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Abstract: Count data often exhibit overdispersion and/or require an adjustment for zero

outcomes with respect to a Poisson model. Zero-modified Poisson (ZMP) and zero-

modified generalized Poisson (ZMGP) regression models are useful classes of models for

such data. In the literature so far only score tests are used for testing the necessity of this

adjustment. We address this problem by using Wald and likelihood ratio tests. We show

how poor the performance of the score tests can be in comparison to the performance of

Wald and likelihood ratio (LR) tests through a simulation study. In particular, the score

test in the ZMP case results in a power loss of 47% compared to the Wald test in the

worst case, while in the ZMGP case the worst loss is 87%. Therefore, regardless of the

computational advantage of score tests, the loss in power compared to the Wald and LR

tests should not be neglected and these much more powerful alternatives should be used

instead. We prove consistency and asymptotic normality of the maximum likelihood

estimates in ZGMP regression models, on what Wald and likelihood ratio tests rely. The

usefulnes of ZGMP models is illustrated in a real data example.
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1 Introduction

Poisson regression models are plain-vanilla models for count data. However they are

often too simple to capture complex structures of count data such as overdispersion.

Overdispersion is present if the count regression data has a higher variability than it is

allowed by the model. In particular, the equality of mean and variance for the count data

analyzed under Poisson assumption is often violated. Various sources such as missing

covariates, correlation among measurements and excess of zero-outcomes with respect

to standard Poisson regression models make counts overdispersed. Excellent survey on

overdispersion and its treatment can be found in Cameron and Trivedi (1998, Chapter

4) and Winkelmann (2003, Chapters 3 and 4).

Since positive counts may still be overdispersed with respect to the zero-truncated

Poisson distribution, in the last decade zero-inflated generalized Poisson (ZIGP) regres-

sion models have been found useful for the analysis of count data with a large amount

of zero-outcomes ( see e.g. Famoye and Singh (2003), Gupta et al. (2004), Joe and Zhu

(2005), Bae et al. (2005) and Famoye and Singh (2006)). It is a large class of regression

models which contains zero-inflated Poisson (ZIP), generalized Poisson (GP) and Pois-

son regressions (see Mullahy (1986), Lambert (1992), Consul and Famoye (1992) and

Famoye (1993)). Recently Czado, Erhardt, Min, and Wagner (2007) introduced flexible

ZIGP models with regression effects on the mean, dispersion and zero-inflation (ZI) level

and applied them to patent outsourcing rates. Their findings showed the superiority of

the fit of their ZIGP models over Poisson, GP, ZIP and even over ZIGP with constant

overdispersion and/or constant ZI based on the Vuong’s test (see Vuong (1989)).

Score tests are widely used for testing misspecifications in count regression models

because they require to fit the model only under the null hypothesis. For regression

models with constant ZI and/or constant overdispersion they have, in particular, been

developed by Dean and Lawless (1989), Dean (1992), van den Broek (1995), Deng and

Paul (2000, 2005), Ridout, Hinde, and Demétrio (2001), Gupta, Gupta, and Tripathi

(2004). Considering only score tests for ZI, we may observe that there is a confusion

with regard to the limiting distribution of score test statistics or the interpretation of

rejecting the null hypothesis in the literature. To discuss this point in more detail, first

note that zero-inflated count regression models are based on mixtures of the Bernoulli

distribution and a count distribution, i.e. so-called zero-inflated count distributions.

Now the ZI parameter ω is interpreted as the probability of getting a zero-outcome from

the Bernoulli distribution. However zero-inflated distributions are also well defined for

small negative values of the ZI parameter ω which indicate that the probability of zero

outcomes is smaller than the probability of zero outcomes for the count distribution

used in the mixture. The negative lower bound for ω is derived from the necessity that

the probability of zero-outcome for zero-inflated distributions is nonnegative (see e.g.
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van den Broek (1995)). Thus, negative values of the parameter ω are acceptable and

correspond to zero-deflation. Further score tests do not require an estimation of the ZI

parameter and therefore, the above score tests for ZI have, in fact, a two-sided alternative

hypothesis, i.e. the null and alternative hypotheses are given by

H0 : ω = 0 versus H1 : ω 6= 0. (1)

The null hypothesis might now be rejected in favor of zero-modification (ZM), i.e. ZI

or zero-deflation and not of only ZI. Therefore score tests for ZI known in the literature

are mostly score tests for ZM. Zero-modified Poisson (ZMP) regression models have

explicitly been introduced by Dietz and Böhning (2000) and we extend these models

to more general count regression models. In order to derive a score test only for ZI,

the problem of testing parameters on the boundary of the parameter space needs to be

addressed. Consequently, the limiting distribution of the score statistic will differ from a

standard χ2−distribution with one degree of freedom and should be corrected according

to Silvapulle and Silvapulle (1995). Under regularity assumptions they have shown for

tests with one sided alternative that likelihood ratio and score test statistics have the

same limiting distribution. One crucial point of their assumptions is that a score vector

is well defined in a small neighborhood of the null hypothesis H0. We will see that this

requirement is satisfied for H0 : ω = 0. For insightful discussions on this problem we

would like to refer to Verbeke and Molenberghs (2003).

Nowadays, given modern computing power, the computational advantage of score

tests has lost some of its original attractivity in many problems. Therefore we think that

more attention should be paid to Wald and likelihood ratio (LR) tests for ZM. However

Wald and LR tests for the testing problem (1) have not been utilized by the statistical

community so far. In addition to numerical difficulties related with an estimation of

ZM parameter ω, these tests also require the knowledge of the asymptotic distribution

of the maximum likelihood estimates (MLE’s) including the Fisher information matrix.

We show that these additional theoretical and numerical efforts related with Wald and

LR tests bring their yields as a gain in test power. In this paper we introduce zero-

modified generalized Poisson (ZMGP) regression models and consider the testing problem

(1) for them. We show that MLE’s in ZMGP regression models are consistent and

asymptotically normal, on what Wald and LR tests are based. Further we investigate

the performance of Wald, LR and score tests for testing ZM. It should be noted that

our theoretical results also remain valid for GP and ZMP regression models subject to

appropriate changes in assumptions.

There exists an alternative count regression model for overdispersed and zero-

inflated data based on a negative binomial (NB) distribution. This is a zero-inflated

negative binomial (ZINB) regression (see Ridout, Hinde, and Demétrio (2001) and Hall

and Berenhaut (2002)). It is not a subject of the paper to compare ZIGP and ZINB
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models but we list most important differences, from our point of view, between these

regression models in next sections.

The paper is organized as follows. In Section 2 we introduce the GP distribution

and discuss its basic forms and properties. A ZMGP regression model with constant ZM

and overdispersion is defined in Section 3. Section 4 gives the asymptotic existence, the

consistency and the asymptotic normality of the MLE in a ZMGP regression model. In

contrast to our previous work Czado, Erhardt, Min, and Wagner (2007), we give here a

rigorous detailed proof of our asymptotic results and, in fact, this proof is the original one.

