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Abstract

In Böcker and Klüppelberg (2005) we presented a simple approximation of Op-

VaR of a single operational risk cell. The present paper derives approximations of

similar quality and simplicity for the multivariate problem. Our approach is based

on modelling of the dependence structure of different cells via the new concept of a

Lévy copula.
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1 Introduction

The Basel II accord [4], which should be fully implemented by year-end 2007, imposes

new methods of calculating regulatory capital that apply to the banking industry. Besides

credit risk, the new accord focuses on operational risk, defined as the risk of losses resulting

from inadequate or failed internal processes, people and systems, or from external events.

Choosing the advanced measurement approach (AMA), banks can use their own internal

modelling technique based on bank-internal and external empirical data.

A required feature of AMA is to allow for explicit correlations between different op-

erational risk events. More precisely, according to Basel II banks should allocate losses

to one of eight business lines and to one of seven loss event types. Therefore, the core

problem here is the multivariate modelling encompassing all different risk type/business
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line cells. For this purpose, we consider a d-dimensional compound Poisson process S =

(S1(t), S2(t), . . . , Sd(t))t≥0 with cadlag (right continuous with left limits) sample paths.

Each component has the representation

Si(t) =

Ni(t)∑

k=1

X i
k , t ≥ 0 ,

where Ni = (Ni(t))t≥0 is a Poisson process with rate λi > 0 (loss frequency) and (X i
k)k∈N

is an iid sequence of positive random variables (loss severities), independent of the Poisson

process Ni. The bank’s total operational risk is then given by the stochastic process

S+(t) := S1(t) + S2(t) + · · · + Sd(t) , t ≥ 0 .

Note that S+ is again a compound Poisson process; cf. Proposition 3.2.

A fundamental question is how the dependence structure between different cells affects

the bank’s total operational risk.

The present literature suggests to model dependence by introducing correlation be-

tween the Poisson processes (see e.g. Aue & Kalkbrenner [1], Bee [2], Frachot, Roncalli

& Salomon [13], or Powojowski, Reynolds and Tuenter [21]), or by using a distribu-

tional copula on the random time points where operational loss occurs, or on the number

of operational risk events (see Chavez-Demoulin, Embrechts and Nešlehová [10]). In all

these approaches, each cell’s severities are assumed to be independent and identically

distributed (iid) as well as independent of the frequency process. A possible dependence

between severities has to be modelled separately, yielding in the end to a rather compli-

cated model. Given the fact that statistical fitting of a high-parameter model seems out

of reach by the sparsity of the data, a simpler model is called for.

Our approach has the advantage of modelling dependence in frequency and severity

at the same time yielding a model with comparably few parameters. Consequently, with

a rather transparent dependence model, we are able to model coincident losses occurring

in different cells. From a mathematical point of view, in contrast to the models proposed

in Chavez-Demoulin et al. [10], we stay within the class of multivariate Lévy processes, a

class of stochastic processes, which has been well studied also in the context of derivatives

pricing; see e.g. Cont and Tankov [11].

Since operational risk is only concerned with losses, we restrict ourselves to Lévy

processes admitting only positive jumps in every component, hereafter called spectrally

positive Lévy processes. As a consequence of their independent and stationary incre-

ments, Lévy processes can be represented by the Lévy-Khintchine formula, which for a

d-dimensional spectrally positive Lévy processes S without drift and Gaussian component
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simplifies to

E(ei (z,St)) = exp
{
t

∫

Rd
+

(ei(z,x) − 1) Π(dx)
}
, z ∈ R

d ,

where Π is a measure on R
d
+ = [0,∞)d, called the Lévy measure of S and (x, y) :=∑d

i=1 xiyi for x, y ∈ R
d denotes the inner product.

Whereas the dependence structure in a Gaussian model is well-understood, dependence

in the Lévy measure Π is much less obvious. Nevertheless, as Π is independent of t, it

suggests itself for modelling the dependence structure between the components of S. Such

an approach has been suggested and investigated in Cont and Tankov [11], Kallsen and

Tankov [15] and Barndorff-Nielsen and Lindner [3], and essentially models dependence

between the jumps of different Lévy processes by means of so-called Lévy copulas.

In this paper we invoke Lévy copulas to model the dependence between different

operational risk cells. This allows us to gain deep insight into the multivariate behaviour

of operational risk defined as a high quantile of a loss distribution and referred to as

operational VaR (OpVaR). In certain cases, we obtain closed-form approximations for

OpVaR and, in this respect, this paper can be regarded as a multivariate extension of

Böcker and Klüppelberg [6], where univariate OpVaR has been investigated.

Our paper is organised as follows. After stating the problem and reviewing the state of

the art of operational risk modelling in the introduction, we present in Section 2 the nec-

essary concepts and recall the results for the single cell model. In Section 3.1 we formulate

the multivariate model and give the basic results, which we shall exploit later for the dif-

ferent dependence concepts. The total operational risk process is compound Poisson and

we give the parameters explicitly, which results in the asymptotic form for total OpVaR.

Before doing this we present in Section 3.2 asymptotic results for the OpVaR, when the

losses of one cell dominate all the others. In Sections 3.3 and 3.4 we examine the cases of

completely dependent and independent cells, respectively, and derive asymptotic closed-

form expressions for the corresponding bank’s total OpVaR. In doing so, we show that

for very heavy-tailed data completely dependent OpVaR, which is asymptotically simply

the sum of the single cell VaRs, is even smaller than for independent OpVaR. As a more

general multivariate model we investigate in Section 3.5 the compound Poisson model

with regularly varying Lévy measure. This covers the case of single cell processes, whose

loss distributions are of the same order and have rather arbitrary dependece structure.

This dependence structure, manifests in the so-called spectral measure, which carries the

same information of dependence as the Lévy copula.
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2 Preliminaries

2.1 Lévy Processes, Tail Integrals, and Lévy Copulas

Distributional copulas are multivariate distribution functions with uniform marginals.

They are used for dependence modelling within the context of Sklar’s theorem, which

states that any multivariate distribution with continuous marginals can be transformed

into a multivariate distribution with uniform marginals. This concept exploits the fact that

distribution functions have values only in [0, 1]. In contrast, Lévy measures are in general

unbounded on R
d and may have a non-integrable singularity at 0, which causes problems

for the copula idea. Within the class of spectrally positive compound Poisson models, the

Lévy measure of the cell process Si is given by Πi([0, x)) = λiP (X i ≤ x) for x ∈ [0,∞).

It follows that the Lévy measure is a finite measure with total mass Πi([0,∞)) = λi

and, therefore, is in general not a probability measure. Since we are interested in extreme

operational losses, we prefer (as is usual in the context of general Lévy process theory)

to define a copula for the tail integral. Although we shall mainly work with compound

Poisson processes, we formulate definitions and some results and examples for the slightly

more general case of spectrally positive Lévy processes.

Definition 2.1. [Tail integral] Let X be a spectrally positive Lévy process in R
d with

Lévy measure Π. Its tail integral is the function Π : [0,∞]d → [0,∞] satisfying for

x = (x1, . . . , xd),

(1) Π(x) = Π([x1,∞) × · · · × [xd,∞)) , x ∈ [0,∞)d ,

where Π(0) = limx1↓0,...,xd↓0 Π([x1,∞) × · · · × [xd,∞))

(this limit is finite if and only if X is compound Poisson);

(2) Π is equal to 0, if one of its arguments is ∞;

(3) Π(0, . . . , xi, 0, . . . , 0) = Πi(xi) for (x1, . . . , xd) ∈ R
d
+, where Πi(xi) = Πi([xi,∞)) is

the tail integral of component i.

Definition 2.2. [Lévy copula] A d-dimensional Lévy copula of a spectrally positive Lévy

process is a measure defining function Ĉ : [0,∞]d → [0,∞] with marginals, which are the

identity functions on [0,∞].

The following is Sklar’s theorem for spectrally positive Lévy processes.

