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Abstract

C. Czado, R. Kastenmeier, E. C. Brechmann, A. Min. A Mixed Copula Model

for Insurance Claims and Claim Sizes. Scandinavian Actuarial Journal. A crucial

assumption of the classical compound Poisson model of Lundberg (1903) for assess-

ing the total loss incurred in an insurance portfolio is the independence between

the occurrence of a claim and its claims size. In this paper we present a mixed

copula approach suggested by Song et al. (2009) to allow for dependency between

the number of claims and its corresponding average claim size using a Gaussian

copula. Marginally we permit for regression effects both on the number of incurred

claims as well as its average claim size using generalized linear models. Parameters

are estimated using adaptive versions of maximization by parts (Song et al. 2005).

The performance of the estimation procedure is validated in an extensive simula-

tion study. Finally the method is applied to a portfolio of car insurance policies,

indicating its superiority over the classical compound Poisson model. Key words:

GLM, copula, maximization by parts, number of claims, average claim size, total

claim size.
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1 Introduction

Total loss estimation in non-life insurance is an important task of actuaries, e.g., to

calculate premiums and price reinsurance contracts. A solid estimation of total loss

distributions in an insurance portfolio is therefore essential and can be carried out

based on models for average claim size and number of claims. In the classical com-

pound Poisson model going back to Lundberg (1903) average claim size and number

of claims are assumed to be independent, where claim sizes follow a Gamma distri-

bution, while the number of claims is modeled by a Poisson distribution. However,

this independence assumption may not always hold. Gschlößl and Czado (2007),

for instance, analyze a comprehensive car insurance data set using a full Bayesian

approach. In their analysis, they allow for some dependency between the average

claim size and the number of claims and detect that this dependency turns out to

be significant.

Based on an arbitrary set of covariates, we construct a bivariate regression model

for average claim size and number of claims allowing for dependency between both

variables of interest. Ng et al. (2007) model both numerical and categorical variables

by a semi-supervised regression approach. Using Least Squares and K-Modes (a

clustering algorithm following the K-Means paradigm) they construct a flexible

algorithm that allows to capture dependencies by building clusters. If the variables

of interest are count variables, Wang et al. (2003) show how to construct a bivariate

zero-inflated Poisson regression model. Their model for injury counts explicitly takes

into account a possible high number of observed zeros which is likely to be observed

in an insurance portfolio too.

In Song (2000) a large class of multivariate dispersion models is constructed

by linking univariate dispersion models (e.g., Poisson, Normal, Gamma) with a

Gaussian copula. These models are marginally closed, i.e., their marginals belong

to the same distribution class as the multivariate model, and readily yield a flexible

class to model error distributions of generalized linear models (GLM’s). Based on

this work, Song (2007) and Song et al. (2009) develop a multivariate analogue

of univariate GLM theory with joint models for continuous, discrete, and mixed

outcomes (so-called Vector GLM’s). These models have the advantage of being

marginally closed and thus allowing for a marginal representation of the regression

coefficients.

GLM’s are widely used for actuarial problems. For an overview and discussion of

several applications see Haberman and Renshaw (1996). The authors, among other

things, build a model for premium rating in non-life insurance using models for

average claim size and claim frequency. A more detailed analysis on this issue can be

found in Renshaw (1994) who considers the influence of covariates on average claim

size and claim frequency. Taylor (1989) and Boskov and Verrall (1994) fit adjusted

loss ratios with spline functions and a spatial Bayesian model, respectively. However,

Boskov and Verrall (1994) conclude that the separate modeling of claim size and

claim frequency is preferable. Based on the compound Poisson model, Jørgensen

and de Souza (1994) and Smyth and Jørgensen (2002) although use a non-separate

approach to model the claim rate. On the other hand, Dimakos and Frigessi (2002)

model claim size and claim frequency separately, but rely on the independence
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assumption of the classical model by Lundberg (1903). Gschlößl and Czado (2007)

relax this assumption a bit by allowing the number of claims to enter as a covariate

into the model for average claim size. In order to allow for more general dependency

we construct a joint regression model by linking a marginal Gamma GLM for the

average claim size and a marginal Poisson GLM for the number of claims with a

Gaussian copula using the mixed copula approach described above. To estimate the

model parameters we develop a new algorithm based on the maximization by parts

algorithm, first introduced by Song et al. (2005).

The paper is organized as follows. In Section 2 we construct the mixed copula

regression model for average claim size and number of claims. Subsequently an

algorithm for parameter estimation in this model is developed in Section 3. We

examine this algorithm by means of a simulation study in Section 4. The application

of our model to a full comprehensive car insurance data set is presented in Section

5. We compare our results to the classical independent model and finally summarize

and discuss our approach.

2 Mixed copula regression model

We are interested in constructing a bivariate model, where the margins follow gener-

alized linear regression models (GLM’s). This allows to model dependence between

the two components. In particular we are interested in allowing for a Poisson re-

gression and a Gamma regression component. The Poisson regression component

represents the number of claims in a group of policy holders of specified characteris-

tics captured in exogenous factors, while the Gamma regression component models

the corresponding average claim size of the group. For this we follow the mixed

copula approach of Song (2007).

First we specify the marginal distributions. For this let Yi1 ∈ R+, i = 1, 2, . . . , n,

be independent continuous random variables and Yi2 ∈ N0, i = 1, 2, . . . , n, inde-

pendent count random variables. Marginally we assume the following two GLM’s

specified by

Yi1 ∼ Gamma(µi1, ν
2) with ln(µi1) = xi

′α, (2.1)

Yi2 ∼ Poisson(µi2) with ln(µi2) = ln(ei) + zi
′β, (2.2)

where xi ∈ Rp are covariates for the continuous variable Yi1 and zi ∈ Rq are

covariates for the count variable Yi2, respectively. In the Poisson GLM we use the

offset ln(ei), where ei gives the known time length in which events occur. In our

application this corresponds to the total time members of a policy group with specific

characteristics were insured. The density of the Gamma(µi1, ν
2) distribution is

specified as

g1(yi1|µi1, ν
2) :=

1

Γ( 1
ν2
)

(
1

µi1ν2

)1/ν2

y
1/ν2−1
i1 e

− 1

µi1ν
2

yi1
,

with µi1 := E[Yi1] and V ar[Yi1] = µ2
i1ν

2. G1(·|µi1, ν) denotes the cumulative dis-

tribution function (cdf) of Yi1. Further, we assume that the parameter ν is known
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and does not need to be estimated in the joint regression model. In our example

we choose the parameter ν as the dispersion parameter which is estimated in the

marginal Gamma GLM. This means that we assume that the signal-to-noise ratio

E[Yi1]/
√

V ar[Yi1] = 1/ν is equal in both models.

The probability mass function of the Poisson(µi2) distribution is denoted by

g2(yi2|µi2) =

{

0 for yi1 < 0;
1

yi2!
µy
i2 e−µi2 for yi2 = 0, 1, 2, . . . ,

and the corresponding cdf is given by by G2(·|µi2).

To construct the joint distribution function of Yi1 and Yi2 with the two marginal

regression models given in (2.1) and (2.2), we adopt a mixed copula approach.

For this we choose the bivariate Gaussian copula cdf C(·, ·|ρ) as copula function

because it is well investigated and directly interpretable in terms of the correlation

parameter. Then, by applying Sklar’s theorem (Sklar 1959), a joint distribution

function for Yi1 and Yi2 can be constructed as

F (yi1, yi2|µi1, ν, µi2, ρ) = C(ui1, ui2|ρ) = Φ2{Φ−1(ui1),Φ
−1(ui2)|Γ}, (2.3)

where ui1 := G1(yi1|µi1, ν
2) and ui2 := G2(yi2|µi2). Φ(·) denotes the (univariate)

standard normal cdf, while Φ2(·, ·|Γ) is the bivariate normal cdf with covariance

matrix Γ :=
( 1 ρ
ρ 1

)
and Pearson correlation ρ between the two normal scores qi1 :=

Φ−1(ui1) and qi2 := Φ−1(ui2). We like to note that the copulas in Sklar’s theorem

is no longer unique for discrete margins (see also Genest and Neslehova (2007)).

However (2.3) still provides a valid distribution function.

Then, according to equation (6.9) in Song (2007), the joint density function of

the continuous margin Yi1 and the discrete margin Yi2 is given by

f(yi1, yi2|µi1, ν, µi2, ρ) = g1(yi1|µi1, ν
2)
[
C ′
1(ui1, ui2|ρ)− C ′

1(ui1, u
−
i2|ρ)

]
, (2.4)

where C ′
1(ui1, ui2|ρ) := ∂

∂u1
C(u1, ui2|ρ)

∣
∣
∣
u1=ui1

and C ′
1(ui1, u

−
i2|ρ) := ∂

∂u1
C(u1, u

−
i2|ρ)

∣
∣
∣
u1=ui1

with u−i2 := G2(yi2 − 1|µi2). This equation can be read as

f(yi1, yi2|µi1, ν, µi2, ρ) = g1(yi1|µi1, ν
2)fYi2|Yi1

(yi2|yi1, µi1, ν, µi2, ρ),

where fYi2|Yi1
(·|yi1, µi1, ν, µi2, ρ) is the conditional density of Yi2 given Yi1. We can

simplify this (see Lemma 1 in the Appendix) to

f(yi1, yi2|µi1, ν, µi2, ρ) =







g1(yi1|µi1, ν
2)Dρ(G1(yi1|µi1, ν

2), G2(yi2|µi2)), if yi2 = 0;

g1(yi1|µi1, ν
2)[Dρ(G1(yi1|µi1, ν

2), G2(yi2|µi2))

−Dρ(G1(yi1|µi1, ν
2), G2(yi2 − 1|µi2))], if yi2 ≥ 1;

,(2.5)

where

Dρ(u1, ui2) := Φ

(

qi2 − ρq1
√

1− ρ2

)

= Φ

(

Φ−1(ui2)− ρΦ−1(u1)
√

1− ρ2

)

.