In Czado, Erhardt, Min, and Wagner (2007) we adopted and sketched the proof given in

this paper for ZIGP regression models. Note the asymptotic theory for ZIGP regression

models cannot be derived from the asymptotic theory of GLM, since the GP distribution

is not a member of the exponential family. Further the imposed regression effects on

ZI and overdispersion levels give only confidence intervals for regression parameters and

do not allow to test for misspecifications. In Section 5 we compare the performance of

the score test for detecting ZM in ZMP and ZMGP models to the performance of the

Wald and LR tests in a simulation study. In particular it is discovered that using the

score test one may lose in test power compared to the Wald test up to 47% for the ZMP

case and up to 87% for the ZMGP case. We also illustrate that the score test for ZM

in the analysis of the apple propagation data (see Ridout and Demétrio (1992)) does

not always detect ZM while the Wald and LR tests give strong evidence for ZM. Thus

the score test can result in misleading conclusions about the presence of ZM. The paper

closes with a conclusion and discussion section. The Fisher information matrix of the

ZMGP regression and the proof of Theorem 1 are given in Appendixes.

2 The GP distribution

A random variable Ỹ is said to be distributed according to a GP distribution with

parameters µ and ϕ, which we denote by GP (µ, ϕ), if its probability mass function is

given by

Pµ,ϕ(y) :=





µ(µ + y(ϕ − 1))y−1ϕ−ye−(µ+y(ϕ−1))/ϕ/y! for y = 0, 1, . . .

0 for y > m, when ϕ < 1.
(2)

The real-valued parameters µ and ϕ are assumed to satisfy the following constraints:

• µ > 0;

• ϕ ≥ max{1/2, 1−µ/m}, where m (m ≥ 4) is the largest natural number such that

µ + m(ϕ − 1) > 0 when ϕ < 1.

If ϕ < 1 then (2) does not correspond to a probability distribution. However the lower

limit, imposed on ϕ in this case, guarantees us that the total error of truncation is less
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than 0.5% (see Consul and Shoukri (1985)). Since all discrete distributions are truncated

under sampling procedures this is found to be a quite reasonable condition.

The GP distribution was first introduced by Consul and Jain (1970) and subse-

quently studied in detail by Consul (1989). One particular property of the GP distri-

bution is that the variance of this distribution is greater than, equal to or less than the

mean according to whether the second parameter ϕ is greater than, equal to or less than

1. More precisely (for details see Consul (1989), page 12 ), if Ỹ ∼ GP (µ, ϕ) then the

mean and variance of Y are given by

E(Ỹ ) = µ (3)

and

V ar(Ỹ ) = ϕ2µ. (4)

A NB distribution with mean µ and overdispersion parameter a > 0 (see Lawless

(1987) for precise definition) also has a flexible variance function. Its variance is given by

µ(1+aµ). Thus the overdispersion in the GP case is independent of the mean while this

is not the case for the NB distribution. This implies that overdispersion in the NB case

might be present over and above that accounted for by a; a fact concurred by Lawless

(1987). Czado and Sikora (2002) also noted this and developed an approach based on

p−value-curves to quantify overdispersion effects more precisely. Another significant

difference between these two distributions is that the NB distribution belongs to the

exponential family whenever the overdispersion parameter a is known while this does

not hold for the GP distribution. A comparison of GP and NB probability functions can

be found in Joe and Zhu (2005) and Gschlößl and Czado (2006).

There is a form of the GP distribution obtained by assuming that ϕ − 1 is lin-

early proportional to µ, say ϕ − 1 = αµ for α > 0. In the literature it is known as

a restricted generalized Poisson (RGP) distribution (see Consul (1989), p. 5) and the

relation between its mean and variance is given by V ar(Ỹ ) = (1 + αE(Ỹ ))2E(Ỹ ). Thus

overdispersion in the RGP case is not independent of the mean. To avoid the point

indicated in the previous paragraph we deal here only with an unrestricted form (2) of

the GP distribution.

3 ZMGP regression

A ZMGP distribution is defined analogous to a ZMP distribution (see Dietz and Böhning

(2000)) and its probability mass function is given by

Pµ,ϕ,ω(y) := P (Y = y) =





ω + (1 − ω)P (Ỹ = 0) y = 0,

(1 − ω)P (Ỹ = y) y = 1, 2, . . . ,
(5)
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where Ỹ is distributed according to the GP distribution with parameters ϕ and µ and

the parameter ω satisfies the following restriction

− exp(−µ/ϕ)

1 − exp(−µ/ϕ)
≤ ω ≤ 1. (6)

Thus, this distribution has 3 parameters µ, ϕ and ω and will be further denoted by

ZMGP (µ, ϕ, ω). The above condition (6) ensures that (5) defines a probability mass

function for negative values of ω corresponding to zero-deflation. Positive values of the

parameter ω correspond to ZI which mostly occurs in practice.

A simple calculation using equations (3) and (4) imply that the mean and variance

of the ZMGP distribution are given by

E(Y ) = (1 − ω)µ (7)

and

V ar(Y ) = E(Y )
(
ϕ2 + µω

)
. (8)

One of the main benefits of considering a regression model based on the ZMGP

distribution is that it gives a large class of regression models for count response data.

In particular, it reduces to Poisson regression when ϕ = 1 and ω = 0, to GP regression

when ω = 0 and to ZMP regression when ϕ = 1. Moreover, by virtue of (7) and (8) this

regression can be used to fit zero-modified count regression data exhibiting overdispersion

or underdispersion.

Analogous to the generalized linear models (GLM) framework, we now introduce a

regression model with response Yi and (known) explanatory variables xi = (xi0, xi1, . . . ,

xip)
t with xi0 = 1 for i = 1, . . . , n:

1. Random components:

{Yi, 1 ≤ i ≤ n} are independent where Yi ∼ ZMGP (µi, ϕ, ω).

2. Systematic components:

The linear predictors ηi(β) = xt
iβ for i = 1, . . . , n influence the response Yi. Here

β = (β0, β1, . . . , βp)
t is a vector of unknown regression parameters. The matrix

X = (x1, . . . ,xn)t is called the design matrix.

3. Parametric link components:

The linear predictors ηi(β) are related to the parameter µi of Yi by µi = exp(ηi(β))

for i = 1, . . . , n.

Here and in the subsequent sections, At and at denote the transpose of a matrix A and

a vector a, respectively. To stress the fact that the distribution of the responses Yi’s does
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not belong to the exponential family, this regression will be called the ZMGP regression

model. It should be noted that parameter ϕ and ω are assumed to be constant and (6)

now should hold for all µi, i = 1, 2, . . . , n. Further, we denote the joint vector of the

regression parameters β and the parameters ϕ and ω of the ZMGP distribution by δ,

i.e. δ := (βt, ϕ, ω)t, and its MLE by δ̂.

The following abbreviations for i = 1, . . . , n will be used throughout in the paper:

µi(β) := exp
(
xt

iβ
)
,

fi(β, ϕ) := exp (−µi(β)/ϕ) ,

gi(δ) := ω + (1 − ω)fi(β, ϕ) = Pµi(β),ϕ,ω(0).