Theorem 2.3. [Cont and Tankov [11], Theorem 5.6] Let Π denote the tail integral of

a d-dimensional spectrally positive Lévy process, whose components have Lévy mea-

sures Π1, . . . ,Πd. Then there exists a Lévy copula Ĉ : [0,∞]d → [0,∞] such that for
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all x1, . . . , xd ∈ [0,∞]

Π(x1, . . . , xd) = Ĉ(Π1(x1), . . . ,Πd(xd)). (2.1)

If the marginal tail integrals Π1, . . . ,Πd are continuous, then this Lévy copula is unique.

Otherwise, it is unique on RanΠ1 × · · · × RanΠd.

Conversely, if Ĉ is a Lévy copula and Π1, . . . ,Πd are marginal tail integrals of spectrally

positive Lévy processes, then (2.1) defines the tail integral of a d-dimensional spectrally

positive Lévy process and Π1, . . . ,Πd are tail integrals of its components.

The following two important Lévy copulas model extreme dependence structures.

Example 2.4. [Complete (positive) dependence]

Let S(t) = (S1(t), . . . , Sd(t)), t ≥ 0, be a spectrally positive Lévy process with marginal

tail integrals Π1, . . . ,Πd. Since all jumps are positive, the marginal processes can never

be negatively dependent. Complete dependence corresponds to a Lévy copula

Ĉ‖(x) = min(x1, . . . , xd) ,

implying for the tail integral of S

Π(x1, . . . , xd) = min(Π1(x1), . . . ,Πd(xd))

with all mass concentrated on {x ∈ [0,∞)d : Π1(x1) = · · · = Πd(xd)}. �

Example 2.5. [Independence]

Let S(t) = (S1(t), . . . , Sd(t)), t ≥ 0, be a spectrally positive Lévy process with marginal

tail integrals Π1, . . . ,Πd. The marginal processes are independent if and only if the Lévy

measure Π of S can be decomposed into

Π(A) = Π1(A1) + · · ·+ Πd(Ad), A ∈ [0,∞)d (2.2)

with A1 = {x1 ∈ [0,∞) : (x1, 0, . . . , 0) ∈ A}, . . . , Ad = {xd ∈ [0,∞) : (0, . . . , xd) ∈ A}.
Obviously, the support of Π are the coordinate axes. Equation (2.2) implies for the tail

integral of S

Π(x1, . . . , xd) = Π1(x1) 1x2=···=xd=0 + · · · + Πd(xd) 1x1=···=xd−1=0 .

It follows that the independence copula for spectrally positive Lévy processes is given by

Ĉ⊥(x) = x1 1x2=···=xd=∞ + · · ·+ xd 1x1=···=xd−1=∞ .

�
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2.2 Subexponentiality and Regular Variation

As in Böcker and Klüppelberg [6], we work within the class of subexponential distributions

to model high severity losses. For more details on subexponential distributions and related

classes see Embrechts et al. [12], Appendix A3.

Definition 2.6. [Subexponential distributions] Let (Xk)k∈N be iid random variables with

distribution function F . Then F (or sometimes F ) is said to be a subexponential distri-

bution function (F ∈ S) if

lim
x→∞

P (X1 + · · · +Xn > x)

P (max(X1, . . . , Xn) > x)
= 1 for some (all) n ≥ 2.

The interpretation of subexponential distributions is therefore that their iid sum is

likely to be very large because of one of the terms being very large. The attribute subex-

ponential refers to the fact that the tail of a subexponential distribution decays slower

than any exponential tail, i.e. the class S consists of heavy-tailed distributions and is

therefore appropriate to describe typical operational loss data. Important subexponential

distributions are Pareto, lognormal and Weibull (with shape parameter less than 1).

As a useful semiparametric class of subexponential distributions, we introduce distri-

butions, whose far out right tails behave like a power function. We present the definition

for arbitrary functions, since we shall need this property not only for distribution tails,

but also for quantile functions as e.g. in Proposition 2.14.

Definition 2.7. [Regularly varying functions] Let f be a positive measureable function.

If for some α ∈ R

lim
x→∞

f(xt)

f(x)
= t−α , t > 0 , (2.3)

then f is called regularly varying with index −α.

Here we consider loss variables X whose distribution tails are regularly varying.

Definition 2.8. [Regularly varying distribution tails] Let X be a positive random variable

with distribution tail F (x) := 1 − F (x) = P (X > x) for x > 0. If for F relation (2.3)

holds for some α ≥ 0, then X is called regularly varying with index −α and denoted by

F ∈ R−α. The quantity α is also called the tail index of F .

Finally we define R := ∪α≥0R−α.

Remark 2.9. (a) As already mentioned, R ⊂ S.

(b) Regularly varying distribution functions have representation F (x) = x−αL(x) for

x ≥ 0, where L is a slowly varying function (L ∈ R0) satisfying limx→∞ L(xt)/L(x) = 1
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for all t > 0. Typical examples are functions, which converge to a positive constant or are

logarithmic as e.g. L(·) = ln(·).
(c) The classes S and R−α, α ≥ 0, are closed with respect to tail-equivalence, which for

two distribution functions (or also tail integrals) is defined as limx→∞ F (x)/G(x) = c for

c ∈ (0,∞).

(d) We introduce the notation F (x) ∼ G(x) as x → ∞, meaning that the quotient of

right-hand and left-hand side tends to 1; i.e. limx→∞G(x)/F (x) = 1.

(e) In Definition 2.8 we have used a functional approach to regular variation. Alterna-

tively, regular variation can be reformulated in terms of vague convergence of the un-

derlying probability measures, and this turns out to be very useful when we consider in

Section 3.5 below multivariate regular variation; see e.g. Resnick [23], Chapter 3.6. This

measure theoretical approach will be used in Section 3.4 to define multivariate regularly

varying Lévy measures. �

Distributions in S but not in R include the heavy-tailed Weibull distribution and the

lognormal distribution. Their tail decreases faster than tails in R, but less fast than an

exponential tail. The following definition will be useful.

Definition 2.10. [Rapidly varying distribution tails] Let X be a positive random variable

with distribution tail F (x) := 1 − F (x) = P (X > x) for x > 0. If

lim
x→∞

F (xt)

F (x)
=

{
0 , if t > 1 ,

∞ if 0 < t < 1 .

then F is called rapidly varying, denoted by F ∈ R∞.

2.3 Recalling the Single Cell Model

Now we are in the position to introduce an LDA model based on subexponential severities.

We begin with the univariate case. Later, when we consider multivariate models, each of

its d operational risk processes will follow the univariate model defined below.

Definition 2.11. [Subexponential compound Poisson (SCP) model]

(1) The severity process.

The severities (Xk)k∈N are positive iid random variables with distribution function F ∈ S
describing the magnitude of each loss event.

(2) The frequency process.

The number N(t) of loss events in the time interval [0, t] for t ≥ 0 is random, where

(N(t))t≥0 is a homogenous Poisson process with intensity λ > 0. In particular,

P (N(t) = n) = pt(n) = e−λt (λt)n

n!
, n ∈ N0 .

7



(3) The severity process and the frequency process are assumed to be independent.

(4) The aggregate loss process.

The aggregate loss S(t) in [0, t] constitutes a process

S(t) =

N(t)∑

k=1

Xk , t ≥ 0 .

Of main importance in the context of operational risk is the aggregate loss distribution

function, given by

Gt(x) = P (S(t) ≤ x) =
∞∑

n=0

pt(n)F n∗(x), x ≥ 0, t ≥ 0 , (2.4)

with

pt(n) = P (Nt = n) = e−λt (λt)n

n!
, n ∈ N0 ,

and F (·) = P (Xk ≤ ·) is the distribution function of Xk, and F n∗(·) = P (
∑n

k=1Xk ≤ ·)
is the n-fold convolution of F with F 1∗ = F and F 0∗ = I[0,∞).

Now, OpVaR is just a quantile of Gt. The following defines the OpVaR of a single cell

process, the so-called stand alone VaR.

Definition 2.12. [Operational VaR (OpVaR)] Suppose Gt is a loss distribution function

according to eq. (2.4). Then, operational VaR up to time t at confidence level κ, VaRt(κ),

is defined as its κ-quantile

VaRt(κ) = G←t (κ) , κ ∈ (0, 1) ,

where G←t (κ) = inf{x ∈ R : Gt(x) ≥ κ}, 0 < κ < 1, is the (left continuous) generalized

inverse of Gt. If Gt is strictly increasing and continuous, we may write VaRt(κ) = G−1
t (κ).