For determining the total claim size distribution we only consider the groups of

policy holders with at least one single claim. Therefore we use the log-likelihood
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conditional on at least one observed (ascertained) claim as basis for our inference.

Let y := (y1
′, · · · ,yn

′)′ with yi = (yi1, yi2)
′ be observed pairs of Gamma-Poisson

distributed response variables, where yi1 is the Gamma distributed margin and

yi2 denotes the Poisson distributed margin. Further let θ := (α′,β′, γ)′ be the

unknown parameter vector with γ ∈ R being Fisher’s z-transformation of ρ, i.e.,

γ = 1
2 ln

1+ρ
1−ρ . Additionally, we define the design matrices X := (x1, . . . ,xn)

′ and
Z := (z1, . . . , zn)

′, where xi and zi denote covariate vectors associated to yi1 and

to yi2 including intercepts, respectively. Further let J := {i|i = 1, . . . , n; yi2 ≥ 1}
be the index set of all observations with yi2 ≥ 1 and ZJ and XJ the design

matrices restricted to the set J . Therefore the likelihood function conditional on

yi2 ≥ 1, ∀i ∈ J is given by

Lc(θ|y,XJ ,ZJ ) =
∏

i∈J

f(yi1, yi2|µi1, ν, µi2, ρ)

[1− g2(0, µi2)]
, (2.6)

and the conditional log-likelihood has the form

lc(θ|y,XJ ,ZJ )) = ln(Lc(θ|y,XJ ,ZJ )

= −
∑

i∈J
ln{1− g2(0, µi2)}+

∑

i∈J
ln{g1(yi1|µi1, ν

2)} (2.7)

+
∑

i∈J
ln{Dρ(G1(yi1|µi1, ν

2), G2(yi2|µi2))−Dρ(G1(yi1|µi1, ν
2), G2(yi2 − 1|µi2))},

with µi1 = exi
′α and µi2 = eln(ei)+zi

′β. In the following we use Lc(θ) and lc(θ) as

abbreviations of the conditional likelihood (2.6) and the conditional log-likelihood

(2.7), respectively.

3 Maximization by Parts Algorithm

Maximization by Parts (MBP) is a fix-point algorithm to solve a score equation for

the maximum likelihood estimator (MLE) published in Song et al. (2005). For this

method no second order derivatives of the full likelihood are necessary and, while

standard maximum likelihood algorithms are well developed for “standard” models,

this is not the case for our high-dimensional mixed copula regression model (in our

application we have 68 parameters!). The good performance of MBP compared to

alternative methods is shown, e.g., in Zhang et al. (2011) for Student t-copula based

models and in Liu and Luger (2009) for copula-GARCH models.

The log likelihood function is decomposed into two parts, which are often quite

natural, e.g., for copulas and the marginal densities. The first part of the decom-

position has to be simple to maximize, i.e., it is straightforward to get the second

order derivative. The second part is used to update the solution of the first part to

get an efficient estimator and does not require second order derivatives. Here, we

employ a variation of the MBP algorithm considered on page 1149 of Song et al.

(2005).

We apply the MBP algorithm to maximize our log-likelihood (2.7) and to de-

termine the MLE of θ = (α′,β′, γ)′ ∈ Rp+q+1. Thus we decompose θ = (θ1
′,θ2

′)′
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with θ1 = (α′,β′)′ ∈ Rp+q and θ2 = γ ∈ R. This leads to a first decomposition

lc(θ) = ln(Lc(θ)) = lcm(θ1) + lcd(θ1, γ) (3.1)

for the conditional log-likelihood, where we define

lcm(θ1) := ln(Lc
m(θ1)) := −

∑

i∈J
ln(1− e−µi2) +

∑

i∈J
ln(g1(yi1|µi1, ν

2))

and

lcd(θ1, γ) := ln(Lc
d(θ1, γ)) :=

∑

i∈J
ln{Dρ(G1(yi1|µi1, ν), G2(yi2|µi2))

−Dρ(G1(yi1|µi1, ν), G2(yi2 − 1|µi2))}.

On the one hand, lcm(θ1) contains the marginal part of the conditional log-likelihood

and is independent of γ, the Fisher transformation of the copula parameter ρ. On

the other hand, lcd(θ1, γ) contains the copula part of the conditional log-likelihood

and depends on γ, i.e., on the correlation parameter ρ.

For the MBP algorithm we need the score functions of lcm(θ1) and lcd(θ1, γ).

Using the following abbreviations

Gi1 := G1(yi1|µi1, ν), Gi2 := G2(yi2|µi2),

G−
i2 := G2(yi2 − 1|µi2), dρ(u1, u2) := φ

(

Φ−1(u2)− ρΦ−1(u1)
√

1− ρ2

)

,

where φ(·) denotes the density of the standard normal distribution, it follows using

differentiation that

∂

∂α
lcm(θ1) =

∑

i∈J

∂ ln(g1(yi1|µi1, ν
2))

∂α
=
∑

i∈J

1

g1(yi1|µi1, ν2)

∂g1(yi1|µi1, ν
2)

∂µi1

∂µi1

∂α

=
∑

i∈J

1

g1(yi1|µi1, ν2)

1

µ2
i1ν

2
g1(yi1|µi1, ν

2) (yi1 − µi1) µi1 xi,

=
1

ν2

∑

i∈J
xi µ

−1
i1 (yi1 − µi1).

Similarly, we get

∂

∂β
lcm(θ1) = −

∑

i∈J
zi

µi2

eµi2 − 1
.

As already mentioned we need second order derivatives for lcm(θ1) of the MBP

algorithm. Straightforward differentiation gives

Ic
m(θ1) := −m−1E

[
∂2lcm(θ1)

∂θ1∂θ1
′

]

= m−1

(
1
ν2
∑

i∈J xixi
′ 0p×q

0q×p
∑

i∈J zi
µi2(e

µi2−1−µi2e
µi2 )

(eµi2−1)2
zi

′

)

,
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where m is the number of elements in J . We also need the score function of the

dependency part lcd(θ1, γ). Thus we have to compute

∂ lcd(θ1, γ)

∂θ
=
(

∂
∂α lcd(θ1, γ),

∂
∂β

lcd(θ1, γ),
∂
∂γ l

c
d(θ1, γ)

)
′.

These partial derivatives are given by (see Lemma 4 in the Appendix)

∂

∂α
lcd(θ1, γ) =

∑

i∈J

dρ(Gi1, Gi2)− dρ(Gi1, G
−
i2)

Dρ(Gi1, Gi2)−Dρ(Gi1, G
−
i2)

G∗
i1 −Gi1

φ(Φ−1(Gi1))

−ρ
√

1− ρ2
xi,

∂

∂β
lcd(θ1, γ) =

∑

i∈J

1

Dρ(Gi1, Gi2)−Dρ(Gi1, G
−
i2)

[

dρ(Gi1, Gi2−)
g2(yi2 − 1|µi2)

φ(Φ−1(G−
i2))

−dρ(Gi1, Gi2)
g2(yi2|µi2)

φ(Φ−1(Gi2))

]
µi2

√

1− ρ2
zi,

∂

∂γ
lcd(θ1, γ) =

∑

i∈J

1

Dρ(Gi1, Gi2)−Dρ(Gi1, G
−
i2)

{
dρ(Gi1, Gi2)[ρΦ

−1(Gi2)− Φ−1(Gi1)]

−dρ(Gi1, G
−
i2)[ρΦ

−1(G−
i2)− Φ−1(Gi1)]

} 1
√

1− ρ2
.

For the convergence of the MBP algorithm Song et al. (2005) common regularity

conditions as well as information dominance (see condition (B) on page 1148 of Song

et al. (2005)) are needed. Empirical evidence showed that an initial MBP algorithm

based on (3.1) does not satisfy information dominance, therefore we modify our

initial decomposition. For this we expand our conditional likelihood (2.6) by

Lw(θ1) =
∏

i∈J
|det(Σw)|−

1

2 exp

{

−1

2
(yi − µ)′Σ−1

w (yi − µ)

}

,

with µ = (µi1, µi2)
′ and Σw =

( 1 ρw
ρw 1

)
. The correlation ρw can be pre-specified

at a value estimated from a preliminary analysis of the data, but may be different

from the underlying correlation. Additionally, we expand our conditional likelihood

(2.6) by the likelihood of the marginal Poisson-GLM (2.2). So we get the expanded

likelihood L∗(θ) and its new decomposition as

L∗(θ) := Lc(θ)
Lw(θ1)

∏

i∈J g2(yi2|µi2)

Lw(θ1)
∏

i∈J g2(yi2|µi2)

= Lc
m(θ1)Lw(θ1)

∏

i∈J
g2(yi2|µi2)

︸ ︷︷ ︸

=:L∗

m(θ1)

Lc
d(θ1, γ)

Lw(θ1)
∏

i∈J g2(yi2|µi2)
︸ ︷︷ ︸

=:L∗

d
(θ1,γ)

.