For observations y1, . . . , yn, the log-likelihood l(δ) derived from the ZMGP regression

can be written as

ln(δ) =

n∑

i=1

1l{yi=0} log (gi(δ))

+

n∑

i=1

1l{yi>0}

(
log(1 − ω) + xt

iβ − 1

ϕ
µi(β) + (yi − 1) log [µi(β) + yi(ϕ − 1)]

−yi log ϕ − yi
1

ϕ
(ϕ − 1) − log(yi!)

)
.

Further the score vector, i.e. the vector of the first derivatives, has the following

representation:

sn(δ) = (s0(δ), . . . , sp(δ), sp+1(δ), sp+2(δ))t , (9)

where

sr(δ) :=
∂ln(δ)

∂βr
=

n∑

i=1

sr,i(δ)

with

sr,i(δ) := −xir1l{yi=0}
(1 − ω)fi(β, ϕ)µi(β)

ϕgi(δ)

+ xir1l{yi>0}

(
1 +

µi(β)(yi − 1)

µi(β) + (ϕ − 1)yi
− µi(β)

ϕ

)
(10)

for r = 0, . . . , p,

sp+1(δ) :=
∂ln(δ)

∂ϕ
=

n∑

i=1

sp+1,i(δ)
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with

sp+1,i(δ) := 1l{yi=0}
(1 − ω)fi(β, ϕ)µi(β)

ϕ2gi(δ)

+ 1l{yi>0}

(
yi(yi − 1)

µi(β) + (ϕ − 1)yi
− yi

ϕ
+

µi(β) − yi

ϕ2

)
(11)

and

sp+2(δ) :=
∂ln(δ)

∂ω
=

n∑

i=1

sp+2,i(δ)

with

sp+2,i(δ) := 1l{yi=0}
1 − fi(β, ϕ)

gi(δ)
− 1l{yi>0}

1

1 − ω
, (12)

for i = 1, . . . , n.

It is not difficult to see that the score vector sn(δ) is well defined in a small neighbor-

hood of ω = 0. This indicates that, for testing against ZI, the general theory of Silvapulle

and Silvapulle (1995) on one-sided score tests is applicable and therefore, the limiting dis-

tribution of the corresponding score statistic will differ from a standard χ2−distribution

with one degree of freedom.

4 Asymptotic theory

Fahrmeir and Kaufmann (1985) proved consistency and asymptotic normality of the

MLE in GLM’s for canonical as well as noncanonical link functions under mild assump-

tions. In fact, they presented a general tool for deriving an asymptotic distribution of

MLE’s in any regression model. The validity of their general assumptions can easily be

verified in GLM’s with compact regressors, stochastic regressors and bounded responses,

respectively. However, it is highly technical to derive the asymptotic distribution of the

MLE in a regression model under such easily verified and interpretative assumptions.

We show that the MLE in ZMGP regression models with compact regressors possesses

similar asymptotic properties as one in GLM with compact regressors.

As in Fahrmeir and Kaufmann (1985), we use the Cholesky square root matrix for

normalizing the MLE. The left Cholesky square root matrix A1/2 of a positive definite

matrix A is the unique lower triangular matrix with positive diagonal elements such that

A1/2
(
A1/2

)t
= A (see Stewart (1998), p. 188). For convenience, set At/2 :=

(
A1/2

)t
,

A−1/2 :=
(
A1/2

)−1
and A−t/2 :=

(
At/2

)−1
. In this paper we deal only with the spectral

norm of square matrices denoted by ‖ · ‖. The spectral norm of a real-valued matrix A

is given by

‖A‖ =
(
maximum eigenvalue of AtA

)1/2
= sup

‖u‖2=1

‖Au‖2 ,
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where ‖ · ‖2 denotes the L2– norm of vectors. We drop subindex 2 in ‖ · ‖2 since the

spectral norm is generated by the L2–norm of vectors and arguments of considered norms

are always clearly defined. The minimal eigenvalue of a square matrix A will be further

denoted by λmin(A) and the vector of true parameter values of the ZMGP regression

will be denoted as δ0. Further Fn(δ) will stand for the Fisher information matrix in

a ZMGP regression evaluated at δ. It should be noted that the entries of the Fisher

information matrix in a ZMGP regression have a closed form (see Appendix) while this

is not the case in regression models associated with a NB distribution (see e.g. Lawless

(1987)).

Now denote a neighborhood of δ0 by

Nn(ε) = {δ : ‖Ft/2
n (δ0)(δ − δ0)‖ ≤ ε} (13)

for ε > 0.

For convenience, we drop the arguments δ0, β0 and ϕ0 as well as the subindex δ0

in µi(β0), fi(β0, ϕ0), gi(δ0), Pδ0
, Eδ0

etc. and write µi, fi, gi, P , E etc. Constants will

be further denoted by C and c, with subindexes or without them. They may depend

on δ0 but not on n. The same C’s and c’s in different places denote different constants.

Finally, the d-dimensional unit matrix will be denoted by Id and an admissible set for a

vector β of regression parameter will be denoted by B.

We make the following assumptions.

(A1)
n

λmin(Fn)
≤ C1 ∀ n ≥ 1,

where C1 is a positive constant.

(A2) {xi, i ≥ 1} ⊂ Kx, where Kx ⊂ R
p+1 is a compact set.

(A3) Assume that B ⊂ R
p+1 is an open set and δ0 is an interior point of the set

Kδ := B × Φ × Ω, where Φ := [1,∞) and Ω := [−cω, 1]. Here cω is a positive

constant such that (6) holds for all x ∈ Kx, β ∈ B and ϕ ∈ Φ.

Now we state our main result. It shows that results of Theorem 4 of Fahrmeir and

Kaufmann (1985) can be extended over ZMGP regression models.

Theorem 1. Under the assumptions (A1)–(A3), there exists a sequence of random vari-

ables δ̂n, such that

(i) P (sn(δ̂n) = 0) → 1 as n → ∞ (asymptotic existence),

(ii) δ̂n
P−→ δ0 as n → ∞ (weak consistency),

(iii) F
t/2
n (δ̂n − δ0)

D
=⇒ Np(0, Ip+3) as n → ∞ (asymptotic normality).
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The proof of Theorem 1 is based on several auxiliary lemmas and is given in Ap-

pendixes 2 and 3.

Remarks

(i) Assumption (A1) is more restrictive than the corresponding condition (D) of Fahrmeir

and Kaufmann (1985). This is the price we have paid for deriving the asymptotic

theory for ZMGP regression models. Assumption (A2) means that we deal with

compact regressors.

(ii) If δ0 lies on the boundary of parameter space Kδ, i.e. (A3) is violated, then

statements of Theorem 1 do not hold anymore. Particularly this implies that we

cannot test the adequacy of the GP regression. However the asymptotic results of

Theorem 1 remain valid in GP or ZMP regression models subject to appropriate

changes to be performed in the log-likelihood, the score equations and the Fisher

information matrix as well as in Assumption (A3).

(iii) We would like to especially note that ω = 0 is not on the boundary of the parameter

space in ZMGP and ZMP regression models, thus allowing for a direct application

of Wald, LR and score tests.