In general, Gt(κ)—and thus also OpVaR—cannot be analytically calculated so that

one depends on techniques like Panjer recursion, Monte Carlo simulation, and fast Fourier

transform (FFT), see e.g. Klugman et al. [17]. Recently, based on the asymptotic identity

Gt(x) ∼ λ tF (x) as x → ∞ for subexponential distributions, Böcker and Klüppelberg [6]

have shown that for a wide class of LDA models closed-form approximations for OpVaR

at high confidence levels are available. For a more natural definition in the context of high

quantiles we express VaRt(κ) in terms of the tail F (·) instead of F (·). This can easily be

achieved by noting that 1/F is increasing, hence,

F←(κ) = inf{x ∈ R : F (x) ≥ κ} =:

(
1

F

)←(
1

1 − κ

)
, 0 < κ < 1 . (2.5)
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In [6] we have shown that

G←t (κ) = F←
(

1 − 1 − κ

λt
(1 + o(1))

)
, κ ↑ 1 , (2.6)

or, equivalently using (2.5),

(
1

Gt

)←(
1

1 − κ

)
=

(
1

F

)←(
λt

1 − κ
(1 + o(1))

)
, κ ↑ 1 .

In the present paper we shall restrict ourselves to situations, where the right-hand side of

(2.6) is asymptotically equivalent to F←
(
1− 1 − κ

λt

)
as κ ↑ 1. That this is not always the

case for F ∈ S shows the following example.

Example 2.13. Consider (1/F )←(y) = exp(y + y1−ε) for some 0 < ε < 1 with y =

1/(1 − κ), i.e. κ ↑ 1 equivalent to y → ∞. Then (1/F )←(y) = exp(y(1 + o(1)), but

(1/F )←(y)/ey = exp(y1−ε) → ∞ as y → ∞. This situation typically occurs, when F ∈ R0,

i.e. for extremely heavy-tailed models. �

The reason is given by the following equivalences, which we will often use throughout

this paper. We present a short proof, which can be ignored by those readers interested

mainly in the OpVar application.

Proposition 2.14. (1) [Regular variation] Let α > 0. Then

(i) F ∈ R−α ⇔ (1/F )← ∈ R1/α,

(ii) F (x) = x−αL(x) for x ≥ 0 ⇔ (1/F )←(z) = z1/αL̃(z) for z ≥ 0,

where L and L̃ are slowly varying functions,

(iii) F (x) ∼ G(x) as x→ ∞ ⇔ (1/F )←(z) ∼ (1/G)←(z) as z → ∞.

(2) [Rapid variation] If F,G ∈ R∞ such that F (x) ∼ G(x) as x→ ∞, then (1/F )←(z) ∼
(1/G)←(z) as z → ∞.

Proof. (1) Proposition 1.5.15 of Bingham, Goldie and Teugels [5] ensures that regular

variation of 1/F is equivalent to regular variation of its (generalised) inverse and provides

the representation. Proposition 0.8(vi) of Resnick [22] gives the asymptotic equivalence.

(2) Theorem 2.4.7(ii) of [5] applied to 1/F ensures that (1/F )← ∈ R0. Furthermore, tail

equivalence of F and G implies that (1/F )←(z) = (1/G)←(z(1 + o(1))) = (1/G)←(z)(1 +

o(1)) as z → ∞, where we have used that the convergence in Definition 2.8 is locally

uniformly. �

Theorem 2.15. [Analytical OpVaR for the SCP model] Consider the SCP model.
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(i) If F ∈ S ∩ (R∪R∞), then VaRt(κ) is asymptotically given by

VaRt(κ) =

(
1

Gt

)←(
1

1 − κ

)
∼ F←

(
1 − 1 − κ

λ t

)
, κ ↑ 1 . (2.7)

(ii) The severity distribution tail belongs to R−α for α > 0, i.e. F (x) = x−αL(x) for

x ≥ 0 and some slowly varying function L if and only if

VaRt(κ) ∼
(

λ t

1 − κ

)1/α

L̃

(
1

1 − κ

)
, κ ↑ 1 , (2.8)

where L̃
(

1
1−·

)
∈ R0.

Proof. (i) is a consequene of Böcker and Klüppelberg [6] in combination with Proposi-

tion 2.14.

(ii) By Definition 2.12, VaRt(κ) = G←(κ). In our SCP model we have Gt(x) ∼ λ tF (x) as

x→ ∞. From Proposition 2.14 it follows that
(

1

Gt

)←(
1

1 − κ

)
∼
(

1

F

)←(
λ t

1 − κ

)
=

(
λ t

1 − κ

)1/α

L̃

(
λ t

1 − κ

)
, κ ↑ 1 ,

and the result follows. �

We refrain from giving more information on the relationship between L and L̃ (which

can be found in [5]) as it is rather involved and plays no role in our paper. When such a

model is fitted statistically, then L and L̃ are usually replaced by constants; see Embrechts

et al. [12], Chapter 6. In that case L ≡ θα results in L̃ ≡ θ as in the following example.

To indicate that the equivalence of Theorem 2.15(ii) does not extend to subexponential

distribution tails in R∞ we refer to Example 3.11.

We can now formulate the analytical VaR theorem for subexponential severity tails.

A precise result can be obtained for Pareto distributed severities. Pareto’s law is the pro-

totypical parametric example for a heavy tailed distribution and suitable for operational

risk modelling, see e.g. Moscadelli [20].

Example 2.16. [Poisson-Pareto LDA]

The Poisson-Pareto LDA is an SCP model, where the severities are Pareto distributed

with

F (x) =
(
1 +

x

θ

)−α

, x > 0,

with parameters α, θ > 0. Here, OpVaR can be calculated explicitly and satisfies

VaRt(κ) ∼ θ

[(
λ t

1 − κ

)1/α

− 1

]
∼ θ

(
λ t

1 − κ

)1/α

, κ ↑ 1 . (2.9)

�
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3 Multivariate Loss Distribution Models

3.1 The Lévy Copula Model

The SCP model of the previous section can be used for estimating OpVaR of a single cell,

sometimes referred to as the cell’s stand alone OpVaR. Then, a first approximation to the

bank’s total OpVaR is obtained by summing up all different stand alone VaR numbers.

Indeed, the Basel committee requires banks to sum up all their different operational risk

estimates unless sound and robust correlation estimates are available; cf. [4], paragraph

669(d). Moreover, this “simple-sum VaR” is often interpreted as an upper bound for total

OpVaR, with the implicit understanding that every other (realistic) cell dependence model

necessarily reduces overall operational risk.

However, as is well recognised (cf. Table 5.3 in [7]), simple-sum VaR may even under-

estimate total OpVaR when severity data is heavy-tailed, which in practice it is, see e.g.

Moscadelli [20]. Therefore, to obtain a more accurate and reliable result, one needs more

general models for multivariate operational risk.

Various models have been suggested. Most of them are variations of the following

scheme. Fix a time horizon t > 0, and model the accumulated losses of each operational

risk cell i = 1, . . . , d by a compound Poisson random variable Si(t). Then, in general, both

the dependence of loss sizes in different cells as well as the dependence between the fre-

quency variables Ni(t) is modelled by appropriate copulas, where for the latter one has to

take the discreteness of these variables into account. Considering this model as a dynamic

model in time, it does not constitute a multivariate compound Poisson model but leads

outside the well-studied class of Lévy processes. This can be easily seen as follows: since

a Poisson process jumps with probability 0 at any fixed time s > 0, we have for any jump

time s of Nj(·) that P (∆Ni(s) = 1) = 0 for i 6= j, hence any two of such processes almost

surely never jump at the same time. However, as described in Section 2.1, dependence in

multivariate compound Poisson processes—as in every multivariate Lévy process—means

dependence in the jump measure, i.e. the possibility of joint jumps. Finally, from a statis-

tical point of view such a model requires a large number of parameters, which, given the

sparsity of data in combination with the task of estimating high quantiles, will be almost

impossible to fit.