The expanded log-likelihood l∗(θ) and its decomposition then have the form

l∗(θ) := ln(L∗
m(θ1))

︸ ︷︷ ︸

=:l∗m(θ1)

+ ln(L∗
d(θ1, γ))

︸ ︷︷ ︸

=:l∗
d
(θ1,γ)

,

with

l∗m(θ1) := lcm(θ1) + ln(
∏

i∈J
g2(yi2|µi2)) + ln(Lw(θ1))

l∗d(θ1, γ) := lcd(θ1)− ln(
∏

i∈J
g2(yi2|µi2))− ln(Lw(θ1))
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It is now easy to determine the corresponding first and second order derivatives of

l∗m(θ1) and l∗d(θ1, γ). In particular the Fisher information corresponding to l∗m(θ1)

is given by

I∗
m(θ1) := −m−1E

[
∂2l∗m(θ1)

∂θ1∂θ1
′

]

= Ic
m(θ1) +m−1

(

0p×p 0p×q

0q×p
∑

i∈J µi2zizi
′

)

+m−1
∑

i∈J

(

xi 0p
0q zi

)(

µi1 0

0 µi2

)

Σ−1
w

(

µi1 0

0 µi2

)(

xi 0p
0q zi

)′

.

Now we hope that the elements of I∗
m(θ1) are large enough to force convergence in

the Fisher scoring step of the MBP algorithm. Note that

lc(θ) = lcm(θ1) + lcd(θ1, γ) = l∗m(θ1) + l∗d(θ1, γ),

and hence

∂lc(θ)

∂θ1
=

∂lcm(θ1)

∂θ1
+

∂lcd(θ1, γ)

∂θ1
=

∂l∗m(θ1)

∂θ1
+

∂l∗d(θ1, γ)

∂θ1
.

Moreover, the expansions are independent of ρ or γ and therefore ∂l∗d(θ1, γ)/∂γ =

∂lcd(θ1, γ)/∂γ, which we already derived above. The applied MBP algorithm with

the expansion of the conditional log-likelihood then proceeds as follows:

Algorithm 1 (MBP algorithm for the Poisson-Gamma regression model)

Step 0 :

(i) The initial value for θ1 is θ0
1 = [α̂I

′, β̂I
′]′, where α̂I and β̂I are the MLE’s

of the regression coefficients α and β of independent GLM’s (2.1) and

(2.2).

(ii) The initial value for γ is γ0 the result of ∂lcd(θ
0
1, γ)/∂γ = 0 using bisection.

(iii) The pre-specified correlation ρw is the empirical correlation between Pois-

son and Gamma regression residuals determined in Step 0 (i).

Step k (k = 1, 2, 3, . . .) : First, we update θ1 by one step of Fisher scoring, i.e.,

θk
1 = θk−1

1 + {I∗
m(θk−1

1 )}−1









∂lc(θ)

∂θ1

∣
∣
∣
∣
θ1 = θk−1

1

γ = γk−1









.

Then, by solving ∂lcd(θ
k, γ)/∂γ = 0 using bisection, we obtain the new γk.

When the convergence criterion (e.g., ||θk − θk−1||∞ < 10−6) is met, the algorithm

stops and outputs an approximation of the MLE of θ = [θ1
′, γ]′. Since γ is scalar,
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∂lcd(θ
k, γ)/∂γ = 0 is a one-dimensional search and the bisection method (see, e.g.,

Burden and Faires (2004)) works efficiently.

Empirical experience shows that when the fix pre-specified ρw is not close enough

to the resulting MLE of ρ, the MBP algorithm presented above does not converge.

Hence, we modify the MBP algorithm further by updating ρw in each step. The

changes in the algorithm are as follows:

in Step 0 (iii) Set ρw := e2γ
0−1

e2γ
0
+1

.

in Step k (k = 1, 2, 3, . . .): Update ρw by setting ρkw := e2γ
k−1

e2γ
k
+1

.

In the next section we run a simulation study for the MBP algorithm with pre-

specified ρw and with the adapting ρw-update given above. This study shows that

both versions of the MBP algorithm provide similar results, but the version with

the adapting ρw-update has a better convergence behavior in small samples.

We close this section by providing standard error estimates for the MLE of

θ. According to Theorem 3 of Song et al. (2005) the MBP algorithm provides

an asymptotically normal distribution of the resulting MLE, which we can use to

estimate the standard error of the MLE. Let θ̂ be the resulting MLE of the θ

calculated by the MBP algorithm 1. For k → ∞ θ̂ has the asymptotic covariance

matrix

m−1I−1 = m−1E

[
∂2lc(θ)

∂θ∂θ′

∣
∣
∣
∣
θ=

ˆθ

]−1

,

where m denotes the number of elements in the index set J . An estimator for the

Fisher information matrix I of the conditional log-likelihood is

Î(θ̂) := Ic
m(θ̂) + Îc

d(θ̂), (3.2)

where

Îd(θ̂) := m−1
∑

i∈J
l′d(θ̂|yi,xi, zi) l

′
d(θ̂|yi,xi, zi)

′,

with l′d(θ̂|yi,xi, zi) :=
∂
∂θ

ld(θ̂|yi,xi, zi)
∣
∣
∣
θ=

ˆθ
.

The estimated standard error for θ̂ is then the square root of the diagonal ele-

ments of the matrix m−1Î(θ̂)−1.

4 Simulation study

In this section we study the small sample properties of the MLE’s in the Poisson-

Gamma regression model determined by the proposed MBP algorithms, one with a

fixed choice of ρw and one with an adaptive choice of ρw. We assume the constant

of variation ν in the marginal Gamma regression as known. Several values of ν are

studied. Overall 24 scenarios are investigated with a sample size of N = 1000 for the

Poisson-Gamma pairs. To estimate bias and mean squared error we performed 500

repetitions. For both marginal regression models we specify a single covariate and

9



allow for an intercept. Covariate values are chosen as i.i.d uniform(0,1) realizations

and remain fixed for all scenarios and repetitions, i.e., we have

µi1 = exp(α1 + xi2α2) and µi2 = exp(β1 + zi2β1),

with xi2 ∈ (0, 1) and zi2 ∈ (0, 1) for all i. For the regression parameter α =

(α1, α2)
′ of the marginal Gamma GLM we consider the values (1, 1)′ or (1, 3)′ so

that µi1 ∈ (2.72, 7.39) or µi1 ∈ (2.72, 54.60). For the regression parameter β =

(β1, β2)
′ we choose the values (−1, 3) or (−0.5, 3)′ so that µi2 ∈ (0.37, 7.39) or

µi2 ∈ (0.61, 12.18). For the correlation parameter ρ of the Gaussian copula we

consider 0.1 for a small, 0.5 for a medium and 0.9 for a high correlation. The values

of the constant coefficients of variation of the Gamma distribution ν are chosen in

such a way that the signal-to-noise ratio

snr :=
E[Yi1]

√

V ar[Yi1]
=

µi1

µi1ν
=

1

ν

is 1 or 2, i.e., we set ν = 0.5 or ν = 1. The chosen parameter combinations are

given in Table 1.

For each scenario we simulate correlated Poisson-Gamma regression responses

as follows: To generate a pair (yi1, yi2) of a marginally Gamma(µi1, ν) distributed

random variable Yi1 and a with ρ correlated marginally Poisson(µi2) distributed

random variable Yi2 we use the conditional probability mass function of the Poisson

variable Yi2 given the Gamma variable Yi1. The joint density function Yi1 and Yi2
is given in equation (2.5). Therefore the conditional probability mass of Yi2 given

Yi1 is given as

fYi2|Yi1
(yi2|yi1, µi1, ν, µi2, ρ) :=

f(yi1, yi2|µi1, ν, µi2)

g1(yi1|µi1, ν)
(4.1)

=







g1(yi1|µi1,ν)Dρ(G1(yi1|µi1,ν),G2(yi2|µi2))
g1(yi1|µi1,ν)

, if yi2 = 0;

g1(yi1|µi1,ν)[Dρ(G1(yi1|µi1,ν),G2(yi2|µi2))−Dρ(G1(yi1|µi1,ν),G2(yi2−1|µi2))]
g1(yi1|µi1,ν)

, if yi2 ≥ 1

=







Dρ(G1(yi1|µi1, ν), G2(yi2|µi2)), if yi2 = 0;

Dρ(G1(yi1|µi1, ν), G2(yi2|µi2))−Dρ(G1(yi1|µi1, ν), G2(yi2 − 1|µi2)), if yi2 ≥ 1.

The algorithm to generate a Gamma(µi1, ν) observation yi1 and a Poisson(µi2)

observation yi2 with correlation ρ then proceeds as follows:

Algorithm 2 (Generation of Correlated Gamma and Poisson Random Variables)

Step 1: Sample yi1 from a Gamma(µi1, ν) distribution.

Step 2: Calculate pk = fYi2|Yi1
(yi2 = k|yi1, µi1, ν, µi2, ρ) for k = 0, 1, . . . , k∗, where

pk∗ ≥ ε and pk∗+1 < ε, ε ∈ (0, 1).