5 Applications

5.1 Power comparison of score, Wald and LR tests in ZMP and

ZMGP models

Jansakul and Hinde (2002) investigated the performance of the score test for ZI in

small and moderate sample sizes within the ZIP regression model. They noted that their

score test compares the Poisson model to the ZMP model thus avoiding the problem of

testing on the boundary of ZI.

By virtue of Remarks (ii) and (iii) of Theorem 1, we can construct the Wald and

LR tests for testing ZM in ZMP models and then compare their performance with the

performance of the score test. Note this comparison is only feasible for models with a

constant ZM parameter. In particular, Jansakul and Hinde (2002) considered models

with ω = 0, 0.25, 0.45 and linear predictors ηi(β) = 0.25, 0.75 and ηi(β) = 0.75 − 1.45xi

for i = 1, . . . , n and n = 50, 100, 200. Covariates xi’s were taken uniformly from (0, 1).

For each combination of sample size and model they simulated 1000 sets of responses from

the working model. The simulation setup for the constant linear predictors ηi’s implies

that the corresponding Poisson distribution has approximately 28% ( ηi(β) = 0.25) and

12% (ηi(β) = 0.75) of zero responses. In the case of nonconstant linear predictors, the

probability of obtaining zero outcomes from the Poisson distribution with parameter
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exp(ηi(β)) varies between 0.12 and 0.61 for i = 1, . . . , n. We used their simulation setup

to compare the performance of the three above mentioned tests in S-PLUS 7.0 on a

Windows platform. The MLE’s were determined with a help of the S-PLUS function

”nlminb” which finds the minimum of a smooth nonlinear function subject to bound-

constrained parameters.

The Wald statistic for testing H0 : ω = 0 versus H1 : ω 6= 0 has the following form

Wω =
ω̂2

σ̂2
ω

,

where ω̂ is the MLE of ω in a ZMP regression and σ̂2
ω is the estimated variance of ω̂,

which is the corresponding diagonal element of the inverse of the Fisher information

matrix evaluated at (ω̂, β̂). The LR statistic for the same testing problem is given by

LRω = −2(lPn(β̂
P

) − lZMP

n (δ̂
ZMP

)),

where lPn(·) and β̂
P

denote, respectively, the log-likelihood and the MLE in a Poisson

regression model, lZMP

n (·) and δ̂
ZMP

= (β̂
ZMP

, ω̂ZMP) denote, respectively, the log-likelihood

and the MLE in a ZMP regression model. The score statistic for the above testing

problem is derived in detail by Jansakul and Hinde (2002) and therefore it is not given

here. Further following them, the score statistic is denoted by Sω.

Estimated upper tail probabilities for an α size test are computed by calculating

the proportion of times when Wω , LRω or Sω are greater than or equal to the critical

value χ2
1,1−α. For the Wald test we have for example

#{j : W j
ω ≥ χ2

1,1−α, j = 1, . . . , 1000}
1000

.

Here χ2
1,1−α is the (1 − α)100% quantile of a χ2 distribution with 1 degree of freedom

and W j
ω denotes the value of Wω in the j−th sample. Note that when samples are drawn

from the Poisson distribution the estimated upper tail probabilities correspond to the

estimated level of the test. For ZMP samples with ZM ω > 0 the estimated upper tail

probabilities give the estimated power function at ω. These values are given in Table 1

for the all three tests in the case of nonconstant linear predictors ηi(β) = 0.75− 1.45xi,

i = 1, . . . , n. Thus we observe that the Wald and LR tests are conservative while the

score test is often somewhat liberal. Despite this fact the Wald test has the higher

power than the score test for samples of size n = 50 and n = 100 and especially at level

α = 0.01. For example when ω = 0.45, n = 50 and level α = 0.01 the power of the score

test is 0.471 which is approximately 69% of the power (0.683) of the corresponding Wald

test. Here and in the sequel percents are rounded to integers. It should be noted that our

results for the score test are in a good agreement with results in Table 2 from Jansakul

and Hinde (2002). In general when ηi(β) = 0.75 − 1.45xi, i = 1, . . . , n the score test
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Tab. 1: Estimated upper tail probabilities for Wald (Wω), LR (LRω) and score (Sω) statistics at
χ2

1,1−α based on 1000 samples from the ZMP model with nonconstant linear predictors ηi(β) =
0.75 − 1.45xi

Level of the tests α = 0.05 α = 0.01

Wω LRω Sω Wω LRω Sω

n = 50 ω = 0.00 0.023 0.019 0.047 0.008 0.007 0.014
ω = 0.25 0.407 0.339 0.340 0.244 0.151 0.152
ω = 0.45 0.804 0.680 0.685 0.683 0.471 0.471

n = 100 ω = 0.00 0.027 0.030 0.068 0.006 0.005 0.016
ω = 0.25 0.594 0.504 0.510 0.397 0.276 0.288
ω = 0.45 0.931 0.888 0.884 0.871 0.734 0.740

n = 200 ω = 0.00 0.019 0.019 0.060 0.002 0.002 0.011
ω = 0.25 0.934 0.918 0.919 0.842 0.795 0.800
ω = 0.45 1.000 1.000 1.000 0.999 0.997 0.997

results in power loss between 15% (5%) and 38% (27%) compared to the Wald test for

n = 50 (n = 100). For sample size n = 200 these tests become almost equally powerful.

Simulation results for constants linear predictors are only briefly reported. In the case of

the constant linear predictors ηi(β) = 0.75 all three tests performed about equally well.

In contrast to this the Wald test was more powerful among others for ηi(β) = 0.25. The

loss in power for the score test compared to the Wald test was between 15% (2%) and

43% (26%) for sample size n = 50 (n=100). This shows that a higher percentage of zeros

arising from the Poisson part results in a higher loss of power for the score and LR tests

compared to the Wald test. It should be noted that in our simulation for ZMP case the

difference in power for the score and LR tests was always negligible for constant as well

as nonconstant linear predictors (see e.g. Table 1).

We also conducted an extensive simulation study to compare the performance of

score, Wald and LR tests in ZMGP regression models for samples of size n = 50, 100, 200.

For brevity we report only some results from this study. A ZMGP model with ϕ = 2,

ωj = 0.05j for j = 0, . . . , 9 and linear predictors ηi(β) = 1 + 0.5xi for i = 1, . . . , n and

n = 50, 100, 200 was taken as a working model. As above, covariates xi’s were taken

uniformly from (0, 1). For each combination of sample size and model we simulated

1000 sets of responses from the working model. This simulation setup implies that

the probability of obtaining zero outcomes from the GP distribution with parameters

ϕ = 2 and µi = exp(ηi(β)) varies between 0.11 and 0.25 for i = 1, . . . , n. For a better

visualization we displayed our findings in Figure 1. The power of the tests between two

neighbour knot points ωj and ωj+1 for j = 0, . . . , 8 is obtained by linear interpolation.