We formulate a multivariate compound Poisson model and apply Sklar’s theorem

for Lévy copulas. Invoking a Lévy copula allows for a low number of parameters and

introduces a transparent dependence structure in the model; we present a detailed example

in Section 3 of [7].

Definition 3.1. [Multivariate SCP model] The multivariate SCP model consists of:
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(1) Cell processes.

All operational risk cells, indexed by i = 1, . . . , d, are described by an SCP model with

aggregate loss process Si, subexponential severity distribution function Fi and Poisson

intensity λi > 0, respectively.

(2) Dependence structure.

The dependence between different cells is modelled by a Lévy copula. More precisely, let

Πi : [0,∞) → [0,∞) be the tail integral associated with Si, i.e. Πi(·) = λi F i(·) for

i = 1, . . . , d, and let Ĉ : [0,∞)d → [0,∞) be a Lévy copula. Then

Π(x1, . . . , xd) = Ĉ(Π1(x1), . . . ,Πd(xd))

defines the tail integral of the d-dimensional compound Poisson process S = (S1, . . . , Sd).

(3) Total aggregate loss process.

The bank’s total aggregate loss process is defined as

S+(t) = S1(t) + S2(t) + · · ·+ Sd(t) , t ≥ 0

with tail integral

Π
+
(z) = Π({(x1, . . . , xd) ∈ [0,∞)d :

d∑

i=1

xi ≥ z}) , z ≥ 0 . (3.1)

The following result states an important property of the multivariate SCP model.

Proposition 3.2. Consider the multivariate SCP model of Definition 3.1. Its total ag-

gregate loss process S+ is compound Poisson with frequency parameter

λ+ = lim
z↓0

Π
+
(z)

and severity distribution

F+(z) = 1 − F
+
(z) = 1 − Π

+
(z)

λ+
, z ≥ 0 .

Proof. Projections of Lévy processes are Lévy processes. For every compound Poisson

process with intensity λ > 0 and only positive jumps with distribution function F , the tail

integral of the Lévy measure is given by Π(x) = λF (x), x > 0. Consequently, λ = Π(0) and

F (x) = Π(x)/λ. We apply this relation to the Lévy process S+ and obtain the total mass

λ+ of S+, which ensures that S+ is compound Poisson with the parameters as stated. �

Note that S+ does not necessarily define a one dimensional SCP model because F+

need not to be subexponential, even if all components are. This has been investigated for
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sums of independent random variables in great detail; see e.g. the review paper Goldie and

Klüppelberg [14], Section 5. For dependent random variables we present in Examples 3.10

and 3.11 two situations, where F+ ∈ S ∩ (R ∪ R∞). In that case we can apply (2.7) to

estimate total OpVaR, which shall now be defined precisely.

Definition 3.3. [Total OpVaR] Consider the multivariate SCP model of Definition 3.1.

Then, total OpVaR up to time t at confidence level κ is the κ-quantile of the total aggregate

loss distribution G+
t (·) = P (S+(t) ≤ · ):

VaR+
t (κ) = G+←

t (κ) , κ ∈ (0, 1) ,

with G+←
t (κ) = inf{z ∈ R : G+

t (z) ≥ κ} for 0 < κ < 1.

Our goal in this paper is to investigate multivariate SCP models and find useful ap-

proximations in a variety of dependence structures.

3.2 Losses Dominant in One Cell

Before we discuss Lévy copula dependence structures we formulate a very general result

for the situation, where the losses in one cell are regularly varying and dominate all others.

Indeed the situation of the model is such that it covers arbitrary dependence structures,

including also the practitioner’s models described above.

Assume for fixed t > 0 for each cell model a compound Poisson random variable.

Dependence is introduced by an arbitrary correlation or copula for (N1(·), . . . , Nd(·)) and

an arbitrary copula between the severity distributions F1(·) = P (X1 ≤ ·), . . . , Fd(·) =

P (Xd ≤ ·). Recall that the resulting model (S1(t), . . . , Sd(t))t≥0 does NOT constitute a

multivariate compound Poisson process and so is not captured by the multivariate SCP

model of Definition 3.1. We want to calculate an approximation for the tail P (S1(t) +

S2(t) > x) for large x and total OpVaR for high levels κ. We formulate the result in

arbitrary dimension.

Theorem 3.4. For fixed t > 0 let Si(t) for i = 1, . . . , d have compound Poisson distribu-

tions. Assume that F 1 ∈ R−α for α > 0. Let ρ > α and suppose that E[(X i)ρ] < ∞ for

i = 2, . . . , d. Then regardless of the dependence structure between (S1(t), . . . , Sd(t)),

P (S1(t) + · · ·+ Sd(t) > x) ∼ EN1(t)P (X1 > x) , x→ ∞ ,

VaR+
t (κ) ∼ F←1

(
1 − 1 − κ

EN1(t)

)
= VaR1

t (κ) , κ ↑ 1 . (3.2)

13



Proof. Consider d = 2. Note first that

P (S1(t) + S2(t) > x)

P (X1 > x)
(3.3)

=
∞∑

k,m=1

P (N1(t) = k,N2(t) = m)

P
( k∑

i=1

X1
i +

m∑
j=1

X2
j > x

)

P
( k∑

i=1

X1
i > x

)
P
( k∑

i=1

X1
i > x

)

P
(
X1 > x

) .

We have to find conditions such that we can interchange the limit for x → ∞ and the

infinite sum. This means that we need uniform estimates for the two ratios on the right-

hand side for x → ∞. We start with an estimate for the second ratio: Lemma 1.3.5 of

Embrechts et al. [12] applies giving for arbitrary ε > 0 and all x > 0 a finite positive

constant K(ε) so that

P
( k∑

i=1

X1
i > x

)

P (X1 > x)
≤ K(ε)(1 + ε)k .

For the first ratio we proceed as in the proof of Lemma 2 of Klüppelberg, Lindner and

Maller [18]. For arbitrary 0 < δ < 1 we have

P
( k∑

i=1

X1
i +

m∑
j=1

X2
j > x

)

P
( k∑

i=1

X1
i > x

) ≤
P
( k∑

i=1

X1
i > x(1 − δ)

)

P
( k∑

i=1

X1
i > x

) +

P
( m∑

j=1

X2
j > xδ

)

P
( k∑

i=1

X1
i > x

) (3.4)

Regular variation of the distribution of X1 implies regular variation of the distribution of∑k
i=1X

1
i with the same index −α. We write for the first term

P
( k∑

i=1

X1
i > x(1 − δ)

)

P
(
X1 > x(1 − δ)

)
P
(
X1 > x(1 − δ)

)

P
(
X1 > x

)
P
(
X1 > x

)

P
( k∑

i=1

X1
i > x

) .

For the first ratio we use the same estimate as above and obtain for all x > 0 the

upper bound K ′(ε)(1 + ε)k. For the second ratio, using the so-called Potter bounds (cf.

Theorem 1.5.6 (iii) of Bingham, Goldie and Teugels [5]), for every chosen constants a >

0, A > 1, we obtain an upper bound A(1 − δ)−(α+a) uniformly for all x ≥ x0 ≥ 0. The

third ratio is less or equal to 1 for all k and x.

As the denominator of the second term of the rhs of (3.4) is regularly varying, it can be

bounded below by x−(α+ρ′) for some 0 < ρ′ < ρ − α. By Markov’s inequality, we obtain

for the numerator

P
( m∑

j=1

X2
j > xδ

)
≤ (xδ)−ρE

[( m∑

j=1

X2
j

)ρ]
.
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The so-called cρ-inequality (see e.g. Loéve [19], p. 157) applies giving

E
[
(

m∑

j=1

X2
j )ρ
]
≤ mcρE(X2

j )ρ

for cρ = 1 or cρ = 2ρ−1, according as ρ ≤ 1 or ρ > 1. We combine these estimates and

obtain in (3.3) for x ≥ x0 > 0,

P (S1(t) + S2(t) > x)

P (X1 > x)

≤
∞∑

k,m=1

P (N1(t) = k,N2(t) = m) (3.5)

(
K ′(ε)(1 + ε)kA(1 − δ)−(α+a) + xα+ρ′(xδ)−ρmcρE[(X2

j )ρ]
)
K(ε)(1 + ε)k .