Step 3: Sample yi2 from {0, 1, . . . , k∗} with P (Yi2 = k) = pk for k ∈ {0, 1, . . . , k∗}.
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Parameters

Scenario α1 α2 β1 β2 ρ ν

1 1.0 1.0 −1.0 3.0 0.1 0.5

2 1.0 1.0 −1.0 3.0 0.1 1.0

3 1.0 1.0 −0.5 3.0 0.1 0.5

4 1.0 1.0 −0.5 3.0 0.1 1.0

5 1.0 3.0 −1.0 3.0 0.1 0.5

6 1.0 3.0 −1.0 3.0 0.1 1.0

7 1.0 3.0 −0.5 3.0 0.1 0.5

8 1.0 3.0 −0.5 3.0 0.1 1.0

9 1.0 1.0 −1.0 3.0 0.5 0.5

10 1.0 1.0 −1.0 3.0 0.5 1.0

11 1.0 1.0 −0.5 3.0 0.5 0.5

12 1.0 1.0 −0.5 3.0 0.5 1.0

13 1.0 3.0 −1.0 3.0 0.5 0.5

14 1.0 3.0 −1.0 3.0 0.5 1.0

15 1.0 3.0 −0.5 3.0 0.5 0.5

16 1.0 3.0 −0.5 3.0 0.5 1.0

17 1.0 1.0 −1.0 3.0 0.9 0.5

18 1.0 1.0 −1.0 3.0 0.9 1.0

19 1.0 1.0 −0.5 3.0 0.9 0.5

20 1.0 1.0 −0.5 3.0 0.9 1.0

21 1.0 3.0 −1.0 3.0 0.9 0.5

22 1.0 3.0 −1.0 3.0 0.9 1.0

23 1.0 3.0 −0.5 3.0 0.9 0.5

24 1.0 3.0 −0.5 3.0 0.9 1.0

Table 1: Chosen parameter settings for 24 different scenarios studied.

The value of ε determines where we neglect the tail of the conditional distribution.

Pairs which result in a zero Poisson count were removed.

In the MBP algorithms we choose as stopping criterion ||θk
1 − θk−1

1 || < 10−3,

where θk
1 = (αk

1 , α
k
2 , β

k
1 , β

k
2 )

′ are the regression parameter after the k-th iteration,

and ||ρk − ρk−1|| < 10−4, where ρk denotes the correlation parameter after the k-th

iteration. In the version of the MBP algorithm with fixed ρw we set ρw equal to the

empirical correlation between the residuals of the marginal Gamma GLM and the

marginal Poisson GLM.

We generated 500 data sets for each scenario and calculated the relative bias

for all parameters as well as the maximum relative bias for each scenario. The

bias results are summarized in Table 2 assuming a fixed ρw and in Table 3 for the

adaptive ρw-update.

These bias results show a satisfactory small sample behavior of the MBP algo-

rithms. In particular 13 (15) scenarios using the MBP algorithm with pre-specified
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Relative bias in %

Scenario α1 α2 β1 β2 ρ ν max

1 1.17 −0.34 0.10 0.14 −6.62 −0.18 6.62

2 −0.19 0.59 −0.20 −0.07 −0.92 −0.20 0.92

3 0.65 −0.12 0.47 0.15 −4.01 −0.30 4.01

4 0.46 −0.95 −0.16 −0.03 −0.37 −0.17 0.95

5 1.28 −0.47 −0.39 −0.13 −4.83 −0.07 4.83

6 −0.20 −0.02 0.18 0.05 −1.68 −0.06 1.68

7 0.68 −0.29 2.05 0.41 −3.11 −0.04 3.11

8 −0.38 −0.04 0.61 0.10 1.28 −0.27 1.28

9 5.85 −1.42 −8.54 −2.46 −1.49 −0.08 8.54

10 0.38 −0.80 0.10 0.04 0.10 −0.05 0.80

11 3.67 −1.37 −6.87 −0.92 −0.40 0.00 6.87

12 −0.26 0.06 0.38 0.02 0.23 −0.03 0.38

13 6.04 −2.12 −5.11 −1.45 −0.89 −0.20 6.04

14 0.06 0.08 −0.13 −0.01 0.09 −0.29 0.29

15 3.34 −1.24 −4.19 −0.58 −0.45 −0.05 4.19

16 0.64 −0.38 −0.54 −0.11 0.04 0.05 0.64

17 5.88 −0.54 −14.08 −3.77 0.26 −0.11 14.08

18 −9.64 1.19 11.43 3.24 −0.44 −0.10 11.43

19 −0.89 −0.04 3.90 0.54 0.03 0.15 3.90

20 −15.54 0.27 33.99 5.36 −0.68 −0.15 33.99

21 5.68 −1.83 −7.32 −1.94 0.11 −0.07 7.32

22 −5.50 1.56 2.01 0.42 −0.27 −0.23 5.50

23 −0.35 0.23 −0.45 −0.12 0.03 0.13 0.45

24 −8.91 3.19 9.39 1.47 −0.23 −0.17 9.39

Table 2: Relative bias and maximal absolute relative bias per scenario of the MLE’s

determined by the MBP algorithm with fixed ρw for the parameters α1, α2, β1, β2, ρ and

ν over 24 scenarios.

12



Relative bias in %

Scenario α1 α2 β1 β2 ρ ν max

1 1.18 −0.17 −0.66 −0.25 −6.66 0.11 6.66

2 −0.71 1.22 −0.22 −0.08 1.72 −0.14 1.72

3 0.84 −0.40 1.09 0.23 −0.71 0.08 1.09

4 0.14 −0.09 0.06 −0.03 −1.17 −0.05 1.17

5 1.30 −0.43 −0.55 −0.22 −3.84 0.11 3.84

6 −0.66 0.45 −0.26 −0.09 1.47 −0.14 1.47

7 0.73 −0.28 1.21 0.25 0.60 0.08 1.21

8 0.22 −0.06 0.03 −0.03 −1.29 −0.05 1.29

9 5.92 −1.43 −8.73 −2.49 −1.56 −0.04 8.73

10 −0.16 0.35 0.44 0.18 −0.14 −0.11 0.44

11 3.91 −1.75 −8.06 −1.22 −0.49 0.13 8.06

12 −0.10 −0.41 0.74 0.15 −0.14 −0.22 0.74

13 6.17 −2.14 −5.23 −1.45 −1.07 −0.04 6.17

14 0.04 −0.00 0.41 0.17 −0.19 −0.11 0.41

15 3.39 −1.24 −4.54 −0.66 −0.38 0.13 4.54

16 −0.02 −0.17 0.69 0.14 −0.20 −0.22 0.69

17 6.16 0.41 −15.74 −4.24 0.30 0.02 15.74

18 −6.44 3.65 6.79 1.95 −0.22 −0.15 6.79

19 −1.04 2.44 0.08 0.05 −0.00 −0.29 2.44

20 −13.27 4.30 25.07 3.87 −0.49 −0.16 25.07

21 6.77 −2.13 −9.35 −2.59 0.07 0.02 9.35

22 1.38 −0.19 −1.34 −0.44 −0.00 −0.15 1.38

23 3.29 −0.47 −9.86 −1.45 0.07 −0.29 9.86

24 −0.09 0.59 −1.33 −0.30 −0.02 −0.16 1.33

Table 3: Relative bias and maximal absolute relative bias per scenario of the MLE’s

determined by the MBP algorithm with adaptive ρw-update for the parameters α1, α2,

β1, β2, ρ and ν over 24 scenarios.
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average claim size

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.01 2374.23 4195.27 5755.01 7272.75 49339.06

number of claims

1 2 3 4

# 12472 356 20 2

% 97.06 2.77 0.16 0.02

Table 4: Summary statistics of the responses in the original data set.

ρw (with adaptive ρw) show a maximum relative bias less than 5 %. A maximum

relative bias less than 10% is observed in 21 (22) scenarios for the MBP algorithm

with pre-specified ρw (with adaptive ρw). A relative bias larger than 10% is only ob-

served in scenarios with extreme correlation of ρ = 0.9 and small marginal Gamma

means.

More detailed results of the simulation study such as mean squared error esti-

mates can be found in Kastenmeier (2008) and show that especially in scenarios

with high correlated data, the adaptive ρw-update seems to improve the resulting

MLE’s. For medium to low correlated data the performances of the two versions of

the algorithm are almost identical.

5 Application

5.1 Data

The data set contains information on full comprehensive car insurance policies in

Germany in the year 2000. Each observation consists of the cumulative and average

claim size, the number of claims (which is at least one, as only those policies are

recorded) and the exposure time (since not all policies are valid for the whole year)

as well as several covariates such as type and age of the car, distance driven per

year, age and gender of the policyholder, the claim free years and the deductible. A

subset of this data set containing three types of midsized cars with a total of 12’850

policies is analyzed here. We are interested in the joint distribution of the number

of claims and the average claim size of a policy allowing for dependency between

both in order to estimate the expected total loss.

The average claim size of a policy is given in the currency of DM2. It is calculated

as the sum of the claim sizes of each policy claim divided by the number of claims.

The histogram of the observed average claim sizes in Figure 1 (left panel) shows a

right-skewed shape. The mean of the individual claim size (5’755.01 DM) is greater

than the median, but smaller than the third quartile (cp. Table 4), so that the

right-skewness is not extreme. As the largest observed claim size is only about

0.07% of the sum of all individual claim sizes, the data set does not contain extreme

values either. Therefore, there is no need to use a heavy tailed distribution and so

a Gamma model is an appropriate choice.