From Figure 1 we see that all three tests maintain approximately their size, while the

Wald test is much powerful than the LR test and even more powerful than the score test.
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A sample size of 50 is needed for the Wald test to achieve 80% power at ω = 0.40 and

level α = 0.05 while for the score test a sample size of 100 is not sufficient. Taking the

total cost for sampling and statistical inference the Wald test will be much more effective

than the score test. The loss in power for the score test compared to the Wald test lies

between 46% and 87% for sample size n = 50 and between 22% and 73% for sample size

n=100. In contrast to the ZMP case, for the sample size n = 200 the percent difference

in the power for the score and Wald tests is still significant and lies between 2% and

56%. Thus the score test performs worse when an additional overdispersion parameter

compared to the Poisson distribution is allowed. Moreover the LR test has significantly

higher power than the score test which was not the case in ZMP regression. The percent

difference in power for the score and LR tests is between 8% and 64% for n = 50, 8%

and 36% for n = 100, 1% and 20% for n = 200. With regard to the Wald and LR tests

we observed that the LR test results in power loss up to 68% compared to the Wald test.

5.2 Apple propagation data

Ridout et al. (2001) analyzed data on the number of roots produced by 270 shoots of a

certain apple cultivar. The shoots had been produced under an 8– or 16– hour photope-

riod (Factor ”P”) in culture systems that utilized one of four different concentrations

of cytokinin BAP (Factor ”H”) in the culture medium (for more details see Ridout and

Demétrio (1992) and Marin et al. (1993)). Note that the data contain a large number of

zero responses for the 16–hour photoperiod . Ridout et al. (2001) derived a score test for

testing a zero-inflated Poisson regression model against zero-inflated negative binomial

alternative and showed that zero-inflated Poisson model is unsuitable for these data.

Here we consider two different ZMGP models for the entire data and one ZMGP

model for its part that have been collected under 16–hour photoperiod. In the first

model for the entire data (Model 1) µ may take different values only for two levels of

Factor ”P”, while in the second model (Model 2) µ may take different values for each

of the eight treatment combinations (”P∗H”). For the partial data we fit the ZMGP

model analogously to Model 2, i.e. µ takes different values for each four levels of Factor

”H”. This model is further referred as Model 3. Overdispersion parameter ϕ is taken

to be constant in all models. Further we are interested in testing for ZM, i.e. the null

hypothesis H0 : ω = 0 against the alternative H1 : ω 6= 0.

The values of the corresponding score, Wald and LR statistics for testing ZM are

given in Table 2. Thus the Wald and LR tests clearly indicate that a simple GP regression

without ZM is not sufficient for the whole apple propagation data as well as for its part

with 16–hour photoperiod . The score test detects ZM only in the partial data and is not

powerful enough to do it in the entire data. Moreover we see that for the partial data

the Wald test gives much higher evidence for ZM than the LR and score tests which is
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Fig. 1: Estimated upper tail probabilities for Wald, LR and score statistics at χ2
1,1−α in

the ZMGP regression based on 1000 samples from the ZMGP model with linear

predictors ηi(β) = 1 + 0.5xi
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due to the fact that the Wald test is much more powerful compared to them, as seen in

the simulation.

For the partial data the ZMGP model and the the corresponding GP model are

compared with respect to their fit to the empirical mean Ê(Y |H = i) and variance
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V̂ ar(Y |H = i) (i = 1, . . . 4) for the 4 different levels of Factor ”H”. Recall that the

data contains replications for each level of Factor ”H”, therefore the Ê(Y |H = i) and

V̂ ar(Y |H = i) (i = 1, . . . 4) can be computed. Further the mean and variance in the GP

and ZMGP regression models are given by

E(Y |H = i) = exp
(
xt

iβ
GP
)
,

V ar(Y |H = i) = (ϕGP)
2
exp

(
xt

iβ
GP
)

and

E(Y |H = i) = (1 − ω) exp
(
xt

iβ
ZMGP

)
,

V ar(Y |H = i) = (1 − ω) exp
(
xt

iβ
ZMGP

) (
(ϕGP)

2
+ ω exp

(
xt

iβ
ZMGP

))
,

respectively. Here (ϕGP, βGP) and (ϕZMGP, ω, βZMGP) denote the parameters of the GP

and ZMGP models, respectively. Hence confidence intervals (CI) for the mean and

variance of the both regressions can be constructed and plotted for all covariates xi

(i = 1, . . . , 4) on the basis of the Delta method (van der Vaart (1998), Chapter 3) and

asymptotic normality of the MLE δ̂ in ZMGP and GP regression models (Theorem 1

and Remark (ii)).

From Figure 2 we see that CI in the ZMGP case are always shorter and predicted

values for mean and variance are more closer to their empirical values than in the GP

case. The only exception is the prediction of the mean in the case of Level 3 of Factor

”H” where the GP regression better estimates the mean. This is caused by the fact that

frequency of observed zero responses is here lower compared to other levels of Factor ”H”

(40% (H = 3) versus 50% (H = 1), 53.3% (H = 2) and 47.5% (H = 4)). The MLE’s

and the corresponding asymptotic 95% confidence intervals for the ZM parameter ω and

Tab. 2: The values of the score, Wald and LR statistics for testing ZM in the apple

propagation data. The corresponding p–values are given in parenthesis.

Data Model Score Wald LR

statistic statistic statistic

Complete Model 1: 0.45 72.96 8.03

Factor ”P” (0.50) (< 10−16) (0.005)

Complete Model 2: 0.57 73.18 14.41

Factor ”P” ∗ Factor ”H” (0.45) (< 10−16) (10−4)

Partial Model 3 : 26.84 104.49 46.23

Factor ”H” (2 · 10−7) (< 10−16) (10−11)
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overdispersion parameter ϕ given in Table 3 also support the necessity of ZM in GP

models for the apple propagation data.

Gupta et al. (2004) also analyzed these data within the framework of a zero-inflated

regression model associated with a RGP distribution. Their score tests strongly indicate

that a zero-inflated RGP regression is suitable for the apple propagation data.

Fig. 2: Confidence intervals (CI) for the mean (top panel) and variance (bottom panel)

of the partial apple propagation data for ZMGP and GP models
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Tab. 3: MLE’s and the corresponding 95% confidence intervals (CI) for ω and ϕ in the ZMGP regression
for the apple propagation data.

Data Model ω̂ ϕ̂ CI for ω CI for ϕ
Complete Model 1 0.2225 1.2782 (0.1714, 0.2735) (1.1423, 1.4141)
Complete Model 2 0.2231 1.2427 (0.1720, 0.2742) (1.1118, 1.3736)
partial Model 3 0.4638 1.4154 (0.3749, 0.5527) (1.1327, 1.6981)

6 Conclusions and Discussions

This paper shows that the MLE’s in ZMGP (GP, ZMP) regression models possess similar

asymptotic properties as GLM regression models despite the fact that the ZMGP (GP,

ZMP) distribution does not belong to the exponential family. General results of Fahrmeir

and Kaufmann (1985) for noncanonical links in GLM have been adopted for this purpose.