Now note that xα+ρ′−ρ tends to 0 as x→ ∞. Furthermore, we have

∞∑

k,m=0

P (N1(t) = k,N2(t) = m) = 1 ,

∞∑

k,m=1

P (N1(t) = k,N2(t) = m) k =
∞∑

k=1

P (N1(t) = k) k = ENk(t) <∞ .

Consequently, the rhs of 3.5 converges. By Pratt’s Lemma (see e.g. Resnick [22], Ex. 5.4.2.4),

we can interchange limit and infinite sum on the rhs of (3.3) and obtain

lim
x→∞

P (S1(t) + S2(t) > x)

P (X1 > x)
=

∞∑

k=1

P (N1(t) = k) k = EN1(t) .

The result for d > 2 follows by induction.

Approximation (3.2) holds by Theorem 2.15(1). �

Within the context of multivariate compound Poisson models, the proof of this result

simplifies. Moreover, since a possible singularity of the tail integral in 0 is of no con-

sequence, it even holds for all spectrally positive Lévy processes. We formulate this as

follows.

Proposition 3.5. Consider a multivariate spectrally positive Lévy process and suppose

that Π1 ∈ R−α. Furthermore, assume that for all i = 2, . . . , d the integrability condition
∫

x≥1

xρ Πi(dx) <∞ (3.6)

for some ρ > α is satisfied. Then

lim
z→∞

Π
+
(z)

Π1(z)
= 1 . (3.7)
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Moreover,

VaR+
t (κ) ∼ VaR1

t (κ) , κ ↑ 1 , (3.8)

i.e. total OpVaR is asymptotically dominated by the stand alone OpVaR of the first cell.

Proof. We first show that (3.7) holds. From equation (3.6) it follows that for i = 2, . . . , d

lim
z→∞

zρ Πi(z) = 0 . (3.9)

Since α < ρ, we obtain from regular variation for some slowly varying function L, invoking

(3.9),

lim
z→∞

Πi(z)

Π1(z)
= lim

z→∞

zρΠi(z)

zρ−αL(z)
= 0 , i = 2, . . . , d ,

because the numerator tends to 0 and the denominator to ∞. (Recall that zεL(z) → ∞
as z → ∞ for all ε > 0 and L ∈ R0.)

We proceed by induction. For d = 2 we have by the decomposition as in (3.4)

Π
+

2 (z) := Π
+
(z) ≤ Π1(z(1 − ε)) + Π2(z ε), z > 0, 0 < ε < 1.

It then follows that

lim sup
z→∞

Π
+

2 (z)

Π1(z)
≤ lim

z→∞

Π1(z(1 − ε))

Π1(z)
+ lim

z→∞

Π2(z ε)

Π1(z ε)

Π1(z ε)

Π1(z)
= (1 − ε)−α . (3.10)

Similarly, Π
+

2 (z) ≥ Π1((1 + ε)z) for every ε > 0 . Therefore,

lim inf
z→∞

Π
+

2 (z)

Π1(z)
≥ lim

z→∞

Π1((1 + ε)z)

Π1(z)
= (1 + ε)−α . (3.11)

Assertion (3.7) follows for Π
+

2 from (3.10) and (3.11). This implies that Π
+

2 ∈ Rα. Now

replace Π1 by Π
+

2 and Π
+

2 by Π
+

3 and proceed as above to obtain (3.7) for general dimen-

sion d. Finally, Theorem 2.15(1) applies giving (3.8). �

This result is mostly applied in terms of the following corollary, which formulates a

direct condition for (3.10) and (3.11) to hold.

Corollary 3.6. Consider a multivariate spectrally positive Lévy process and suppose that

Π1 ∈ R−α. Furthermore, assume that for all i = 2, . . . , d

lim
z→∞

Πi(z)

Π1(z)
= 0 .

Then (3.7) and (3.8) hold.
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Hence, for arbitrary dependence structures, when the severity of one cell has regularly

varying tail dominating those of all other cells, total OpVaR is tail-equivalent to the

OpVaR of the dominating cell. This implies that the bank’s total loss at high confidence

levels is likely to be due to one big loss occurring in one cell rather than an accumulation

of losses of different cells regardless of the dependence structure.

From our equivalence results of Proposition 2.14 and Theorem 2.15 this is not a general

property of the completely dependent SCP model. We shall see in Example 3.11 below

that the following does NOT hold in general for x→ ∞ (equivalently κ ↑ 1):

F i(x) = o(F 1(x)) =⇒ VaRi
t(κ) = o(VaR1

t (κ)) , i = 2, . . . , d .

We now study two very basic multivariate SCP models in more detail, namely the

completely dependent and the independent one. Despite their extreme dependence struc-

ture, both models provide interesting and valuable insight into multivariate operational

risk.

3.3 Multivariate SCP Model with Completely Dependent Cells

Consider a multivariate SCP model and assume that its cell processes Si, i = 1, . . . , d, are

completely positively dependent. In the context of Lévy processes this means that they

always jump together, implying that also the expected number of jumps per unit time of

all cells, i.e. the intensities λi, must be equal,

λ := λ1 = · · · = λd . (3.12)

The severity distributions Fi, however, can be different. Indeed, from Example 2.4 we

infer that in the case of complete dependence, all Lévy mass is concentrated on

{(x1, . . . , xd) ∈ [0,∞)d : Π1(x1) = · · · = Πd(xd)} ,

or, equivalently,

{(x1, . . . , xd) ∈ [0,∞)d : F1(x1) = · · · = Fd(xd)} . (3.13)

Until further notice, we assume for simplicity that all severity distributions Fi are strictly

increasing and continuous so that F−1
i (q) exists for all q ∈ [0, 1). Together with (3.13), we

can express the tail integral of S+ in terms of the marginal Π1.

Π
+
(z) = Π({(x1, . . . , xd) ∈ [0,∞)d :

d∑

i=1

xi ≥ z})

= Π1({x1 ∈ [0,∞) : x1 +

d∑

i=2

F−1
i (F1(x1)) ≥ z}) , z ≥ 0 .
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Set H(x1) := x1 +
∑d

i=2 F
−1
i (F1(x1)) for x1 ∈ [0,∞) and note that it is strictly increasing

and therefore invertible. Hence,

Π
+
(z) = Π1({x1 ∈ [0,∞) : x1 ≥ H−1(z)}) = Π1

(
H−1(z)

)
, z ≥ 0 . (3.14)

Now we can derive an asymptotic expression for total OpVaR.

Theorem 3.7. [OpVaR for the completely dependent SCP model] Consider a multivari-

ate SCP model with completely dependent cell processes S1, . . . , Sd and strictly increasing

and continuous severity distributions Fi. Then, S+ is compound Poisson with parameters

λ+ = λ and F
+
(·) = F 1

(
H−1(·)

)
. (3.15)

If furthermore F
+ ∈ S ∩ (R∪R∞), total OpVaR is asymptotically given by

VaR+
t (κ) ∼

d∑

i=1

VaRi
t(κ) , κ ↑ 1 , (3.16)

where VaRi
t(κ) denotes the stand alone OpVaR of cell i.

Proof. Expression (3.15) immediately follows from (3.12) and (3.14),

λ+ = lim
z→0

Π
+
(z) = lim

z→0
λF 1

(
H−1(z)

)
= λF 1

(
lim
z→0

H−1(z)
)

= λ .

If F
+ ∈ S ∩ (R∪R∞), we may use (2.7) and the definition of H to obtain

VaR+
t (κ) ∼ H

[
F−1

1

(
1 − 1 − κ

λ t

)]
= F−1

1

(
1 − 1 − κ

λ t

)
+ · · ·+ F−1

d

(
1 − 1 − κ

λ t

)

∼ VaR1
t (κ) + · · ·+ VaRd

t (κ), κ ↑ 1 .

�

Theorem 3.7 states that for the completely dependent SCP model, total asymptotic

OpVaR is simply the sum of the asymptotic stand alone cell OpVaRs. Recall that this

is similar to the new proposals of Basel II, where the standard procedure for calculating

capital charges for operational risk is just the simple-sum VaR. Or stated another way,

regulators implicitly assume complete dependence between different cells, meaning that

losses within different business lines or risk categories always happen at the same instants

of time. This is often considered as the worst case scenario, which, however, in the heavy-

tailed case can be grossly misleading.

