than on day 1 due to the lower wind speed on the
second day.

To discriminate between the parametric models we use likelihood ratio tests as suggested
by Tawn (1988), which can be done since the two models are nested. The null-hypothesis,
corresponding to the logistic model with θ = φ = 0, is rejected, if

−2 logλ(X) = −2(logL(0, 0, r̂;X)− logL(θ̂, φ̂, r̂;X)) > χ2
1−α,2,

where L denotes the likelihood function evaluated at the MLEs, which are shown for the
parametric models in Table 6. Table 5 shows the resulting test statistic and the corre-
sponding p-values of the likelihood ratio test for all combinations of masts. In all cases the
p-values are above 0.05 leading to the conclusion that the symmetric logistic model cannot
be rejected at the 5% significance level. This agrees with Figure 5. We also tried other
parametric models, including for instance the mixed model (Tawn, 1988) and the bilogistic
model (Joe et al., 1992), but these did not yield an improvement over the logistic and the
non-parametric models.
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Table 4. Estimated tail dependence coefficients for the parametric models
and the non-parametric estimates.
χ̂ = 2(1− Â(1/2)) logistic asymmetric logistic non-parametric

day 1, masts 1 & 2 0.2083 0.2078 0.2093
day 1, masts 1 & 3 0.1407 0.1408 0.1374
day 1, masts 2 & 3 0.3577 0.3568 0.3612

day 2, masts 1 & 2 0.1986 0.1978 0.1953
day 2, masts 1 & 3 0.0987 0.0973 0.1027
day 2, masts 2 & 3 0.2721 0.2695 0.2719

Table 5. Test statistic and corresponding p-values for the likelihood ratio
tests to discriminate between the logistic and the asymmetric logistic
model.

test statistic p-value test statistic p-value

day 1 day 2

mast 1 & mast 2 4.281 0.1176 3.065 0.2159
mast 1 & mast 3 4.164 0.1247 1.774 0.4118
mast 2 & mast 3 1.300 0.5220 8.077 0.0189

The estimated parameters are given in Table 6. The parameter r of the logistic model
can be interpreted as a dependence parameter, which equals one, if the two components
are independent, and zero, if the marginals are completely dependent. In our case, the
estimated values for r are below one, but the dependence is not as strong as one might
think between masts which only have a distance apart of 20, 25 and 5 meters, respectively.
The strongest dependence for extreme values is given, when the wind speed is high and
the masts have a distance of 5 meters. The corresponding value on day 2 is lower and the
dependence parameter for mast 1 and 3 gets close to one.

3.3. Cross-tail dependence
We now consider extremal dependence between masts at different time lags. In particular,
we estimate the tail dependence coefficients for extreme velocities arising from the following
time series

(Xt+s,i)t∈Z and (Xt,j)t∈Z, for i, j = 1, 2, 3.

Figures 6 and 7 show the resulting estimates of the cross-tail dependence coefficient at lags
from -8 to 8 seconds. For the Lammefjord data set, the wind is mainly moving in one
direction first through mast 1 and then past masts 2 and 3. The diagonal plots show the
cross-tail dependence within each time series and the three plots in the upper triangular
part show the estimates for the combination of masts in direction of the wind. The results
appear consistent with our prior results and the layout of masts. For instance, the distance
between mast 1 and 2 is 20 meters and the median value of the exceedances for day 1 is
around 16 m/s, from which we conclude that the highest dependence for the time series
(Xt,1)t∈Z and (Xt,2)t∈Z should be around 20/16 = 1.25. In particular, the estimated tail
dependence coefficient for lags s = −1 and s = −2 are given by 0.23 and 0.21, respectively
and are the largest among all other lags. Similarly the highest tail dependence coefficient
for the time series (Xt,1)t∈Z and (Xt,2)t∈Z on day 2 (with a median value around 9 m/s for
the exceedances) should be around 20/9 = 2.22. When inspecting the plots in the upper
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Fig. 5. Parametric and non-parametric estimates for Pickands dependence function for day 1 (left)
and day 2 (right). Top: masts 1 & 2. Middle: masts 1 & 3. Bottom: masts 2 & 3.
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Table 6. Estimated parameters for the logistic and the asymmetric
logistic model with standard errors in brackets.