The simulation study exhibits that the power of the score test for testing ZM in ZMP

regression can be up to 43% lower than the power of the corresponding Wald test. In

the case of ZMGP regression this difference increases up to 87%. The effect of the poor

performance of the score test seen in our simulation studies can also be seen in the

analysis of the entire apple propagation data. The score test does not detect any ZM

despite the high proportion of zeros observed for one level of Factor ”P”. The superiority

of the fit of ZMGP models over GP models is also illustrated on this data set. Note that

zero-inflated count regression models are found to be appropriate for this data by Ridout

et al. (2001) and Gupta et al. (2004). Therefore we conclude that score test for testing

ZM in ZMP and ZMGP models can be highly misleading and the Wald and LR tests

should be used instead.

It is often of interest to test whether ZI and/or overdispersion adjustments in ZIGP

regression models are needed. In this testing problem the true parameter (or the pa-

rameter vector) lies on the boundary of a parameter space. To derive the corresponding

Wald and LR tests, we have, therefore, to deal with a delicate boundary problem as in

Moran (1971), Self and Liang (1987) and Vu and Zhou (1997). Further the performance

of the Wald, LR and score tests naturally arises in small samples needs to be investigated.

These are the subjects of future research.
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Appendix 1. Fisher Information Matrix

The Hessian matrix Hn(δ) in the ZIGP regression may be partitioned as

Hn(δ) =





∂ln(δ)
∂ββt

∂ln(δ)
∂βϕ

∂ln(δ)
∂βω

∂ln(δ)
∂ϕβt

∂ln(δ)
∂ϕϕ

∂ln(δ)
∂ϕω

∂ln(δ)
∂ωβt

∂ln(δ)
∂ωϕ

∂ln(δ)
∂ωω



 , (14)

where ∂ln(δ)
∂ββt , ∂ln(δ)

∂βϕ , ∂ln(δ)
∂βω are matrices of dimension (p + 1) × (p + 1), (p + 1) × 1,

(p+1)×1, respectively, and ∂ln(δ)
∂ϕϕ , ∂ln(δ)

∂ϕω , ∂ln(δ)
∂ωω are scalars. Entries hrs(δ)’s of Hn(δ)

can be straightforwardly computed. For instance entries of the matrix ∂ln(δ)
∂ββt are given

by

hrs(δ) :=
∂ln(δ)

∂βrβs
(15)

= −
n∑

i=1

1l{yi=0}xirxis(1 − ω)µi(β)fi(β, ϕ)

× [1 − µi(β)/ϕ] gi(δ) + (1 − ω)fi(β, ϕ)µi(β)/ϕ

ϕ [gi(δ)]
2

−
n∑

i=1

1l{yi>0}xirxisµi(β)

(
1

ϕ
− yi(yi − 1)(ϕ − 1)

[µi(β) + (ϕ − 1)yi]
2

)

for r, s = 0, . . . , p.

Now set Hn(δ) = −Hn(δ). It is well known (see for example Mardia et al. (1979),

p.98) that under mild general regularity assumptions which are satisfied here that the

Fisher information matrix Fn(δ) is equal to Eδ (Hn(δ)). Thus entries of Fn(δ) can be

straightforwardly computed and are given by

fr,s(δ) = fs,r(δ) =

n∑

i=1

xirxis(1 − ω)µi(β)fi(β, ϕ)

× [1 − µi(β)/ϕ] gi(δ) + (1 − ω)fi(β, ϕ)µi(β)/ϕ

ϕgi(δ)

+

n∑

i=1

(1 − ω)xirxisµi(β)

(
µi(β) − 2ϕ + 2ϕ2

ϕ2(µi(β) − 2 + 2ϕ)
− 1

ϕ
fi(β, ϕ)

)

for r, s = 0, . . . , p ;

fp+1,r(δ) = fr,p+1(δ) =

n∑

i=1

xir(1 − ω)fi(β, ϕ)µi(β)

× gi(δ) [µi(β)/ϕ − 1] − (1 − ω)fi(β, ϕ)µi(β)/ϕ

ϕ2gi(δ)
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−
n∑

i=1

(1 − ω)xirµi(β)

(
2(ϕ − 1)

ϕ2(µi(β) − 2 + 2ϕ)
− fi(β, ϕ)

ϕ2

)

for r = 0, . . . , p ;

fp+2,r(δ) = fr,p+2(δ) = −
n∑

i=1

xirfi(β, ϕ)µi(β)

ϕgi(δ)

for r = 0, . . . , p ;

fp+1,p+1(δ) = −
n∑

i=1

(1 − ω)fi(β, ϕ)µi(β)

×gi(δ) (µi(β) − 2ϕ) − (1 − ω)fi(β, ϕ)µi(β)

ϕ4gi(δ)

+

n∑

i=1

2(1 − ω)µi(β)

(
1

ϕ2(µi(β) − 2 + 2ϕ)
− fi(β, ϕ)

ϕ3

)
;

fp+2,p+1(δ) = fp+1,p+2(δ) =

n∑

i=1

fi(β, ϕ)µi(β)

ϕ2gi(δ)

and

fp+2,p+2(δ) =
n∑

i=1

(
[1 − fi(β, ϕ)]

2

gi(δ)
+

1 − fi(β, ϕ)

1 − ω

)
.

Appendix 2. Auxiliary Lemmas

Now we proceed with two preliminary lemmas used in the proof of Theorem 1. Recall

that we drop the dependency on δ0,β0, ϕ0 and use µi, Fn, E, etc.

Lemma 1. Let Ỹi ∼GP(µi, ϕ0) for i = 1, . . . , n be a sequence of random variables. Then

under assumptions (A2) and (A3),

max
i=1,...,n

E

(
1

(µi + (ϕ0 − 1)Ỹi)k

)
≤ C1

and

max
i=1,...,n

E(Ỹ k
i ) ≤ C2

for any finite integer k > 0, where C1 and C2 are positive constants depending only on

k and δ0 .

Proof. Let us show the first inequality of the Lemma. It is evident using (A3) that
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E

(
1

(µi + (ϕ0 − 1)Ỹi)k

)
≤ 1

µk
i

. (16)

Now it follows

max
i=1,...,n

1

µk
i

= max
i=1,...,n

1

exp (kxt
iβ0)

≤ max
x∈Kx

1

exp (kxtβ0)
≤ C1(β0, k),

since Kx is a compact and exp (kxtβ0) is a continuous function of x. It should be noted

that C1(β0, k) is continuous with respect to β0 and well defined for all β0 ∈ B.

Now we show the second inequality of the lemma. First, we reparametrize the

GP distribution by introducing new parameters θi := µi/ϕ0 and λ0 := (ϕ0 − 1)/ϕ0,

i = 1, . . . , n. Consul and Shenton (1974) gave the following recurrence formula for the

noncentral moments of the GP (θi, λ0) distribution:

(1 − λ0)mi,k+1 = θimi,k + θi
∂mi,k

∂θi
+ λ0

∂mi,k

∂λ0
, k = 0, 1, 2, . . . ,

where mi,k := E(Ỹ k
i ).