The following example describes another regime for completely depenendent cells.
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Example 3.8. [Identical severity distributions]

Assume that all cells have identical severity distributions, i.e. F := F1 = . . . = Fd. In this

case we have H(x1) = d x1 for x1 ≥ 0 and, therefore,

Π
+
(z) = λF

(z
d

)
, z ≥ 0 .

If furthermore F ∈ S ∩ (R∪R∞), it follows that F
+
(·) = F (· /d) is, and we obtain

VaR+
t (κ) ∼ d F

(
1 − 1 − κ

λ t

)
, κ ↑ 1 .

�

We can derive very precise asymptotics in the case of dominating regularly varying

severities.

Proposition 3.9. Assume that the conditions of Theorem 3.7 hold. Assume further that

F 1 ∈ R−α with α > 0 and that for all i = 2, . . . , d there exist ci ∈ [0,∞) such that

lim
x→∞

F i(x)

F 1(x)
= ci . (3.17)

Assume that ci 6= 0 for 2 ≤ i ≤ b ≤ d and ci = 0 for i ≤ b+1 ≤ d. For F 1(x) = x−αL(x),

x ≥ 0, let L̃ be the function as in Theorem 2.15(ii). Then

VaR+
t (κ) ∼

b∑

i=1

c
1/α
i VaR1

t (κ) ∼
b∑

i=1

c
1/α
i

(
λ t

1 − κ

)1/α

L̃

(
1

1 − κ

)
, κ ↑ 1 .

Proof. From Theorem 2.15(ii) we know that

VaR1
t (κ) ∼

(
λ t

1 − κ

)1/α

L̃

(
1

1 − κ

)
, κ ↑ 1 ,

where L̃
(

1
1−·

)
∈ R0. Note: If all ci = 0 holds for i = 2, . . . , d then Corollary 3.6 applies.

So assume that ci 6= 0 for 2 ≤ i ≤ b. From (3.17) and Resnick [22], Proposition 0.8(vi),

we get F←i (1 − 1
z
) ∼ c

1/α
i F←1 (1 − 1

z
) as z → ∞ for i = 1, . . . , d. This yields for x1 → ∞

H(x1) = x1 +
d∑

i=2

F−1
i (1 − F 1(x1))

= x1 +
d∑

i=2

c
1/α
i F−1

1

(
1 − F 1(x1)

)
(1 + oi(1))

= x1

b∑

i=1

c
1/α
i (1 + o(1)) ,
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where we have c1 = 1. Defining C :=
∑b

i=1 c
1/α
i , then H(x1) ∼ Cx1 as x1 → ∞, and hence

H−1(z) ∼ z/C as z → ∞, which implies by (3.14) and regular variation of F 1

Π
+
(z) = Π1(H

−1(z)) ∼ λF 1(z/C) ∼ λCα F 1(z) , z → ∞ .

Obviously, F
+
(z) = Cα F 1(z) ∈ R−α and Theorem 3.7 applies. By (2.8) together with

the fact that all summands from index b+ 1 on are of lower order, (3.16) reduces to

VaR+
t (κ) ∼ F←1

(
1 − 1 − κ

λ t

)
+ · · ·+ F←b

(
1 − 1 − κ

λ t

)

∼ F←1

(
1 − 1 − κ

λ tCα

)

∼
b∑

i=1

c
1/α
i

(
λ t

1 − κ

)1/α

L̃

(
1

1 − κ

)
, κ ↑ 1 .

�

An important example of Proposition 3.9 is the Pareto case.

Example 3.10. [Pareto distributed severities]

Consider a multivariate SCP model with completely dependent cells and Pareto dis-

tributed severities as in Example 2.16. Then we obtain for the ci

lim
x→∞

F i(x)

F 1(x)
=

(
θi

θ1

)α

, i = 1, . . . , b , and lim
x→∞

F i(x)

F 1(x)
= 0 , i = b+ 1, . . . , d ,

for some 1 ≤ b ≤ d. This, together with Proposition 3.9 leads to

F
+
(z) ∼

(
b∑

i=1

θi

θ1

)α(
1 +

z

θ1

)−α

∼
(

b∑

i=1

θi

)α

z−α , z → ∞ .

Finally, from (2.9) and (3.16) we obtain total OpVaR as

VaR+
t (κ) ∼

b∑

i=1

VaRi
t(κ) ∼

b∑

i=1

θi

(
λ t

1 − κ

)1/α

, κ ↑ 1 .

�

We conclude this session with an example showing that Corollary 3.6 does not hold

for every general dominating tail.

Example 3.11. [Weibull severities]

Consider a bivariate SCP model with completely dependent cells and assume that the

cells’ severities are Weibull distributed according to

F 1(x) = exp(−
√
x/2) and F 2(x) = exp(−

√
x) , x > 0 . (3.18)
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Note that F 1,2 ∈ S ∩ R∞. Equation (3.18) immediately implies that F 2(x) = o(F 1(x)).

We find that H(x1) = 3
2
x1 implying that F

+ ∈ S ∩R∞, since

F
+
(z) = exp(−

√
z/3) , z > 0 . (3.19)

It is remarkable that in this example the total severity (3.19) is heavier tailed than the

stand alone severities (3.18), i.e. F1,2(x) = o(F+(x)) as x → ∞. However, from

VaR1
t (κ) ∼ 2

[
ln

(
1 − κ

λ t

)]2

and VaR2
t (κ) ∼

[
ln

(
1 − κ

λ t

)]2

, κ ↑ 1 ,

we find that the stand alone VaRs are of the same order of magnitude:

lim
κ↑1

VaR2
t (κ)

VaR1
t (κ)

=
1

2
.

Nevertheless, equation (3.16) of Theorem 3.7 still holds,

VaR+
t (κ) ∼ 3

[
ln

(
1 − κ

λ t

)]2

= VaR1
t (κ) + VaR2

t (κ) , κ ↑ 1 .

�

3.4 Multivariate SCP Model with Independent Cells

Let us now turn to a multivariate SCP model where the cell processes Si, i = 1, . . . , d,

are independent and so any two of the component sample paths almost surely do not ever

jump together. Therefore, we may write the tail integral of S+ as

Π
+
(z) = Π([z,∞) × {0} × · · · × {0}) + · · ·+ Π({0} × · · · × {0} × [z,∞)) , z ≥ 0 .

Recall from Example 2.5 that in the case of independence all mass of the Lévy measure

Π is concentrated on the axes. Hence,

Π([z,∞) × {0} × · · · × {0}) = Π([z,∞) × [0,∞) × · · · × [0,∞)),

Π({0} × [z,∞) × · · · × {0}) = Π([0,∞) × [z,∞) × · · · × [0,∞)),
...

...

Π({0} × {0} × · · · × [z,∞)) = Π([0,∞) × [0,∞) × · · · × [z,∞)),

and we obtain

Π
+
(z) = Π([z,∞) × [0,∞) × · · · × [0,∞)) + · · ·+ Π([0,∞) × · · · × [0,∞) × [z,∞))

= Π1(z) + · · ·+ Πd(z) . (3.20)

Now we are in the position to derive an asymptotic expression for total OpVaR in the

case of independent cells.
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Theorem 3.12. [OpVaR for the independent SCP model] Consider a multivariate SCP

model with independent cell processes S1, . . . , Sd. Then S+ defines a one-dimensional SCP

model with parameters

λ+ = λ1 + · · ·+ λd and F
+
(z) =

1

λ+

[
λ1F 1(z) + · · ·+ λdF d(z)

]
, z ≥ 0 . (3.21)

If F 1 ∈ S ∩ (R∪R∞) and for all i = 2, . . . , d there exist ci ∈ [0,∞) such that

lim
x→∞

F i(x)

F 1(x)
= ci , (3.22)

then, setting Cλ = λ1 + c2λ2 + · · · + cdλd, total OpVaR can be approximated by

VaR+
t (κ) ∼ F←1

(
1 − 1 − κ

Cλ t

)
, κ ↑ 1 . (3.23)

Proof. From Proposition 3.2 we know that S+ is a compound Poisson process with

parameters λ+ (here following from (3.20)) and F+ as in (3.21) from which we conclude

lim
z→∞

F
+
(z)

F 1(z)
=

1

λ+
[λ1 + c2 λ2 + · · ·+ cd λd] =

Cλ

λ+
∈ (0,∞) ,

i.e.