The range of the observed number of claims is very small and about 97 % of

the observed policies have one claim only (cp. Table 4). The maximum number

2’Deutsche Mark’ (DM) is the former German currency, which was replaced by the Euro in 2002 (1

DM =̂ 0.51 Euro). Here we also use abbreviation TDM for 1’000 DM.
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number of claims

1 2 3 4 5 6 7 8 9 10 11 12 13 14

# 5318 1249 462 238 131 63 61 39 32 13 17 8 3 2

% 69.40 16.30 6.03 3.11 1.71 0.82 0.80 0.51 0.42 0.17 0.22 0.10 0.04 0.03

15 16 17 18 19 20 21 22 26 27 30 31 50 -

# 5 1 6 1 3 2 2 2 1 1 1 1 1 -

% 0.07 0.01 0.08 0.01 0.04 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.01 -

Table 5: Absolute and relative frequencies of the occurring values of number of claims in

the aggregated data set.

of observed claims (four) occurs only twice. This extreme right-skewness results in

the fact that the mean is not only greater than the median, but also greater than

the third quartile. As we want to model the number of claims by a Poisson GLM,

we need a wider range of the observed number of claims and more observations

unequal to one in order to get good estimates for the model parameters. This

can be achieved by aggregating the policies according to categorical covariates and

summing up the number of claims of the policies in the same cell. The covariates we

use for the data aggregation are: age of policyholder, regional class, driven distance

per year, construction year of the car, deductible and premium rate. The resulting

aggregated data set contains 7’663 policy groups. Details regarding the aggregation

process and the covariate categories can be found in Kastenmeier (2008)3. As we

intended, the range of the number of claims is now wider than in the original data

set. The absolute and relative frequencies of the observed number of claims are

given in Table 5. We like to note that the covariates chosen for aggregation are

often used for pricing car insurance policies.

(Figure 1 about here.)

In Figure 1 (right panel) we have the histogram of average claim sizes of the

policy groups. The shape of the histogram is quite similar to the one of the histogram

of average claim sizes of each policy, given in the left panel of Figure 1. Hence the

assumption of a Gamma distribution for the average claim sizes is still appropriate.

By summing up the product of the average claim size and the number of claims of

the policy groups we obtain the total loss which is 76’071 TDM. Of course, the total

loss of the aggregated data set is equal to the one of the individual policies in the

original data set.

The plot of the number of claims against the average claim size of the policy

groups and the corresponding regression line in Figure 2 shows that the regression

line has a small positive slope. This is an indication for a positive correlation

between the number of claims and the average claim size. We also checked numerous

alternative aggregations to ensure that the positive slope is not due to the specific

chosen aggregation.

3Note that the data aggregation in this paper is slightly different from the one performed in Kasten-

meier (2008). In order to obtain more evenly spread age groups, we merged the youngest and the oldest

two of the age groups in the above thesis, respectively.
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(Figure 2 about here.)

In the following we use the new (aggregated) data set of the policy groups with

the objective to estimate the parameter of the joint distribution function of the

number of claims and the average claim size of the policy groups.

5.2 Model Selection

We now apply the mixed copula regression model of Section 2 to the average claim

size and the number of claims given in the aggregated data set described above.

To calculate the MLEs of the parameters α, β and ρ with Algorithm 1 we need

initial values αI and βI . As αI we take the MLE of the regression parameter

in the marginal Gamma GLM (2.1) applied to the average claim size. The MLE

of the regression parameter in the Poisson GLM (2.2) applied to the number of

claims is, however, not a good initial value βI for the MBP Algorithm, because

the data set contains only policy groups with at least one claim. Hence we use a

zero-truncated Poisson GLM (see Winkelmann (2008)), a GLM using the Poisson

distribution conditional on that the count variable is greater or equal to one, to

model the number of claims and take the resulting MLE of the regression parameter

in this GLM as the initial value βI . The probability mass of the Zero-truncated

Poisson distribution is given by

g2|Y >0(y|λ) := P (Y = y|Y > 0) =
P (Y = y)

P (Y > 0)
=

λy e−λ

y! (1− e−λ)
,

with mean E[Y |Y > 0] = λ/(1 − e−λ) and variance V ar[Y |Y > 0] = E[Y |Y >

0](1−e−λ−λe−λ)/(1−e−λ). Let yi ∈ N, i = 1, . . . , n, with yi > 0 be the observations

of Zero-truncated Poisson(λi)-distributed random variables Yi and let zi ∈ Rp be the

corresponding covariate vectors. The Zero-truncated Poisson GLM is then specified

by

Yi ∼ Zero− truncated Poisson(λi) with ln(λi) = ln(ei) + zi
′β, (5.1)

with regression parameter vector β ∈ Rp and offset ln(ei), where ei is the exposure

of Yi. The mean of Yi is then calculated as

µi := E[Yi|Yi > 0] =
λi

1− e−λi
=

eln(ei)+zi
′β

1− exp(−eln(ei)+zi
′β)

. (5.2)

The corresponding log-likelihood function is

l(β|y, Z) :=
n∑

i=1

yi ln(λi)− λi − ln(1− e−λi) + ln(yi!),

with y = (y1, . . . yn) and design matrix Z = (z1, . . . , zn)
′, where λi = exp(ln(ei) +

zi
′β). Details about the construction of the Zero-truncated Poisson GLM are given

in Kastenmeier (2008).

To construct the joint Gamma-Poisson regression model we dummy code the

covariates. The dummy variables of the covariates categories are marked with the
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prefix d.. The categories of each covariate and the corresponding dummy variable

can be found in Kastenmeier (2008). Note that there is one dummy variable less for

each covariate than there are covariate categories. In the model selection we consider

only those covariates for which there is at least one corresponding dummy variable

which is significant at the 5%-level (which is equivalent to a t-value greater than

1.96 or a p-value smaller than 0.05). As stopping criterion for the MBP algorithm

we choose ||θk
1−θk−1

1 || < 10−3, where θk
1 = (αk ′,βk ′)′ are the regression parameters

after the k-th iteration, and ||ρk − ρk−1|| < 10−4, where ρk denotes the correlation

parameter after the k-th iteration. Additionally, we estimate the standard error for

each parameter estimate using the expression for the asymptotic covariance matrix

provided in (3.2).

The dummy covariates of the final model with their corresponding estimated

regression parameters, standard deviations and p-values can be found in Tables

6 and 7. Table 8 displays the results for the copula correlation parameter which

is highly significant. Its value is 0.1366 which shows that there is a small, but

significant, dependency between the average claim size and the number of claims of

a policy group, as we suspected from Figure 2. A possible reason of this positive

correlation is that the deductible is used only for the first claim, while further

claims are fully presented. Furthermore, if someone has more than one claim per

year, he possibly exhibits a riskier driving behavior and is therefore also more likely

to produce higher average claims.

To compare our model with the classical independent model, we also perform the

covariate selection for the marginal Gamma GLM (2.1) and the marginal Poisson

GLM (5.1). The resulting models with their corresponding estimated regression

parameters, standard deviations and p-values can be found in the right parts of

Tables 6 and 7 (in the independent Poisson GLM ’age’ is only marginally significant

but kept in the model for better comparability). The dispersion parameter ν is

estimated in the marginal Gamma GLM as 0.5904 and also used in the mixed

copula regression model, meaning an equal signal-to-noise ratio in both models.

5.3 Model Evaluation and Total Loss Estimation

In order to evaluate our model and to estimate the expected total loss of the insur-

ance portfolio, we partition our data set into 25 risk groups by the 20%-quantiles

of the expected average claim size and the expected number of claims (see Table

9) in the final mixed copula model, respectively, i.e., we classify each observation

with respect to its expected claim size and frequency. Then we use Monte-Carlo

Estimators (MCE’s) to estimate the expected total loss in each risk group. For this

we generate R = 500 data sets with the size of the original data set using the results

of the regression analysis in Section 5.2. For each of the 500 generated data sets we

can calculate the total loss in risk group (j, k) with j denoting the level of expected

claim frequency and k the level of expected average claim size, i.e.,

Sr(j,k) =
7663∑

i=1
i in risk group (j,k)

Y r
i1 Y r

i2, r = 1, . . . , R, j = 1, . . . , 5, k = 1, . . . , 5,
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Mixed Copula Model Independent Model