Solving this recursion for fixed k shows that mi,k is a polynomial in θi, λ0 and

1/(1−λ0). Thus, mi,k is a continuous function with respect to (θi, λ0) and consequently,

it is also continuous with respect to (µi, ϕ0). It follows now that

max
i=1,...,n

E(Ỹ k
i ) = max

i=1,...,n
mi,k (θi, λ0)

= max
i=1,...,n

mi,k (µi/ϕ0, (ϕ0 − 1)/ϕ0)

≤ max
x∈Kx

mk

(
ex

tβ0/ϕ0, (ϕ0 − 1)/ϕ0

)

≤ C2(δ0),

where mk := E(Ỹ k) and Ỹ ∼ GP (exp(xtβ0), ϕ0). It is not difficult to see that C2(δ0)

is continuous with respect to δ0 and well defined for all δ0 ∈ Kδ.

Lemma 2. Let Qk(y) be a polynomial of a finite order k (k ∈ N) whose coefficients are

positive continuous functions of x, δ and δ0. Further, let Yi ∼ ZIGP (exp(xt
iβ0), ϕ0, ω0)

for i = 1, . . . , n. If (A1)–(A3) hold then

max
δ∈Nn(ε)

max
i=1,...,n

E
(
1l{Yi>0}Qk(Yi)

)
< C,

where C is a positive constant depending on k and δ0.

Proof. Note that under (A1) the neighborhood Nn(ε) is a compact for any n ∈ N and

shrinks to δ0 for any ε > 0 as n → ∞. Using Lemma 1 and the continuity of the
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coefficients of Qk, it follows now that

max
δ∈Nn(ε)

max
i=1,...,n

E
(
1l{Yi>0}Qk(Yi)

)
≤ max

δ∈Nn(ε)
max

i=1,...,n
(1 − ω0)E

(
Qk(Ỹi)

)

≤ max
δ∈N1(ε)

max
x∈Kx

(1 − ω0)E
(
Qk(Ỹ )

)

≤ C,

where Ỹi ∼ GP (exp(xt
iβ0), ϕ0) and Ỹ ∼ GP (exp(xtβ0), ϕ0).

Appendix 3. Proof of Theorem 1

The proof of Theorem 1 follows the proof of Theorem 4 given in Fahrmeir and Kaufmann

(1985). In particular, it suffices to prove asymptotic normality of the normalized score

vectors F
t/2
n sn (Lemma 3) and show (Lemma 4) that

max
δ∈Nn(ε)

‖Vn(δ) − Ip+3‖ P−→ 0 for all ǫ > 0,

where Vn(δ) := F
−1/2
n Hn(δ)F

−t/2
n for n = 1, 2, . . .. The complex expression for the

entries of the Fisher information matrix and Hessian matrix, respectively, requires more

effort for proving Lemma 4 than in the case of the GLM.

Lemma 3. Under assumptions (A1)–(A3), F
−1/2
n sn

D⇒ Np+3(0, Ip+3) as n → ∞, where

Np+3(0, Ip+3) is a (p + 3)-dimensional normal distribution with mean vector 0 and co-

variance matrix Ip+3.

Proof. According to the Cramer-Wald device, it is sufficient to show that a linear combi-

nation atF
−1/2
n sn converges in distribution to N(0,ata) for any vector a ∈ R

p+3 (a 6= 0).

Without loss of generality, we set ‖a‖ = 1.

Now observe that sn can be written as a sum of independent random vectors, namely

sn =
∑n

i=1 sni, where sni = (s0,i, . . . , sp,i, sp+1,i, sp+2,i)
t with sk,i := sk,i(δ0) defined

in (10), (11) and (12) for k = 0, . . . , p + 2 and i = 1, . . . , n, respectively. Further,

define independent random variables ξin by ξin := atF
−1/2
n sni. Since E(ξin) = 0 and

V ar (
∑n

i=1 ξin) = 1, it is enough to show that the Lyapunov condition is satisfied, i.e.

Ls :=

n∑

i=1

E|ξin|s n→∞−→ 0, for some s > 2,

say s = 3 (see for example Hoffmann-Jørgensen (1994), p. 393). Noticing that ‖F−1/2
n ‖2 =

1/λmin (Fn), it follows from (A1) that

L3 ≤
n∑

i=1

E

(∥∥at
∥∥3
∥∥∥F−1/2

n

∥∥∥
3

‖sni‖3

)

≤ C

n3/2

n∑

i=1

E ‖sni‖3 ≤ C√
n

max
i=1,...,n

E ‖sni‖3
.
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Using an extension of the cr-inequality given by

E

∣∣∣∣∣

m∑

i=1

ζi

∣∣∣∣∣

k

≤ mk−1
m∑

i=1

E|ζi|k ( k > 1, k ∈ R), (17)

to m arbitrary random variables ζ1, . . . , ζm ( see, for example, Petrov (1995), p.58) yields

that

E ‖sni‖3 ≤ C
(
E |s0,i|3 + . . . + E |sp,i|3 + E |sp+1,i|3 + E |sp+2,i|3

)
.

Thus, it remains to establish that maxi=1,...,n E |sr,i|3 is uniformly bounded in n for

r = 0, . . . , p + 2. This will be shown for case r = 0, . . . , p. The remaining cases can be

treated similarly. Without loss of generality, set r = p. Using now (17) with m = 2, we

have

max
i=1,...,n

E |sp,i|3 ≤ 22 max
i=1,...,n

E

∣∣∣∣xip1l{yi=0}
(1 − ω0)fiµi

ϕ0gi

∣∣∣∣
3

+ 22 max
i=1,...,n

E

(∣∣∣∣xip1l{yi>0}

(
1 +

µi(yi − 1)

µi + (ϕ0 − 1)yi
− µi

ϕ0

)∣∣∣∣
3
)

=: 4Ap(δ0) + 4Bp(δ0).

The last step in the proof is now to show that

Ap(δ0) < C1 and Bp(δ0) < C3, (18)

where C1 and C3 are some constants depending on δ0.

For proving (18) we note that

Ap(δ0) ≤ max
x∈Kx

‖x‖3

∣∣∣∣
(1 − ω0)fiµi

ϕ0gi

∣∣∣∣
3

gi ≤ C1.

Let us now consider Bp(δ0). Simple arguments with Inequality (17), Cauchy-Schwarz

inequality and Lemma 1, respectively, give

Bp(δ0) ≤ max
i=1,...,n

E



(1 − ω0) |xir|3 ·
∣∣∣∣∣1 +

µi(Ỹi − 1)

µi + (ϕ0 − 1)Ỹi

− µi

ϕ0

∣∣∣∣∣

3




≤ C max
x∈Kx

(1 − ω0)‖x‖3



13 + E

∣∣∣∣∣
µi(Ỹ − 1)

µi + (ϕ0 − 1)Ỹ

∣∣∣∣∣

3

+

(
µi

ϕ0

)3




≤ C1(δ0) + C2(δ0) max
x∈Kx

E
∣∣∣Ỹ − 1

∣∣∣
3

≤ C1(δ0) + C2(δ0) max
x∈Kx

√
E
(
Ỹ − 1

)6

≤ C3(δ0),

where Ỹi ∼ GP (µi, ϕ0) for i = 1, . . . , n and Ỹ ∼ GP (exp(xtβ0), ϕ0).
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Lemma 4. Under the assumptions (A1)–(A3),

max
δ∈Nn(ε)

‖Vn(δ) − Ip+3‖ P−→ 0 for all ǫ > 0. (19)

Proof. It holds a.s. that

‖Vn(δ) − Ip+3‖ =
∥∥∥F−1/2

n [Hn(δ) − Fn]F−t/2
n

∥∥∥

≤ 1

λmin(Fn)
‖Hn(δ) − Fn‖

≤ C

n
‖Hn(δ) − Fn‖

≤ C

∥∥∥∥
1

n
(Hn(δ) − EHn(δ))

∥∥∥∥+ C

∥∥∥∥
1

n
(EHn(δ) − Fn)

∥∥∥∥ .