F
+
(z) ∼ Cλ

λ+
F 1(z) , z → ∞ . (3.24)

In particular, F
+ ∈ S ∩ (R ∪ R∞) and S+ defines a one-dimensional SCP model. From

(2.7) and (3.24) total OpVaR follows as

VaR+
t (κ) ∼ F+←

(
1 − 1 − κ

λ+ t

)
∼ F←1

(
1 − 1 − κ

Cλ t

)
, κ ↑ 1 . �

Example 3.13. [Multivariate SCP model with independent cells]

(1) Assume that ci = 0 for all i ≥ 2; i.e. F i(x) = o(F 1(x)), i = 2, . . . , d. We then have

Cλ = λ1 and it follows from (3.23) that independent total OpVaR asymptotically equals

the stand alone OpVaR of the first cell. In contrast to the completely dependent case

(confer Proposition 3.9 and Example 3.11), this holds for the class S ∩ (R∪R∞) and not

only for F1 ∈ R.

(2) Consider a multivariate SCP model with independent cells and Pareto distributed

severities so that the constants ci of Theorem 3.12 are given by

lim
x→∞

F i(x)

F 1(x)
=

(
θi

θ1

)α

, i = 1, . . . , b , and lim
x→∞

F i(x)

F 1(x)
= 0 , i = b+ 1, . . . , d ,
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for some b ≥ 1. Then

Cλ =
b∑

i=1

(
θi

θ1

)α

λi

and the distribution tail F
+

satisfies

F
+
(z) =

1

λ+

b∑

i=1

λi

(
1 +

z

θi

)−α

∼ 1

λ+

b∑

i=1

λi θ
α
i z
−α , z → ∞ .

It follows that

VaR+
t (κ) ∼

(
t
∑b

i=1 λi θ
α
i

1 − κ

)1/α

=

(
b∑

i=1

(
VaRi

t(κ)
)α
)1/α

, κ ↑ 1 ,

where VaRi
t(κ) denotes the stand alone OpVaR of cell i according to (2.9). For identical

cell frequencies λ := λ1 = · · · = λb this further simplifies to

VaR+
t (κ) ∼

(
λ t

1 − κ

)1/α
(

b∑

i=1

θα
i

)1/α

, κ ↑ 1 .

�

Example 3.14. [Continuation of Example 3.11]

Consider a bivariate SCP model with independent cells and Weibull distributed severities

according to (3.18). Accoding to Theorem 3.12 we have Cλ = λ1 and independent total

OpVaR is asymptotically given by

VaR+
t (κ) ∼ VaR1

t (κ) ∼ 2

[
ln

(
1 − κ

λ t

)]2

, κ ↑ 1 .

�

3.5 Multivariate SCP Models of Regular Variation

As the notion of regular variation has proved useful for one-dimensional cell severity

distributions, it seems natural to exploit the corresponding concept for the multivariate

model. The following definition extends regular variation to the Lévy measure, which

is our natural situation; the books Resnick [22, 23] are useful sources for insight into

multivariate regular variation.

To simplify notation we denote by E := [0,∞]d \ {0}, where 0 is the zero vector in R
d.

Then we introduce for x ∈ E the complement

[0, x]c := E \ [0, x] = {y ∈ E : max
1≤i≤d

yi

xi
> 1} .
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We also recall that a Radon measure is a measure, which is finite on all compacts. Finally,

henceforth all operations and order relations of vectors are taken componentwise.

As already mentioned in Remark 2.9 (e), multivariate regular variation is best formu-

lated in terms of vague convergence of measures. For spectrally positive Lévy processes we

work in the space of non-negative Radon measures on E. From Lemma 6.1 of Resnick [23],

p. 174, however, it suffices to consider regions [0, x]c for x ∈ E which determine the con-

vergence, and this is how we formulate our results.

Definition 3.15. [Multivariate regular variation]

(a) Let Π be a Lévy measure of a spectrally positive Lévy process in R
d
+. Assume that

there exists a function b : (0,∞) → (0,∞) satisfying b(t) → ∞ as t → ∞ and a Radon

measure ν on E, called the limit measure, such that

lim
t→∞

tΠ([0, b(t) x]c) = ν([0, x]c) , x ∈ E . (3.25)

Then we call Π multivariate regularly varying.

(b) The measure ν has a scaling property: there exists some α > 0 such that for every

s > 0

ν([0, sx]c) = s−αν([0, x]c) , x ∈ E , (3.26)

i.e. ν([0, ·]c) is homogeneous of order −α, and Π is called multivariate regularly varying

with index −α.

Remark 3.16. (a) In (3.25), the scaling of all components of the tail integral by the

same function b(·) implies

lim
x→∞

Πi(x)

Πj(x)
= cij ∈ [0,∞] ,

for 1 ≤ i, j ≤ d. We now focus on the case that all Πi are tail-equivalent, i.e. cij > 0 for

some i, j. In particular, we then have marginal regular variation Πi ∈ R−α with the same

tail index, and thus for all i = 1, . . . , d

lim
t→∞

tΠi(b(t) x) = ν([0,∞] × · · · × (x,∞] × [0,∞] × · · · × [0,∞])

= νi(x,∞] = ci x
−α , x > 0 , (3.27)

for some ci > 0.

(b) Specifically, if Π1 is standard regularly varying (i.e. with index α = 1 and slowly

varying function L ≡ 1), we can take b(t) = t.

(c) There exists also a broader definition of multivariate regular variation which allows for

different αi in each marginal; see Theorem 6.5 of Resnick [23], p. 204. However, we have

already dealt with the situation of dominant marginals and, hence, the above definition

is the relevant one for us. �
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From the point of view of dependence structure modeling, multivariate regular varia-

tion is basically a special form of multivariate dependence. Hence, a natural question in

this context is how multivariate regular variation is linked to the dependence concept of

a Lévy copula.

Theorem 3.17. [Lévy copulas and multivariate regular variation] Let Π be a multivariate

tail integral of a spectrally positive Lévy process in R
d
+. Assume that the marginal tail

integrals Πi are regularly varying with index −α. Then the following assertions hold.

(1) If the Lévy copula Ĉ is a homogeneous function of order 1, then Π is multivariate

regularly varying with index −α.

(2) The tail integral Π is multivariate regularly varying with index −α if and only if the

Lévy copula Ĉ is regularly varying with index 1; i.e.

lim
t→∞

Ĉ(t (x1, . . . , xd))

Ĉ(t (1, . . . , 1))
= g(x1, . . . , xd) , (x1, . . . , xd) ∈ [0,∞)d , (3.28)

and g(s x) = s g(x) for x ∈ [0,∞)d.

Proof. (1) For any Lévy copula Ĉ, we can write the Lévy measure Π([0, x]c) for x ∈ E

as

Π([0, x]c) = Π{y ∈ E : y1 > x1 or · · · or yd > xd}

=

d∑

i=1

Πi(xi) −
d∑

i1,i2=1

i1<i2

Ĉ(Πi1(xi1),Πi2(xi2))

+

d∑

i1,i2,i3=1

i1<i2<i3

Ĉ(Πi1(xi1),Πi2(xi2),Πi3(xi3))

+ · · ·+ (−1)d−1Ĉ(Πi1(xi1), . . . ,Πid(xid)) .

The homogeneity allows interchange of the factor t with Ĉ, which, together with marginal

regular variation as formulated in (3.27), yields the limit as in (3.25):

lim
t→∞

tΠ([0, b(t) x]c) =

d∑

i=1

νi(xi,∞] −
d∑

i1,i2=1

i1<i2

Ĉ(νi1(xi1 ,∞], νi2(xi2 ,∞])

+ · · ·+ (−1)d−1 Ĉ(νi1(xi1 ,∞], . . . , νid(xid ,∞])

= ν{y ∈ E : y1 > x1 or · · · or yd > xd}
= ν([0, x]c) , x ∈ E . (3.29)

(2) This follows from the same calculation as in the proof of (1) by observing that asymp-

totic interchange of the factor t with Ĉ is possible if and only if (3.28) holds. �
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Remark 3.18. (a) For definition (3.28) of multivariate regular variation of arbitrary

functions we refer to Bingham et al. [5], Appendix 1.4.