Estimate Std. Error p-value Estimate Std. Error p-value

Intercept 1.1357 0.0710 0.0000 1.2244 0.0710 0.0000

d.rcl1 0.0144 0.0440 0.7446 0.0032 0.0440 0.9416

d.rcl2 -0.0132 0.0402 0.7432 -0.0300 0.0402 0.4550

d.rcl3 0.0491 0.0388 0.2048 0.0278 0.0388 0.4729

d.rcl4 0.1520 0.0405 0.0002 0.1343 0.0405 0.0009

d.rcl5 0.1251 0.0431 0.0037 0.1123 0.0431 0.0092

d.rcl6 0.1118 0.0406 0.0059 0.0951 0.0406 0.0193

d.rcl7 0.1646 0.0533 0.0020 0.1677 0.0533 0.0017

d.premrate1 0.1268 0.0232 0.0000 0.1329 0.0232 0.0000

d.premrate2 0.0804 0.0308 0.0089 0.1093 0.0308 0.0004

d.premrate3 0.1656 0.0330 0.0000 0.1980 0.0330 0.0000

d.premrate4 0.2505 0.0342 0.0000 0.2820 0.0342 0.0000

d.premrate5 0.2903 0.0428 0.0000 0.3287 0.0428 0.0000

d.premrate6 0.3961 0.0663 0.0000 0.4402 0.0663 0.0000

d.deductible1 0.2169 0.0574 0.0002 0.2076 0.0574 0.0003

d.deductible2 0.2946 0.0506 0.0000 0.2562 0.0506 0.0000

d.deductible3 0.3560 0.0532 0.0000 0.3410 0.0532 0.0000

d.deductible4 0.3498 0.0859 0.0000 0.3776 0.0859 0.0000

d.drivdist1 0.0292 0.0256 0.2552 0.0301 0.0256 0.2411

d.drivdist2 0.0297 0.0302 0.3245 0.0390 0.0302 0.1958

d.drivdist3 0.0577 0.0253 0.0228 0.0564 0.0253 0.0261

d.drivdist4 0.0509 0.0287 0.0755 0.0545 0.0286 0.0570

d.age1 -0.0518 0.0360 0.1501 -0.0486 0.0360 0.1777

d.age2 -0.0744 0.0352 0.0347 -0.0704 0.0352 0.0457

d.age3 -0.0349 0.0322 0.2781 -0.0383 0.0322 0.2341

d.age4 -0.0135 0.0342 0.6926 -0.0181 0.0342 0.5961

d.age5 -0.0916 0.0367 0.0126 -0.0968 0.0367 0.0084

d.constyear1 0.0768 0.0366 0.0359 0.0775 0.0366 0.0341

d.constyear2 0.1078 0.0339 0.0015 0.1067 0.0339 0.0016

d.constyear3 0.1151 0.0327 0.0004 0.1120 0.0327 0.0006

d.constyear4 0.1272 0.0312 0.0000 0.1174 0.0312 0.0002

d.constyear5 0.1814 0.0314 0.0000 0.1713 0.0314 0.0000

d.constyear6 0.2140 0.0378 0.0000 0.2144 0.0378 0.0000

d.sex — — — — — —

Table 6: Summary for the Gamma regression parameter α of the mixed copula regression

model and the independent Gamma GLM.
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Mixed Copula Model Independent Model

Estimate Std. Error p-value Estimate Std. Error p-value

Intercept -7.2503 0.1161 0.0000 -7.3470 0.1900 0.0000

d.rcl1 0.2193 0.0747 0.0033 0.2338 0.0893 0.0089

d.rcl2 0.3970 0.0667 0.0000 0.4217 0.0805 0.0000

d.rcl3 0.4931 0.0618 0.0000 0.5185 0.0778 0.0000

d.rcl4 0.4230 0.0668 0.0000 0.4420 0.0806 0.0000

d.rcl5 0.3092 0.0739 0.0000 0.3254 0.0856 0.0001

d.rcl6 0.3992 0.0676 0.0000 0.4145 0.0811 0.0000

d.rcl7 -0.1357 0.0865 0.1166 -0.1772 0.1331 0.1832

d.premrate1 -0.1149 0.0440 0.0090 -0.1167 0.0309 0.0002

d.premrate2 -0.6478 0.0522 0.0000 -0.6719 0.0715 0.0000

d.premrate3 -0.6593 0.0551 0.0000 -0.7077 0.0818 0.0000

d.premrate4 -0.5707 0.0565 0.0000 -0.6082 0.0837 0.0000

d.premrate5 -0.7400 0.0664 0.0000 -0.7889 0.1287 0.0000

d.premrate6 -0.8177 0.0977 0.0000 -0.9075 0.2370 0.0001

d.deductible1 0.2503 0.0884 0.0046 0.2653 0.1719 0.1227

d.deductible2 0.9658 0.0773 0.0000 1.0390 0.1537 0.0000

d.deductible3 0.3459 0.0821 0.0000 0.3869 0.1617 0.0167

d.deductible4 -1.1229 0.1223 0.0000 -1.3237 0.5931 0.0256

d.drivdist1 -0.0799 0.0416 0.0550 -0.0828 0.0345 0.0164

d.drivdist2 -0.3224 0.0523 0.0000 -0.3354 0.0506 0.0000

d.drivdist3 -0.0295 0.0427 0.4896 -0.0317 0.0347 0.3610

d.drivdist4 -0.1551 0.0499 0.0019 -0.1692 0.0455 0.0002

d.age1 -0.0878 0.0583 0.1321 -0.0860 0.0832 0.3014

d.age2 -0.1587 0.0589 0.0071 -0.1506 0.0795 0.0582

d.age3 0.0404 0.0524 0.4409 0.0580 0.0739 0.4321

d.age4 -0.0140 0.0572 0.8062 -0.0013 0.0753 0.9857

d.age5 -0.0535 0.0626 0.3928 -0.0405 0.0765 0.5961

d.constyear1 -0.1198 0.0615 0.0513 -0.1330 0.0593 0.0248

d.constyear2 -0.0626 0.0579 0.2795 -0.0733 0.0517 0.1563

d.constyear3 -0.0193 0.0550 0.7255 -0.0296 0.0494 0.5482

d.constyear4 0.0420 0.0516 0.4160 0.0301 0.0439 0.4922

d.constyear5 0.0367 0.0514 0.4755 0.0204 0.0442 0.6440

d.constyear6 0.1354 0.0638 0.0338 0.1061 0.0611 0.0824

d.sex 0.2960 0.0323 0.0000 0.3144 0.0336 0.0000

Table 7: Summary for the Poisson regression parameter β of of the mixed copula regression

model and the independent Zero-Truncated Poisson GLM.
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Estimate Std. Error p-value

ρ 0.1366 0.0094 0.0000

Table 8: Summary for the correlation parameter ρ of the mixed copula regression model.

Variable Min. 20% 40% 60% 80% Max.

average claim size 2936.71 4887.85 5349.11 5780.42 6330.51 9764.60

number of claims 1.00 1.11 1.21 1.34 1.68 60.04

Table 9: Quantiles of the expected average claim size and the expected number of claims

in the final mixed copula model.

where Y r
i1 and Y r

i2 are the average claims size and the number of claims of the i-th

policy group in the r-th generated data set respectively. The MCE Ŝ(j,k) of the

expected total loss of risk group (j, k) is then calculated by

Ŝ(j,k) =
1

R

R∑

r=1

Sr(j,k).

To generate the data sets we use a sampling algorithm similar to Algorithm 2.

But, as our insurance portfolio contains only policy groups with at least one claim,

we have to sample from the joint Gamma-Poisson distribution with density (2.5)

conditional on the Poisson variate being greater than 0. For this, we set pk =

fYi2|Yi1,Yi2≥1(yi2 = k|yi1, µi1, ν, µi2, ρ) for k = 1, 2, . . . , k∗, in Algorithm 2, where

fYi2|Yi1,Yi2≥1(yi2|yi1, µi1, ν, µi2, ρ) :=
fYi2|Yi1

(yi2|yi1, µi1, ν, µi2, ρ)

1− fYi2|Yi1
(0|yi1, µi1, ν, µi2, ρ)

=
Dρ(G1(yi1|µi1, ν), G2(yi2|µi2))−Dρ(G1(yi1|µi1, ν), G2(yi2 − 1|µi2))

1−Dρ(G1(yi1|µi1, ν), G2(0|µi2))
,

with yi2 ≥ 1 and sample yi2 from {1, 2, . . . , k∗} with P (Yi2 = k) = pk for k ∈
1, 2, . . . , k∗. The density fYi2|Yi1

(yi2|yi1, µi1, ν, µi2, ρ) is given in Equation (4.1). The

parameter setting for the data simulation is the following:

µi1 = exi
′α̂, ν = ν̂,

µi2 = eln(ei)+zi
′ ˆβ, ρ = ρ̂,

where α̂, β̂ and ρ̂ are the MLE’s of the parameters in the mixed copula regression

model. For comparison reasons, we perform the same simulation using the results of

the independent GLM’s with the following parameter setting for the data generation:

µi1 = exi
′α̂ind , ν = ν̂,

µi2 = eln(ei)+zi
′ ˆβind , ρ = 0,

where α̂ind, β̂ind are the MLE’s of the parameter regression parameter in the inde-

pendent Gamma GLM and the independent Zero-truncated Poisson GLM (5.1). So
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we get the total loss S
r(j,k)
ind , r = 1, 2, . . . , R, of the simulated data sets with indepen-

dent claim frequency and claim size for each risk group (j, k). The corresponding

MCE of the expected total loss is then

Ŝ
(j,k)
ind =

1

R

R∑

r=1

S
r(j,k)
ind .

(Figure 3 about here.)