Thus, conditions

max
δ∈Nn(ε)

∥∥∥∥
1

n
(Hn(δ) − EHn(δ))

∥∥∥∥
P−→ 0 (20)

and

max
δ∈Nn(ε)

∥∥∥∥
1

n
(EHn(δ) − Fn)

∥∥∥∥ −→ 0 (21)

imply (19).

In order to show (20) it is enough to establish that the maximum over δ ∈ Nn(ε)

of the absolute value of the (r, s)-element of the random matrix [Hn(δ) − EHn(δ)]/n

converges to zero in probability, i.e.

max
δ∈Nn(ε)

|hrs(δ) − Ehrs(δ)|
n

P−→ 0.

Note that the Hessian matrix given in (14) has 6 different types of entries. We shall

illustrate the above convergence for hrs(δ)’s defined in (15). The remaining cases can be

treated similarly. Without loss of generality, we show

max
δ∈Nn(ε)

∣∣∣∣
1

n
(hp,p(δ) − Ehp,p(δ))

∣∣∣∣
P−→ 0. (22)

Let Zi := 1l{Yi>0}Yi(Yi − 1), Ui(β, ϕ) := µi(β) + (ϕ − 1)Yi, qi,p(δ) := x2
ipµi(β)(ϕ − 1)

and

vi,p(δ) := x2
ip(1 − ω)fi(β, ϕ)µi(β)

[1 − µi(β)/ϕ] gi(δ) + (1 − ω)fi(β, ϕ)µi(β)/ϕ

ϕ [gi(δ)]
2
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for i = 1, . . . , n. It easy to see that (22) will now follow from the next three conditions:

max
δ∈Nn(ε)

∣∣∣∣∣
1

n

n∑

i=1

vi,p(δ)
(
1l{Yi=0} − E(1l{Yi=0})

)
∣∣∣∣∣

P−→ 0,

max
δ∈Nn(ε)

∣∣∣∣∣
1

n

n∑

i=1

qi,p(δ)

ϕ

(
1l{Yi>0} − E(1l{Yi>0})

)
∣∣∣∣∣

P−→ 0

max
δ∈Nn(ε)

∣∣∣∣∣
1

n

n∑

i=1

qi,p(δ)

[
Zi

[Ui(β, ϕ)]
2 − E

(
Zi

[Ui(β, ϕ)]
2

)]∣∣∣∣∣
P−→ 0. (23)

Since they have a similar structure we only establish the validity of the last relation. It

is worth to recall that the dependency on δ0, β0 and ϕ0 is always dropped.

Observe that the right hand side of (23) may be bounded by a sum of

An = max
δ∈Nn(ε)

∣∣∣∣∣
1

n

n∑

i=1

qi,p(δ)

(
Zi

[Ui(β, ϕ)]
2 − Zi

U2
i

)∣∣∣∣∣ ,

Bn = max
δ∈Nn(ε)

∣∣∣∣∣
1

n

n∑

i=1

qi,p(δ)

[
E

Zi

[Ui(β, ϕ)]
2 − E

(
Zi

U2
i

)]∣∣∣∣∣ ,

Dn = max
δ∈Nn(ε)

∣∣∣∣∣
1

n

n∑

i=1

qi,p(δ)

[
Zi

U2
i

− E

(
Zi

U2
i

)]∣∣∣∣∣ .

For An we have the following bounds a.s.:

An ≤ max
δ∈Nn(ε)

1

n

n∑

i=1

|qi,p(δ)Zi|
µ2

i (β)µ2
i

· |Ui(β, ϕ) + Ui| |µi(β) − µi + (ϕ − ϕ0)Yi|

≤ max
δ∈Nn(ε)

1

n

n∑

i=1

|qi,p(δ)Zi|
µ2

i (β)µ2
i

· |(Yi + 1)(µi(β) + µi + ϕ + ϕ0 − 2)|

× |µi(β) − µi + (ϕ − ϕ0)Yi|

≤ C1

n

(
n∑

i=1

Zi(Yi + 1)

)
max

δ∈Nn(ε)
max
x∈Kx

∣∣exp(xtβ) − exp(xtβ0)
∣∣

+
C1

n

(
n∑

i=1

ZiYi(Yi + 1)

)
max

δ∈Nn(ε)
|ϕ − ϕ0|

=: ABn + ACn. (24)

It is not difficult to see that
1

n

n∑

i=1

Zi(Yi + 1)

converges in probability as n → ∞ to

lim
n→∞

1

n

n∑

i=1

E (Zi(Yi + 1))
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which is finite by Lemma 2.

These facts and the continuity in β of the function maxx∈Kx
|exp(xtβ) − exp(xtβ0)|

with value zero at β = β0 yield that ABn converges to 0 in probability as n → ∞.

Convergence of ACn to 0 in probability may be proven in the same way.

Using similar arguments as above one can show that Bn converges to 0. To prove

Dn → 0 in probability, observe that the function maxi=1,...,n |qi,p(δ) − qi,p(δ0)| can be

bounded from above by the following continuous function of δ

C max
x∈Kx

∣∣exp(xtβ)(ϕ − 1) − exp(xtβ0)(ϕ0 − 1)
∣∣

with zero at δ = δ0. The desired result now follows from the law of large numbers and

standard arguments.

It remains to show (21). We will show

max
δ∈Nn(ε)

∣∣∣∣
[EHn(δ) − Fn]rs

n

∣∣∣∣→ 0 (25)

and again restrict our proof to the case r = s = p. It easy to see that condition (25) will

follow from the next three conditions :

max
δ∈Nn(ε)

∣∣∣∣∣
1

n

n∑

i=1

(vi,p(δ) − vi,p)E(1l{Yi=0})

∣∣∣∣∣→ 0, (26)

max
δ∈Nn(ε)

∣∣∣∣∣
1

n

n∑

i=1

(
qi,p(δ)

ϕ
− qi,p

ϕ0

)
E(1l{Yi>0})

∣∣∣∣∣→ 0, (27)

max
δ∈Nn(ε)

∣∣∣∣∣
1

n

n∑

i=1

(
qi,p(δ)E

(
Zi

[Ui(β, ϕ)]2

)
− qi,pE

(
Zi

U2
i

))∣∣∣∣∣→ 0. (28)

Now we see that the same technique used for deriving (23) can be employed to establish

the convergence results (26)–(28).
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