(b) The general concept of multivariate regular variation of measures with possibly dif-

ferent marginals requires different normalizing functions b1(·), . . . , bd(·) in (3.25). In that

case marginals are usually transformed to standard regular variation with α = 1 and

L ≡ 1. In this case the scaling property (3.26) in the limit measure ν always scales with

α = 1. This is equivalent to all marginal Lévy processes being one-stable. In this situation

the multivariate measure ν defines a function ψ(x1, . . . , xd), which models the depen-

dence between the marginal Lévy measures, and which is termed a Pareto Lévy copula

in Klüppelberg and Resnick [16] as well as in Böcker and Klüppelberg [8]. Furthermore,

according to Corollary 3.2 of [16], the limit measure ν is the Lévy measure of a one-stable

Lévy process in R
d
+ if and only if all marginals are one-stable and the Pareto Lévy copula

ψ is homogeneous of order -1 (cf. Theorem 3.17 for the classical Lévy copula). In the

context of multivariate regular variation this approach seems to be more natural than the

classical Lévy copula with Lebesgue marginals. �

We now want to apply the results above to the problem of calculating total OpVaR.

Assume that the tail integral Π is multivariate regularly varying according to (3.25),

implying tail equivalence of the marginal severity distributions. We then have the following

result:

Theorem 3.19. [OpVaR for the SCP model with multivariate regular variation] Consider

an SCP model with multivariate regularly varying cell processes S1, . . . , Sd with index

−α and limit measure ν in (3.25). Assume further that the severity distributions Fi for

i = 1, . . . , d are strictly increasing and continuous. Then, S+ is compound Poisson with

F
+
(z) ∼ ν+(1,∞]

λ1

λ+
F 1(z) ∈ R−α , z → ∞ , (3.30)

where ν+(z,∞] = ν{x ∈ E :
∑d

i=1 xi > z} for z > 0. Furthermore, total OpVaR is

asymptotically given by

VaRt(κ) ∼ F←1

(
1 − 1 − κ

t λ1 ν+(1,∞]

)
, κ ↑ 1 . (3.31)

Proof. First recall that multivariate regular variation of Π implies regular variation of

the marginal tail integrals, i.e. Πi ∈ R−α for all i = 1, . . . , d. In analogy to relation (3.8)

of Klüppelberg and Resnick [16], we can calculate the limit measure ν+ of the tail integral

Π
+

by

lim
t→∞

tΠ
+
(b(t) z) = ν+(z,∞]

= ν{x ∈ E :

d∑

i=1

xi > z} = z−αν{x ∈ E :

d∑

i=1

xi > 1} ,
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i.e. Π
+

and thus F
+

are regularly varying of index −α. Now we can choose b(t) so that

limt→∞ tΠ1(b(t)) = 1 and thus

lim
z→∞

Π
+
(z)

Π1(z)
= lim

t→∞

tΠ
+
(b(t))

tΠ1(b(t))
= ν+(1,∞] .

Relation (3.30) follows immediately, and (3.31) by Theorem 2.15(1). �

There are certain situations, where the limit measure ν+(1,∞] and so also total OpVaR

can be explicitly calculated. In the following example we present a result for d = 2.

Example 3.20. [Clayton Lévy copula]

The Clayton Lévy copula is for δ > 0 defined as

Ĉ(u1, . . . , ud) = (u−δ
1 + · · · + u−δ

d )−1/δ , u1, . . . , ud ∈ (0,∞) .

In Figure 3.21 we show sample paths of two dependent compound Poisson processes,

where the dependence is modelled via a Clayton Lévy copula for different parameter

values. With increasing dependence parameter δ we see more joint jumps.

Note that Ĉ is homogenous of order 1. Hence, from Theorem 3.17, if Πi ∈ R−α for some

α > 0 the Lévy measure is multivariate regularly varying with index −α. To calculate

ν+(1,∞], we follow Section 3.2 of [16]. According to Remark 3.16 (a) we can set

lim
x→∞

Π2(x)

Π1(x)
= c ∈ (0,∞) , (3.32)

i.e. we assume that both tail integrals are tail-equivalent. Choosing Π1(b(t)) ∼ t−1 we

have

lim
t→∞

tΠ1(b(t)x1) = ν1(x1,∞] = x−α
1

and

lim
t→∞

tΠ2(b(t)x2) = lim
t→∞

Π2(b(t)x2)

Π1(b(t))
= lim

u→∞

Π2(ux2)

Π2(u)

Π2(u)

Π1(u)
= c x−α

2 .

Then we obtain from (3.29) we obtain for d = 2

ν([0, (x1, x2)]
c) = x−α

1 + c x−α
2 −

[
xαδ

1 + c−δ xαδ
2

]−1/δ
, x1 > 0, x2 > 0 .

By differentiating we obtain the density ν ′ for 0 < δ < ∞ (the completely positive

dependent case (δ → ∞) and the independent case (δ → 0) are not covered by the

following calculation) as

ν ′(x1, x2) = c−δ α2(1 + δ) x
−α(1+δ)−1
1 xαδ−1

2

(
1 + c−δ

(x2

x1

)αδ
)−1/δ−2

, x1 > 0, x2 > 0 .
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We then can write

ν+(1,∞] = ν{(x1, x2) ∈ E : x1 + x2 > 1}

= ν((1,∞] × [0,∞]) +

∫ 1

0

∫ ∞

1−x1

ν ′(x1, x2) dx2 dx1

= ν1(1,∞] +

∫ 1

0

∫ ∞

1−x1

ν ′(x1, x2) dx2 dx1

= 1 + α

∫ 1

0

(
1 + c−δ

( 1

x1

− 1
)αδ
)−1/δ−1

x−1−α
1 dx1 ,

and substituting v = 1
x1

− 1 we obtain

ν+(1,∞] = 1 + α

∫ ∞

0

(
1 + c−δvαδ

)−1/δ−1
(1 + v)α−1dv

= 1 + c1/α

∫ ∞

0

(
1 + sδ

)−1/δ−1
(c1/α + s−1/α)α−1ds . (3.33)

Since g(y) := (1 + yδ)−1/δ−1, y > 0, is the density of a positive random variable Yδ, we

finally arrive at

ν+(1,∞] = 1 + c1/α E[(c1/α + Y
−1/α
δ )α−1]

=: 1 + c1/α C(α, δ) .

Then, an analytical approximation for OpVaR follows together with expression (3.31),

VaR+
t (κ) ∼ F←1

(
1 − 1 − κ

λ1(1 + c1/αC(α, δ)) t

)
, κ ↑ 1 . (3.34)

Note that VaR+
t (κ) increases with C(α, δ, c, λ1, λ2). For α = 1 the constant C(1, δ) = 1

implies that total OpVaR for all Clayton parameters in the range 0 < δ <∞ is given by

VaR+
t (κ) ∼ F←1

(
1 − 1 − κ

λ1(1 + c) t

)
= F←1

(
1 − 1 − κ

(λ1 + c2λ2) t

)
, κ ↑ 1 ,

which is (independent of the dependence parameter δ) equal to the independent OpVaR

of Theorem 3.12. Note also the relation c = λ2/λ1c2 between the different constants

in (3.22) and (3.32). Furthermore, ν+(1,∞] is greater or less than 2, according as α is

greater or less than 1, respectively. If α δ = 1 we can solve the integral in (3.33) (similarly

to Example 3.8 of Bregman and Klüppelberg [9]) and obtain

ν+(1,∞] =
c1−1/α − 1

c1/α − 1
.

�
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Figure 3.21. Two-dimensional LDA Clayton-1/2-stable model (the severity distribution belongs to

R−1/2) for different dependence parameter values. Left column: compound processes, right column: fre-

quencies and severities.

Upper row: δ = 0.3 (low dependence), middle row: δ = 2 (medium dependence), lower row: δ = 10 (high

dependence).
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