We can now compare the results of our joint regression model in the following

way: first, for the mixed copula model we compute absolute deviations of the simu-

lated total losses from the observed total losses in each risk group weighted by the

exposure of the respective group (left panel in Figure 3). As the deviations of the

classical independent model are of the same order of magnitude (not displayed here),

we compare the deviations of both models directly (right panel in Figure 3: light

colors indicate risk groups in which the joint regression model performs better). The

plots show that the joint model performs very strongly except for those risk groups

with very small expected number of claims and the case when the expected number

of claims is very large and the expected average claim size is small. Especially in

the latter risk group modeling is unsatisfactory because this risk group makes up

16% of the total exposure, while those risk groups with very small expected number

of claims contribute only 5% of the total exposure. This indicates that the choice of

the Gaussian copula may not have been the best as it does not allow an asymmetric

tail behavior which, apparently, would be appropriate here. However, compared to

the independent model the results of the joint regression model are more accurate

in 17 of 25 risk groups corresponding to 73% of the total exposure and the average

weighted deviations are smaller as well (20.63 vs. 21.42). Standard errors of the

mixed copula model lie between 63.97 and 571.70, whereas those of the independent

model are in the range from 63.42 to 529.40.

Naturally, the expected total loss of the full comprehensive car insurance port-

folio can be estimated as well by summing up the simulated total losses of each risk

group:

Ŝ =
5∑

j,k=1

Ŝ(j,k),

and similary for Ŝind. The MCE of the expected total loss using the estimated

distribution parameters of the mixed copula regression model provides Ŝ = 74′109
TDM with a standard error of 1143.46 TDM. The estimated expected total loss in

the classical independent model (using the estimated regression parameters of the

independent Gamma GLM and the independent Zero-truncated Poisson GLM) is

Ŝind = 75′774 TDM with a standard error of 1041.75 TDM. The total loss of the

observed car insurance portfolio has the amount of 76’071 TDM and is about 2.6%

higher than Ŝ and about 0.4% higher than Ŝind (cp. Figure 4).

(Figure 4 about here.)
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In the classical independent model, we can also estimate the expected total loss

without using a Monte-Carlo estimate. As we assume independency between the

number of claims and the average claim size, the theoretical expected total loss is

easy to calculate:

E[Sind] = E[
7663∑

i=1

Yi1Yi2] =
7663∑

i=1

E[Yi1]E[Yi2],

with E[Yi1] = µi1 = exi
′α and E[Yi2] =

µi2

1−exp(−µi2)
where µi2 = eln(ei)+zi

′β (cp.

(5.2)). So an estimator for the expected total loss is given by

Ê[Sind] :=
7663∑

i=1

µ̂i1
µ̂i2

1− exp(−µ̂i2)
,

where µ̂i1 = exi
′α̂ind and µ̂i2 = eln(ei)+zi

′ ˆβind . The result of Ê[Sind] is 76’069 TDM.

The MCE Ŝind provides a quite similar value as the estimator Ê[Sind] which shows

that the simulation works properly (simulation error of about 0.4%).

We see that the estimated expected total loss using the mixed copula model

is about 2% smaller than the estimated expected total loss using the independent

regression model. This can be explained by the estimation problems of our model

for small claim frequencies and with the positive correlation between the number

of claims and the average claim size in combination with the accumulated small

number of claims per policy in the observed insurance portfolio. When the number

of claims is small, the positive correlation causes a smaller average claim size as

in the case of zero correlation, i.e., independency between the claim frequency and

the average claim size. On the other hand, in the case of an insurance portfolio

with an accumulated high number of claims per policy, we would get a higher

total loss with the joint regression model than by using the independent regression

models. Whether underestimation of the mixed copula model is systematic cannot

be assessed here as we have only one available total loss observation for the insurance

portfolio.

6 Summary and conclusion

The paper presents a new approach to modeling and estimating the total loss of an

insurance portfolio. We developed a joint regression model with a marginal Gamma

GLM for the continuous variable of the average claim size and a marginal Poisson

GLM for the discrete variable for the number of claims. The GLM’s were linked by

the Mixed Copula Approach with a Gaussian Copula which has one parameter to

model the dependency structure.

In order to fit the joint Gamma-Poisson regression model to data and to calculate

the MLE’s of the regression parameters as well as the correlation parameter of the

Gaussian copula we constructed an algorithm based on the MBP algorithm and

checked its quality by running an extensive simulation study with 24 scenarios which

yielded the result that it works quite well in most of the scenarios, especially when

the correlation is low or medium.
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The application of the model to a full comprehensive car insurance portfolio of

a German insurance company showed that there is a significant small positive de-

pendency between the average claim size and the number of claims in this insurance

portfolio. As the resulting parameter setting of the real insurance data set falls in

the area of the scenario parameter settings for which the algorithm works well, we

can act on the assumption that the parameter values for the insurance portfolio are

well estimated.

Finally, we used the Monte Carlo method to estimate the expected total loss

for the portfolio by using the results of the previous joint regression analysis. In

comparison with the classical independent model, it was shown that the expected

total loss estimated with the joint regression model is smaller than the one estimated

with the classical model. Nevertheless, our joint model performs very well in total,

but has problems for extreme values of the variables of interest. This raises the

question if the choice of another copula might improve the model, which we will

study in the future. Furthermore the marginal GLM for the number of claims

might be improved by choosing a Generalized Poisson GLM (Consul and Jain 1973)

in order to model over- and underdispersion.
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Gschlößl, S. and C. Czado (2007). Spatial modelling of claim frequency and claim

size in non-life insurance. Scand. Actuar. J. 2007 (3), 202–225.

Haberman, S. and A. E. Renshaw (1996). Generalized linear models and actuarial

science. The Statistician 45 (3), 407–436.

Jørgensen, B. and M. C. P. de Souza (1994). Fitting Tweedie’s compound Poisson

model to insurance claims data. Scand. Actuar. J. 1994 (1), 69–93.

Kastenmeier, R. (2008). Joint regression analysis of insurance claims and claim

sizes. Technische Universität München, Mathematical Sciences, Diploma the-

sis, http://www-m4.ma.tum.de/Diplarb/da txt.html.

23



Liu, Y. and R. Luger (2009). Efficient estimation of copula-garch models. Com-

putational Statistics and Data Analysis. 53 (6), 2284–2297.

Lundberg, F. (1903). Approximerad framställning afsannollikhetsfunktionen. II.
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Appendix

Lemma 1 The joint Gamma-Poisson-density function for Yi1 and Yi2 is given by

f(yi1, yi2|µi1, ν, µi2, ρ) =







g1(yi1|µi1, ν
2)Dρ(G1(yi1|µi1, ν

2), G2(yi2|µi2)), if yi2 = 0;

g1(yi1|µi1, ν
2)[Dρ(G1(yi1|µi1, ν

2), G2(yi2|µi2))

−Dρ(G1(yi1|µi1, ν
2), G2(yi2 − 1|µi2))], if yi2 ≥ 1.
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Proof: First we compute and simplify the derivative ∂
∂u1

C(u1, ui2|ρ). For this we

use the abbreviation q1 := Φ−1(u1).

C ′
1(u1, ui2|ρ) =

∂

∂u1
C(u1, ui2|ρ)

=
∂

∂u1

1

2π
√

| det(Γ)|

∫ q1

−∞

∫ qi2

−∞
exp

{

−1

2
x′Γ−1x

}

dx

=
1

2π
√

| det(Γ)|

∫ qi2

−∞
exp

{

−1

2

(

q1, x2

)

Γ−1

(

q1
x2

)}

dx2 × ∂

∂u1
q1

=
1

2π
√

| det(Γ)|

∫ qi2

−∞
exp

{

−1

2

(

q1, x2

)

Γ−1

(

q1
x2

)}

dx2 ×
√
2π exp

{
1

2
q21

}

=
1

√

2π(1− ρ2)

∫ qi2

−∞
exp

{

− 1

2(1− ρ2)
(q1ρ− x2)

2

}

dx2.

Using the transformation x2 = z
√

1− ρ2 + ρq1 it follows that

C ′
1(u1, ui2|ρ) =

1√
2π

∫ qi2−ρq1√
1−ρ2

−∞
exp

{

−1

2
z2
}

dz = Φ

(

Φ−1(ui2)− ρΦ−1(u1)
√

1− ρ2

)

=: Dρ(u1, ui2).

Equivalently we get

C ′
1(u1, u

−
i2|ρ) = Φ

(

Φ−1(u−i2)− ρΦ−1(u1)
√

1− ρ2

)

= Dρ(u1, u
−
i2).

For yi2 = 0 we obtain u−i2 = G2(yi2 − 1|µi2) =
∑−1

k=0 g2(k|µi2) = 0. This implies

Φ−1(u−i2) = Φ−1(0) = −∞ and therefore we have

Dρ(u1, u
−
i2) = Φ

(

Φ−1(u−i2)− ρΦ−1(u1)
√

1− ρ2

)

= Φ

(

−∞− ρΦ−1(u1)
√

1− ρ2

)

= 0. (6.1)

Using (2.4) gives the desired result. It is a valid joint density since

lim
n→∞

n∑

yi2=0

[Dρ(G1(yi1|µi1, ν
2), G2(yi2|µi2))−Dρ(G1(yi1|µi1, ν

2), G2(yi2 − 1|µi2))]

= lim
n→∞

[−Dρ(G1(yi1|µi1, ν
2), G2(−1|µi2))

︸ ︷︷ ︸

=0 according to (6.1)

+Dρ(G1(yi1|µi1, ν
2), G2(n|µi2))]

= Dρ(G1(yi1|µi1, ν
2), 1) = Φ

(

Φ−1(1)− ρΦ−1(u1)
√

1− ρ2

)

= Φ

(

∞− ρΦ−1(u1)
√

1− ρ2

)

= Φ(∞) = 1.