logistic asymmetric logistic

r̂ θ̂ φ̂ r̂

day 1, masts 1 & 2 0.8414 0.7914 0.8584 0.7994
(0.0056) (0.1102) (0.1303) (0.0304)

day 1, masts 1 & 3 0.8948 0.6182 0.7518 0.8423
(0.0047) (0.1458) (0.1752) (0.0378)

day 1, masts 2 & 3 0.7157 0.9405 0.9981 0.7062
(0.0069) (0.0132) (0.0021) (0.0242)

day 2, masts 1 & 2 0.8491 0.8451 0.7486 0.8082
(0.0055) (0.1460) (0.1257) (0.0330)

day 2, masts 1 & 3 0.9269 0.7654 0.9944 0.9170
(0.0039) (0.1188) (0.0189) (0.0081)

day 2, masts 2 & 3 0.7890 0.6864 0.7621 0.7021
(0.0062) (0.0525) (0.0612) (0.0223)

triangular part, we clearly see that the estimated tail dependence coefficients are higher for
lags smaller than zero. The estimates for day 2 are shifted to the left due to lower velocities,
where the wind flow needs more time to reach the next mast.

4. Conclusion

In this article we established models for extreme velocity measurements in the atmospheric
boundary layer observed at a station in Denmark. The models present in principle tech-
niques for analyzing large wind speeds on small time scales.

In Section 3 we established a conditional model for exceedances over a time-dependent
threshold. The shape parameters in the generalized Pareto distribution were below zero
for all time series indicating conditional distributions in the Weibull maximum domain of
attraction. This is consistent with other studies about wind speed data and implies that the
distributions have a finite boundary point of support. Based on the estimated distributions,
we determined one-step ahead conditional quantiles predicting the risk of extreme wind
speeds within the next second. The models adjust for intermittency effects present in wind
speed by allowing the scale parameter in the GPD to vary over time. In the context of
design and performance of wind turbines, our technique can be used to model wind speed
exceedances over a variable threshold. The model for the scale parameter accounts for short
term fluctuations which can have a significant effect on extreme loading (Nielsen et al., 2003,
Introduction). In the second part of Section 3 we built a bivariate model for joint threshold
exceedances based on the marginal fitted distributions. The dependence parameters of the
logistic model and the tail dependence parameters clearly show that higher wind speeds lead
to higher dependence between the extreme measurements of different masts. In addition,
we analyzed the cross tail dependence by estimating the tail dependence parameters for
the logistic model for temporally shifted observations. This gives a better understanding of
the horizontal movement of air mass. According to different wind situations we obtained
different time-lags for largest extremal dependence between the investigated observation
points.

We also applied the techniques established in Section 3 to the velocity measurements
taken at the 10 meters height for comparison. The marginal estimated parameters are
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Fig. 6. Day 1: Cross tail dependence parameters for large wind speeds coming from different masts.
Each plot depicts the tail dependence coefficient from lags (in seconds) -8 to 8.
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Fig. 7. Day 2: Cross tail dependence parameters for large wind speeds coming from different masts.
Each plot depicts the tail dependence coefficient from lags (in seconds) -8 to 8.



Extreme value analysis of wind speed data 16

almost the same as for the measurements from 30 meter above terrain and the dependence
parameters are slightly lower for the 10 meters observations.

This technique allows for an advanced analysis of the dependence between two observa-
tions points and is based on the raw velocitiy time series rather than averaged wind speeds.
Especially, the anaylsis of extremal dependence is of great important, since it allows for
conclusions based on extremal wind speeds at one observation point.
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A. Bivariate extreme value theory - further details

In the following, we give a short introduction to bivariate extreme value theory and the
modelling of joint threshold exceedances. As already described, a bivariate extreme value
distribution has the general representation:

G(x, y) = exp

{

(v1 + v2)A

(

v2
v1 + v2

)}

, x, y ∈ R,
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where
v1 = log(GX(x)), v2 = log(GY (y)),

and GX and GY are the marginal distributions of G. The main objective is to estimate the
Pickands dependence function A which can be represented in terms of a spectral measure
H ,

A(u) =

∫

B

max {uω1, (1− u)ω2} dH(ω1, ω2), u ∈ [0, 1], (8)

where B = {(ω1, ω2)
′ ∈ [0,∞)\ {0} : ω1 + ω2 = 1}, see for instance Beirlant et al. (2004,

Chapter 8).
The non-parametric estimate for A used in our models is mainly based on this represen-

tation and the fact that the spectral measure is uniquely determined by a so-called exponent
measure ν(·)

H(·) = ν

({

(x, y)′ ∈ [0,∞) \0 : x+ y ≥ 1,
(x, y)′

x+ y
∈ ·

})

,

for which the following convergence result holds.

tP (t−1(X∗, Y∗) ∈ ·)
v
→ ν(·), as t → ∞,

where v denotes vague convergence. We use the same number of exceedances in each
marginal distribution and set k = NuX

= NuY
. The observationsX1, . . . , Xn and Y1, . . . , Yn

from two different masts with a certain distance are transformed using the marginal fit-
ted distributions, so that the corresponding random variables are all standard Pareto dis-
tributed.