Lemma 2 Let g∗1(·) be the density function and G∗
1(·) the cdf of a Gamma(a+1, b)-

distribution with a = 1
ν2

and b = 1
µi1ν2

, then we have

∂Gi1

∂µi1
=

1

µi1ν2
(G∗

i1 −Gi1) (6.2)

∂Gi2

∂µi2
= −g2(yi2|µi2). (6.3)
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Proof: We have

∂Gi1

∂µi1
=

∂

∂µi1

∫ yi1

0
g1(y|µi1, ν

2) dy =

∫ yi1

0

∂g1(y|µi1, ν
2)

∂µi1
dy

=
1

µ2
i1ν

2

∫ yi1

0
g1(y|µi1, ν

2) (y − µi1) dy

=
1

µ2
i1ν

2

(
∫ yi1

0

1

Γ( 1
ν2
)

(
1

µi1ν2

)1/ν2

y1/ν
2

e
− 1

µi1ν
2
y
dy

−µi1

∫ yi1

0
g1(y|µi1, ν

2) dy

)

=
1

µ2
i1ν

2

(
∫ yi1

0

1

Γ( 1
ν2

+ 1)

(
1

µi1ν2

)1/ν2+1

y1/ν
2

e
− 1

µi1ν
2
y
µi1 dy

−µi1

∫ yi1

0
g1(y|µi1, ν

2) dy

)

=
1

µ2
i1ν

2

(

µi1

∫ yi1

0
g∗1(y|µi1, ν

2) dy − µi1

∫ yi1

0
g1(y|µi1, ν

2) dy

)

=
1

µi1ν2
(G∗

i1 −Gi1).

For the second part we have

∂Gi2

∂µi2
=

∂

∂µi2
[

yi2∑

k=0

1

k!
µk
i2 e−µi2 ]

= −e−µi2 +

yi2∑

k=1

(
1

(k − 1)!
µk−1
i2 e−µi2 − 1

k!
µk
i2 e−µi2

)

= −e−µi2 +

yi2−1
∑

k=0

1

k!
µk
i2 e−µi2 −

yi2∑

k=1

1

k!
µk
i2 e−µi2

= − 1

yi2!
µyi2
i2 e−µi2

= −g2(yi2|µi2).

Lemma 3

∂Dρ(Gi1, Gi2)

∂ρ
= φ

(

Φ−1(Gi2)− ρΦ−1(Gi1)
√

1− ρ2

)

ρΦ−1(Gi2)− Φ−1(Gi1)

(1− ρ2)3/2
.

Proof:

∂Dρ(Gi1, Gi2)

∂ρ
=

∂

∂ρ
Φ

(

Φ−1(Gi2)− ρΦ−1(Gi1)
√

1− ρ2

)

= φ

(

Φ−1(Gi2)− ρΦ−1(Gi1)
√

1− ρ2

)

∂

∂ρ

(

Φ−1(Gi2)− ρΦ−1(Gi1)
√

1− ρ2

)

= φ

(

Φ−1(Gi2)− ρΦ−1(Gi1)
√

1− ρ2

)

×
(

−Φ−1(Gi1)
√

1− ρ2

1− ρ2
+
ρ(1− ρ2)−1/2(Φ−1(Gi2)− ρΦ−1(Gi1))

1− ρ2

)
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= φ

(

Φ−1(Gi2)− ρΦ−1(Gi1)
√

1− ρ2

)

ρΦ−1(Gi2)− Φ−1(Gi1)

(1− ρ2)3/2
.

Lemma 4 The partial derivatives of

∂ lcd(θ1, γ)

∂θ
=
(

∂
∂α lcd(θ1, γ),

∂
∂β

lcd(θ1, γ),
∂
∂γ l

c
d(θ1, γ)

)
′

are given by

∂

∂α
lcd(θ1, γ) =

∑

i∈J

dρ(Gi1, Gi2)− dρ(Gi1, G
−
i2)

Dρ(Gi1, Gi2)−Dρ(Gi1, G
−
i2)

G∗
i1 −Gi1

φ(Φ−1(Gi1))

−ρ
√

1− ρ2
xi, (6.4)

∂

∂β
lcd(θ1, γ) =

∑

i∈J

1

Dρ(Gi1, Gi2)−Dρ(Gi1, G
−
i2)

[

dρ(Gi1, Gi2−)
g2(yi2 − 1|µi2)

φ(Φ−1(G−
i2))

−dρ(Gi1, Gi2)
g2(yi2|µi2)

φ(Φ−1(Gi2))

]
µi2

√

1− ρ2
zi, (6.5)

∂

∂γ
lcd(θ1, γ) =

∑

i∈J

1

Dρ(Gi1, Gi2)−Dρ(Gi1, G
−
i2)

{
dρ(Gi1, Gi2)[ρΦ

−1(Gi2)− Φ−1(Gi1)]

−dρ(Gi1, G
−
i2)[ρΦ

−1(G−
i2)− Φ−1(Gi1)]

} 1
√

1− ρ2
. (6.6)

Proof: We begin with the partial derivative with respect to α.

∂

∂α
lcd(θ1, γ) =

∑

i∈J

∂

∂α
ln[Dρ(Gi1, Gi2)−Dρ(Gi1, G

−
i2)]

=
∑

i∈J

1

Dρ(Gi1, Gi2)−Dρ(Gi1, G
−
i2)

(
∂Dρ(Gi1, Gi2)

∂Gi1
− ∂Dρ(Gi1, G

−
i2)

∂Gi1

)
∂Gi1

∂α
,

where

∂Dρ(Gi1, ·)
∂Gi1

=
∂

∂Gi1
Φ

(

Φ−1(·)− ρΦ−1(Gi1)
√

1− ρ2

)

= φ

(

Φ−1(·)− ρΦ−1(Gi1)
√

1− ρ2

)

−ρ
√

1− ρ2
1

φ(Φ−1(Gi1))
,

since (f−1(x))′ = 1
f ′(f−1(x))

. Further with (6.2) of Lemma 2

∂Gi1

∂α
=

∂Gi1

∂µi1

∂µi1

∂α
=

1

µi1ν2
(G∗

i1 −Gi1) µi1 xi,

Combining these parts we get expression (6.4). Next we compute the partial deriva-

tive with respect to β.

∂

∂β
lcd(θ1, γ) =

∑

i∈J

∂

∂β

{
ln[Dρ(Gi1, Gi2)−Dρ(Gi1, G

−
i2)]
}

=
∑

i∈J

1

Dρ(Gi1, Gi2)−Dρ(Gi1, G
−
i2)

(
∂Dρ(Gi1, Gi2)

∂Gi2

∂Gi2

∂β
−∂Dρ(Gi1, G

−
i2)

∂G−
i2

∂G−
i2

∂β

)

,
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where

∂Dρ(·, Gi2)

∂Gi2
=

∂

∂Gi2
Φ

(

Φ−1(Gi2)− ρΦ−1(·)
√

1− ρ2

)

= φ

(

Φ−1(Gi2)− ρΦ−1(·)
√

1− ρ2

)

1
√

1− ρ2
1

φ(Φ−1(Gi2))
,

and with (6.3) of Lemma 2

∂Gi2

∂β
=

∂Gi2

∂µi2

∂µi2

∂β
= −g2(yi2|µi2) µi2 zi.

Similarly, we derive for G−
i2

∂G−
i2

∂β
=

∂G−
i2

∂µi2

∂µi2

∂β
= −g2(yi2 − 1|µi2) µi2 zi.

All these parts together lead to (6.5). Finally, we consider the derivative with

respect to γ:

∂

∂γ
lcd(θ1, γ) =

∑

i∈J

∂

∂γ
ln[Dρ(Gi1, Gi2)−Dρ(Gi1, G

−
i2)]

=
∑

i∈J

1

Dρ(Gi1, Gi2)−Dρ(Gi1, G
−
i2)

(
∂Dρ(Gi1, Gi2)

∂ρ
−∂Dρ(Gi1, G

−
i2)

∂ρ

)
∂ρ

∂γ
.

Using Lemma 3 we have

∂Dρ(Gi1, Gi2)

∂ρ
= φ

(

Φ−1(Gi2)− ρΦ−1(Gi1)
√

1− ρ2

)

ρΦ−1(Gi2)− Φ−1(Gi1)

(1− ρ2)3/2
,

∂Dρ(Gi1, G
−
i2)

∂ρ
= φ

(

Φ−1(G−
i2)− ρΦ−1(Gi1)
√

1− ρ2

)

ρΦ−1(G−
i2)− Φ−1(Gi1)

(1− ρ2)3/2
.

Further

∂ρ

∂γ
=

∂

∂γ

e2γ − 1

e2γ + 1
= 1− ρ2.

Combining all these parts again we finally get expression (6.6).
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Figure 1: Histogram of the observed average claim size in the original (left panel) and in

the aggregated data set (right panel).
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Figure 2: Plot of the number of claims against the average claim size of the groups
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Figure 3: Left panel: plot of absolute deviations from the observed total loss weighted

by exposure for each risk group for the mixed copula model. Right panel: comparison

of absolute deviations of the joint regression model and classical independent model;

light colors indicate risk groups in which the joint regression model performs better.

(Classification of risk groups: a small index means a small expected value for the respective

value.)
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Figure 4: Histogram of the estimated expected total loss using the results of the mixed

copula regression model and the independent GLMs, respectively.
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