X∗t =

{

1
1−F̂Xt

(Xt)
, Xt > uX,t,

1, Xt ≤ uX,t,
Y∗t =

{

1
1−F̂Yt

(Yt)
, Yt > uY,t,

1, Yt ≤ uY,t.

To obtain an estimate for the spectral measure H we build pseudo-polar coordinates

R̂t = X∗t + Y∗t and ω̂X,t =
X∗t

R̂t

, ω̂Y,t =
Y∗t

R̂t

, t = 1, . . . , n.

The non-parametric estimate for the spectral measure H is given by

Ĥ(·) =
2

k

n
∑

t=1

2{R̂t>R̂(n−k),(ω̂X,t,ω̂Y,t)′∈·},

where R̂(1) < · · · < R̂(n) denote the order statistics of (R̂t). An estimate for Pickands
dependence function can then be obtained from the representation (8)

Â(u) =
2

k

n
∑

t=1

1{R̂t>R̂(n−k)}max {uω̂X,t, (1− u)ω̂Y,t} .

To obtain an estimate which satisfies the characteristics of Pickands dependence function,
namely that Ã is convex and that max {u, 1− u} ≤ Ã(u) ≤ 1, for all u ∈ [0, 1], we use the
modification as proposed in Beirlant et al. (2004), given by

Ã(u) = max
{

u, 1− u, Â(u) + 1− (1− u)Â(0) + uÂ(1)
}

.
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The non-parametric estimate of Pickands dependence function can be used as a basic guide-
line for the choice of a parametric model.

In addition to the non-parametric estimate, we give a short theoretical overview of mod-
elling joint threshold exceedances in the parametric approach. Let (X1, Y1), . . . , (Xn, Yn)
denote realizations of the bivariate distribution function F and let uX and uY be spec-
ified high thresholds. For simplification, we skip the time-index t in the following. The
distribution functions FX(·) and FY (·) are approximated by

F̃X(x) = 1−
NuX

n

{

1 + ξX
x− uX

σX

}−1/ξX

, x > uX ,

F̃Y (y) = 1−
NuY

n

{

1 + ξY
y − uY

σY

}−1/ξY

, y > uY ,

as described in Subsection 3.1. Next, we transform the marginal distributions so that they
are all extremal Weibull distributed according to the probability integral transform.

v1 = log
(

F̃X(x)
)

and v2 = log
(

F̃Y (y)
)

, x > uX , y > uY (9)

induce a random vector (V1, V2) with distribution function FV , which has margins that are
approximately standard Weibull distributed for x > uX and y > uY . It then follows that

FV (v1, v2) = (Fn
V (v1, v2))

1/n
≈ G1/n

(

v1 − b1,n
a1,n

,
v2 − b2,n

a2,n

)

,

where G is an extreme value distribution, a1,n, a2,n > 0 and (b1,n), (b2,n) are sequences of
constants. The approximating sign comes from the general definition of a bivariate extreme
value distribution and indicates that we approximate Fn

V for large n by the extreme value
distribution G. The max-stability property of extreme value distributions (Resnick, 1987,
Chapter 5) provides sequences of constants α1,n > 0, α2,n > 0 and β1,n ∈ R, β2,n ∈ R such
that

G1/n(v1, v2) = G

(

α1,n
v1 − b1,n

a1,n
+ β1,n, α2,n

v2 − b2,n
a2,n

+ β2,n

)

=: G̃(v1, v2).

G and G̃ only differ in scale and location, but not in the shape parameter or in the de-
pendence structure. Therefore, G̃ is an extreme value distribution and, since FV (v1, v2) =
F (x, y), it follows that F can be approximated by

F̃ (x, y) = exp

{

(v1 + v2)A

(

v2
v1 + v2

)}

, x > uX , y > uY (10)

and v1, v2 as in (9). The marginal parameters (ξX , σX), (ξY , σY ) and the dependence
parameters (according to the parametric model) can be estimated by using a censored
likelihood approach as described in Coles (2001, Section 8.3.1).


